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Abstract.

Climate policies evolve quickly and new scenarios designed around these policies are used to illustrate how they impact

global mean temperatures using simple climate models (or climate emulators). Simple climate models are extremely efficient

although limited to showing only the global picture. Within the Intergovernmental Panel on Climate Change (IPCC) framework,

there is a need to understand the regional impacts of scenarios that include the most recent science and policy decisions quickly5

to support government in negotiations. To address this, we present PRIME (Probabilistic Regional Impacts from Model patterns

and Emissions), a new flexible probabilistic framework which aims to provide an efficient means to run new scenarios without

the significant overheads of larger more complex Earth system models (ESMs). PRIME provides the capability to include the

most recent models, science and scenarios to run ensemble simulations on multi-centennial timescales and include analysis

of many variables that are relevant and important for impacts assessments. We use a simple climate model to provide the10

global temperatures to scale the patterns from a large number of the CMIP6 ESMs. These provide the inputs to a weather

generator and a land-surface model, which generates an estimate of the land-surface impacts from the emissions scenarios.

Here we test PRIME using known scenarios in the form of the Shared Socioeconomic Pathways (SSPs) to demonstrate that

PRIME reproduces the climate response to a range of emissions scenarios, as shown in the IPCC reports. We show results

for a range of scenarios including the SSP5-8.5 high emissions scenario, which was used to define the patterns; SSP1-2.6,15

a mitigation scenario with low emissions and SSP5-3.4-OS, an overshoot scenario. PRIME correctly represents the climate

response for these known scenarios, which gives us confidence that PRIME will be useful for rapidly providing probabilistic

spatially resolved information for novel climate scenarios; substantially reducing the time between the scenarios being released

and being used in impacts assessments.
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1 Introduction

A major gap currently exists in our capability to rapidly assess and predict regional impacts of climate change in response to25

novel future pathways of climate change and rapidly evolving policies. Detailed climate impacts models exist that assess the re-

gional implications of future climate scenarios for a range of impacts sectors, such as: crops, biomes, water, fire and permafrost,

for example through the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP; Frieler et al., 2017; Warszawski et al.,

2014, 2013). ISIMIP provides a consistent framework for assessing climate impacts using a large ensemble of models across a

range of sectors. However, impact models are often specific to particular sectors and are in themselves complicated to set up.30

Usually, their use occurs at the end of a long chain of events: commencing with generation of emissions scenarios, running one

or more Earth system models (ESMs), potentially bias-correcting ESM output, then finally running the impact model.

In order to assess impacts resulting from climate change more systematically, ISIMIP provides output of ESMs to impact

modellers. But even then, there is a long delay from creation of the scenarios to our ability to assess their impacts. For example,

the most recent impacts assessment of the Intergovernmental Panel on Climate Change (IPCC), the Sixth Assessment Report35

(AR6) Working Group II (Climate Change Impacts, Adaptation and Vulnerability: WGII) (Pörtner et al., 2022), relies heavily

on literature based on impacts studies using output from the previous generation of the Coupled Model Intercomparison Project

(CMIP5), rather than the most recent CMIP6 used in AR6 Working Group I (IPCC, 2021). This means that both the scenarios

(RCPs; van Vuuren et al., 2011) and climate models themselves (e.g., HadGEM2-ES Jones et al., 2011; Collins et al., 2011)

used to assess climate impacts by the IPCC are at least a decade old.40

This apparent bottleneck is caused by the significant issue that ESMs, which are the main mechanism for projecting future

climate change, are computationally demanding, so only a limited number of simulations may be performed. As ESMs take

years to develop, test, and run, scenarios of future climate change are only produced periodically on a timeframe designed

to align with IPCC assessment reports, such as contributions to the CMIP phases (Taylor et al., 2012; Eyring et al., 2016).

Nevertheless, ESMs remain the best tools for understanding mechanisms of climate change, and regional climate projections45

could not be performed without them.

One popular method to enable projections of future climate change for novel emissions scenarios, and yet captures the

process understanding implicit in the ESMs simulations that do exist, is via “pattern-scaling” (Zelazowski et al., 2018; Hunt-

ingford et al., 2010). Such scaling assumes that local and monthly changes in near-surface meteorological conditions correlate

linearly with the level of global warming. Lee et al. (2021) note that pattern scaling has known limitations, for example having50

lower skill for variables with large spatial variability (Herger et al., 2015; Tebaldi and Arblaster, 2014), or when attempting to

recreate moving boundaries such as sea ice extent and snow cover (Collins et al., 2013). Nonetheless, the benefits of pattern
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scaling to enable rapid reconstruction of spatial patterns based on global temperature make it an extremely valuable tool for

studying, for example, carbon cycle feedbacks using an intermediate complexity climate model (Mercado et al., 2009; Burke

et al., 2017).55

Other tools are currently being developed to explore the use of pattern scaling for local climate change impacts. The Modular

Earth System Model Emulator with spatially resolved output (MESMER; Beusch et al. (2020)) draws on patterns of temper-

ature from CMIP6 models and its extension (MESMER-M; Nath et al., 2022) to this focuses on spatially resolved monthly

temperature or extremes (MESMER-X; Quilcaille et al., 2022). MESMER is an emulator of temperature patterns and uses

a stochastic representation of natural variability. Goodwin et al. (2020) have also used pattern scaling with the WASP global60

emulator to look at local temperature projections. Alternatively, the STITCHES system (Tebaldi et al., 2022) presents an option

for ESM emulation for impacts research by ’stitching’ together ESM output from known scenarios.

