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Abstract. Surface ozone monitoring sites in the tropics are limited, despite the risk that surface ozone poses to human health, 

tropical forest, and crop productivity. Atmospheric chemistry models allow us to assess ozone exposure in unmonitored 25 

locations and evaluate the potential influence of changing policies and climate on air quality, human health, and ecosystem 

integrity. Here, we utilise in situ ozone measurements from ground-based stations in the pan-tropics to evaluate ozone from 

the UK Earth system model, UKESM1, with a focus on remote sites. The study includes ozone data from areas with limited 

previous data, notably tropical South America, central Africa, and tropical North Australia. Evaluating UKESM1 against 

observations beginning in 1987 onwards, we show that UKESM1 is able to capture changes in surface ozone concentration at 30 

different temporal resolutions, albeit with a systematic high bias of 18.1 nmol mol-1 on average. We use the Diurnal Ozone 

Range (DOR) as a metric for evaluation and find that UKESM1 captures the observed DOR (mean bias of 2.7 nmol mol-1 and 

RMSE of 7.1 nmol mol-1) and the trend in DOR with location and season. Results from this study demonstrate the applicability 

of hourly output from reveal that hourly ozone concentrations from UKESM1 for require bias correction before use for human 

and ecosystem health-based impact assessments, increase confidence in model projections, and highlight areas that would 35 

benefit from further observations. Indeed, hourly surface ozone data have been crucial to this study, and we encourage other 

modelling groups to include hourly surface ozone output as a default.  

https://usys.ethz.ch/en/
mailto:fb428@exeter.ac.uk
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1. Introduction 

Surface level ozone is an air pollutant with detrimental effects on human and plant health (Ainsworth et al., 2012; Emberson, 

2020), of which tropical forests are particularly important ecosystems that are vulnerable to climate change and anthropogenic 40 

disturbances (Artaxo et al., 2022, Andreae et al., 2015). Despite rising ozone precursor emissions across tropical cities (Sicard 

et al., 2023), and predicted damage to crop yields and tropical forest health (Kittipornkul et al., 2023; Hayes et al., 

2020), measurements of surface ozone concentrations in tropical areas are sparse, and few pollution controls have been 

implemented. Models are therefore essential to provide information on ozone concentrations in areas with sparse observations 

and to understand the drivers of ozone formation. In addition, they are needed to evaluate intended and unintended impacts of 45 

pollution mitigation policies on air quality, human health and ecosystems and to produce assessments of future 

impacts. Comparison of model output to recent observations are essential to validating models and understanding biases or 

missing processes. Here, we focus on evaluating surface ozone concentrations from the UK Earth system model, UKESM1 

(Archibald et al., 2020a; Mulcahy et al., 2020; Sellar et al., 2019; Williams et al., 2018), with emphasis on remote areas of the 

tropics.  50 

Data from ground-level ozone monitoring stations are commonly used to evaluate modelled surface ozone, as they provide 

data at a high temporal frequency whilst remaining in a fixed location (Sofen et al., 2016a). This is compared to aircraft 

campaigns and ozonesondes, which are infrequent in time and sparse in space (Chang et al., 2020; Gaudel et al., 2024), and 

satellite products, which do not sample the lower troposphere well (Vieira et al., 2023). Although there are many ground-level 

stations in Europe, North America and East Asia allowing for detailed analysis (Chang et al., 2017; Akimoto et al., 2015; 55 

Hickman et al., 2022), there has until recently been only a limited number of stations in South America and central Africa, 

leaving the tropical forests almost entirely unobserved (Sofen et al., 2016b). This presents challenges to performing impact 

analysis in these locations, for example in examining the extent that El Niño Southern Oscillation (ENSO) signals play in 

driving surface ozone concentrations (Sofen et al., 2016b) and in understanding ozone effects on tropical forest health (Sitch 

et al., 2007). Furthermore, recent studies of ozone in the tropics find increasing concentrations in several South American cities 60 

(Seguel at al., 2024) and South East Asia (Gaudel et al., 2024), but highlight a lack of information in several locations due to 

sporadic or missing monitoring as a limitation. Since 2019, several more monitoring stations have been set up, increasing the 

number of monitored tropical locations compared to previous evaluations by Young et al. (2018) and Gaudel et al. (2018) to 

include the Congo basin (Sibret et al., 2022), Panama and the wet tropics bioregion of northeast Queensland, Australia.  

Tropospheric ozone is not emitted into the atmosphere directly. Ozone is instead formed in-situ from reactions involving 65 

precursors of nitrogen oxides (NOx) and volatile organic compounds (VOCs). The ozone production rate is controlled by the 

reaction NO + HO2/RO2 and can therefore be considered NOx-limited or VOC-limited depending on the availability of these 

species (Archibald et al., 2020b; Wild and Palmer, 2008). However, the effect of changing NOx and VOC concentrations on 

ozone concentrations is non-linear. For example, in a VOC-limited regime, reducing NOx concentrations will not decrease the 

rate of ozone production (and instead would likely increase the rate). In some cases, ozone photochemistry can be supressed 70 
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by aerosols (Ivatt et al., 2022), creating an ‘aerosol-limited’ regime. Whilst the remote tropics are mostly NOx-limited (Liu et 

al., 2022), cities can often be VOC-limited (e.g. Nakada and Urban, 2020; Dantas et al., 2020), and even include conditions 

under which ‘NOx titration’ occurs, a process whereby large, local sources of nitric oxide (NO) react with and thereby remove 

ozone. Over Southeast Asia, an aerosol-inhibited regime may be the dominant process due to high levels of particle pollution 

(Ivatt et al., 2022). Tropical forests have high biogenic VOC emission rates, of which the most abundant is isoprene (Yáñez-75 

Serrano et al., 2015), as well as more limited NOx sources, which include fires (Jaeglé et al., 2005, Pope et al., 2020), lightning 

(Bond et al., 2002; Verma et al., 2021) and soils (Weng et al., 2020). Many tropical locations show a strong seasonality in 

precursor emissions, with elevated NOx concentrations during months with high proximate biomass burning (van der A et al., 

2008). The diversity of ozone regimes across the tropics and mix of natural and anthropogenic sources of ozone precursors 

provides good study potential for a variety of model processes (Nascimento et al., 2022).  80 

UKESM1 is considered to have a positive bias compared to ground-level observations in the tropics, overestimating the annual 

mean ozone concentrations by approximately a factor of 2 (Archibald et al., 2020a, Fig. 6). Health and impact studies therefore 

employ bias correction techniques to avoid overestimating risks (e.g., Turnock et al., 2023; Akriditis et al., 2024) so a thorough 

evaluation of biases is valuable for these assessments. A positive bias is not unique to UKESM1, with the latest evaluation of 

models contributing to the Coupled Model Intercomparison Project 6 (CMIP6) reporting a multi-model mean bias of 6 nmol 85 

mol-1 at the remote tropical site of Cape Matatula, American Samoa (14.2◦ S, 170.6◦ E.) (Griffiths et al., 2021). This bias is 

partly attributed to the coarse spatial resolution of the models (Wild and Palmer, 2008), which is 1.875° x 1.25° horizontally 

and 40 m vertically at the lowest model level in UKESM1. In reality, NOx emissions often occur as subgrid-scale plumes and 

ozone concentrations decline sharply towards the surface, but the coarse resolution does not allow this to be resolved and tends 

to cause overestimation of ozone production (Jaffe and Wigder, 2012; Neal et al., 2017; Pfister et al., 2006), for example by 90 

reducing highly localised NOx titration. Some consequences of changing resolution are indirect; Wild and Prather (2006) 

showed that ozone deposition rates increased at higher resolution as ozone was redistributed to areas of lower boundary layer 

resistance. Further causes of bias may include missing processes, incorrect/incomplete parameterisations or errors in simulation 

of small-scale transport and dynamics.  

