
A rapid-application emissions-to-impacts tool for
scenario assessment: Probabilistic Regional Impacts
from Model patterns and Emissions (PRIME)
Camilla Mathison1,3, Eleanor J. Burke1, Gregory Munday1, Chris D. Jones1,8, Chris J. Smith4, Norman J. Steinert5,6,
Andy J. Wiltshire1,7, Chris Huntingford2, Eszter Kovacs3, Laila K. Gohar1, Rebecca M. Varney7, and
Douglas McNeall1,7

1Met Office Hadley Centre, Exeter, UK
2UK Centre for Ecology and Hydrology, Wallingford, UK
3School of Geography, University of Leeds, Leeds, UK
4International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
5Norwegian Research Centre AS (NORCE), Bjerknes Centre for Climate Research, Bergen, Norway
6CICERO Center for International Climate Research, Oslo, Norway
7Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
8School of Geographical Sciences, University of Bristol, Bristol, UK

Correspondence: Camilla Mathison (camilla.mathison@metoffice.gov.uk)

Received: 7 December 2023 – Discussion started: 26 February 2024
Revised: 14 December 2024 – Accepted: 7 January 2025 – Published:

Abstract. TS1 TS2Climate policies evolve quickly, and new
scenarios designed around these policies are used to illus-
trate how they impact global mean temperatures using sim-
ple climate models (or climate emulators). Simple climate
models are extremely efficient, although some can only pro-
vide global estimates of climate metrics such as mean sur-
face temperature, CO2 concentration and effective radia-
tive forcing. Within the Intergovernmental Panel on Climate
Change (IPCC) framework, understanding of the regional
impacts of scenarios that include the most recent science is
needed to allow targeted policy decisions to be made quickly.
To address this, we present PRIME (Probabilistic Regional
Impacts from Model patterns and Emissions), a new flexible
probabilistic framework which aims to provide an efficient
mechanism to run new scenarios without the significant over-
heads of larger, more complex Earth system models (ESMs).
PRIME provides the capability to include features of the
most recent ESM projections, science and scenarios to run
ensemble simulations on multi-centennial timescales and in-
clude analyses of many key variables that are relevant and
important for impact assessments. We use a simple climate
model to provide the global temperature response to emis-

sions scenarios. These estimated temperatures are used to
scale monthly mean patterns from a large number of CMIP6
ESMs. These patterns provide the inputs to a “weather gen-
erator” algorithm and a land surface model. The PRIME sys-
tem thus generates an end-to-end estimate of the land surface
impacts from the emissions scenarios. We test PRIME using
known scenarios in the form of the shared socioeconomic
pathways (SSPs), to demonstrate that our model reproduces
the ESM climate responses to these scenarios. We show re-
sults for a range of scenarios: the SSP5–8.5 high-emissions
scenario was used to define the patterns, and SSP1–2.6, a
mitigation scenario with low emissions, and SSP5–3.4-OS,
an overshoot scenario, were used as verification data. PRIME
correctly represents the climate response (and spread) for
these known scenarios, which gives us confidence our sim-
ulation framework will be useful for rapidly providing prob-
abilistic spatially resolved information for novel climate sce-
narios, thereby substantially reducing the time between new
scenarios being released and the availability of regional im-
pact information.
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1 Introduction

A major gap currently exists in our capability to rapidly
assess and predict regional impacts of climate change in
response to novel future pathways of climate change and
rapidly evolving policies. Sophisticated and specialist cli-
mate impact models exist that assess the regional implica-
tions of future climate scenarios for a range of impact sectors,
such as crops, biomes, water, fire and permafrost, for exam-
ple through the Inter-Sectoral Impact Model Intercompari-
son Project (ISIMIP; Frieler et al., 2017; Warszawski et al.,
2014, 2013). ISIMIP provides a consistent framework for as-
sessing climate impacts using a large ensemble of models
across a range of sectors. However, impact models are often
specific to particular sectors and are in themselves compli-
cated to set up. Usually, their use occurs at the end of a long
chain of events: commencing with generation of emissions
scenarios, running one or more Earth system models (ESMs),
potentially bias-correcting ESM output and then finally run-
ning the impact model.

In order to assess impacts resulting from climate change
more systematically, ISIMIP provides output of ESMs to im-
pact modellers. But even then, there is a long delay from
creation of the scenarios to our ability to assess their im-
pacts. For example, the most recent impact assessment of
the Intergovernmental Panel on Climate Change (IPCC), the
Sixth Assessment Report (AR6) Working Group II (Cli-
mate Change Impacts, Adaptation and Vulnerability: WGII)
(IPCC, 2022b), relies heavily on literature based on impact
studies using output from the previous generation of the Cou-
pled Model Intercomparison Project (CMIP5), rather than
the most recent CMIP6 used in AR6 Working Group I (IPCC,
2021). This means that both the scenarios (Representative
Concentration Pathways; van Vuuren et al., 2011) and cli-
mate models themselves (e.g. HadGEM2-ES Jones et al.,
2011; Collins et al., 2011) used to assess climate impacts by
the IPCC are at least a decade old.

This apparent bottleneck is caused by the significant issue
that ESMs, which are the main mechanism for projecting fu-
ture climate change, are computationally demanding, so only
a limited number of simulations may be performed. As ESMs
take years to develop, test and run, scenarios of future cli-
mate change are only produced periodically on a time frame
designed to align with IPCC assessment reports, such as con-
tributions to the CMIP phases (Taylor et al., 2012; Eyring
et al., 2016). Nevertheless, ESMs remain the best tools for

understanding mechanisms of climate change, and regional
climate projections could not be performed without them.

One popular method to enable projections of future cli-
mate change for novel emissions scenarios, and yet capture
the process understanding implicit in the ESMs simulations
that do exist, is via “pattern scaling” (Zelazowski et al., 2018;
James et al., 2017; Huntingford et al., 2010; Mitchell, 2003).
Such scaling assumes that local and monthly changes in near-
surface meteorological conditions correlate linearly with the
level of global warming. Lee et al. (2021) note that pat-
tern scaling has known limitations, for example having lower
skill for variables with large spatial variability (Herger et al.,
2015; Tebaldi and Arblaster, 2014) or when attempting to
recreate moving boundaries such as sea ice extent and snow
cover (Collins et al., 2013). Nonetheless, the benefits of pat-
tern scaling to enable rapid reconstruction of spatial patterns
based on global temperature make it an extremely valuable
tool for studying, for example, carbon cycle feedbacks using
an intermediate-complexity climate model (Mercado et al.,
2009; Burke et al., 2017).

Other tools are currently being developed to explore the
use of pattern scaling for local climate change impacts. The
Modular Earth System Model Emulator with spatially re-
solved output (MESMER; Beusch et al., 2020) draws on
patterns of temperature from CMIP6 models, and its exten-
sion to this (MESMER-M; Nath et al., 2022) focuses on spa-
tially resolved monthly temperature or extremes (MESMER-
X; Quilcaille et al., 2022). MESMER is an emulator of tem-
perature patterns and uses a stochastic representation of nat-
ural variability. Goodwin et al. (2020) have also used pat-
tern scaling with the WASP global emulator to look at local
temperature projections. Alternatively, the STITCHES sys-
tem (Tebaldi et al., 2022) presents an option for ESM emu-
lation for impact research by “stitching” together ESM out-
put from known scenarios, and ClimateBench v1.0 (Watson-
Parris et al., 2022) benchmarks machine learning emulators
that predict annual mean global distributions of temperature,
diurnal temperature range and precipitation.