Using pattern-scaled climate variables instead of ESM output to drive impacts models therefore offers an opportunity to

quickly derive impacts from scenarios. Global mean temperature is readily and efficiently calculated from emissions scenarios

using one of a range of climate emulators (Nicholls et al., 2020), which are computationally cheap to run. The regional climate65

patterns are then scaled by applying global mean temperatures produced from emulators. Bypassing ESMs is particularly

useful for assessing novel scenarios, particularly those that are regularly updated (Richters et al., 2022) to address specific

questions around Paris agreement compliance and overshoot (Rogelj et al., 2018; IPCC, 2022), or to answer “what-if” questions

relating to the Earth’s geophysical response (Dvorak et al., 2022). The efficiency and flexibility of emulators allows them to

run ensembles in a probabilistic Monte Carlo framework, spanning the range of assessed climate uncertainty with different70

parameter choices (Nicholls et al., 2021).

Here we present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions): a tool designed to bridge

the gap between scenarios and impacts in a computationally efficient manner. PRIME enables the state-of-the-art science to be

used throughout the modelling chain starting from the latest scenarios all the way to the simulation of regional impacts. PRIME

includes the latest understanding of climate and carbon cycle feedbacks, the latest spatial patterns of climate change, and a75

leading land-surface model/impacts model. In PRIME we accommodate a broad range of variables in addition to temperature,

with a focus on those which are important for impacts assessments. The elements of PRIME are explained in more detail in

Section 2. An evaluation of the performance of the framework is provided in Section 3, additional results that are relevant for

impacts applications are presented in Section 4, with discussion and conclusions in Section 5.

2 Methods80

PRIME is a rapid-response tool designed to explore spatially resolved climate and impacts of scenarios as soon as they are

developed. It draws on comprehensive CMIP multi-model ensemble results, but extends these to fill gaps not yet populated

by ESMs or impact models and can extend simulations into the future to simulate multi-century response. PRIME produces

probabilistic sampling of a range of uncertainties, including global climate and carbon cycle sensitivity and spatial patterns of

climate change. It opens the potential to also span perturbed parameter uncertainty in land and impacts models and provides85

3

https://doi.org/10.5194/egusphere-2023-2932
Preprint. Discussion started: 26 February 2024
c© Author(s) 2024. CC BY 4.0 License.



the ability to propagate constraints onto impacts projections through either prior constraint on parameters or posterior selection

of ensemble members.

Figure 1 shows the components that make up the PRIME framework. The starting point is emissions scenarios such as from

integrated assessment models (IAMs), which are used to drive the global climate emulator FaIRv1.6.2 (Smith et al., 2018, see

Sect. 2.1). FaIR can probabilistically sample uncertainty in climate and carbon cycle response to emissions. Its global mean90

temperature projections are then used to reconstruct the regional climate change for a number of climate variables using the

patterns derived from ESMs (see Sect. 2.2). These regional patterns, along with CO2 concentrations from FaIR, are used to

drive the JULES land surface model, from which various climate impacts can be derived.

Figure 1. Schematic of the PRIME framework. Emissions scenarios provide input in terms of emissions of CO2, other greenhouse gases, and

aerosols and can be taken from IAMs or idealised experiments. The FaIR climate emulator samples uncertainty from the climate and carbon

cycle response to emissions and outputs global temperature and CO2 concentration. PRIME then scales patterns of climate change from

CMIP climate models by the global temperature and uses a weather generator to downscale these to sub-daily driving data for the JULES

land surface model. JULES outputs a broad range of land-based impacts-relevant quantities such as gross primary productivity (GPP), Net

primary productivity (NPP), vegetation cover, soil moisture and runoff.

2.1 Emulator of Global Temperature change

The Finite-amplitude Impulse Response (FaIR) model is a climate emulator that takes inputs of greenhouse gas and short-lived95

climate forcer emissions and produces projections of global mean surface temperature (Smith et al., 2018; Leach et al., 2021).
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FaIR calculates greenhouse gas concentrations (including CO2) and effective radiative forcing as intermediate steps. FaIR

contains modules that simulate the carbon cycle feedback (changes in uptake of CO2 by land and ocean sinks with increasing

CO2 emissions and warming), and forcing from aerosols, ozone, land-use change and several other categories of anthropogenic

and natural forcings. These relationships in FaIR are designed to capture the large-scale behaviour of complex Earth system100

models, and are governed by a number of tuneable parameters.

As part of the IPCC AR6 Working Group 1 (The Physical Science Basis of Climate Change: WGI; IPCC, 2021), a large

ensemble of FaIR v1.6.2 was produced and constrained to assessed ranges, including uncertainty of several climate indicators,

such as present-day warming and Equilibrium Climate Sensitivity (ECS; Forster et al., 2021; Smith et al., 2021). An ensemble

of 2237 parameter sets was taken forward and used for assessing emissions pathways derived from IAMs in the Working Group105

III (Mitigation of Climate Change: WGIII) report (Riahi et al., 2022). We use this ensemble as part of the PRIME framework

(Smith, 2022). The climate uncertainty parameters sampled include radiative forcing from different drivers (including aerosols),

carbon cycle sensitivities, timescales of climate response to forcing, and climate sensitivity. Typically in PRIME, we reduce

the total number of ensemble members by sub-sampling from within the 2237 parameter sets to explore the full range of global

temperature sensitivity using several percentiles at 0, 1, 5, 25, 50, 75, 95, 99 and 100%; these are selected using one scenario110

so that scenarios can be compared against each other.