Although there are several model evaluations of how well Earth System Models (ESMs) capture seasonality (Brown et al., 95 

2022; Griffiths et al., 2021; Turnock et al., 2020; Young et al., 2018) there are limited studies on the ability of ESMs to replicate 

the diurnal cycle (Pacifico et al., 2015). Whilst seasonal cycles are important to determine average ozone concentrations, 

seasonal changes in ozone regime and trends over time,  hourly or sub-daily resolution are key to assessing peak and duration 

exposure metrics for both human health and vegetation uptake (Lefohn et al., 2018). Given the pivotal role of sunlight in ozone 

formation and the short lifetime of ozone at the surface, ozone concentrations vary over the diurnal cycle, typically from lower 100 

values at night, to peak values in the early afternoon (Piikki et al., 2009). For plants, this diurnal cycle directly affects stomatal 

ozone uptake as leaf-conductance also changes over the day (Felzer et al., 2007) with the highest stomatal conductance 

approximately coinciding with the highest daytime ozone concentrations. Thus, the ability of models to reproduce the observed 

diurnal cycle is critical to ecosystem impact assessments.   
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This study evaluates UKESM1 on its ability to reproduce hourly, daily, seasonal and annual cycles in ozone concentration 105 

across the tropics, with a focus on remote sites. By evaluating ozone concentrations from UKESM1 against different sites in 

the tropics over a range of time resolutions, we provide a starting point for further systematic evaluation of ozone-forming 

processes and their sensitivity in the tropics.  

2. Methods  

2.1 Station data  110 

The monitoring station data used in this study comprise freely available data collected from the TOAR I database (Schröder, 

et al., 2021; Schultz et al., 2017). Further open access data have been provided by the CongoFlux eddy-flux tower located in 

Yangambi DR Congo (Sibret et al., 2022), a canopy access crane at James Cook University’s Daintree Rainforest Observatory 

Australia (Liddell et al., 2007), and an eddy-flux tower station located on Barro Colorado Island, Panama (Detto and Pacala, 

2022). Data from three urban stations in Darwin, Australia are also publicly available from the Northern Territory Environment 115 

Protection Authority (http://ntepa.webhop.net/NTEPA/).   

Monitoring stations (n=53, Table S1) are aggregated into 13 distinct sites (Fig. 1) for model evaluation, of which 8 are remote. 

The sites are described in the Supplementary Information. We use ‘station’ to refer to an individual instrument dataset and 

‘site’ to refer to the collection of station data that are combined for comparison to UKESM1. Stations were discarded if a 

diurnal cycle was not available. The temporal range and completeness of the data within this range are shown in Fig. S1. 120 

UKESM1 was evaluated at the gridcell level by comparing model output to the site, an average of all stations within the 

gridcell. Station networks that were geographically close but crossed adjacent gridcells were combined into one site and 

compared with the average of the corresponding grid cells: the urban air quality network in Bogotá spans 3 gridcells, São Paulo 

spans 3 gridcells and Jakarta spans 2 gridcells.   

Data have been cleaned to remove erroneously high and low values; the highest 20 hourly values from each station were 125 

checked and data points removed if there were sudden jumps between hours that were more than double the values for the 

preceding and succeeding hours. This was largely to remove extreme outliers because, for example, a random hourly 

measurement of 1000 nmol mol-1 where all other data are below 200 nmol mol-1 will affect the Diurnal Ozone Range (DOR). 

Periods of 24 hours or more with ozone values at 0 – 1 nmol mol-1 were also removed since this was an indication that the 

instrument was not working correctly. This occurred at the Daintree and Barro Colorado sites, which had known issues with 130 

their ozone monitors. 

 

Table 1: Information on ozone measurement stations and sites used in this study. The first 8 rows are remote sites. Latitude and 

longitude refer to the gridcell centre. The locations of individual stations are given in Table S1.  
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Site name  Country  Latitude  Longitude  No. 

stations  

No. 

gridcells  

Urban / remote  Observation 

period 

Model 

period 

Amazonas  Brazil  -3.1 299.0 4  1  remote  2009–2014 2009–2014 

Porto Velho  Brazil  -8.1 295.3 1  1  remote  2009–2013 2009–2013 

Santarem  Brazil  -3.1 304.7 1  1  remote  2015 2005–2014 

Yangambi  Democratic Republic 

of the Congo  

0.6 23.4 1  1  remote  2019–2023 2005–2014 

Bukit Koto  Indonesia  -0.6 100.3 1  1  remote  1996–2014 1996–2014 

Watukosek  Indonesia  -8.1 113.4 1  1  rural/remote  1987–2011 1987–2011 

Daintree  Australia  -15.6 145.3 1  1  remote  2020–2022 2005–2014 

Barro Colorado  Panama  9.4 278.4 1  1  remote  2020–2022 2005–2014 

Bogotá  Colombia  5.6 284.0 16  3  urban  2008–2014 2008–2014 

San Lorenzo  Argentina -25.6 302.8 1  1  urban/suburban  1997–2007 1997–2007 

São Paulo  Brazil  -23.1 314.0 19  3  urban  1998–2014 1998–2014 

Jakarta  Indonesia  -5.6 105.9 3  2  urban  1987–2014 1987–2014 

Darwin  Australia  -11.9 130.3 2  1  urban  2011-2014 2011-2014 

  135 

 

Figure 1: Map showing locations of gridcells containing measurement sites (orange crosses) and the site names used in this 

manuscript.    

2.2 Model data  

This study focuses on ozone concentrations produced by UKESM1 (UKESM1-0-LL). Hourly surface ozone concentrations 140 

were modelled by UKESM1 as part of the CMIP6 historical simulations (Tang et al., 2019), a core experiment of CMIP6, that 

covers the historical period from 1850 to 2014 including anthropogenic, solar and volcanic forcings (Eyring et al., 2016). One 

of the major purposes of the experiment was model evaluation.   
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UKESM1 is a combination of the physical climate model HadGEM-GC3.1 (Williams et al., 2018) with additional Earth system 

components including land and atmospheric chemistry (Sellar et al., 2019). The UK Chemistry and Aerosol scheme (UKCA) 145 

contains stratospheric and tropospheric chemistry (Archibald et al., 2020a) combined with the GLOMAP-mode aerosol 

microphysics scheme (Mulcahy et al., 2018, 2020). The lowest vertical model level of UKESM1 represents an altitude of 0 – 

40 m with a layer midpoint height of 20 m above orography/ground and the horizontal resolution is 1.25° latitude by 

1.875°  longitude (~180 km in the tropics). UKCA includes 84 chemical species used to simulate chemical cycles of Ox, HOx, 

and NOx, as well as oxidation reactions of CO, CH4, and NMVOCs (isoprene, ethane, propane), described in detail by 150 

Archibald et al. (2020). Monoterpenes are treated as a single lumped species that react with ozone, OH and NO3, resulting in 

formation of secondary organic aerosol.   