We use pattern-scaled climate variables instead of ESM
output to drive our impact model, because this approach of-
fers a useful opportunity to more quickly derive impact in-
formation from new scenarios. However, this does not imply
that pattern-scaled climate variables should replace ESMs
or ISIMIP bias-corrected data but could provide a steer on
which scenarios would be most useful for ESMs to run or
which ones to bias-correct for use in more specialist impact
models. Global mean temperature is readily and efficiently
calculated from emissions scenarios using one of a range of
climate emulators (Nicholls et al., 2020), which are compu-
tationally cheap to run. The regional climate patterns are then
scaled by applying global mean temperatures produced from
emulators. The ability to run simulations without running the
full ESM is particularly useful for assessing novel scenarios,
particularly those that are regularly updated (Richters et al.,
2022) to address specific questions around Paris Agreement
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compliance and overshoot (Rogelj et al., 2018; IPCC, 2022a)
or to answer “what-if” questions relating to the Earth’s geo-
physical response (Dvorak et al., 2022). These scenarios may
never be run through full ESMs because of the vast compu-
tational resources required, but understanding their regional
impacts may be important in answering adaptation and mit-
igation questions. The efficiency and flexibility of emula-
tors allow them to run ensembles in a probabilistic Monte
Carlo framework, spanning the range of assessed climate un-
certainty with different parameter choices (Nicholls et al.,
2021). We propose that these emulator systems provide an
important and relatively (computationally) cheap first look at
new scenarios that could inform future ESM developments.

Here we present PRIME (Probabilistic Regional Impacts
from Model patterns and Emissions): a framework designed
to bridge the gap between scenarios and impacts in a compu-
tationally efficient manner. PRIME builds on previous work
of Huntingford and Cox (2000) which culminated in the for-
mal coupling of the analogue model (i.e. energy balance
model or EBM plus climate patterns) to a vegetation model
that created the modelling framework called IMOGEN (In-
tegrated Model Of Global Effects of climatic aNomalies –
Huntingford et al., 2010). IMOGEN also contains a simple
single box representation of the oceanic drawdown of atmo-
spheric carbon dioxide as a function of global mean temper-
ature change over the oceans and CO2 level. As such, IMO-
GEN contains a global carbon cycle and so instead may be
forced by CO2 emissions, and from this by accounting for
land–atmosphere and land–ocean interactions, atmospheric
CO2 levels are projected. IMOGEN was originally calibrated
against ESMs in the Coupled Model Intercomparison Project
version 3 (CMIP3) (Zelazowski et al., 2018) and later against
version 5 (CMIP5). In this paper we replace the EBM in
IMOGEN with the FaIR model, which means we can ex-
tend beyond the influence of CO2 and consider other green-
house gases and short-lived climate forcers that also influ-
ence the global temperature. Using FaIR also brings in the
latest science from the reduced-complexity modelling com-
munity. While the underlying IMOGEN model remains in-
spired by and based largely on the code in IMOGEN (Hunt-
ingford and Cox, 2000), in PRIME we update the patterns to
use those from CMIP6 models and couple the output from
IMOGEN to a full land surface model to study land-based
impacts.

Our approach combines the full range of FaIR tempera-
ture responses with the full range of CMIP ESM patterns. We
note a pattern effect relating warming to climate sensitivity
has been shown in the literature (Andrews and Webb, 2018;
Ringer et al., 2014). However, assessments of simulated im-
pacts in the CMIP6 ensemble sampling a wide range of im-
pact metrics from multiple regions found little or no corre-
lation with climate sensitivity for most regions and climate
drivers (Swaminathan et al., 2024), which contributes to jus-
tifying the approach to treat these independently. Other stud-
ies have found changes to circulation patterns and dynami-

cal regimes more important for climate patterns than global-
scale thermodynamical response (Ribes et al., 2021, 2022;
Palmer et al., 2023). To maximise our sampling of uncer-
tainty, we therefore take the pragmatic decision to co-vary
all patterns with sampled temperature pathways.

In this way, PRIME facilitates faster pull-through of state-
of-the-art science from the latest scenarios and regional cli-
mate change patterns (from the latest ESMs) all the way to
the simulation of regional impacts. PRIME includes the lat-
est understanding of climate and carbon cycle feedbacks, the
latest spatial patterns of climate change and a leading land
surface model/impact model. In PRIME we accommodate a
broad range of variables in addition to temperature, with a
focus on those which are important for impact assessments.
PRIME is a flexible framework, with ensemble members and
patterns selected by the user, and is therefore dependent on
their chosen application. However, we are developing soft-
ware to simplify running the PRIME framework using the
choices presented here, using Rose and Cylc (Oliver et al.,
2018, 2024) – a group of utilities and specifications which
provide a common way to manage the development and run-
ning of scientific application suites in both research and pro-
duction environments. Rose and Cylc are used to ensure a
consistent framework for managing and running meteorolog-
ical and climate models; they are therefore ideally suited to
this application. The elements of PRIME are explained in
more detail in Sect. 2. An evaluation of the performance of
the framework is provided in Sect. 3. Additional results that
are relevant for impact applications are presented in Sect. 4,
with discussion and conclusions in Sect. 5.

2 Methods

PRIME is a rapid-response tool designed to explore spa-
tially resolved climate and impacts of scenarios as soon as
they are developed. It draws on comprehensive CMIP multi-
model ensemble results but extends these to fill gaps not yet
populated by ESMs or impact models and can extend sim-
ulations into the future to simulate multi-century responses.
PRIME produces probabilistic sampling of a range of uncer-
tainties, including global climate and carbon cycle sensitivity
and spatial patterns of climate change. It opens the potential
to also span perturbed parameter uncertainty in land and im-
pact models and provides the ability to propagate constraints
onto impact projections through either prior constraint on pa-
rameters or posterior selection of ensemble members.

Figure 1 shows the components that make up the PRIME
framework. The starting point is emissions scenarios such as
from integrated assessment models (IAMs), which are used
to drive the global climate emulator FaIR v1.6.2 (Smith et al.,
2018, see Sect. 2.1). FaIR can probabilistically sample un-
certainty in climate and carbon cycle response to emissions.
Its global mean temperature projections are then used to re-
construct the regional climate change for a number of cli-
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Figure 1. Schematic of the PRIME framework. Emissions scenarios provide input in terms of emissions of CO2, other greenhouse gases and
aerosols and can be taken from IAMs or idealised experiments. The FaIR climate emulator samples uncertainty from the climate and carbon
cycle response to emissions and outputs global temperature and CO2 concentration. PRIME then scales patterns of climate change from
CMIP climate models by the global temperature and uses a weather generator to downscale these to subdaily driving data for the JULES land
surface model. JULES outputs a broad range of land-based impact-relevant quantities such as gross primary productivity (GPP), net primary
productivity (NPP), vegetation cover, soil moisture and runoff.

mate variables using the patterns derived from ESMs (see
Sect. 2.2). These regional patterns, along with CO2 concen-
trations from FaIR, are used to drive the JULES land surface
model, from which various climate impacts can be derived.

2.1 Emulator of global temperature change

The Finite Amplitude Impulse Response (FaIR) model is a
climate emulator that takes inputs of greenhouse gas and
short-lived climate forcer emissions and produces projec-
tions of global mean surface temperature (Smith et al., 2018;
Leach et al., 2021). FaIR calculates greenhouse gas concen-
trations (including CO2) and effective radiative forcing as
intermediate steps. FaIR contains modules that simulate the
carbon cycle feedback (changes in uptake of CO2 by land
and ocean sinks with increasing CO2 emissions and warm-
ing) and forcing from aerosols, ozone, land use change and
several other categories of anthropogenic and natural forc-
ings. These relationships in FaIR are designed to capture the
large-scale behaviour of complex Earth system models and
are governed by a number of tuneable parameters.