2.2 Spatial patterns and temporal downscaling of climate change

In PRIME, we use an early version of pattern-scaling developed by Huntingford and Cox (2000). We derive relationships for

eight variables (near-surface air temperature, diurnal temperature range, precipitation, shortwave radiation, longwave radiation,

near-surface specific humidity, 10m wind speed, and surface pressure) by linear regression at each grid cell, using global mean115

temperature change as the predictor and anomalies relative to the 1850–1889 mean. Monthly patterns for 34 CMIP6 models

(see Supplementary Table S1) were calculated, using the SSP5-8.5 emissions scenario: sampling the CMIP6 ensemble’s range

of uncertainty. Wells et al. (2023) show that whilst selecting patterns derived from emissions scenarios with radiative forcings

closer to the target scenario results in the lowest emulation errors, the best all-round performance is obtained by using a high

warming scenario to obtain the patterns, hence our choice of SSP5-8.5. For further detail on the patterns evaluation, see Section120

3.2.

The spatial distribution of the meteorological driving data for JULES was reconstructed from the climate patterns multiplied

by the global mean temperature change (Section 2.1) superimposed on an observed monthly climatology. The observed monthly

climatology was constructed from the daily meteorological data provided by the GSWP3-W5E5 dataset from the ISIMIP3a

project (Frieler et al., 2023) for the period 1901–1930. This was regridded to a resolution of N48 with a 3.75◦ longitude grid125

size and a 2.5◦ latitude grid size.

The monthly data was downscaled to hourly data using a weather generator embedded within JULES (Williams and Clark,

2014). At any given location, the daily meteorology was assumed to be the same for every day of the month. The daily data

was disaggregated to hourly data by imposing a diurnal cycle on temperature and radiation and allocating the precipitation to

a continuous set of timesteps in any particular day. The pressure and wind speed were assumed to be constant throughout the130
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day and the specific humidity is kept below the specific humidity at saturation.

The diurnal cycle in near surface air temperature was defined using:

T = To +
∆T

2
cos

(2π(t− tTmax)
Tday

)
(1)

where To and ∆T are the temperature and diurnal temperature ranges respectively. Tday is the length of the day, tTmax
is the135

time of day when the temperature is highest. tTmax
is calculated from the following equation which assumes that it occurs 0.15

of a day length after solar noon:

tTmax
=

tup + tdown

2
+ 0.15(tup− tdown) (2)

where tup and tdown are sunrise and sunset times.

140

The downward longwave radiation which includes the diurnal cycle (Rlw) is a function of temperature (Huntingford et al.,

2010) and is derived assuming black body radiation and that the diurnal cycle of temperature is negligible:

Rlw = Rlw,o +
(4T

To
− 3

)
(3)

where Rlw,o is the downward longwave radiation before temporal disaggregation. The downward shortwave radiation which

includes the diurnal cycle is the daily mean downward shortwave radiation multiplied by a solar radiation normalisation factor145

which depends on the position of the sun in the sky at each timestep for each gridbox.

Precipitation was split into 3 types: large-scale rain, convective rain and large-scale snow. The type of precipitation at any

particular time depends on the mean daily temperature. If the daily temperature is greater than 293.15 K it is convective rain,

between 275.15 K and 293.15 K it is large scale-rain and below 275.15 K it is large scale-snow. This precipitation is divided150

into events of randomly generated duration. If the maximum precipitation rate in any timestep is greater than 350.0 mm/day,

the precipitation is again redistributed to reduce these values to less than the threshold.

2.3 Land Surface and Impacts Model

The Joint UK Land Environment Simulator Earth System (JULES; Best et al., 2011; Clark et al., 2011; Wiltshire et al., 2021)

land surface model is a community model used both in standalone model and as the land surface component of the UK Earth155

System Model (UKESM; Sellar et al., 2019). Here, JULES is used in standalone mode, driven by climate data reconstructed by

combining the monthly patterns derived from the ESMs and the global mean temperature change from FaIR. The configuration

of JULES used here is denoted JULES-ES (Mathison et al., 2022) and is the configuration used in both UKESM1 (Sellar et al.,

2019) and to provide simulations for the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) in Mathison et al.

(2022). In PRIME JULES-ES is also driven by the CO2 concentration output from FaIR.160
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JULES-ES has 9 natural plant functional types (PFTs; 5 types of trees, C3 and C4 grasses, and evergreen and deciduous

shrubs) and four managed PFTs (C3 and C4 crop and pasture), where the managed PFTs are set to their observed values

at 2005. The Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) dynamic vegetation

model (Cox, 2001) determines the proportion of each PFT present in a grid cell. Nitrogen limitation on ecosystem carbon

assimilation is represented in JULES-ES (Wiltshire et al., 2021). External nitrogen inputs are via biological nitrogen fixation165

and nitrogen deposition, and losses are via leaching and a gas loss term. Nitrogen limitation reduces the carbon-use efficiency of

the vegetation via a reduced net primary productivity and can slow soil decomposition. The soil biogeochemistry is represented

by a single bulk layer with four soil pools: two litter pools, a microbial biomass pool, and a humus pool each with an equivalent

organic nitrogen pool. Inorganic nitrogen is converted from organic nitrogen and can be taken up by the plants.

3 PRIME evaluation170

In this section, we evaluate PRIME. In this context, that means that we want to use PRIME to produce land simulations for

scenarios where ESMs have not been run, but we can test it in cases where ESM simulations do exist. Here, we use CMIP6

simulated output for a range of different but well known future climate scenarios: SSP1-2.6, SSP5-3.4-OS and SSP5-8.5. We

show that PRIME gives close agreement of global temperature and spatial patterns of climate giving us confidence in its ability

to be used to project as-yet un-simulated scenarios. We also compare simulated land-surface output from PRIME with that175

from CMIP6 for ESMs that have reported the required diagnostics.