Anthropogenic and biomass burning emissions, including the ozone precursors VOCs, NOx and CO, are prescribed at a 

monthly resolution (Hoesly et al., 2018; Van Marle et al., 2017). Lightning NOx is calculated using the parameterisation of 

Price and Rind (1992), which calculates a lightning flash density based on cloud-top height and produces a global annual 155 

emission rate of 5.93 Tg-N yr-1 over 2005 to 2014. Soil NO is prescribed as a spatially explicit model output according to 

Yienger and Levy (1995), scaled to give an annual flux of 12 Tg-NO. CH4 is prescribed as an annual mean surface 

concentration based on observations over the historical period (Meinshausen et al., 2017). Emissions of isoprene and 

monoterpenes are generated by the interactive biogenic VOC (iBVOC) emission model (Pacifico et al., 2011) with annual 

mean emissions of 495.9 Tg-C yr-1 and 115.1 Tg-C yr-1, respectively. Other biogenic emissions are prescribed as monthly 160 

mean climatologies based on the years 2001–2010 (Guenther et al., 2012; Sindelarova et al., 2014). 

2.3 Analysis  

2.3.1 Site assessments 

This study looks in detail at remote sites (8 of 13) across the tropics (Table 1), with the rural site in Watukosek classed as 

remote for this study. Urban sites (5 of 13) are also included for annual mean calculations to identify differences between sites 165 

and to assess whether UKESM1 can capture spatial patterns. Where possible, years of data from UKESM1 are matched to the 

years of data measured at each site and, where observations fall outside of the model time period, the years 2005 – 2014 are 

used (Table 1). As UKESM1 is free running, i.e., it simulates its own weather and climate, the meteorology in each year does 

not necessarily reflect the conditions at the time but should reflect the variability and the average over the decade. Comparison 

to reanalysis shows UKESM1 overestimates annual mean surface temperature by an average of 0.7 K in the period 2005 – 170 

2014 (Table S2). Differences in observed climate at sites where the model and observation period are mismatched are given 

in Fig. S3 and show the model period (2005 – 2014) differs from the observation period (2019 – 2022) by 0.5 K on average 

using reanalysis, and that UKESM1 temperatures are closer to those observed in 2019 – 2022. Archibald et al. (2020) show 

that the temperature sensitivity of ozone in the chemistry scheme of UKESM1 is on the order of 1 nmol mol-1 K-1 in the absence 

of feedbacks from the land surface, meaning climate trends are unlikely to cause a significant difference in ozone between the 175 
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different periods. However, prescribed emissions are specific to the year, so where the modelled and observed periods do not 

match, there may be differences in ozone concentrations due to emissions changes. The major source of air pollution in the 

Darwin, Daintree and Yangambi sites is from biomass burning. Figure S3 shows that whilst regional biomass burning 

emissions are decreasing, emissions closest to the Yangambi and Darwin sites are increasing so it is difficult to predict how 

precursor emissions at each site may differ between model and observations. Standard deviations are calculated using 180 

interannual variability where possible and are intended to suggest how sensitive the model may be to changes in meteorology 

and emissions. 

It is important to acknowledge that the lowest 40 m, represented by a single UKESM1 ‘surface level’ gridcell, has a substantial 

ozone gradient that is not resolved by the model. However, without measurements of the form of this gradient at each site, no 

attempt is made to reconcile the model and measurement height. The rainforest canopy usually sits at 25 − 40 m above the 185 

ground, with the tallest trees reaching 60 m. Therefore, although above-canopy measurement stations are consistent with the 

model gridcell height (see Supplementary Information), models do not include important characteristics of the canopy such as 

turbulent mixing regimes between below- and above-canopy layers, and cannot resolve height-dependent processes within the 

40 m. To further understand how successfully the site may represent the gridcell as a whole, we consider the homogeneity of 

the gridcells in terms of emissions and landcover. For example, all urban sites will contain inhomogeneous urban emissions 190 

sources. Many precursors are transported to remote sites by remote air masses, which are likely distributed fairly uniformly 

across the gridcell, although some remote sites may contain biomass burning emissions. Using reanalysis data from GFED4s 

(van der Werf et al., 2017), we confirm fire activity within the Daintree gridcell, in addition to some smaller and more 

infrequent burned areas at the Porto Velho and Yangambi sites. Furthermore, landcover in UKESM1 shows the Yangambi, 

Bukit Koto and Watukosek sites contain some agriculture, and Bukit Koto, Watukosek, Daintree and Barro Colorado are all 195 

adjacent to ocean. Based on this analysis, the Amazonas and Santarem sites are the most homogeneous gridcells and therefore 

may be best represented by the model. 

2.3.2 Figures and data 

To calculate ozone mean values, station data are converted to a monthly climatological data composite at each site before 

averaging all stations within the same gridcell. This avoids biases if some stations have a longer period of recording than other 200 

stations in the same gridcell, or if some months have limited measurement data. To calculate year-to-year variability, data from 

all stations within a site are first averaged to create a monthly time series. For comparison to annual mean ozone, standard 

deviations are then taken using annual means for years with 11 or more months of data, regardless of the number of stations 

contributing to each month. For comparison of monthly mean ozone, standard deviations are taken for each month. Figure S2 

shows the total number of days of data contributing to the analysis in each month. Diurnal cycle data from the TOAR I database 205 

are only available as a monthly mean climatology, so no standard deviation is available for the observations of the Diurnal 

Ozone Range (DOR) for these sites. To evaluate how well UKESM1 captures differences among sites or months, we calculate 

a Pearson’s coefficient of determination (r2) and/or root mean square error (RMSE).  
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This study applies the DOR metric to quantitatively evaluate the model’s ability to capture the increase in ozone concentration 

during the day compared to the night at different locations and seasons (Piikki et al., 2009). The DOR is the difference between 210 

the minimum and maximum ozone concentrations measured over a diurnal cycle. Although the time that the minimum and 

maximum occur varies with season and latitude, the DOR is independent of the time of these minima/maxima. Studies in 

remote locations have shown that the DOR is related to the diurnal temperature range and is highest inland, lower to the ground 

and in valleys (Klingberg et al., 2012). For example, above the canopy, ozone concentrations tend to show less diurnal variation 

than closer to the canopy; downdrafts of ozone from the free troposphere occur throughout the night because of a contracted 215 

planetary boundary layer (PBL) and there are fewer deposition processes than within the canopy, leading to higher ozone 

concentrations overnight and therefore less diurnal variability. In polluted regions, the DOR can also depend on entrainment 

and circulation of ozone-rich air masses (Klumpp et al., 2006). The ability of UKESM1 to capture the DOR reflects the ability 

of the model to accurately reproduce the diurnal ozone cycle for varying environmental conditions. 