As part of the IPCC AR6 Working Group 1 (The Physi-
cal Science Basis of Climate Change: WGI; IPCC, 2021), a
1.6-million-member prior ensemble of FaIR v1.6.2 was pro-
duced. This large ensemble is reduced using the historical
temperature record to eliminate those members with a large
error, with the aim of reproducing the uncertainty range in

present day relative to the pre-industrial period. Through si-
multaneously constraining on several observable and emer-
gent climate metrics including equilibrium climate sensitiv-
ity (ECS), transient climate response (TCR), aerosol, CO2
concentration and ocean heat change, the ensemble is re-
duced to the 2237 members used in AR6 (Forster et al.,
2021; Smith et al., 2021, 2023). This ensemble of 2237 pa-
rameter sets was taken forward and used for assessing emis-
sions pathways derived from IAMs in the IPCC AR6 Work-
ing Group III (Mitigation of Climate Change) report (Riahi
et al., 2022). It is this ensemble (Smith, 2022) we select from
this version of the PRIME framework. This AR6 calibration
is described in detail in fair-calibrate V1.4.0 (Smith et al.,
2024), which shows the range of climate uncertainty param-
eters sampled; these include radiative forcing from differ-
ent drivers (including aerosols), carbon cycle sensitivities,
timescales of climate response to forcing and climate sen-
sitivity. In this study, to make the ensemble size manageable,
we reduce the total number of ensemble members by sub-
sampling from within the 2237 parameter sets to explore the
full range of global temperature sensitivity using several per-
centiles at 0 %, 1 %, 5 %, 25 %, 50 %, 75 %, 95 %, 99 % and
100 %; these are selected using one scenario so that scenarios
can be compared against each other. We use a single scenario
to define the ensemble member per percentile because each
scenario will have different ensemble members for each per-
centile. For example, the 50th percentile ensemble member
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for SSP5–8.5 would not be the same ensemble member as
the 50th percentile for SSP5–3.4-OS. We choose the same
ensemble members for all scenarios to make the comparison
between scenarios easier. In this framework we also output
CO2 concentrations from FaIR for use in JULES; in future
work we intend to explore the selection of ensemble mem-
bers based on sampling the CO2 range of uncertainty as well
as temperature, but this is not explored here. In this paper, we
present just one way that the user can choose to run PRIME,
but these choices are not intrinsic to PRIME as a frame-
work. The optimal sampling strategy within the distribution
of FaIR outputs and climate patterns (see Sect. 2.2) can and
will vary on a case-by-case basis depending on the desired
use of the framework. Additionally, all the percentiles are
available from FaIR if a user chooses to use them.

2.2 Spatial patterns and temporal downscaling of
climate change

In PRIME, we use an early version of pattern scaling devel-
oped by Huntingford and Cox (2000). We derive relation-
ships for eight climate variables (near-surface air tempera-
ture, diurnal temperature range, precipitation, shortwave ra-
diation, longwave radiation, near-surface specific humidity,
10 m wind speed and surface pressure) at each grid cell, by
a linear regression between global mean temperature change
and anomalies relative to the 1850–1889 mean for all climate
variables with an intercept set to zero. Monthly patterns for
each of 34 CMIP6 models (see Table S1 in the Supplement
for the models and realisations used) are calculated using the
SSP5–8.5 emissions scenario: sampling the CMIP6 ensem-
ble’s range of uncertainty. We generate the patterns sepa-
rately for each CMIP model (using the recipe available in ES-
MValTool; see the data availability section); the regression is
calculated with points from the duration of SSP5–8.5, from
2015–2100. This means that PRIME is run for each CMIP
pattern individually (we do not run it using the average CMIP
pattern). This use of a large proportion of the CMIP6 en-
semble means that PRIME considers many combinations of
ESM output for a broad range of climates represented by the
CMIP6 ensemble. Wells et al. (2023) show that whilst select-
ing patterns derived from emissions scenarios with radiative
forcings closer to the target scenario results in the lowest em-
ulation errors, the best all-round performance is obtained by
using a high warming scenario to obtain the patterns, hence
our choice of SSP5–8.5 as our training scenario. For further
details on the patterns evaluation, see Sect. 3.2.

Within PRIME we use patterns for all input variables re-
quired to run the JULES land surface model. JULES tends
to be less sensitive to some of the input variables that do not
typically scale as well with temperature, such as wind speed,
pressure and longwave downwelling radiation, so we can in-
clude them without introducing erroneous output changes
(see Sect. 3.2). It should be noted that we generate global
patterns that include land and ocean, but in this analysis, we

focus on the patterns over land for running JULES and con-
sidering land impacts. However, it would be possible also to
use the patterns over the ocean for relevant downstream ap-
plications.

The spatial distribution of the monthly mean meteorology
for each month of the transient simulation is reconstructed
from the climate patterns multiplied by the global mean tem-
perature change (Sect. 2.1) superimposed on an observed
monthly climatology. This is done by IMOGEN (Hunting-
ford et al., 2010). In this version of PRIME, the observed
monthly climatology was constructed from the daily meteo-
rological data provided by the GSWP3-W5E5 dataset from
the ISIMIP3a project (Frieler et al., 2024) for the period
1901–1930. This was regridded to a resolution of N48 with a
3.75° longitude grid size and a 2.5° latitude grid size.

In addition, the weather generator in IMOGEN (Hunting-
ford et al., 2010) is used to downscale the weather data from
the monthly to hourly time step, which is the temporal reso-
lution used to drive JULES. This method is described in de-
tail in Mathison et al. (2023). One limitation of this method
is the lack of variability in the driving humidity, temperature
and radiation at both the subdaily and daily resolution. In the
next version of PRIME, we will develop the temporal down-
scaling meteorology so that it coherently includes the effects
of, for example, clouds on the diurnal cycle of the weather
data.

The diurnal cycle in near-surface air temperature is defined
using

T = To+
1T

2
cos

(
2π
(
t − tTmax

)
Tday

)
, (1)

where To and 1T are the temperature and diurnal tempera-
ture ranges respectively. Tday is the length of the day, i.e. 24 h;
tTmax is the time of day when the temperature is highest.
tTmax is calculated from the following equation, which as-
sumes that it occurs 0.15 of the period between sunrise and
sunset after solar noon:

tTmax =
tup+ tdown

2
+ 0.15

(
tup− tdown

)
, (2)

where tup and tdown are sunrise and sunset times. The down-
ward shortwave radiation, which includes the diurnal cycle,
is the daily mean downward shortwave radiation multiplied
by a solar radiation normalisation factor, which depends on
the position of the sun in the sky at each time step for each
grid box. This means that subdaily downward shortwave ra-
diation and temperature are estimated using these known fac-
tors and a sinusoidal function to represent the maximum and
minimum daily range.

The downward longwave radiation has a dependence on
temperature, T , that is an exponent power to 4, based on
the theory of black-body radiation. However, if we assume
the diurnal cycle in temperature is relatively small compared
to background temperature, T0 (at which longwave radiation
is Rlw,0), then we can linearise about these values. This gives
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Rlw = Rlw,0

(
4T
T0
− 3

)
. (3)

The IMOGEN (Huntingford et al., 2010) weather genera-
tor distributes monthly mean rainfall subject to a probability
distribution that has fixed parameters in time (i.e. year), al-
beit dependent on month and location. For each year, a ran-
dom number generator is applied to sample from the distri-
bution. The distribution parameters are fitted to known his-
torical gridded measurements of precipitation. Precipitation
is split into three types: large-scale rain, convective rain and
large-scale snow. These are considered to occur in a single
event, with a globally specified duration parameter (6 h for
convective rainfall, 1 h for large-scale rainfall and convective
snowfall and large-scale snowfall). The type of precipitation
at any particular time depends on the mean daily temperature.
If the daily temperature is greater than 293.15 K, it is convec-
tive rain, between 275.15 and 293.15 K it is large-scale rain,
and below 275.15 K it is large-scale snow. This precipitation
is divided into events of randomly generated duration. If the
maximum precipitation rate in any time step is greater than
350.0 mm d−1, the precipitation is again redistributed to re-
duce these values to less than the threshold.

2.3 Land surface and impact model

The Joint UK Land Environment Simulator Earth System
(JULES; Best et al., 2011; Clark et al., 2011; Wiltshire et al.,
2021) land surface model is a community model used both
in a standalone model and as the land surface component of
the UK Earth System Model (UKESM; Sellar et al., 2019).
Here, JULES is used in standalone mode, driven by cli-
mate data reconstructed by combining the monthly patterns
derived from the ESMs and the global mean temperature
change from FaIR. The configuration of JULES used here
is denoted JULES-ES (Mathison et al., 2023) and is the con-
figuration used both in UKESM1 (Sellar et al., 2019) and to
provide simulations for the Inter-Sectoral Impact Model In-
tercomparison Project (ISIMIP) in Mathison et al. (2023). In
PRIME JULES-ES is also driven by the CO2 concentration
output from FaIR.