PRIME has 3 distinct and independent steps, as described in Section 2: (i) timeseries of global temperature are produced

from FaIR based on emissions of greenhouse gases and aerosols, (ii) spatial patterns of climate change are constructed from

the global temperature based on CMIP simulations, and (iii) these climate patterns are used to drive JULES to simulate land

surface outcomes. In this section, we present evaluation of these three steps and at each step assess the agreement with existing180

output from CMIP6 or the IPCC AR6 assessment.

3.1 Emulation of global temperature change

For the first time, IPCC AR6 was able to apply multiple lines of evidence to constrain future projections of global temperature

from the CMIP6 ensemble. As such, the spread of global temperature in 2100 is smaller than if taken from raw CMIP6 ESM

output (Lee et al., 2021). We compare the simulated global temperature from PRIME (run with emissions) with the constrained185

range assessed by IPCC (see Figure 4.11 and Table 4.5 of Lee et al. (2021)) in Figure 2. The FaIR simulations used here do

not include solar and volcanic fluctuations, instead focusing on the anthropogenic forcing, which is the main driver of human-

induced effective radiative forcing and human-induced warming (Forster et al., 2023). The left panel shows the mean Global

mean Surface Air Temperature (GSAT) from FaIR (solid lines) and 5th and 95th percentiles (shaded region). The right panel

shows the mean and 5–95th percentile for the period 2090–2100 relative to 1850–1900 for each SSP scenario (we include the190

same scenarios here to enable comparison with the same plot in the IPCC report): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0
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and SSP5-8.5 for FaIR end of century GSAT values and the IPCC constrained values. The end of century ranges in PRIME are

close to the IPCC ranges with the timeseries and model spread consistent with the IPCC constrained range.

The uncertainty in projected global mean temperature arises from uncertainty in both physical and biogeochemical feedbacks

like the carbon cycle. We know atmospheric CO2 is an additional direct driver of impacts, therefore this is included in PRIME195

as a secondary forcer to the meteorology in JULES-ES. PRIME samples the joint distribution of CO2 and global temperature

from the constrained FaIR ensemble. Figure 3 shows that the ensemble members selected span the distribution for SSP5-8.5

(similarly the joint distribution of CO2 and temperature are also shown in the Supplementary information Fig. S1 for SSP1-

2.6; left and SSP5-3.4-OS; right). The FaIR ensemble samples uncertainty in carbon cycle feedback strength with climate

sensitivity resulting in a joint distribution of global mean temperature and atmospheric CO2 concentration. High atmospheric200

CO2 concentrations are consistent with a lower climate sensitivity and vice versa. As our primary aim is to sample future

impacts associated with uncertain future temperature outcomes, we subsample the 2100 FaIR temperature distribution for

the impacts modelling. This results in a co-sampling of CO2 levels that does not span the full uncertainty in resulting CO2

concentrations. This is not a limitation of PRIME - other applications could use a different sampling strategy or use the full

ensemble of 2237 members.205

Figure 2. (a) Projected global temperature from FaIR for five SSP emissions scenarios, and (b) comparison of end-of-century (2080–2100)

mean warming from FaIR (green) and IPCC AR6 assessment (yellow; Figure 4.11 and Table 4.5 of Lee et al. (2021))

.
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Figure 3. Joint frequency distribution of global temperature rise and CO2 for SSP5-8.5 emissions and the sub-selected percentiles (blue

crosses) used to drive the JULES impacts model. Shades of green denote the density of points with individual histograms are above and to

the right of the main panel. 10% confidence intervals are shown by the contours.

3.2 Spatial patterns of climate change

Climate patterns were evaluated against CMIP6 simulations of their corresponding models. Alongside global comparison, four

example regions are chosen to test the pattern evaluation at regional scales: the Amazon basin, the Siberian forest, India and

the United States of America. These regions span tropical and boreal ecosystems, temperate regions and a region dominated

by a Monsoon climate. The climate patterns were evaluated against CMIP6 runs of the SSP5-8.5, SSP1-2.6 and SSP5-3.4-OS210

scenarios.

Climatologies of each CMIP6 model were calculated by taking the mean of the period 1850–1889 inclusive. Anomalies

were then calculated by subtracting the climatologies from the spatiotemporal CMIP6 datasets, ensuring that the variants of the
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Figure 4. Evaluation of pattern scaling compared to CMIP6 multi-model mean changes for each JULES input variable (labelled). Pearson

correlation coefficients are averaged over model and month for each pattern variable.

historical runs matched those of the scenarios. To compare against these, predicted patterns for each ESM were compiled by

multiplying annual mean GSAT data by pattern values at each grid point (see Methods, Section 2.2), creating a spatiotemporal215

dataset of anomalies for each variable (see Table 1). The predicted patterns were then evaluated against the anomaly datasets

from CMIP6.

We evaluate both the ability of PRIME pattern scaling to replicate the CMIP6 ESM and multi-model mean values and

across-model performance of PRIME to reproduce the range of results across CMIP6 ESMs. For each gridpoint, we calculate

the Pearson correlation coefficient of the relationship between the scaled pattern for each variable and the CMIP6 multi-model220

mean, using decadal means (Figure 4). High correlation coefficients show that across the ensemble there is a relationship

with temperature that we use to make spatial projections of the JULES meteorological forcers. Temperature, specific humidity

and longwave radiation have the strongest predictability with global temperature, with mean correlation coefficient values

over global-land of 0.99, 0.98, 0.99, respectively which show strong spatial consistency and are largely statistically significant

(Figure S2). Precipitation, wind, pressure, shortwave radiation and diurnal temperature range all show weaker, but strongly225

significant positive scores at 0.52, 0.44, 0.69, 0.41 and 0.58 respectively. These variables also show a stronger spatial variation,

with for instance, precipitation showing a weak correlation over Australia but stronger over the high latitudes. This can also be

seen in the lower number of statistically significant relationships for individual months and models (Figure S2).