To understand factors affecting ozone concentrations in UKESM1, monthly mean NOx concentration and ozone production 220 

rate at the lowest model level are also calculated for the period 2004 – 2015 for the eight remote sites. Additionally, 

tropospheric NO2 columns are produced by summing NO2 below the modelled tropopause height. These values are compared 

to tropospheric NO2 columns from the TROPOMI instrument on the Sentinel-5 satellite. We use daily tropospheric NO2 

columns from 2004 – 2015 at an overpass time of 13:00, converted to monthly means and regridded to the resolution of 

UKESM1. 225 

3. Results  

3.1 Average ozone concentrations at each site  

UKESM1 overestimates ozone concentrations at all sites by an average of 18.1 nmol mol-1, a factor of 2, but the bias varies 

from 8.8 nmol mol-1 to 33.2 nmol mol-1 across sites (Fig. 2). The positive bias indicates that UKESM1 overestimates ozone 

concentrations at surface level where it is relevant to human and ecosystem health.   230 

Despite the positive bias, UKESM1 captures the relationship in average ozone concentrations between sites, except in 

Indonesia (Fig. 2b). Excluding Bukit Koto, Jakarta and Watukosek, the mean bias is 13.0 nmol mol-1 (r2 = 0.61, p = 0.01). 

Grouping by region, the mean bias (and mean % bias) in South America is 12.1 nmol mol-1 (91%), in Indonesia is 28.5 nmol 

mol-1 (213%), in Australia is 12.4 nmol mol-1 (60%), and in Africa is 11.1 nmol mol-1 (71 %). The limited number of sites in 

each region creates uncertainty in the regional pattern of the bias, but from the data available, there is high confidence that the 235 

bias in Indonesia is greater than at the other sites (p = 0.0001 when using a student's t-test to compare the bias for sites in 

Indonesia against all other sites). There are no differences between the magnitudes of the bias in remote compared to urban 

areas when groups are compared using a student’s t-test (p > 0.05), and low confidence in a correlation between the magnitude 

of the ozone concentration and the bias. The observed annual means are within a range of 5 to 25 nmol mol-1, with 11 of the 

13 sites within a range of 10 to 20 nmol mol-1 whereas annual means in UKESM1 range from 20 to 50 nmol mol-1.   240 



9 

 

 

 
  
Figure 2: Mean annual ozone concentration at each site compared to in the corresponding gridcell of UKESM1 (a) by site and (b) 

showing the correlation between model and observations. Bars represent 1 standard deviation based on annual means and represent  245 
interannual variability. Missing bars in the observations are due to insufficient data.  

3.2 The diurnal cycle of ozone at remote sites  

Analysis of the diurnal cycle reveals that the positive bias in the annual mean is due to a systematic overestimation of ozone 

concentrations across all hours of the day, so UKESM1 performs similarly during day and night (Fig. S4). As expected, 

UKESM1 predicts an increase in ozone concentrations at sunrise, a peak in the mid-afternoon and decline into the night, 250 

although the exact shape of the diurnal cycle varies at each site. At Daintree, for example, night-time ozone concentrations 

drop by only a few nmol mol-1 whereas at Watukosek the annual mean diurnal cycle ranges from 4.2 nmol mol-1 to 30.9 nmol 

mol-1 (Fig. S4). Qualitatively, UKESM1 captures the variation over the diurnal cycle at the Amazon sites (Fig. S4a – S4c) and 

the Yangambi site (Fig. S4d) but performs less well at the Daintree site (Fig. S4g). The very shallow diurnal cycles modelled 

at Daintree and Barro Colorado is likely due to the coastal nature of the sites. The ozone deposition rate over ocean is 255 

low, which results in a diminished diurnal variation because ozone is not removed efficiently overnight.  

To quantify whether the model is able to capture the magnitude of the changes in diurnal cycle, we examine the DOR at each 

site (Fig. 3). The observations show an average DOR of 17.1 nmol mol-1 with individual sites ranging from 2.2 nmol mol-1 at 

the Daintree site to 30.3 nmol mol-1 at the São Paulo site (Fig. 3a). Comparing the annual mean DOR between model and 

observation, we confirm that UKESM1 is able to capture the DOR with high accuracyreasonably well. The mean bias is 2.7 260 

nmol mol-1 with a range of −11.6 to 15.1 nmol mol-1 across different sites so, unlike the absolute ozone concentrations, 
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UKESM1 does not exhibit a systematic high bias in the DOR (Fig. 3b). As a percentage, the mean bias across all sites is 16% 

and UKESM1 is able to capture the differences in the DOR between sites (r2 = 0.64, p = 0.005). The overall RMSE of 7.1 

nmol mol-1 over all sites is largely driven by urban sites Jakarta and Darwin, whereas selecting only remote sites gives an 

RMSE of 4.8 nmol mol-1.  265 

  
 

 
  
Figure 3: Mean Diurnal Ozone Range (DOR) at each site compared to the corresponding gridcell of UKESM1 (a) by site and (b) 270 
showing the correlation between model and observations. Bars represent 1 standard deviations using annual means to indicate 

interannual variability. Missing bars in the observations are due to insufficient data.  

We also validate whether the model captures the time of the maxima and minima in the diurnal cycles (Fig. 4). To the nearest 

hour, the minimum ozone concentration tends to occur slightly earlier in UKESM1 than observed and the maximum occurs 

later. The Bukit Koto and Daintree sites have a diurnal cycle with a small amplitude (Fig. S4e, S4g), which causes the minimum 275 

hour to be misrepresented, but at all other sites the model and observations differ by 2 hours or less (Fig. 4).  
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Figure 4: The hours in the diurnal cycle that show the minimum (down arrow) and maximum (up arrow) ozone concentrations from 

observations (blue) and UKESM1 (red). The minimum and maximum values at the Barro Colorado site are the same for both 

observations and UKESM1. 280 

 3.3 Daily ozone variation  

Figure S5 shows histograms of the anomalies in daily mean ozone concentration compared to the monthly mean at remote 

sites. A broader distribution indicates higher variability in day-to-day ozone anomalies. Most remote sites show daily 

deviations of up to 10 nmol mol-1 from the monthly mean and a few (Yangambi, Watukosek and Bukit Koto) show days with 

ca. 20 nmol mol-1 differences compared to the monthly mean (Fig. S5c, S5d, S5e). UKESM1 overestimates the frequency of 285 

these events at Bukit Koto and Watukosek, as well as in Porto Velho (Fig. S5b, S5d, S5e).  

Comparing the standard deviation, skew and kurtosis of the daily distribution plots, UKESM1 reproduces the variability in 

daily ozone concentration in several locations (Table S2). The model standard deviation is within 50 % of observations at 9 

out of 13 sites, but is overestimated at Bukit Koto, Watukosek, Porto Velho and São Paulo. Some patterns in the standard 

deviation between sites are captured, such as the broader distribution in Africa compared to South America but, the overall 290 

relationship between different sites does not resemble observations (r2 = 0.34, p = 0.05). The kurtosis describes the tailedness 

of the distribution; positive values indicate a higher number of days with large deviations from the monthly mean compared 
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to a normal distribution. UKESM1 tends to overestimate the kurtosis of the distributions, exemplified at the Porto Velho site 

(Fig. S5b). The skew describes whether the distribution is shifted to one side relative to the zero value. The observational data 

show that a positive skew is present at all the sites except the Daintree site, indicating that events with substantially higher 295 

ozone than the monthly mean are more common than events with substantially lower ozone. UKESM1 displays a positive 

skew of a similar magnitude to that observed at all sites (a mean of 0.58 compared to 0.66 in observations) but cannot capture 

the relationship between sites (r2 = 0.07, p = 0.39).  

3.4 The seasonal ozone cycle at remote sites  

As with the diurnal cycle, UKESM1 captures the seasonal cycle at several sites (Fig. 5) but overestimates ozone concentrations 300 

in absolute terms (RMSE = 18.5 nmol mol-1). Often, the monthly means predicted by UKESM1 are greater than the daily 

maximum ozone recorded in each month (Fig. 5, blue dots).   