JULES-ES has nine natural plant functional types (PFTs;
five types of trees, C3 and C4 grasses, and evergreen and de-
ciduous shrubs) and four managed PFTs (C3 and C4 crop
and pasture), where the managed PFTs are set to their ob-
served values at 2005. The Top-down Representation of In-
teractive Foliage and Flora Including Dynamics (TRIFFID)
dynamic vegetation model (Cox, 2001) determines the pro-
portion of each PFT present in a grid cell. Nitrogen lim-
itation on ecosystem carbon assimilation is represented in
JULES-ES (Wiltshire et al., 2021). External nitrogen inputs
are via biological nitrogen fixation and nitrogen deposition,
and losses are via leaching and a gas loss term. Nitrogen lim-
itation reduces the carbon use efficiency of the vegetation via
a reduced net primary productivity and can slow soil decom-

position. The soil biogeochemistry is represented by a single
bulk layer with four soil pools: two litter pools, a microbial
biomass pool, and a humus pool each with an equivalent or-
ganic nitrogen pool. Inorganic nitrogen is converted from or-
ganic nitrogen and can be taken up by the plants.

3 PRIME evaluation

In this section, we evaluate PRIME. In this context, that
means that we show that the framework is “fit for purpose”
by testing it on scenarios where ESM simulations already ex-
ist. However, ultimately we want to use PRIME to produce
land simulations for scenarios where ESMs have not been
run. Here, we use CMIP6-simulated output for a range of
different but well-known future climate scenarios: SSP1–2.6,
SSP5–3.4-OS (these are verification scenarios) and SSP5–
8.5 (this is the training scenario). We show that PRIME gives
close agreement of global temperature and spatial patterns
of climate, giving us confidence in its ability to be used to
project as yet unsimulated scenarios. We also compare simu-
lated land surface output from PRIME with that from CMIP6
for ESMs that have reported the required diagnostics.

PRIME has three distinct and independent steps, as de-
scribed in Sect. 2: (i) time series of global temperature are
produced from FaIR based on emissions of greenhouse gases
and aerosols, (ii) spatial patterns of climate change are con-
structed from the global temperature based on CMIP sim-
ulations, and (iii) these climate patterns are used to drive
JULES to simulate land surface outcomes. In this section,
we present the evaluation of these three steps and at each
step assess the agreement with existing output from CMIP6
or the IPCC AR6 assessment using various standard statis-
tical methods. The chosen statistics vary with each step and
include the mean absolute error (MAE), the root mean square
error (RMSE), the Pearson correlation coefficient and the in-
terquartile range (IQR) of model predictions.

3.1 Emulation of global temperature change

For the first time, IPCC AR6 was able to apply multiple lines
of evidence to constrain future projections of global tempera-
ture from the CMIP6 ensemble. As such, the spread of global
temperature in 2100 is smaller than if taken from raw CMIP6
ESM output (Lee et al., 2021). We compare the simulated
global temperature from PRIME (run with emissions) with
the constrained range assessed by IPCC (see Fig. 4.11 and
Table 4.5 of Lee et al., 2021) in Fig. 2. The FaIR simula-
tions used here do not include solar and volcanic fluctuations,
instead focusing on the anthropogenic forcing, which is the
main driver of human-induced effective radiative forcing and
human-induced warming (Forster et al., 2023). The left panel
shows the mean global mean surface air temperature (GSAT)
from FaIR (solid lines) and 5th and 95th percentiles (shaded
region). The right panel shows the mean and 5th–95th per-
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.

Figure 2. (a) Projected global temperature from FaIR for five SSP emissions scenarios and (b) comparison of end-of-century (2080–2100)
mean warming from FaIR (green) and the IPCC AR6 assessment (yellow; Fig. 4.11 and Table 4.5 of Lee et al., 2021)

centile for the period 2090–2100 relative to 1850–1900 for
each SSP scenario (we include the same scenarios here to
enable comparison with the same plot in the IPCC report):
SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5 for
FaIR end-of-century GSAT values and the IPCC-constrained
values. The end-of-century ranges in PRIME are close to the
IPCC ranges with the time series and model spread consis-
tent with the IPCC-constrained range.

The uncertainty in projected global mean temperature
arises from uncertainty in both physical and biogeochemi-
cal feedbacks like the carbon cycle. We know atmospheric
CO2 is an additional direct driver of impacts; therefore this is
another output from FaIR that is included in PRIME as an in-
put to JULES-ES. Figure 3 shows the selection of ensemble
members from the full FaIR distribution of 2237 members;
nine percentiles (0 %, 1 %, 5 %, 25 %, 50 %, 75 %, 95 %,
99 % and 100 %) are chosen to explore the full range of
global temperature sensitivity but make the data more man-
ageable because they increase considerably when combined
with the CMIP6 patterns (see Table S1 for a full list of those
used) and run through JULES. PRIME samples the joint dis-
tribution of CO2 and global temperature from the constrained
FaIR ensemble. Figure 3 shows how the ensemble members
selected span the distribution for SSP1–2.6 (similarly the
joint distributions of CO2 and temperature are also shown in
Fig. S1 in the Supplement for SSP5–3.4-OS on the left and
SSP5–8.5, the training scenario, on the right). As our primary
aim is to sample future impacts associated with uncertain
future temperature outcomes, we subsample the 2100 FaIR
temperature distribution for the impact modelling. This re-
sults in a co-sampling of CO2 levels that does not span the
full uncertainty in resulting CO2 concentrations. This is not a
limitation of PRIME – other applications could use a differ-
ent sampling strategy or use the full ensemble of 2237 mem-

bers. As mentioned in Sect. 2.1, the sampling strategy will
depend on the intended application of the framework; the use
of both temperature and CO2 concentration from the FaIR
distribution is discussed in Sect. 5.

3.2 Spatial patterns of climate change

Emulated climate patterns are evaluated against their CMIP6
equivalents for a number of scenarios. Alongside global com-
parison, four example regions are chosen to test the pat-
tern evaluation at regional scales: the Amazon basin CE1 ,
the Siberian forest, India and the United States of Amer-
ica. These regions span tropical and boreal ecosystems, tem-
perate regions, and a region dominated by a monsoon cli-
mate. The climate patterns were evaluated against the out-
of-sample CMIP6 runs of the SSP1–2.6 and SSP5–3.4-OS
scenarios as SSP5–8.5 was used to train the pattern scaling.

Climatologies of each CMIP6 model were calculated by
taking the mean of the period 1850–1889 inclusive. Anoma-
lies were then calculated by subtracting the climatologies
from the spatiotemporal CMIP6 datasets, ensuring that the
variants of the historical runs matched those of the scenarios.
To compare against these, predicted patterns for each ESM
were compiled by multiplying annual mean GSAT data by
pattern values at each grid point (see Methods, Sect. 2.2),
creating a spatiotemporal dataset of anomalies for each vari-
able (see Table 1). The predicted patterns were then evalu-
ated against the anomaly datasets from CMIP6. The number
of models included in the evaluation depends on the scenario,
as not all CMIP6 models simulated every SSP. Here, 29 mod-
els are included in the evaluation against SSP1–2.6, and 15
are included in the evaluation of SSP5–3.4-OS, out of the
34 available model patterns.
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Table 1. Summary table for evaluation section: root mean square error (labelled RMSE) between multi-model mean pattern predictions and
CMIP6 both at mid-century (labelled “Mid”, i.e. 2040–2060) and at the end of the century (labelled “End”, i.e. 2080–2100) for values on
land across the globe for each input variable and scenario. RMSE is spatially aggregated across months and models.

Variable Units SSP1–2.6 SSP5–3.4-OS SSP5–8.5
JULES inputs RMSE RMSE RMSE

Mid End Mid End Mid End

Temperature °C 0.43 0.52 0.42 0.53 0.34 0.35
Specific humidity g kg−1 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001
Precipitation mm d−1 0.20 0.22 0.22 0.22 0.18 0.17
Wind m s−1 0.10 0.11 0.10 0.11 0.09 0.08
Pressure kg m−1 s−2 32.11 36.79 36.29 34.53 28.55 25.81
Shortwave radiation W m−2 1.75 2.16 1.85 2.19 1.88 1.98
Longwave radiation W m−2 1.88 2.29 1.74 2.25 1.52 1.65
Diurnal temperature range °C 0.12 0.13 0.09 0.11 0.09 0.09

Figure 3. Joint frequency distribution from the FaIR simulations of
global temperature rise and CO2 concentration in 2100 for SSP1–
2.6 emissions and the subselected percentiles (blue crosses) used to
drive the JULES impact model. Shades of green denote the density
of points with individual histograms above and to the right of the
main panel. The 10 % confidence intervals are shown by the con-
tours.