To test whether pattern scaling can reproduce simulated changes under different scenarios, we calculate the patterns of each

variable change for 2080–2100. These are shown in Figure 5 for SSP5-8.5, with SSP1-2.6 and SSP5-3.4-OS in Figures S3 and230

S4 of the Supplementary information, respectively. Predicted patterns were calculated by multiplying the 2080–2100 mean
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Figure 5. End of century changes (2080–2100) in each JULES input variable (labelled) for SSP5-8.5 predicted by patterns (left hand side of

each variable panel) compared to CMIP6 values (right hand side of each variable panel). Plots shows the multi-model means.

GSAT anomaly for each model by the corresponding model pattern, then taking the mean of all model predictions. Overall, the

major areas of change predicted by the patterns correspond well to CMIP6 predicted changes. The Pearson correlation and the

RMSE are given in Table 1 for each JULES input variable. RMSE is a standard measure of the error in the predicted variable

relative to the mean change. Overall, the pattern scaling captures the pattern of change well for most variables, with SSP5-8.5235

having the greatest agreement as expected because this is the scenario with the strongest climate change signal, and was used

to generate the patterns. Some patterns, such as wind, have substantially greater error, but JULES is known to be less sensitive

to these. The relative error increases in the lower scenarios related to the need to predict a smaller signal. However, the high

correlations and low RMSEs give us confidence to apply the pattern scaling to different scenarios including stabilisation and

overshoot pathways.240
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Table 1. Summary table for evaluation section: Pearson correlation coefficient (labelled Pearson) and Root Mean Square Error (labelled

RMSE) between multi-model mean pattern predicted and CMIP6 end of century values on land across the globe for each variable. Pearson

r-values and RMSE are spatially aggregated across months and models.

Variable Units CMIP abbreviation SSP1-2.6 SSP5-3.4-OS SSP5-8.5

JULES inputs Pearson RMSE Pearson RMSE Pearson RMSE

Temperature ◦C tas 0.95 0.42 0.97 0.4 0.99 0.31

Specific Humidity g kg−1 huss 0.95 0.0002 0.97 0.0001 0.99 0.0001

Precipitation mm day−1 p 0.83 0.16 0.89 0.16 0.97 0.14

Wind m s−1 sfcWind 0.89 0.11 0.93 0.11 0.98 0.076

Pressure kg m−1 s−2 ps 0.93 30.8 0.96 29.9 0.99 23.4

Shortwave radiation W m−2 rsds 0.86 2.7 0.88 2.83 0.97 2.94

Longwave radiation W m−2 rlds 0.92 2.4 0.95 2.5 0.99 1.81

Diurnal temperature range ◦C tasmax-tasmin 0.91 0.25 0.93 0.25 0.99 0.20

To evaluate if PRIME pattern scaling can also reproduce the range of different changes across the CMIP6 ensemble, we

compare timeseries and end of century predicted changes across CMIP6 ESMs for four regions. The multi-model mean pattern,

per ◦C of warming, is shown in the central map for temperature (Fig. 6) and precipitation (Fig. 7). Burton et al. (2020) show

that temperature and precipitation are the most important drivers of land-surface processes. The other six variables needed to

drive JULES are presented in the Supplementary information (Figures S5 to S10). For each region, the figures show timeseries245

of change for that region as a shaded plume of CMIP6 output (blue) and predicted by pattern-scaling (pink). The end-of-

century values for each CMIP6 model individually are shown as a scatter-plot for each scenario to illustrate the agreement

between pattern-scaled and actual values. For temperature (Fig. 6) the range of future projections across CMIP6 models spans

approximately 5-10 ◦C warming by 2100 under SSP5-8.5 for each region, with high-latitudes warming more than the tropics

as expected. The PRIME pattern-scaled ensemble does a good job of reproducing this range of projections across the CMIP6250

ensemble, with points lying close to the 1-to-1 line for all regions and scenarios. Correlation coefficients for between-model

predictions exceed 0.93 for all regions and scenarios (Table 2), with SSP5-8.5 fitted the best. This is expected as the patterns

were derived from this scenario. This gives confidence that the pattern scaling accurately reproduces the spread of results,

model-by-model of the CMIP6 ensemble.

Results for precipitation (Fig. 7) also show good agreement, but some mismatches appear, as precipitation is more variable255

in space and time than temperature as seen in the higher error characteristics in the pattern scaling. Nevertheless, PRIME well

predicts the signal of increasing precipitation over the United States, Siberia and India and reduced rainfall over the Amazon

Basin. Again, the range and spread of results across the CMIP6 ensemble are well matched, and correlation coefficients are

shown in Table 3.

12

https://doi.org/10.5194/egusphere-2023-2932
Preprint. Discussion started: 26 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 2. Pearson correlation coefficient (Pearson) and Root Mean Square Error (RMSE in ◦C) between pattern predicted and CMIP6 end of

century temperature change. Average values over region of interest compared to its CMIP6 equivalent by model. All statistically significant

(p-values <0.05).

