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Abstract 19 

HONO plays a crucial role as a precursor to OH radicals in the tropospheric atmosphere. 20 

The incongruity between HONO concentration and NOx emissions during the COVID-21 

19 pandemic remains puzzling. Here, we show evidence from field observations of ten 22 

sites in China that there was a noticeable increase in NH3 concentrations during the 23 

COVID-19 pandemic. In addition to the meteorological conditions, the significant 24 

decrease in sulfate and nitrate concentrations enhanced the portioning of NH
+ 

4  to NH3. 25 

Sensitivity analysis indicated that the decrease in anion concentrations (especially 26 

sulfate and nitrate) and the increase in cation concentrations during the COVID-19 27 

pandemic led to an increase in particle pH. In other words, the excess ammonia 28 

determined the promoting pH. The calculation of reaction rates indicates that during the 29 

epidemic, the increase in pH may promote the generation of HONO by facilitating 30 

redox reactions, which highlights the importance of coordinating the control of SO2, 31 

NOx, and NH3 emissions. 32 

Keywords: Ammonia, HONO, Gas-particle portioning, Acidity, COVID-19 pandemic  33 
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1. Introduction 35 

Nitrous acid (HONO) is a critical precursor of hydroxyl radical (OH), contributing 36 

to more than 60% of OH production (Alicke, 2003;Platt et al., 1980;Kleffmann et al., 37 

2005). The OH can react with carbon monoxide, nitrogen oxides (NOx), sulfur dioxide 38 

(SO2), and volatile organic compounds to produce secondary pollutants such as ozone 39 

(O3) and PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 40 

2.5 μm), thereby affecting air quality, human health, and global climate change (Li et 41 

al., 2021a;Wang et al., 2023b;Lu et al., 2018) 42 

High concentrations of HONO are present in urban daytime atmospheres, and 43 

exploring its sources has become a hot and challenging topic in the field of atmospheric 44 

chemistry (Jiang et al., 2022;Xu et al., 2019). Various sources of atmospheric HONO 45 

have been identified, including combustion processes (e.g., vehicle emissions) (Kramer 46 

et al., 2020;Liao et al., 2021a;Li et al., 2021b), direct emissions from soil (Su and Zhang, 47 

2011;Oswald et al., 2013;Meusel et al., 2018), homogeneous reactions between NO and 48 

OH radicals (Pagsberg, 1997;Atkinson and Rossi, 2004), heterogeneous reactions of 49 

NO2 on aerosols and ground surfaces (Zhang et al., 2020a;McFall et al., 2018;Liu et al., 50 

2014;Liu et al., 2020a), and photolysis of nitrate (Spataro and Ianniello, 2014;Scharko 51 

et al., 2014;Romer et al., 2018;Ye et al., 2017;Shi et al., 2021). During the pandemic 52 

control periods, there was a substantial reduction in vehicle traffic flow and industrial 53 

emissions, leading to a decrease of more than 60% in NOx emissions in eastern China 54 

(Huang et al., 2021a). It was initially expected that the concentration of HONO would 55 

also decrease proportionally. However, Liu et al. (2020b) observed that the decrease in 56 
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HONO concentration during the pandemic period was only 31% (from 1.5 ppb to 0.9 57 

ppb), which was significantly lower than the reductions in NO (62%, from 26.3 to 4.2 58 

ppb) and NO2 (36%, from 15.5 to 6.2 ppb). Furthermore, the observed concentrations 59 

of HONO during the COVID-19 pandemic in 2020 were higher than those during the 60 

corresponding period in 2021 in Beijing (Luo et al., 2023). These findings suggest the 61 

existence of a considerable unknown source of HONO during the COVID-19 pandemic 62 

period. 63 

Ammonia (NH3) is a primary alkaline gas in the atmosphere, capable of influencing 64 

the pH level of particulate matter and plays a crucial role in the atmospheric nitrogen 65 

cycle (Gu et al., 2022;Xu et al., 2020;Gong et al., 2011). Several studies have indicated 66 

that NH3 can promote the formation of HONO by promoting the hydrolysis of NO2 (Xu 67 

et al., 2019) or the redox reaction of NO2 with SO2 (Liu et al., 2023). Moreover, 68 

previous studies have reported that NH3 concentrations in the atmosphere, particularly 69 

in rural areas, significantly increased during the pandemic (Xu et al., 2022). 70 

Consequently, the rise in NH3 may contribute to the enhanced formation of HONO 71 

(Huang et al., 2021a). Unfortunately, there is currently a lack of research on the 72 

relationship between enhanced NH3 and HONO during the COVID-19 pandemic period. 73 

To address this, online observational data on the chemical composition of PM2.5, 74 

gaseous pollutants, and meteorological conditions at ten sites in China before and 75 

during the COVID-19 pandemic period were analyzed to investigate the variation in 76 