Our evaluation of the emulated patterns focuses on the
ability to capture the mean and spread of the CMIP6 ensem-
ble. The aim is for PRIME to appropriately capture the re-
sponse to forcing across a range of scenarios and also the spa-
tial uncertainty. We evaluate the pattern scaling by comparing
mid-century (2040–2060 mean) and end-of-century (2080–
2100 mean) predictions for all variables against CMIP6
anomalies for two out-of-sample scenarios – SSP1–2.6 and
SSP5–3.4-OS – using pattern predicted ensemble means
compared to the CMIP6 ensemble mean anomalies. In Fig. 4
we show evaluation of predictions of near-surface air temper-
ature and precipitation. The right-hand column shows the er-
ror in our prediction of the CMIP6 multi-model mean. Tem-
perature is clearly seen to scale well, with small errors dur-
ing both the mid-century and the end of the century; however
warming in the northern latitudes is generally slightly un-
derestimated across both timescales. The results for precipi-
tation show much more spatial variance. Patterns of change
are well captured during both timescales, as can be seen in
Fig. 4d, e, j and k, though prediction errors do occur for
some regions (see Fig. 4f and l), for example in the Amazon,
where rainfall is generally underestimated; southern Africa,
where it is overestimated; and South-East Asia, where differ-
ences vary over timescales. We include further evaluation of
patterns for the other JULES input variables in the Supple-
ment (see Fig. S2 for specific humidity and wind, Fig. S3 for
pressure and downwelling shortwave radiation, and Fig. S4
for downwelling longwave radiation and the diurnal temper-
ature range). We also show all variables for SSP5–3.4-OS in
the Supplement (these are shown in the same order with tem-
perature and precipitation first in Figs. S5 to S8). We also
show the training scenario, SSP5–8.5, in the Supplement for
temperature and precipitation (see Fig. S9) as a sanity check.
In general, errors in pressure (Fig. S3a–c and g–i), longwave
downwelling radiation (Fig. S4a–c and g–i) and specific hu-
midity (Fig. S2a–c and g–i) tend to be smaller, while er-
rors in shortwave downwelling radiation (Fig. S3d–f and j–l),
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wind (Fig. S2d–f and j–l) and the diurnal temperature range
(Fig. S4d–f and j–l) tend to be larger, regardless of the sce-
nario and particularly at the end of the century (Figs. S4l
and S8l TS3 ). For downwelling shortwave radiation particu-
larly, this is likely to be due to the influence of other factors
such as aerosols.

In addition to evaluating the relative ensemble means, it is
important to check that prediction errors fall within the range
of responses seen in CMIP6. We therefore check that the ab-
solute error in our predictions is small compared to the spread
in the ensemble predictions. We calculate the absolute error
of each model’s prediction against its CMIP6 counterpart and
take the mean over the ensemble at each grid point (Fig. 5,
central column). If the mean absolute error (MAE) is low rel-
ative to the CMIP6 IQR (Fig. 5, left column), this suggests
the pattern-scaling technique is not adding significant varia-
tion in its predictions beyond that driven by the differences
between the patterns. We can therefore be confident that de-
spite deficiencies, the ensemble approach is adding useful in-
formation on the uncertainty and spread. Figure 5 shows that
the MAE is smaller than the ensemble range for temperature
and precipitation in the mid-century and the end of the cen-
tury for SSP1–2.6. We calculate the ratio of the MAE (centre
column) and CMIP6 IQR (left column) and show this in the
right-hand column of Fig. 5 to reiterate this point. The range
in error of precipitation predictions is higher and more het-
erogeneous than temperature, although the spatial patterns
are similar across timescales. The other scenarios and vari-
ables are shown in the Supplement plots (Figs. S10 to S17).
The tropics in particular are regions of higher MAE, which is
reflective of the differences in the underlying model patterns
for these areas, although the MAE is still seen to be smaller
than that of CMIP6. Table 1 shows the mid-century and end-
of-century RMSE values for each input variable for JULES.
RMSE is a standard measure of the error in the predicted
variable relative to the mean change. From a previous anal-
ysis of the JULES input variables, it is known that there are
some variables that are more important for JULES. For ex-
ample, temperature, specific humidity and precipitation are
key drivers with other input variables like wind speed, pres-
sure and longwave downwelling radiation having less influ-
ence. This means that even though the pattern scaling for
some of these variables may have greater error, they are not
as important because JULES is known to be less sensitive
to these. Overall, the pattern scaling captures the pattern of
change well for the key JULES variables, with the training
scenario, SSP5–8.5, having the greatest agreement. This is
as expected because not only was this used to generate the
patterns but also this is the scenario with the strongest cli-
mate change signal. The relative error increases in the lower
scenarios related to the need to predict a smaller signal (Wells
et al., 2023; Kravitz et al., 2017). However, the low RMSEs
for these key variables give us confidence to apply the pat-
tern scaling to different scenarios including stabilisation and
overshoot pathways. In future work, we would also like to

explore the impact of including the patterns for all of the
JULES input variables on the outputs from PRIME in a sensi-
tivity analysis, to understand whether the input variables that
do not pattern-scale well but are less important for running
JULES affect the spread of the results from PRIME.

We also evaluate whether PRIME pattern scaling can also
reproduce the range of changes across the CMIP6 ensem-
ble for all JULES input variables. In several figures we com-
pare time series and end-of-century predicted changes across
CMIP6 ESMs for all variables and four regions. Temperature
and precipitation are shown in Figs. 6 and 7 with the other six
variables in Figs. S18 to S23. The multi-model mean pattern,
per degrees Celsius of warming, is shown in the central map
for temperature (Fig. 6) and precipitation (Fig. 7). For each
region and variable, the figures show time series of change
for that region as a shaded plume of CMIP6 output (blue)
and predicted by pattern scaling (pink). The end-of-century
values for each CMIP6 model individually are shown as a
scatterplot for each variable, region and scenario to illustrate
the agreement between pattern-scaled and CMIP6 values for
temperature and precipitation (see Figs. 6 and 7 respectively)
with the end-of-century values also given, along with the
RMSE in the regional tables (Table 2 for temperature and Ta-
ble 3 for precipitation). The Pearson correlation coefficient is
a widely used measure of the strength of the linear relation-
ship between two variables; we use it here to quantify the
linearity of the pattern predictions against CMIP6 for each
model with respect to the one-to-one line. For temperature
(Fig. 6) the range of future projections across CMIP6 models
spans approximately 5–10 °C warming by 2100 under SSP5–
8.5 for each region, with high latitudes warming more than
the tropics, as expected. The PRIME pattern-scaled ensem-
ble does well to reproduce this range of projections across
the CMIP6 ensemble, with points lying close to the one-to-
one line for all regions and scenarios. Pearson correlation
coefficients for between-model predictions exceed 0.93 for
all regions and scenarios (Table 2), with SSP5–8.5 fitted the
best. This is expected as the patterns were derived from this
scenario. Importantly, this gives confidence that the PRIME
system does not introduce any significant errors, particularly
in the training scenario, and that the pattern scaling accu-
rately reproduces the spread of results model by model of
the CMIP6 ensemble for this scenario.

Results for precipitation (Fig. 7) also show good agree-
ment, but some mismatches appear as precipitation is more
variable in space and time than temperature, as seen in
the higher-error characteristics in the pattern scaling and
slightly lower correlation coefficients in Table 3. Neverthe-
less, PRIME predicts well the signal of increasing precipi-
tation over the United States, Siberia and India and reduced
rainfall over the Amazon basin. Again, the range and spread
of results across the CMIP6 ensemble are well matched, and
the correlation coefficients shown in Table 3 are reasonable
and above 0.75 for all regions and scenarios.
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Figure 4. Evaluation of the pattern-predicted ensemble mean anomalies compared to the CMIP6 ensemble mean anomalies for near-surface
air temperature (a–c, g–i) and precipitation (d–f, j–l) for SSP1–2.6. Maps (a–f) highlight mid-century predictions, and (g)–(l) show those for
the end of the century. The right-hand column (c, f, i, l) shows the difference between the predictions (a, d, g, j) and CMIP6 (b, e, h, k) the
anomalies, in order to show the detail in the prediction error, which is small compared to the change induced by the scenario.