Region SSP1-2.6 SSP5-3.4-OS SSP5-8.5

Pearson RMSE Pearson RMSE Pearson RMSE

Amazon 0.96 0.27 0.98 0.22 1.0 0.13

Siberia 0.93 0.33 0.98 0.28 0.99 0.23

USA 0.95 0.21 0.98 0.21 0.99 0.21

India 0.93 0.29 0.97 0.21 0.98 0.37

Table 3. Pearson correlation coefficient (Pearson) and Root Mean Square Error (RMSE in mm day−1) between pattern predicted and CMIP6

end of century precipitation change. Average values over region of interest compared to its CMIP6 equivalent by model. All statistically

significant (p-values <0.05).

Region SSP1-2.6 SSP5-3.4-OS SSP5-8.5

Pearson RMSE Pearson RMSE Pearson RMSE

Amazon 0.77 0.12 0.85 0.11 0.98 0.079

Siberia 0.86 0.045 0.96 0.036 0.99 0.022

USA 0.75 0.065 0.83 0.056 0.96 0.037

India 0.87 0.094 0.93 0.081 0.94 0.13

Across-model spread of the other variables (Figures S5 to S10 of the Supplementary information) is also well captured by260

PRIME pattern scaling. Changes in humidity (Fig. S5) are well reproduced, while wind speed changes (Fig. S6) has mixed skill

being poorly captured over United States, despite changes in surface pressure (Fig. S7) being well reproduced for all regions.

The most notable departure of predicted and actual changes occurs for surface downwelling shortwave radiation (i.e. incoming

solar radiation shown in Fig. S8). For all regions and scenarios, the end-of-century values match well, but the significant dip

in shortwave radiation during the historical period is not seen at all in the predicted patterns. This period of “global dimming”265

(Wang Z; Stanhill and Cohen, 2001) is well known to be caused by anthropogenic aerosols and cannot be replicated by scaling

global temperature. Features such as this are an obvious limitation of a pattern scaling approach which does not account for

different regional patterns from different climate forcers such as aerosols. Finally, changes in upwelling long-wave radiation

(Fig. S9) and diurnal temperature range (Fig. S10) are well captured across regions and scenarios by the PRIME pattern scaling.

In conclusion, the patterns both for each CMIP6 ESM and the range of changes across ESMs are generally well reproduced270

by the PRIME pattern scaling technique. This is true for each of the four distinct regions and three very different emissions

scenarios.
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Figure 6. The central map shows the temperature pattern (where there is no hatching indicates that the models tend to agree on the sign of

the change and with hatching to show where the models tend to disagree on the sign of the change), and subpanels for each region: North

America, Siberia, South America and South Asia. The region subpanels show the temperature timeseries (left subpanel) and scatter plots

(right subpanel) for each scenario; top: SSP1-2.6, middle: SSP5-3.4-OS and bottom: SSP5-8.5. The timeseries shows the PRIME patterns

(blue plume) and the CMIP6 patterns (red plume). The scatter plots show the end of century values predicted by PRIME vs CMIP6 actual

values for each model with the model colours shown at the bottom of the figure.
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Figure 7. The central map shows the precipitation pattern (where there is no hatching indicates that the models tend to agree on the sign of

the change and with hatching to show where the models tend to disagree on the sign of the change) and subpanels for each region: North

America, Siberia, South America and South Asia. The region subpanels show the precipitation timeseries (left subpanel) and scatter plots

(right subpanel) for each scenario; top: SSP1-2.6, middle: SSP5-3.4-OS and bottom: SSP5-8.5. The timeseries shows the PRIME patterns

(blue plume) and the CMIP6 patterns (red plume). The scatter plots show the end of century values predicted by PRIME vs CMIP6 actual

values for each model with the model colours shown at the bottom of the figure.
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3.3 Land Surface and Impacts Simulation

The final section of the PRIME evaluation shows the results using the FaIR produced projections of global mean surface

temperature together with the scaled climate patterns, to drive the JULES land surface model. The JULES step of PRIME is275

evaluated using two climate variables as examples of output produced by most ESMs. End of century changes projected by

PRIME are compared against the equivalent ensemble mean CMIP6 data. The example variables considered help us assess

the carbon and hydrological cycles: Gross Primary Productivity (GPP), which is the gross rate of accumulation of carbon via

photosynthesis, and runoff (mrro), which is the excess water not absorbed by soils and accumulated by water sources.

For this stage of evaluation, we do not expect as good a match with CMIP6 outputs as obtained for the driving climate280

variables in Section 3.2. This is because PRIME uses the JULES land-surface model which will differ from the embedded land

schemes in the different CMIP6 ESMs. We perform this comparison for two example variables to demonstrate the extent to

which the PRIME framework can reproduce the range of simulated land behaviour from CMIP6, but cannot expect a perfect

match. Future work to include other land models or perturbed parameter ensembles of JULES would help address potential

mismatches.285

Figure 8 shows the multi-model mean projected end of century changes in GPP and runoff in the SSP5-8.5 scenario using

both the PRIME framework and CMIP6. Figures S11 and S12 in the Supplementary information show the equivalent results

for scenarios SSP1-2.6 and SSP5-3.4-OS. The similarity in the predicted spatial patterns can be seen, where in the majority

of regions, PRIME matches the pattern of change projected by CMIP6. As we did for climate patterns, we evaluate within

and across CMIP6 ESMs. Table 4 presents the Pearson correlation coefficients between PRIME and CMIP6 for each output290

variable, where consistent values of 0.52 (GPP) and 0.51 (runoff) are found for SSP5-8.5. Some deviations are seen between

the projections; for example, PRIME projects greater magnitudes of change in both runoff and GPP in the tropical regions

compared to CMIP6 (Fig. 8). To put these changes into context from a carbon perspective, PRIME exhibits an end of century

global increase in GPP in SSP5-8.5 of 77 GtC yr−1, while CMIP6 increases by 70 GtC yr−1, compared to pre-industrial.