NH3 concentrations and particle pH, and explore the promoting effect of increased pH 77 

values on HONO formation. 78 
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2. Materials and methods 79 

2.1 Observation sites 80 

Online measurements were conducted at four urban and six rural sites in Henan 81 

Province, China from January 1 to February 29, 2020, including Sanmenxia (U-SMX), 82 

Zhoukou (U-ZK), Zhumadian (U-ZMD), and Xinyang (U-XY), as well as rural 83 

locations including Anyang (R-AY), Xinxiang (R-XX), Jiaozuo (R-JZ), Shangqiu (R-84 

SQ), Nanyang (R-NY), and Puyang (R-PY). Descriptions and the spatial distribution 85 

of these ten sites can be found in Table S1 and Fig. S1.  86 

2.2 Measurements 87 

The aerosol and gas monitor (MARGA, Metrohm, Switzerland) was used to analyze 88 

the hourly water-soluble ions (Na+, NH
+ 

4 , K+, Mg2+, Ca2+, Cl−, NO
- 

3, and SO
2- 

4 ) in PM2.5, 89 

as well as gaseous species (NH3, HNO3, HCl, and HONO) at ten sampling sites. The 90 

MARGA instrument is widely used (Chen et al., 2017;Stieger et al., 2019;Twigg et al., 91 

2022). A detailed description of the instrument and QA/QC can be found in Text S1. In 92 

brief, the atmospheric sample passes through a PM2.5 cut-off head, and both particles 93 

and gases enter a wet rotating dissolution device for diffusion. Subsequently, the 94 

particles in the sample undergo hygroscopic growth and condensation in an aerosol 95 

supersaturated vapor generator, followed by collection and ion chromatographic 96 

analysis. The gases in the sample are oxidized by H2O2 in the dissolution device, 97 

absorbed into a liquid solvent, and then entered the gas sample collection chamber for 98 
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ion chromatographic quantification. The range of minimum detection limits for water-99 

soluble ions was between 0.002 μg/m3 (Cl–) to 0.081 μg/m3 (NH
+ 

4 ). Uncertainties of 20% 100 

are assumed for the detection of NH3 and NH
+ 

4 , while uncertainties of 10% are assumed 101 

for other components (Wang et al., 2020;Wang et al., 2022). In addition, a detailed 102 

description of HONO measurement using this system can be found in Text S2. Overall, 103 

the limit of detection for HONO was 4 pptv and the uncertainty was estimated to be ± 104 

20%.  105 

The data for NO2 and SO2 were obtained from a series of instruments provided by 106 

Thermo Fisher Scientific (USA). The hourly concentrations of organic carbon (OC) in 107 

PM2.5 were analyzed using a carbon analyzer (Model 4, Sunset Laboratory., USA). 108 

Detailed descriptions of the NO2, SO2, and carbon analyzers can be found in Text S3. 109 

The smart weather stations (LUFFTWS500, Sutron, Germany) were utilized for 110 

synchronized observation of meteorological parameters including pressure, 111 

temperature (T), and relative humidity (RH). 112 

2.3 Data analysis. 113 

2.3.1 pH prediction. 114 

The thermodynamic model ISORROPIA-II was used to estimate the pH value of the 115 

particles (Fountoukis, 2007) by inputting RH, T, K+, Ca2+, Mg2+, total ammonia 116 

( 34
x

[NH ][NH ]
TNH  = 17  (   )

18 17

+

 + ), total sulfuric acid (TH2SO4, SO
2- 

4
 ), total sodium 117 

(TNa, Na+), total chlorine (TCl, Cl−), and total nitrate (TNO3 = NO
- 

3  + HNO3). The 118 
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model has two calculation modes: the forward mode and reverse mode, and the aerosol 119 

dissolution systems can be set to simulate a metastable state (aqueous phase) or stable 120 

state (aqueous and solid phase). Studies have shown that the forward mode is less 121 

affected by instrument measurement errors than the reverse mode (Ding et al., 122 

2019;Song et al., 2018). Additionally, the minimum average RH of about 55% was 123 

recorded during the sampling period at the ten sites. Thus, ISORROPIA-II was run in 124 

the forward model for the aerosol system in the metastable condition and only used data 125 

with RH ≥ 30% for simulation accuracy (Ding et al., 2019;Song et al., 2018). The 126 

ISORROPIA model calculated the particle hydrate ion concentration per volume of air 127 

(Hair
+) and aerosol water associated with inorganic matter (AWCinorg). The pH value 128 

was calculated using the following equation (Bougiatioti et al., 2016): 129 

 
+

+ air
10 aq 10

inorg org

1000H
pH = -log H = -log

AWC  + AWC
                  (2.1) 130 

where the modeled concentrations for AWCinorg and Hair
+ are µg/m3, and AWCorg is the 131 

particle water associated with the organic matters predicted using the following method: 132 

s
org

s

km
AWC  = 

1ρ
 - 1

RH

 
 