Table 2. Root mean square error (RMSE in °C) and Pearson correlation coefficient (Pearson) between pattern-predicted and CMIP6 end-
of-century temperature change (see Fig. 6 for scatterplots for each region showing each model) for each scenario. Average values over the
region of interest compared to its CMIP6 equivalent by model.

Region SSP1–2.6 SSP5–3.4-OS SSP5–8.5

RMSE Pearson RMSE Pearson RMSE Pearson

Amazon 0.27 0.96 0.22 0.98 0.13 0.99
Siberia 0.33 0.93 0.28 0.98 0.23 0.99
USA 0.21 0.95 0.21 0.98 0.21 0.99
India 0.29 0.93 0.21 0.97 0.37 0.98
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Figure 5. Evaluation of the interquartile range (IQR) of predictions (a, d, g, j) and of the mean absolute model-to-model error (MAE) for
SSP1–2.6 for temperature (a–c, g–i) and precipitation (d–f, j–l). Maps (a–f) highlight mid-century predictions, and (g)–(l) show those for
the end of the century. The middle column (b, e, h, k) shows the MAE and the right-hand column (c, f, i,l) the ratio of MAE to IQR.

Table 3. Root mean square error (RMSE in mm d−1) and Pearson correlation coefficient (Pearson) between pattern-predicted and CMIP6
end-of-century precipitation change (see Fig. 7 for scatterplots for each region showing each model) for each scenario. Average values over
the region of interest compared to its CMIP6 equivalent by model.

Region SSP1–2.6 SSP5–3.4-OS SSP5–8.5

RMSE Pearson RMSE Pearson RMSE Pearson

Amazon 0.12 0.77 0.11 0.85 0.079 0.98
Siberia 0.045 0.86 0.036 0.96 0.022 0.99
USA 0.065 0.75 0.056 0.83 0.037 0.96
India 0.094 0.87 0.081 0.93 0.13 0.94



12 C. Mathison et al.: A rapid-application emissions-to-impacts tool for scenario assessment: PRIME

Figure 6. The central map shows the temperature pattern (where there is no hatching indicates that the models tend to agree on the sign of
the change and with hatching to show where the models tend to disagree on the sign of the change) and subpanels for each region: North
America, Siberia, South America and South Asia. The region subpanels show the temperature time series (left subpanel) and scatterplots
(right subpanel) for each scenario: SSP1–2.6 (top), SSP5–3.4-OS (middle) and SSP5–8.5 (bottom) (the training scenario). The time series
shows the PRIME patterns (blue plume) and the CMIP6 patterns (red plume). The scatterplots show the end-of-century values predicted by
PRIME vs. CMIP6 actual values for each model with the model colours shown at the bottom of the figure.
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Figure 7. The central map shows the precipitation pattern (where there is no hatching indicates that the models tend to agree on the sign of
the change and with hatching to show where the models tend to disagree on the sign of the change) and subpanels for each region: North
America, Siberia, South America and South Asia. The region subpanels show the precipitation time series (left subpanel) and scatterplots
(right subpanel) for each scenario: SSP1–2.6 (top), SSP5–3.4-OS (middle) and SSP5–8.5 (bottom) (the training scenario). The time series
shows the PRIME patterns (blue plume) and the CMIP6 patterns (red plume). The scatterplots show the end-of-century values predicted by
PRIME vs. CMIP6 actual values for each model with the model colours shown at the bottom of the figure.
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Across-model spread of the other variables (Figs. S18
to S23) is also well captured by PRIME pattern scaling.
Changes in humidity (Fig. S18) are well reproduced, while
wind speed changes (Fig. S19) have mixed skill, being poorly
captured over United States, despite changes in surface pres-
sure (Fig. S20) being well reproduced for all regions. The
most notable departure of predicted and actual changes oc-
curs for surface downwelling shortwave radiation (i.e. in-
coming solar radiation shown in Fig. S21). For all regions
and scenarios, the end-of-century values match well, but the
significant dip in shortwave radiation during the historical
period is not seen at all in the predicted patterns. This pe-
riod of “global dimming” (Wang et al., 2022; Stanhill and
Cohen, 2001) is well known to be caused by anthropogenic
aerosols and cannot be replicated by scaling global temper-
ature. Features such as this are an obvious limitation of a
pattern-scaling approach, which does not account for differ-
ent regional patterns from different climate forcers such as
aerosols. Finally, changes in downwelling long-wave radia-
tion (Fig. S22) and diurnal temperature range (Fig. S23) are
well captured across regions and scenarios by the PRIME
pattern scaling.

In conclusion, the patterns both for each CMIP6 ESM and
the range of changes across ESMs are generally well repro-
duced by the PRIME pattern-scaling technique. This is true
for each of the four distinct regions and three very different
emissions scenarios. The pattern-scaling technique is simple
and well understood, and here we find it largely capable of
spatially downscaling the global climate response in out-of-
sample low-signal and overshoot scenarios.

3.3 Land surface and impact simulation

The final section of the PRIME evaluation shows the re-
sults using the FaIR-produced projections of global mean
surface temperature together with the scaled climate patterns,
to drive the JULES land surface model. The JULES step of
PRIME is evaluated using two climate variables as examples
of output produced by most ESMs. End-of-century changes
projected by PRIME are compared against the equivalent en-
semble mean CMIP6 data. The example variables considered
help us to assess the carbon and hydrological cycles: gross
primary productivity (GPP), which is the gross rate of accu-
mulation of carbon via photosynthesis, and runoff, which is
the excess water not absorbed by soils and accumulated by
water sources.

For this stage of evaluation, we do not expect as good a
match with CMIP6 outputs as obtained for the driving cli-
mate variables in Sect. 3.2. This is because PRIME uses one
land surface model – JULES – which will differ from the
embedded land schemes across the range of different CMIP6
ESMs. We perform this comparison for two example vari-
ables to demonstrate the extent to which the PRIME frame-
work can reproduce the range of simulated land behaviour
from CMIP6, but we can not expect a perfect match. Future

work to include other land models or perturbed parameter en-
sembles of JULES would help address potential mismatches.

Figure 8 shows the multi-model mean projected end-of-
century changes in GPP and runoff in the SSP1–2.6 scenario,
the first of two verification scenarios, using both the PRIME
framework and CMIP6. Figures S24 and S25 show the equiv-
alent results for scenarios SSP5–3.4-OS (a second verifica-
tion scenario) and SSP5–8.5 (the training scenario) respec-
tively. The similarity in the predicted spatial patterns can be
seen, where in the majority of regions, PRIME matches the
pattern of change projected by CMIP6. As we did for cli-
mate patterns, we evaluate within and across CMIP6 ESMs.
Table 4 presents the mean and interquartile range for both the
PRIME and CMIP6 ensemble for each output variable con-
sidered. It is important to check that the use of a single land
model here does not overly restrict the output and negate the
benefits of being able to sample climate sensitivity and cli-
mate patterns fully, so while we would not expect PRIME
values to be identical to CMIP, we check that the use of a
single land model does not result in too narrow a range of
outcomes. We see a similar spread and mean for both GPP
and runoff (see Table 4). Some deviations are seen between
the projections; for example, PRIME projects greater mag-
nitudes of change in both runoff and GPP in the tropical re-
gions compared to CMIP6 (Fig. 8). To put these changes into
context from a carbon perspective, PRIME exhibits an end-
of-century global increase in GPP in SSP1–2.6 of 26 (be-
tween 18 and 34) Gt C yr−1, while CMIP6 increases by 30
(between 15 and 43) Gt C yr−1, compared to pre-industrial
times. For the training scenario, SSP5–8.5, for PRIME the
end-of-century increase is 77 (between 58 and 98) Gt C yr−1,
while CMIP6 increases by 70 (between 37 and 99) Gt C yr−1,
compared to pre-industrial times. Therefore, in both the out-
of-sample scenario and the training scenario, PRIME broadly
captures the range shown by the CMIP6 ensemble.