Table 4. Summary table for JULES outputs: Pearson correlation coefficient between pattern predicted and CMIP6 end of century values on

land across the globe.

Variable CMIP abbreviation SSP1-2.6 SSP5-3.4-OS SSP5-8.5

JULES outputs

Gross primary productivity gpp 0.44 0.39 0.52

Runoff mrro 0.42 0.48 0.51

Across CMIP6 models, projections are compared in the four specific regions (Amazon, Siberia, USA and India) for both295

variables (Supplementary Figures S13-S16). PRIME-simulated GPP and runoff can be compared on a model-by-model basis.

The results shown in figures in the Supplementary information (Figures S13-S16) for each region show CMIP6 output for

each ESM and the corresponding PRIME simulated output from JULES using the climate patterns from the same ESM. For

GPP (top row in Supplementary information Figures S13-S16), the PRIME-simulated changes are typically simulated well,
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although JULES has a tendency to simulate greater increases in GPP than many of the CMIP6 models. A couple of CMIP6300

ESMs clearly stand-out. The blue/green coloured lines showing the CNRM and MPI variants in CMIP6 consistently simulate

greater increases in GPP than JULES. This does not signal an error in PRIME, just that the different land models simulate

different sensitivity to future climate changes. PRIME does, though, mainly reproduce the signal and spread of GPP for all

regions and scenarios simulated by CMIP6.

Runoff for three of the four regions is well reproduced in PRIME (bottom row in Supplementary information Figures305

S13-S16), where: Siberia (Figure S14), United States (Figure S15) and India (Figure S16) all see steady increases in runoff

consistent with increases in precipitation in those regions. JULES output agrees with these changes of simulated magnitude

and spread. The Amazon basin region (Figure S13) though exhibits some notable differences. Figure 7 (bottom left) shows a

range of precipitation responses over the Amazon with an overall consensus of a drying signal (see also Lee et al. (2021)). The

JULES outputs though, whilst spanning a similar range of reduced runoff, also show an increase in runoff when forced with310

some ESM patterns to an extent not shown by the CMIP6 models themselves. The reason for this is not known, but we note that

in this case, future projections of Amazon runoff in PRIME show a wider spread than CMIP6 ensemble. These comparisons

allow us to confidently use the PRIME framework to assess impacts from scenarios for which ESM simulations do not exist.

4 PRIME Impacts outputs

In this section, we present examples of how the PRIME framework can be used to assess climate impacts. Even though the315

SSP scenarios have been simulated by many ESMs in CMIP6, only a subset simulate the terrestrial carbon cycle (Arora et al.,

2020), and very few simulate interactive dynamic vegetation (Pugh et al., 2018). Hence it is novel to show a full probabilistic

range of the possible spread of simulated carbon balance (represented by Net ecosystem productivity, NEP) and changes in

tree fraction.

In response to SSP5-8.5 (Figure 9), terrestrial carbon storage increases almost everywhere in the multi-model mean with320

positive NEP (top row) especially evident in forested areas. The higher CO2 concentration in the atmosphere drives enhanced

vegetation photosynthesis (GPP; Fig. 8), which increases more than any loss from accelerated decomposition. This outweighs

any detriment to vegetation productivity from changes in climate except in a few small regions such as southern Brazil. There

is, though, significant spread across members with most regions showing potentially positive and negative NEP changes by

2100. This highlights the need for a probabilistic sampling of uncertainty not possible from a limited number of carbon-cycle325

ESMs. We note that this configuration of JULES does not include representation of fire which has been shown to improve GPP

and vegetation distribution in ISIMIP2b simulations (Mathison et al., 2022). In addition, this configuration does not include

permafrost carbon dynamics which could substantially alter this result as thawing of frozen ground in the high latitudes is

expected to mobilise large amounts of organic carbon (Chadburn et al., 2017; Burke et al., 2018; Varney et al., 2023). Both fire

and permafrost carbon dynamics are part of planned future JULES configurations to be implemented in UKESM and therefore330

will be part of future versions of PRIME.
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Figure 8. Maps comparing the multi-model mean projected end of century changes (2080–2100) for SSP5-8.5 in GPP (top) and runoff

(bottom) from PRIME (left hand side) compared to CMIP6 (right hand side)

Accordingly, tree fraction increases in all regions (Fig. 9, bottom row). This is robust for India, Siberia and United States with

relatively small spread compared to the mean signal of increased tree cover. In the Amazon region some ensemble members

see a stabilisation and even beginning of loss of tree cover by 2100 as the effects of severe climate change counter the benefits

due to elevated CO2.335

Jones et al. (2023) assessed CMIP6 carbon cycle projections against present day observations and also saw increases in

biomass and total terrestrial carbon storage in all regions throughout the 21st century for SSP3-7.0. That study could not assess

changes in vegetation cover as so few CMIP6 models represent dynamic vegetation. PRIME allows us to go beyond CMIP6

results to analyse impacts on vegetation dynamics and ecosystem composition as well as carbon balance.
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Figure 9. Maps of net ecosystem production (top) and tree fraction (bottom) with timeseries showing the median and uncertainty ranges for

each study region: Amazon, Siberia, India and the USA (labelled) between 1850–2100.