 

org                          (2.2) 133 

where ms is the mass concentration of organic matter (OM = OC  f). The f is the 134 

conversion factor of OC, which is dependent on the extent of OM oxidation and 135 

secondary organic aerosol formation (Chow et al., 2015). Studies on the ratio of 136 

OM/OC in fourteen cities in China suggested that the mean value of f was 1.59 ± 0.18 137 

during the winter season in Northern China (Xing et al., 2013), and thus we adopted 1.6 138 

as the f in this study. korg is the organic hygroscopicity parameter and depends on organic 139 
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functionality, water solubility, molecular weight, and oxidation level. Han et al. (2022) 140 

have reported that the korg generally increased with O: C ratios, with a range of 0–0.3 141 

for 23 organics, including carboxylic acids, amino acids, sugars, and alcohols. Gunthe 142 

et al. (2011) estimated a korg = 0.06 ± 0.01 for the effective average hygroscopicity of 143 

the non-refractory organic particulate matter in the aerosols in Beijing. Our previous 144 

study has estimated that the uncertainties of korg value (0.06) for pH in the range of 0–145 

0.3 only lead to –1–3% errors, which can be neglected (Wang et al., 2023a). Therefore, 146 

the value of 0.06 was selected in this paper. ρs is the organic density, which was chosen 147 

to be 1.35 g/cm3 following previous studies (Table S2). 148 

2.3.2 The sources of HONO 149 

The sources of HONO include direct emission (Pemi), the homogeneous reaction of 150 

NO and •OH (POH+NO), the heterogeneous reaction of NO2 on the ground (Pground) and 151 

aerosol (Paerosol), the photo-enhanced heterogeneous reaction of NO2 on the ground 152 

(Pground+hv) and aerosol (Paerosol+hv), and nitrate photolysis (Pnitrate). The detailed 153 

calculation method is described in the Supplementary Material (Text S4, Table S3, Figs. 154 

S2 and S3). 155 

Soil emission has been demonstrated to be a major source of HONO, which is affected 156 

by temperature to some extent (Liu et al., 2020c;Liu et al., 2020b). However, during the 157 

sampling periods, there was no significant positive correlation between HONO 158 

concentration and temperature (Fig. S4). In addition, temperatures did not exceed 10°C, 159 

under which the soil HONO emission rate is generally considered to be zero (Zhang et 160 
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al., 2023). Furthermore, the equilibrium gas-phase concentration over an aqueous 161 

solution of nitrous acid, [HONO]*, a key parameter controlling the exchange of HONO 162 

between the gas and aqueous phase in soil, is calculated according to Su et al.(2011). 163 

The results indicate that the temperature difference between PC and DC periods only 164 

led to approximately a 0.01% concentration change. On the other hand, studies on the 165 

sources of HONO in the North China Plain of China during winter consistently showed 166 

that soil HONO emissions contribute around 1% (Liu et al., 2020c;Liu et al., 167 

2020b;Zhang et al., 2023). Therefore, this study does not consider soil HONO 168 

emissions. 169 

2.3.3 Redox reaction of NO2 with SO2. 170 

The redox reaction of NO2 with SO2 (R1) is considered a crucial potential source of 171 

high concentrations of HONO in Northern China (Cheng et al., 2019;Wang et al., 2016): 172 

2 2 2S(IV) 2NO H O S(VI) 2H 2NO+ −+ + → + +                         (R1) 173 

the rate expression for reaction (R1) was estimated to: 174 

 1 2d[S(VI)] / dt = k [NO ][S(VI)],                                    (2.3) 175 

the rate constant k1 value is pH dependent, e.g., for pH, 5, k1 = (1.4×105+1.24×107)/2 176 

M-1 s-1. For k1 values under other pH conditions and other related information, please 177 

refer to Text S5, Table S4, and Table S5.  178 
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3. Results and discussion 179 

3.1 Variations of NH3, NH
+ 

4  and TNHx. 180 

The temporal variations of NH3, NH
+ 

4 , and TNHx at 10 sampling sites in the pre-181 

COVID-19 pandemic period (PC, January 1 to 23, 2020) and during the COVID-19 182 

pandemic period (DC, January 24 to February 29, 2020) are presented in Fig. 1, with 183 

their average concentration listed in Table 1. In general, rural sites exhibited higher 184 

concentrations of NH3, NH
+ 

4 , and TNHx compared to urban sites, except for the R-NY 185 

site. This finding is consistent with previous studies conducted in Zhengzhou (Wang et 186 

al., 2020), Shanghai (Chang et al., 2019), and Quzhou (Feng et al., 2022), owing to the 187 

intense agricultural ammonia emissions. The highest concentrations of NH3 and TNHx 188 

were recorded at site R-JZ, with average values of 25.3 ± 11.5 and 40.8 ± 20.1 μg/m3, 189 

respectively. Site R-AY had the highest NH
+ 

4  concentration, measuring 19.3 ± 12.9 190 

μg/m3. Note that the current study area exhibited higher NH3 levels compared to other 191 

regions (Table S6), which probably was attributed to the highest NH3 emissions of 192 