In South America (Fig. 5a – 5c), UKESM1 correctly captures an increase in ozone concentrations during biomass burning 

months July – October, however the increase is overestimated at the Porto Velho site. Porto Velho, in the arc of deforestation, 

records concentrations of less than 5 nmol mol-1 during the wet season (December – May), lower than other sites in South 305 

America, followed by an increase to 12.9 nmol mol-1 during the burning season. UKESM1 captures this seasonal pattern but 

the magnitude of the increase in the burning season is 4 times larger than observed (Fig. 5b).   

In Africa, the biomass burning season occurs in June – July in central Africa, and December – February in northern Africa. 

The Yangambi site sits between these biomass burning areas and ozone is expected to be transported to the site by seasonal 

circulation patterns. UKESM1 predicts much larger increases in ozone concentration during these months than is observed at 310 

the Yangambi site (Fig. 5d); the range of observed monthly means is 5.2 nmol mol-1 compared to 21.4 nmol mol-1 in the model. 

Surprisingly, the seasonal cycle predicted by UKESM1 is similar to the measured daily maximum ozone concentration in each 

month, which have a range of 20.1 nmol mol-1 (from 23.9 nmol mol-1 to 44.0 nmol mol-1; Fig. 5d, blue dots). This suggests 

that, although ozone concentrations can be much higher on specific days during biomass burning seasons compared to other 

months, these high ozone events are not frequent enough to generate the large seasonal variation predicted by UKESM1. 315 

Similar features are seen at the Bukit Koto site in Indonesia (Fig. 5e); UKESM1 predicts a seasonal cycle that follows the 

variation in the observed daily maximum, which was 23.8 nmol mol-1 in May but reached 49.3 nmol mol-1 in October, rather 

than the monthly means, which are below 20 nmol mol-1.  

The bias at the Bukit Koto, Yangambi and Porto Velho sites may be amended using a multiplicative linear correction rather 

than an additive correction because the modelled seasonal cycle has greater monthly variability in ozone than the observations. 320 

Applying a bias correction multiplier of 0.33, 0.55 and 0.25 for Bukit Koto, Yangambi and Porto Velho, respectively, brings 

the magnitude of the monthly means and the seasonal variation closer to observations (Fig. S6), however it is not necessarily 

suitable for correcting daily or hourly biases. The seasonal variability at these sites is dominated by changes in biomass burning, 

suggesting that the model overestimates ozone formed from burning due to either incorrect emissions or process representation. 

At the other remote sites, the bias is consistent between months and therefore the annual means in Fig. 2 represent the biases 325 
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sufficiently well (or, in the case of Watukosek, the seasonal cycle is not represented well enough with either correction). In 

these cases, scaling the model output as in Fig. S6 removes the seasonality, suggesting a background bias that is not dependent 

on the local ozone concentration. 

At Watukosek, the seasonal cycle from UKESM1 is completely different to observations (Fig. 5f), where monthly mean ozone 

concentrations are between 10 and 20 nmol mol-1 with only a small seasonal variation. Analysis of the surrounding area shows 330 

that the observed seasonal trend is captured by UKESM1 in adjacent ocean gridcells to the south (Fig. S7). The gridcell chosen 

contains the measurement station, but also the city of Surabaya, whereas the station may only be recording clean air outside of 

the city and therefore would be better represented by an adjacent gridcell.  

 
Figure 5: Mean monthly ozone concentration at each site (blue solid line) compared to in the corresponding gridcell of UKESM1 335 
(red solid line). Shading covers 1 standard deviation using monthly means to indicate interannual variability. The maximum ozone 

concentration recorded in each month using daily means is shown for observations (blue circles).  

 

Figure 6 shows the seasonal cycle in the DOR, which is captured more accurately at remote sites than the monthly mean ozone 

concentrations (r2 = 0.56, p = 0.002 and RMSE = 6.3 nmol mol-1), indicating that the relative change in ozone concentration 340 

over the day is well represented by UKESM1 across different seasons.  

At Porto Velho, the seasonal cycle in the DOR is captured substantially better than the monthly means (Fig. 5b) but UKESM1 

still has a positive bias of 6.0 nmol mol-1, with the largest overestimation of 16.9 nmol mol-1 occurring in biomass burning 
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months August and September (Fig. 6b). However, the standard deviation (shading) is large during August – September in 

model and observations so the site is clearly very sensitive to yearly variability.  345 

Similarly, at the Yangambi site, the observed seasonal variation of 14.3 nmol mol-1 to 25.0 nmol mol-1 is still overestimated by 

UKESM1 during the June – July biomass burning months, giving a modelled seasonal variation of 14.3 nmol mol-1 to 31.9 

nmol mol-1 (Fig. 6d). This is improved compared to the monthly mean concentrations, but again highlights biomass burning 

months as periods with worse model performance. 

At Bukit Koto, there is very little variation in the DOR by month, and UKESM1 overestimates by 5.1 to 10.6 nmol mol-1 (Fig. 350 

6e). As with the monthly means, the model fails to capture the seasonal cycle in the DOR at Watukosek, displaying a very 

different pattern in April – August compared to the observed DOR (Fig. 6f).   

 

Figure 6: Mean monthly Diurnal Ozone Range (DOR) at each site (blue solid line) compared to in the corresponding gridcell of 

UKESM1 (red solid line). Shading covers 1 standard deviation except at the TOAR I sites (Santarem, Bukit Koto, Watukosek) where 355 
diurnal cycle data were only available as a monthly climatology.   

To examine possible reasons for (i) the bias in the monthly means and (ii) the worse performance of the DOR at some sites, 

we consider how these variables are related to NOx concentrations. At the majority of remote sites in the tropics, ozone 

production is controlled by NOx concentrations i.e., with the exception of Watukosek, the sites are NOx-limited because ozone 

production rate increases with increasing NOx (Fig. 7a). Here, ozone production rate is defined as the rate of reaction NO + 360 

RO2/HO2 with NO controlling variability at NOx-limited sites. At Watukosek, the seasonality in ozone production rate is less 
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clearly attributable to NOx concentrations, which indicates other factors (such as VOC concentration and meteorology) are 

involved.  

 

 365 

Fig. 7: Relationship between monthly mean ozone production rate at the surface at each remote site for (a) surface NOx 

concentration, (b) surface ozone concentration and (c) the diurnal ozone range (DOR).   

 

However, seasonal patterns in mean ozone concentrations can differ from ozone production rate due to changes in chemical 

loss rate and non-chemical factors such as deposition and transport. Two sites that highlight this in Fig. 7b are Daintree and 370 

Barro Colorado; the low ozone production rates suggest that transport to these sites causes ozone concentrations to be high 

and unrelated to seasonality in ozone production. As coastal sites, they are likely to be strongly influenced by coastal weather 

phenomena, which may include thermally-driven transport. However, the DOR, which shows different seasonality to mean 

ozone concentrations at these sites (c.f. Fig. 5 and Fig. 6), is correlated with the seasonal changes in ozone production (Fig. 