5 Discussion and Conclusions340

In this study, we document and evaluate the PRIME framework for the first time thereby providing capability for rapid proba-

bilistic regional impacts assessments for any global emissions scenario to be produced in a fraction of the time it takes to run

an ESM, being able to run hundreds of simulations in just a few days. We have shown that PRIME reproduces CMIP6 results

for a range of SSP scenarios that have been simulated by full complexity ESMs, and in doing so demonstrated that the PRIME

framework is fit for purpose.345

The PRIME framework allows different sources of uncertainty to be quantified. FaIR provides a constrained probabilistic

ensemble capturing the uncertainty in climate response, this is informed by the best available science from the IPCC, and can

be easily refined or varied to sample any given range of global sensitivity. The advantages of an emulator like FaIR are its

efficient run time and ability to provide projections for any emissions scenario outside of those run by ESMs. FaIR is very

flexible and can be readily configured to run multiple scenarios, use multiple parameter sets or simulate idealised profiles as350

well as realistic scenarios and pathways.

The uncertainty from the full CMIP6 range of simulated patterns is provided through the construction of spatial patterns

of change. It is widely accepted that the spatial patterns of change of many climate variables approximately scale with global

temperature and are less dependent on a particular scenario or pathway (Mitchell, 2003; James et al., 2017; Tebaldi and Knutti,

2018; Arnell et al., 2019). As such, it is therefore possible to construct future projections of the spatial pattern of climate change355

given a pathway of global temperature change. This technique of “pattern scaling”, when calibrated against a wide range of

climate model, enables a rapid assessment of the range of climates for a given trajectory of global temperature.
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Studies such as King et al. (2020) have shown changing spatial patterns of climate on long timescales as the system begins to

equilibrate following an initial transient period, but experience with the MESMER tool has shown only marginal improvement

when additional predictors of patterns are added to global temperature, with the simple, conventional pattern scaling approach360

showing significant skill with errors typically much smaller than inter-model spread (Beusch et al., 2022).

Pattern-scaling is a powerful methodology which has grown from its original intended purpose of providing a technique to

allow extension of the relatively few computationally intensive simulations by ESMs to a broader remit. However there are two

main limitations of this methodology. First, by definition, pattern scaling assumes the local and monthly changes in climate

to be linear in global warming. Yet many studies suggest that the climate system may contain “tipping points” where strong365

non-linearity implies there may be future times when there are strong responses of Earth system components to relatively small

additional increases in greenhouse gases (e.g., McKay et al., 2022). Linear scaling will not capture such rapid changes if they

impact near-surface meteorology, although investigation of ESMs reveals relatively few instances of rapid change (Drijfhout

et al., 2015). Although the use of pattern-scaling can currently only offer a linear interpretation of local and seasonal near-

surface meteorological response to increasing greenhouse gases, the inclusion in PRIME of the full JULES land surface model370

does offer the opportunity to investigate in detail the risk of tipping points in land ecosystem response because JULES includes

aspects of plant physiology and vegetation dynamics that are strongly nonlinear. A second limitation of pattern-scaling is that

it does not resolve local land-atmosphere feedbacks and so will not capture in full the effects of major alterations to the land

surface on near-surface meteorology. Such feedbacks may occur by the addition of new processes to land simulations that

adjust substantially land-atmospheric exchanges of sensible or latent heat flux. Development of techniques to include such375

local feedbacks will form the basis of future research.

One of the main advantages of the PRIME framework is its flexibility, with the simple coupling between components lending

itself to future couplings using other downstream models. For example, adding other models such as one for sea level rise or air

quality to this framework would expand the scenario and climate output to get a rapid response of a broader range of impacts

beyond land. Currently, we include just one land model, but other land models could be included in addition to JULES to380

capture the structural uncertainty in land models as well. It is also worth noting that the methods for downscaling to subdaily

timescales in the form of the weather generator in JULES could benefit from more modern approaches which have not yet been

investigated herein.

Overall we have shown PRIME faithfully reproduces the climate response to a range of emissions scenarios spanning global

temperature in close agreement with IPCC assessments, capturing a range of 34 state-of-the-art Earth system models and385

simulates a range of land-surface outcomes and impacts. This gives us confidence that PRIME is an ideal tool to use for rapid

and probabilistic assessment of novel scenarios, allowing unprecedented ability to quantify societally-relevant climate impacts.

6 Supplementary Information

Supplementary information provided in separate pdf file called ’Supplementary_for_PRIME_doc_paper_submitted_071223.pdf’
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Code availability. FaIR v1.6.2 is available from the Python Package Index at https://pypi.org/project/fair/1.6.2/, on GitHub at https://github.390

com/OMS-NetZero/FAIR/tree/v1.6.2, and at https://doi.org/10.5281/zenodo.4465032. Calibration data for FaIR v1.6.2 is available from

https://doi.org/10.5281/zenodo.6601980. Climate patterns calculation code is available from https://zenodo.org/records/10635588.

Ticket has been opened to share the JULES code with reviewers of this manuscript.

© British Crown Copyright 2022, the Met Office. All rights reserved. The software is provided by the Met Office to the topical editor

at Geoscientific Model Development under the software licence for peer review (use, duplication or disclosure of this code is subject to the395

restrictions as set forth in the aforementioned software licence for peer review). The software is provided to facilitate the peer review of

this paper, ”A rapid application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and

Emissions (PRIME)”, and should be used and distributed to authorised persons for this purpose only. The software is extracted from the

Unified Model (UM) and JULES trunks, with the revisions of the MOSRS repositories corresponding to the stated version, having passed

both science and code reviews according to the UM and JULES working practices.400

Data availability. FaIR output used in PRIME is available from zenodo at this link: https://doi.org/10.5281/zenodo.10524337.

The ESMValTool patterns recipe linked above automatically downloads the CMIP6 data from ESGF https://esgf-node.llnl.gov/projects/

esgf-llnl/, and calculates the patterns.

JULES output for the variables shown for each scenario are available from zenodo at this link: https://doi.org/10.5281/zenodo.10634291.
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