Across CMIP6 models, projections are compared in the
four specific regions (Amazon, Siberia, USA and India) for
both variables (Figs. S26–S29 for SSP1–2.6 and Figs. S30–
S33 for the training scenario, SSP5–8.5). PRIME-simulated
GPP and runoff can be compared on a model-by-model basis.
The results shown in figures in the Supplement (Figs. S26–
S33) for each region show CMIP6 output for each ESM and
the corresponding PRIME-simulated output from JULES us-
ing the climate patterns from the same ESM. For GPP (top
row in Figs. S26–S33), the PRIME-simulated changes are
typically simulated well, although JULES has a tendency to
simulate greater increases in GPP than many of the CMIP6
models. A couple of CMIP6 ESMs clearly stand out. The
green lines showing the CNRM model (Séférian et al., 2019)
and the cyan lines showing the MPI model (Mauritsen et al.,
2019) in CMIP6 consistently simulate greater increases in
GPP than JULES. This does not signal an error in PRIME,
just that the different land models simulate different sensitiv-
ity to future climate changes. However, PRIME does mainly
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Figure 8. Maps comparing the multi-model mean projected end-of-century changes (2080–2100) for SSP1–2.6 in GPP (a, b) and runoff (c, d)
from PRIME (a, c) compared to CMIP6 (b, d).

Table 4. Summary table for JULES outputs: mean and interquartile range (IQR) for CMIP6 and PRIME for end-of-century values on land
across the globe.

Variable Units SSP1–2.6 SSP5–3.4-OS SSP5–8.5

JULES outputs CMIP PRIME CMIP PRIME CMIP PRIME
mean mean mean mean mean mean
(IQR) (IQR) (IQR) (IQR) (IQR) (IQR)

Gross primary kg m−2 yr−1 0.22 0.18 0.27 0.24 0.52 0.54
productivity (0.32) (0.33) (0.43) (0.41) (0.71) (0.87)

Runoff m3 d−1
× 10−4 0.59 0.55 0.82 0.78 1.61 2.17

(1.22) (1.00) (1.52) (1.32) (2.73) (2.94)

reproduce the signal and spread of GPP for all regions and
scenarios simulated by CMIP6.

Runoff for three of the four regions is well reproduced
in PRIME (bottom row in Figs. S26–S33), where Siberia
(Figs. S27 and S31), United States (Figs. S29 and S33)
and India (Figs. S28 and S32) all see steady increases in
runoff consistent with increases in precipitation in those re-
gions. JULES output agrees with these changes of simulated
magnitude and spread. The Amazon basin region (Figs. S26
and S30) though exhibits some notable differences. Figure 7
(bottom left) shows a range of precipitation responses over
the Amazon with an overall consensus of a drying signal
(see also Lee et al., 2021). The JULES outputs though, whilst
spanning a similar range of reduced runoff, also show an in-
crease in runoff when forced with some ESM patterns to an
extent not shown by the CMIP6 models themselves. The rea-

son for this is not known, but we note that in this case, fu-
ture projections of Amazon runoff in PRIME show a wider
spread than the CMIP6 ensemble. The comparisons shown
here illustrate that the PRIME framework gives a good indi-
cation of the CMIP6 ensemble spread for these known and
very different scenarios to the training scenario. We show a
range of different futures including overshoot and mitigation
scenarios. This gives us some confidence that we can use this
PRIME framework to provide a first look and assess some
impacts from scenarios for which ESM simulations do not
exist.
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4 PRIME impact outputs

In this section, we present examples of how the PRIME
framework can be used to assess climate impacts. Even
though the SSP scenarios have been simulated by many
ESMs in CMIP6, only a subset of them simulate the terres-
trial carbon cycle (Arora et al., 2020), and very few simulate
interactive dynamic vegetation (Pugh et al., 2018). Hence, it
is novel to show the possible spread of simulated carbon bal-
ance (represented by net ecosystem productivity, NEP) and
changes in tree fraction from a sample of percentiles that ex-
plore the full range of global temperature sensitivity.

In response to SSP1–2.6 (Fig. 9) and SSP5–8.5 (not
shown), terrestrial carbon storage increases almost every-
where in the multi-model mean with positive NEP (top row)
especially evident in forested areas. The higher CO2 concen-
tration in the atmosphere drives enhanced vegetation photo-
synthesis (GPP; Fig. 8), which increases more than any loss
from accelerated decomposition. This outweighs any detri-
ment to vegetation productivity from changes in climate ex-
cept in a few small regions such as southern Brazil. There
is, though, significant spread across members with most re-
gions showing potentially positive and negative NEP changes
by 2100. This highlights the need for a probabilistic sampling
of uncertainty not possible from a limited number of carbon
cycle ESMs. We note that this configuration of JULES does
not include representation of fire, which has been shown to
improve GPP and vegetation distribution in ISIMIP2b simu-
lations (Mathison et al., 2023). In addition, this configuration
does not include permafrost carbon dynamics, which could
substantially alter this result, as thawing of frozen ground in
the high latitudes is expected to mobilise large amounts of
organic carbon (Chadburn et al., 2017; Burke et al., 2018;
Varney et al., 2023). Both fire and permafrost carbon dynam-
ics are part of planned future JULES configurations to be
implemented in UKESM and therefore will be part of future
versions of PRIME.

Accordingly, tree fraction increases in all regions (Fig. 9,
bottom row). This is robust for India, Siberia and United
States with a relatively small spread compared to the mean
signal of increased tree cover. In the Amazon region some
ensemble members see a stabilisation and even beginning of
loss of tree cover by 2100 as the effects of severe climate
change counter the benefits due to elevated CO2.

Jones et al. (2023) assessed CMIP6 carbon cycle projec-
tions against present-day observations and also saw increases
in biomass and total terrestrial carbon storage in all regions
throughout the 21st century for SSP3–7.0. That study could
not assess changes in vegetation cover as so few CMIP6
models represent dynamic vegetation. PRIME allows us to
go beyond CMIP6 results to analyse impacts on vegetation
dynamics and ecosystem composition as well as carbon bal-
ance.

5 Discussion, limitations and conclusions

In this study, we document and evaluate the PRIME frame-
work for the first time, thereby providing a capability
for rapid probabilistic regional impact assessments for any
global emissions scenario to be produced in a fraction of the
time it takes to run an ESM, being able to run hundreds of
simulations in just a few days. We have shown that PRIME
reproduces CMIP6 results for a range of SSP scenarios that
have been simulated by full-complexity ESMs and in doing
so demonstrated that the PRIME framework is fit for pur-
pose.

The PRIME framework allows different sources of uncer-
tainty to be quantified. FaIR provides a constrained prob-
abilistic ensemble capturing the uncertainty in climate re-
sponse. This is informed by the best-available science from
the IPCC and can be easily refined or varied to sample any
given range of global sensitivity. The advantages of an emu-
lator like FaIR are its efficient run time and ability to provide
projections for any emissions scenario outside of those run
by ESMs. FaIR is very flexible and can be readily configured
to run multiple scenarios, to use multiple parameter sets or to
simulate idealised profiles as well as realistic scenarios and
pathways.

The uncertainty from the full CMIP6 range of simulated
patterns is provided through the construction of spatial pat-
terns of change. It is widely accepted that the spatial patterns
of change of many climate variables approximately scale
with global temperature and are less dependent on a particu-
lar scenario or pathway (Mitchell, 2003; James et al., 2017;
Tebaldi and Knutti, 2018; Arnell et al., 2019). As such, it is
therefore possible to construct future projections of the spa-
tial pattern of climate change given a pathway of global tem-
perature change. This technique of “pattern scaling”, when
calibrated against a wide range of climate models, enables
a rapid assessment of the range of climates for a given tra-
jectory of global temperature. The limitations of the pattern-
scaling method and the potential for developing it are dis-
cussed in Sect. 5.1.

In this study we select our ensemble members mainly
based on global temperature. However, it is known that rising
CO2 concentration also has a direct effect on tropical circu-
lation and precipitation patterns (Bony et al., 2013; Mitchell
et al., 2016), which could affect the results shown here. In
particular, Mitchell et al. (2016) demonstrate that even if the
global temperature stabilises, there is a continuing impact
on the precipitation distribution. The joint distributions of
the FaIR temperature and CO2 concentrations being used in
PRIME are shown in Sect. 3. This illustrates that although we
capture the full temperature range through our selection of
ensemble members based on global temperature, the higher
CO2 concentrations are not as well sampled. This is a limi-
tation of the method we have chosen to select the ensemble
members rather than a limitation of the PRIME framework,
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Figure 9. Maps of net ecosystem production (top panels) and tree fraction (bottom panels) with time series showing PRIME output for each
ensemble member for each study region: Amazon, Siberia, India and the USA (labelled) for SSP1–2.6 between 1850–2100.

and this will be explored in future iterations of the frame-
work.