7c). This suggests that the DOR may be useful in understanding local processes, and in particular NOx concentration is likely 375 

a major factor affecting the DOR. In fact, even at Watukosek, the seasonal cycle in the DOR is correlated with NOx 

concentrations (r2 = 0.58; Fig. S8). This perhaps suggests that NO availability and its change with daily insolation, is the main 

factor affecting the DOR. Of course, loss processes must also play a role in the DOR magnitude, however it certainly seems 

that, at these rural sites, ozone production and the DOR have strong relationships to seasonal NOx concentration.  

Therefore, sites where UKESM1 performs less well at reproducing the observed DOR may indicate poor representation of 380 

local NOx chemistry within UKESM1. These sites include Yangambi, Watukosek and Bukit Koto, so we compare their 

tropospheric NO2 columns in UKESM1 to OMI satellite products (Fig. S9). Yangambi and Bukit Koto show different 

seasonality in the NO2 columns at the site compared to the satellite product. This indicates there could be an issue with 

prescribed emissions of NO2, or that NOx processes are poorly represented at these sites. Additionally, we find that NO2 

columns from UKESM1 are approximately 3x higher than the satellite columns, which likely signifies that NOx concentrations 385 

are too high in the model, although not necessarily at the surface. Inefficient boundary layer mixing of surface-emitted species 

may contribute to the aggregation of NOx in near-surface model levels. Given the relationship between NOx and ozone 
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production (Fig. 7a), decreasing NOx concentration in UKESM1 would likely result in a decrease in ozone concentrations. 

However, it may also decrease the DOR and therefore would not be the only cause of the differences between modelled and 

observed ozone. It is also worth noting that NO2 columns are sensitive to the algorithm used to calculate the columns, including 390 

the method used to separate tropospheric from stratospheric NO2. Therefore, although a systematic high background NO2 in 

the troposphere may be a cause of the systematic ozone bias, more observations of NOx are needed to confirm this, as well as 

to understand whether a bias is related to emissions, the physical model or chemistry. Further discussion in relation to a positive 

NOx bias from the literature is included in Sect. 4.3. On the other hand, the representation of the NOx seasonal cycle at 

Yangambi and Watukosek does seem likely to contribute to poor model performance of ozone seasonality and the DOR in 395 

UKESM1. In four other Earth system models performing the same simulation, the seasonality at Watukosek is captured better, 

whereas all models overestimate the change in ozone during biomass burning months at Yangambi, with UKESM1 performing 

among the best on account of the smaller seasonal variation (Fig. S10). 

4. Discussion  

4.1 How well does UKESM1 reproduce surface ozone in the tropics?  400 

UKESM1 overestimates ozone in the tropics by a mean of 18.1 nmol mol-1 at 13 sites (Fig. 2) covering environments such as 

remote forests, urban areas and coastal locations (Fig. 1). In relative terms, we find that UKESM1 overestimates ozone 

concentrations by ca. a factor of 2, in agreement with Archibald et al. (2020). The spatial differences in annual mean ozone 

concentrations among sites are captured reasonably well although there is a large bias (+28.5 nmol mol-1) at the Indonesian 

sites (Watukosek, Jakarta, Bukit Koto). More promisingly, the Diurnal Ozone Range (DOR) is reproduced with much smaller 405 

biases (RMSE = 7.1 nmol mol-1) (Fig. 3) and seasonal cycles in the DOR are captured at most remote sites (Fig. 6). In 

conjunction with a good representation of the shape of the diurnal cycle (Fig. 4, Fig. S4), the ability to model the DOR shows 

that UKESM1 can reproduce the increase in ozone concentration from its night-time minimum, including how it changes with 

season and location. This gives confidence in the ability of UKESM1 to represent the behaviour of surface ozone in the tropics.  

This study shows that analysis of the DOR provides unique information on the seasonality in NOx concentrations and ozone 410 

production at these remote tropical sites. Seasonality in the DOR is strongly related to NOx concentrations, demonstrating 

changes in NO concentration over the day is an important contributor to the DOR. Overnight, absence of photolysis prevents 

the ozone-producing reaction NO + RO2/HO2 as NO is locked up in NO2 and reservoir species, causing ozone concentrations 

to decline. During the day, NO is formed and the maximum rate of ozone production is determined partly by the NOx 

concentration, allowing a greater diurnal increase in months with higher NOx. This is by no means the only process controlling 415 

the DOR, but suggests that changes in local chemistry, such as NOx chemistry and subsequent ozone formation, seems to be 

captured by UKESM1.  

Furthermore, the systematic ozone bias is present even in locations with low ozone production / where the ozone seasonal 

cycle is dominated by transport (e.g. Barro Colorado). Previous studies have indicated a bias at remote ocean sites of 10 ppb 
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(Brown et al., 2022) indicating a background bias that likely extends across large parts of the tropics and does not necessarily 420 

originate at the site. From comparison of the seasonal cycle, we show that the bias at remote sites is largest during biomass 

burning seasons (Fig. 5) and bias correction at sites where the seasonal cycle is controlled by biomass burning was best applied 

by using a multiplicative scaling factor, whereas at other sites the bias is a constant value across all months (Fig. 5, Fig. S6). 

Similarly, although UKESM1 reproduces the seasonal cycle in the DOR at remote sites (RMSE = 6.3 nmol mol-1), performance 

is worse during months strongly impacted by biomass burning. This is true at both the Porto Velho and the Yangambi sites, 425 

possibly indicating that either the NOx chemistry, emission factors or the altitude of emission from biomass burning is incorrect 

in the model. Certainly, comparison to satellite tropospheric NO2 columns at Yangambi suggests NOx is a contributor to the 

differences in ozone behaviour between model and observations (Fig. S9). Regardless, on the whole the magnitude of the 

seasonal cycle is captured better in the DOR than the absolute ozone concentrations. This suggests that there is a systematic 

error, for example from an incorrect emission factor, a missing process or unresolved subgrid-scale processes, and further 430 

work is needed to identify the cause of the systematic bias. In Europe and North America, UKESM1 tends to produce an 

underestimation of surface ozone in December-February and a positive bias in July-August (Archibald et al., 2020) similar to 

other models (Young et al., 2018). Turnock et al. (2020) found that recent Earth system models have improved the negative 

bias over the Northern Hemisphere, but a positive bias remains elsewhere. Whilst the negative bias is attributed to excessive 

NOx titration, the cause of the positive bias has not been conclusively determined. Causes of model bias are discussed in more 435 

detail in Sect. 4.2 and 4.3the following sections. 

 This bias is not unique to UKESM1; a positive bias is present in several Earth system models that took part in CMIP6, although 

it is larger than most in UKESM1 (Fig. S10). Crucially, however, the magnitude of the mean bias does not relate to the model’s 

ability to capture the seasonal cycle, highlighting that bias in the mean state does not necessarily reflect the model 

representation of trends and variability. In this paper, we focus on UKESM1, confirming that there is a bias in the mean state 440 

in the tropics, yet also demonstrating the model has success in reproducing seasonality and the DOR at several sites. In this 

way, UKESM1 can be a useful tool to understand surface ozone processes and responses to changing forcings. With 

appropriate bias correction, UKESM1 has been used to assess health burdens in different scenarios (Turnock et al., 2023; 

Akriditis et al., 2024) and this study allows further understanding of the bias in the tropics. This can reduce uncertainty in the 

assessments in this area. 445 

4.2 Challenges to process representation as a result of resolution  

The coarse resolution of UKESM1 provides a different type of information when comparing a gridcell average to only a few 

measurement stations. Station measurements may not be representative of the gridcell as a whole, especially if there is spatial 

heterogeneity in precursor sources or meteorological features (e.g., from mountains) within the gridcell (Young et al., 2018). 

Many sites in this study have a limited duration of measurements and contain only one measurement station (Table 1), 450 

exacerbating the discrepancy between model and observations without necessarily indicating a model weakness (Schutgens et 

al., 2017). In several cases, observations were only available outside of the model time range, which ended in 2014. Although 
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the meteorology is shown to be representative of the present day, prescribed emissions such as those from biomass burning 

are not identical between model and observations (Fig. S3), which is especially important if there is a trend over time. Lack of 

long term monitoring means that there is no clear idea of temporal trends in surface ozone concentrations in the tropics, 455 

although observations at American Samoa do not detect any significant change in background ozone over the period 1975 to 

2014 (Griffiths et al., 2020). At the site level, local changes in emissions such as decreasing fire activity in the African savannah 

and increasing deforestation fires in African forest (van Marle et al., 2017) are likely to cause some differences between model 

and observations. Continued monitoring and evaluation of ozone concentrations at recently established stations will be 

instrumental to furthering understanding of ozone in the tropics. 460 

To demonstrate how ozone concentrations can vary considerably within a gridcell, we can use the Amazonas site as an 

example. This site contains four monitoring stations, among which the average ozone concentration differs from the gridcell 

average by 9% to 23% and individual monthly mean values vary by up to 95% from the gridcell monthly mean (Fig. S11). 

These differences can come from the altitude of the measurement station as well as numerous other reasons including proximity 

to precursor emissions sources, prevailing air flow direction and surface type. At the Amazonas site, stations T2 and T3 are in 465 

clearings close to the ground and downwind of Manaus city, whereas T0z is above the canopy and upwind of Manaus. As 

ozone concentrations decrease rapidly within the canopy (Sörgel et al., 2020), measurement stations capturing air that has been 

depleted of ozone from in-canopy loss processes are incongruous with model data, which represent ozone concentrations above 

the canopy. In general, measurement stations are located above the canopy, although future studies may consider adjusting 

modelled concentrations to match the measurement height more precisely. 470 

Several sites in this study are coastal (the model gridcell is split between ocean and land), namely Bukit Koto, Watukosek, 

Daintree and Yangambi. Due to a low deposition velocity of ozone over water (Sarwar et al., 2016; Luhar et al., 2018) and 

limited oceanic emission sources, concentrations of ozone over the ocean in UKESM1 are ~20 nmol mol-1, and minimal diurnal 

variation is present. The gridcell chemistry and deposition velocities along coasts will be an average of the land and ocean, 

implying that the gridcell ozone concentration may not be representative of the site and the DOR is likely to be lower.  475 

The resolution of UKESM1 can also introduce biases because emissions that, in reality, often occur as small, concentrated 

plumes are spread homogeneously across the whole gridcell volume. Of the remote sites included here, Daintree shows local 

fire emissions within the model gridcell that would be affected by this, possibly resulting in inaccurate representation of NOx 

concentrations and ozone formation. The formation of ozone depends critically on relative concentrations of precursors, so 

resolution can dramatically change rates of production and loss (e.g. Archibald et al., 2020). Dilution of NOx spatially and 480 

temporally due to coarse resolution can increase its ozone production efficiency and alter its lifetime (Chatfield and Delany, 

1990; Wild and Prather, 2006). In the horizontal, Wild and Prather (2006) show that diluting point sources of NOx over a large 

gridcell can bring NOx into contact with BVOCs more immediately as the separation of clean and polluted regions is unable 

to be resolved. In the vertical, coarse resolution can prevent build-up of NOx at the surface, which decreases surface deposition 

processes and NOx titration (Chatfield and Delany, 1990; Nassar et al., 2009). Both processes lead to increased ozone 485 

concentrations in source regions, so it is likely that coarse resolution partially contributes to the larger biases in biomass 
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burning regions (Fig. 4b). In this simulation, NOx emissions (except from interactive lightning) are provided as monthly 

means, thereby also diluting emissions over time, which has been similarly shown to increase ozone production (Chatfield and 

Delany, 1990). Changes in temporal resolution may be more pronounced for emissions with high temporal variability such as 

biomass burning. On the other hand, prescribing monthly emissions of NOx did not seem to reduce the ability of UKESM1 to 490 

simulate the daily variability in ozone (Fig. S5, Table S2), which is governed by interactive processes including BVOC 

emissions, lightning NOx and meteorology.  

4.3 Challenges to process representation due to knowledge gaps  

To calculate ozone concentrations, chemistry models must necessarily parameterise and simplify the atmospheric chemistry 

and deposition processes that lead to ozone formation. This includes, among other simplifications, grouping VOCs by their 495 

size, reactivity or functional groups and parameterising stomatal and non-stomatal deposition (Archibald et al., 2020a; 

Hardacre et al., 2015). A semi-mechanistic process in UKESM1 determines biogenic emissions of isoprene and monoterpenes 

(Pacifico et al., 2012) which, although it agrees with the global average estimate (Sindelarova et al., 2022), is poorly 

constrained by observations. To lead to ozone formation, isoprene undergoes several other chemical reactions. This process 

has considerable uncertainty, especially with regards to recycling of OH and NOx (Fiore et al., 2005; Lee et al., 2013), and is 500 

challenging to validate (Horowitz et al., 2007; Schwantes et al., 2020). Furthermore, the reactions determining the fate of 

isoprene and other VOCs are too numerous, and the lack of detailed reaction-kinetic information is an obstacle to include them 

explicitly in the model (Archibald et al., 2010). However, studies which include a more detailed suite of organic oxidation 

products and explicit HOx recycling mechanisms have been shown to further increase the bias in UKESM1, especially over 

tropical forests, suggesting this bias is due to other processes (Archer-Nicholls et al., 2021; Weber et al., 2021).  505 

As for NOx, it is possible that UKESM1 overestimates NOx concentrations in the boundary layer. Tropospheric NOx columns 

are 3x higher in UKESM1 compared to the OMI satellite product (Fig. S9), but the complete reasons for this requires further 

investigation. Previous studies have identified insufficient venting of chemical species out of the boundary layer (O’Connor 

et al., 2014). This suggests an issue with the physical model, which has not yet been solved. Injection height may also play a 

role in surface NOx concentrations; NOx is injected at the surface rather than at different vertical levels, with the exception of 510 

aircraft emissions (Archibald et al., 2020a). Leung et al., (2007) show that varying injection altitudes of biomass burning 

emissions resulted in increases in ozone further above the PBL and greater transport efficiency of NOx to remote 

regions. Comparing to our study, ozonesondes at Watukosek record lower tropospheric ozone concentrations greater than 60 

nmol mol-1 during biomass burning season (Adedeji et al., 2020; Komala et al., 1996), which is similar to the ozone 

concentrations predicted by UKESM1 but larger than the measurement station (10 – 20 nmol mol-1) (Fig. 5f). However, there 515 

are many other uncertainties associated with biomass burning such as emission factors of both NOx and organic compounds 

(Schultz et al., 2008), and subsequent chemistry (Young et al., 2018) that may contribute to biases. The NOx emission factors 

for savannah and grassland fires used in CMIP6 (van Marle et al., 2017) are at the upper end of the range used by other 

inventories (Jin et al., 2021) and isoprene emission factors from C4 grasses are likely to have been overestimated in this set up 
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of UKESM1 (Weber et al., 2023). An overestimation of either or both of these factors could contribute to model bias during 520 

biomass burning seasons, especially in the Congo where most burning occurs in the savannah biome, and are likely to be 

adapted for CMIP7. 