One of the main advantages of the PRIME framework is
its flexibility, with the simple coupling between components
lending itself to future couplings using other downstream
models. For example, adding other models such as one for
sea level rise or air quality to this framework would expand
the scenario and climate output to get a rapid response of a
broader range of impacts beyond land. However, this sim-
ple one-way coupling between components, while a benefit
in terms of flexibility, could also be deemed a limitation be-
cause changes in emissions from the land are not allowed
to feed back on the scenario. This is a desirable capability
that we plan to build into PRIME, but in its current form,
the structure of the framework does not allow this to oper-
ate. The comparison with CMIP6 outputs shown here draws
on simulations which are “concentration-driven”. Therefore,
this feedback onto atmospheric CO2 is not included even for
carbon cycle ESMs, which makes the analysis shown here,
comparing CMIP6 simulations and PRIME, a clean compari-
son. Currently, we include just one land model, but other land
models could be included in addition to JULES to capture
the structural uncertainty in land models as well. It is also
worth noting that the methods for downscaling to subdaily
timescales in the form of the weather generator in JULES
could benefit from more modern approaches which have not
yet been investigated herein.

5.1 Pattern-scaling limitations and opportunity for
development

Pattern scaling is a powerful methodology which has grown
from its original intended purpose of providing a technique
to allow extension of the relatively few computationally in-
tensive simulations by ESMs to a broader remit. However,

there are two main limitations of this methodology. First,
by definition, pattern scaling assumes the local and monthly
changes in climate to be linear in global warming. Yet many
studies show non-linearities in the climate response (King,
2019; Osborn et al., 2018; Chadwick and Good, 2013) and
that the climate system may contain “tipping points” where
strong non-linearity implies there may be future times when
there are strong responses of Earth system components to rel-
atively small additional increases in greenhouse gases (e.g.
McKay et al., 2022). Linear scaling will not capture such
rapid changes if they impact near-surface meteorology, al-
though investigation of ESMs reveals relatively few instances
of rapid change (Drijfhout et al., 2015). Although the use of
pattern scaling can currently only offer a linear interpretation
of local and seasonal near-surface meteorological response
to increasing greenhouse gases, the inclusion in PRIME of
the full JULES land surface model does offer the opportu-
nity to investigate in detail the risk of tipping points in land
ecosystem response because JULES includes aspects of plant
physiology and vegetation dynamics that are strongly non-
linear. A second limitation of pattern scaling is that it does
not resolve local land–atmosphere feedbacks and so will not
capture in full the effects of major alterations to the land
surface on near-surface meteorology. Such feedbacks may
occur by the addition of new processes to land simulations
that adjust substantially land–atmospheric exchanges of sen-
sible or latent heat flux. Development of techniques to in-
clude such local feedbacks will form the basis of future re-
search. Additionally, pattern scaling assumes that the pat-
terns do not change with time, and studies such as King et al.
(2020) have shown changing spatial patterns of climate on
long timescales as the system begins to equilibrate following
an initial transient period. Yet experience with the MESMER
tool has shown only marginal improvement when additional
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predictors of patterns are added to global temperature, with
the simple, conventional pattern-scaling approach showing
significant skill with errors typically much smaller than in-
termodel spread (Beusch et al., 2022).

There are alternate approaches to pattern scaling such as
the “time-shift” approach (Herger et al., 2015; Schleussner
et al., 2013; King et al., 2017), which assumes that scenar-
ios with equivalent global mean temperatures exhibit similar
regional climate changes. For example, a time period from
an early transient high-forcing simulation could be used to
represent a climate sample for a lower-forcing scenario. The
advantage time shifting offers is that it avoids the linearity
assumption and maintains physical consistency across multi-
ple variables. However, there are parts of the climate system
that are influenced by climate forcing rather than with global
mean temperature. For example, Ceppi et al. (2018) show a
poleward shift of the mid-latitude jets and Hadley cell edge
in response to changes in forcing even before half the warm-
ing response has been realised. Furthermore, the history of
the climate forcing as well as the balance of different forcing
agents (which may evolve differently across different scenar-
ios) also influences the regional climate change in scenarios
with the same global mean temperature response.

Neither the approach of traditional pattern scaling nor
“time-shifting” is without limitations, with both providing
useful capability. However, there is a need for fuller evalu-
ation of pattern-scaling approaches, including aspects such
as wind or snow cover, where shifts may not scale with
global mean temperature. An intercomparison of models like
PRIME and MESMER would be a valuable addition to the
literature. In addition, it would be useful to explore the use
of multiple predictors such as land–sea contrast for more
slowly evolving processes, along with CO2 and aerosols for
their direct effects. Ongoing research into land use and di-
rect regional biophysical effects will also be brought into
subsequent versions of PRIME. For the future, PRIME is
well positioned to exploit rapidly developing artificial intel-
ligence (AI) and machine learning (ML) methods, for ex-
ample, Mansfield et al. (2023), Kitsios et al. (2023), Wil-
son Kemsley et al. (2024) and Mansfield et al. (2020) to name
a few. These offer substantial advances in deriving down-
scaled and interpolated data, which will be an area of de-
velopment for PRIME.

5.2 Conclusions

Overall we have shown that PRIME is a flexible framework
that runs quickly and produces reliable results for known sce-
narios. PRIME reproduces the climate response to a range
of emissions scenarios (within the known limitations of the
pattern-scaling approach) spanning global temperature in
close agreement with IPCC assessments, capturing a range
of 34 state-of-the-art Earth system models, and simulating a
range of land surface outcomes and impacts. Although there
are some variables that do not pattern-scale as well as tem-

perature, the performance of the key JULES input variables
represents the range of CMIP6 models. This gives us confi-
dence that PRIME will enable rapid and probabilistic assess-
ment of novel scenarios, thereby providing useful insights
and the capability to quantify societally relevant climate im-
pacts.

Code availability. FaIR v1.6.2 is available from the Python Pack-
age Index at https://doi.org/10.5281/zenodo.1247898 TS4 (Smith
et al., 2022), on GitHub at https://github.com/OMS-NetZero/
FAIR/tree/v1.6.2 (last access: December 2024) and on Zenodo
at https://doi.org/10.5281/zenodo.4465032 Smith et al. (2021).
Climate pattern calculation code is available from ESMVal-
Tool https://doi.org/10.5281/zenodo.12654299 TS5 (Andela et al.,
20124).

© British Crown Copyright 2022, the Met Office. All rights re-
served. The software is provided by the Met Office to the topical
editor at Geoscientific Model Development under the software li-
cence for peer review (use, duplication or disclosure of this code is
subject to the restrictions as set forth in the aforementioned software
licence for peer review). The software is provided to facilitate the
peer review of this paper, “A rapid-application emissions-to-impacts
tool for scenario assessment: Probabilistic Regional Impacts from
Model patterns and Emissions (PRIME)”, and should be used and
distributed to authorised persons for this purpose only. The software
is extracted from the Unified Model (UM) and JULES trunks, with
the revisions of the MOSRS repositories corresponding to the stated
version, having passed both science and code reviews according to
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Data availability. FaIR output used in PRIME is available from
Zenodo at https://doi.org/10.5281/zenodo.10524338 TS6 (Mathison
and Smith, 2024).

The ESMValTool pattern recipe linked above au-
tomatically downloads the CMIP6 data from ESGF
https://doi.org/10.5281/zenodo.12654299 TS7 (Andela et al.,
20124) and calculates the patterns.

JULES output for the variables shown for each scenario is
available from Zenodo at https://doi.org/10.5281/zenodo.10634291
(Burke and Mathieson, 2017).

Calibration data for FaIR v1.6.2 are available from
https://doi.org/10.5281/zenodo.6601980 (Smith, 2022).
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