 Uncertainty in emissions is especially high for peat fires (Christian et al., 2003; Nassar et al., 2009), which can make up the 

majority of fire emissions in southeast Asia (Gaveau et al., 2014) but are poorly represented in the model. In fact, UKESM1 

did not perform well in Indonesia against most metrics used in this study. Further analysis of the surrounding gridcells showed 525 

large variation in the magnitude and pattern of the seasonal cycle between adjacent gridcells (Fig. S7). In Watukosek, for 

example, the measured seasonal cycle shows a similar pattern to the cycle over the ocean gridcells, which is quite different 

from the pattern over land. It is likely that the station is exposed to ocean air masses whereas the gridcell responds to 

anthropogenic emissions that change the seasonal pattern. Since other models with the same prescribed emissions display a 

seasonal cycle at Watukosek that looks closer to observations (Fig. S10f), the poor performance of UKESM1 likely relates to 530 

transport of anthropogenic emissions and their chemistry within UKESM1 rather than the emissions themselves. Indonesia is 

a mosaic of agriculture, forest and dense megacities, in addition to having a complex meteorology affected by summer 

monsoon circulation, ENSO and outflow from continental Asia (biomass burning in February – April) (Permadi and Oanh, 

2021). A more detailed analysis of these separate processes and their representation in UKESM1 is needed to understand the 

cause of the model errors.  535 

4.4 Improving understanding of surface ozone in the tropics  

For this evaluation, we have synthesised real-world tropical surface ozone concentrations from more sites than previously 

available in the literature. Whilst modelled ozone concentrations are necessary for a range of applications, the existing 

observational data already reveals that surface ozone in the tropics may already be crossing safe thresholds for vegetation and 

human health. Although annual mean ozone concentrations are below 20 nmol mol-1 at all sites (Fig. 2), we show that there is 540 

large variability in ozone concentrations that can exceed 40 nmol mol-1 at times, even in remote tropical forests (Fig. 5). Daily 

mean ozone concentrations can vary by up to 20 nmol mol-1 from the monthly mean at the Indonesian sites and in Yangambi 

(Fig. S5), with the highest daily mean values being more than double the monthly mean at the Amazonas, Yangambi, Bukit 

Koto and Watukosek sites (Fig. 5). In absolute terms, daily means greater than 30 nmol mol-1 were recorded at all sites except 

Santarem and the annual mean diurnal cycle peaks at over 30 nmol mol-1 on average at Watukosek (Fig. S4), Jakarta and 545 

Bogotá (not shown). Furthermore, over the course of a day, ozone concentrations vary by over 20 nmol mol -1 on average at 

the Watukosek, Jakarta, São Paulo and Bogotá sites (Fig. 3, Fig. S4), meaning that ozone concentrations during daylight hours 

are higher than annual, monthly or daily means represent. This increases the risk to ecosystems, demonstrated by Cheesman 

et al. (2023) who have shown that using hourly data instead of monthly means can increase modelled stomatal ozone uptake 

by 40%. Since our study focuses on remote sites, further research is needed to evaluate the human health impacts at urban 550 

sites. Recently Gaudel et al. (2024) have shown that long term, continuous monitoring is required in several tropical regions 

to reliably detect ozone trends, and the ground-based measurements used here are mostly too limited in duration for trend 
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analysis at the present time. Clearly, more studies and greater monitoring is needed to evaluate the human and ecosystem 

impacts in these globally important regions, with emphasis on maintaining existing sites for trend analysis and more robust 

datasets.  555 

To increase understanding of ozone in the tropics, we identify a gap in monitoring of the savannah/grassland regions such as 

Northern and Central Africa, and Cerrado, the savannah region in Brazil. In general, Africa is underrepresented by monitoring 

stations, despite large variation across the continent from growing cities and seasonal variation in biomass burning and 

circulation. Increased monitoring of ozone over areas with large populations and of ecological importance would significantly 

help in assessing the environmental risk factors to human and plant health. 560 

Areas with poor model performance, large intermodel spread and high uncertainty in future trends cwould also benefit from 

increased observational data to help constrain model predictions. In this study, UKESM1 performed worst over Indonesia, an 

area previously identified as having a high intermodel standard deviation in ozone concentration (Young et al., 2013). Previous 

studies have also identified Southern Africa as an area of high future uncertainty due to intermodel variation of surface ozone 

changes in response to climate change (Brown et al., 2022) and precursor emissions (Turnock et al., 2020).  565 

5. Conclusion  

In this study, we bring together in situ ozone observations from 13 sites across the tropics for the first time. We show that 

UKESM1 can capture observed variability in surface ozone concentrations across the tropics such as increased ozone over the 

diurnal cycle, and during biomass burning seasons. However, UKESM1 overestimates surface ozone concentrations by a factor 

of 2 on average. The mean bias is 18.1 nmol mol-1 but this varies with location and season, with the largest positive bias of 570 

28.5 nmol mol-1 occurring in Indonesia. In other locations, biases are generally largest during biomass burning seasons, which 

suggests emission factors from fires may need to be revised. Coarse resolution may affect the processes being represented, 

which can lead to biases; future studies should aim to quantify the effect of increasing resolution in order to better identify 

model deficiencies. Biases are substantially smaller in the Diurnal Ozone Range (DOR); UKESM1 reproduces the DOR, which 

represents the change in ozone concentration over the diurnal cycle, with a mean bias of 2.7 nmol mol-1 (15.9 %) including 575 

how it varies seasonally (RMSE = 6.3 nmol mol-1). Analysis of the DOR allows local-scale responses to be considered 

separately to the systematic bias and may be a useful diagnostic for other researchers to consider. Overall, our results suggest 

that UKESM1 can be useful for understanding ozone responses to forcings but hourly data should not be used ‘off the shelf’ 

for health and ecosystem impact assessments. Bias correction is an option to avoid overestimation of the risks, but users should 

be aware that monthly mean concentrations may require multiplicative bias correction in biomass burning regions and that 580 

gridcells containing non-homogeneous emission sources or land cover types may be impacted by the negative effects of coarse 

model resolution more than pristine regions. The magnitude of the bias in different regions and seasons, and its dependence 

on factors such as distance from emissions sources remains to be quantified. For this, more in situ monitoring is instrumental.  
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Furthermore, the observed ozone concentrations show that tropical ozone concentrations are highly variable in space and time. 

Ozone concentrations on individual days can be double the monthly mean concentration, in addition to DORs that are regularly 585 

greater than 20 nmol mol-1 at both urban and remote sites. Further studies on human and ecosystem risks in the tropics are 

required and we encourage the inclusion of hourly surface ozone output from all models as a default option.  

Data availability 

Data is open access. Processed data used to make the figures are available at DOI : 10.5281/zenodo.10252771. 
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Please see individual data repositories for data use statements: 

Daily data for Barro Colorado, Yangambi and Daintree are available at DOI : 10.5281/zenodo.10252771. 

Data for the Sao Paulo, Bukit Koto, Watukosek, Jakarta, Amazonas, Bogota, Santarem and San Lorenzo sites are available on 

the TOAR I database (https://join.fz-juelich.de/) 
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