Henan Province in China, primarily from nitrogen fertilizer application and livestock 193 

farming (Wang et al., 2018;Ma, 2020). 194 

Compared to the PC, NH3 concentrations increased in the DC at all sites. Notably, 195 

rural sites experienced more significant increases in NH3 concentrations than urban 196 

sites, which was similar to the trend in Shanghai (Xu et al., 2022). The largest increases 197 

in NH3 concentrations were observed at R-SQ (71%, 7.3 μg/m3) and U-ZK (37%, 4.8 198 

μg/m3) for rural and urban sites, respectively. In contrast, the concentrations of NH
+ 

4  199 
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and TNHx decreased in the DC with the largest reduction at rural site R-PY (51%, 12.9 200 

μg/m3) and urban site U-ZMD (48%, 9.3 μg/m3). Regarding TNHx, rural sites exhibited 201 

larger reductions, with site R-SQ experiencing the largest decrease of 37% (4.7 μg/m3). 202 

Figure 2 illustrates the spatial distribution and the diurnal variation of NH3 203 

concentrations at the ten sites before and during the pandemic. NH3 concentrations in 204 

most sites exhibited an unimodal trend in PC that NH3 concentrations gradually 205 

increased after sunrise, reaching a peak around noon (11:00–12:00), and then decreased 206 

to a valley around 16:00–17:00. This diurnal pattern is similar to NH3 variations 207 

observed in urban areas of Houston, USA, as a result of the natural emissions from 208 

vegetation and soil during photosynthesis (Gong et al., 2011). However, other studies 209 

have recorded a significant NH3 peak during the early morning of 8:00–10:00 (Ellis et 210 

al., 2011;Meng et al., 2018;Gu et al., 2022), suggesting the influence of vehicle 211 

emissions (Gong et al., 2011;Gu et al., 2022), residual NH3 mixing, soil or plant 212 

emissions (Ellis et al., 2011), and dew volatilization (Wentworth et al., 2016;Huang et 213 

al., 2021b). Therefore, the NH3 in urban and rural areas of this study was probably less 214 

affected by NH3 emissions from vehicles, different from the recent studies in megacities 215 

of China (e.g., Beijing and Shanghai) (Gu et al., 2022;Wu et al., 2023;Zhang et al., 216 

2020b). In addition to the transport from agricultural emissions, urban NH3 in this 217 

region might also originate from other non-agricultural sources, such as wastewater 218 

treatment, coal combustion, household waste, urban green spaces, and human 219 

excrement (Chang et al., 2019). 220 

During the COVID-19 pandemic, the diurnal variation of NH3 in both urban and rural 221 



12 

 

sites still maintained an unimodal distribution. The peak values in urban sites remained 222 

consistent with PC levels, further demonstrating that the influence of vehicles on NH3 223 

in urban areas was limited. Notably, the peak time of NH3 in rural sites shifted 1–2 hours 224 

earlier compared to the trend in PC. Ammonia in rural areas primarily originates from 225 

nitrogen fertilizer application, livestock, and poultry breeding (Feng et al., 2022;Meng 226 

et al., 2018), which are significantly influenced by T and RH (Liu et al., 2023). Table 227 

S7 and Fig. S5 reveal that there was an increased T and a decreased RH at rural sites in 228 

the DC than the PC, which could accelerate the evaporation of NH3 and thus potentially 229 

lead to earlier peak NH3 concentrations. 230 

3.2 Gas-to-particle conversion of NH3 231 

The increased NH3 accompanying decreased NH
+ 

4  in the DC suggests that the gas-232 

particle partition of NH3/ NH
+ 

4  may determine the elevated NH3 concentrations. 233 

Meteorological parameters, including RH and T, play a crucial role in the gas-particle 234 

partitioning of NH3 (Liu et al., 2023;Xu et al., 2020). Therefore, the higher T and lower 235 

RH in the DC (Table S7 and Fig. S5) favored the conversion of NH
+ 

4  to NH3, resulting 236 

in a decrease in ε(NH
+ 

4 ) ([NH
+ 

4 ]/([NH3] + [NH
+ 

4 ]) compared to those in the PC (Table 237 

S7).  238 

NH3 primarily enters particles to neutralize acidic ions (Wang et al., 2020;Xu et al., 239 

2020;Liu et al., 2017;Ye et al., 2011;Wells, 1998). Accordingly, the concentrations of 240 

required ammonia (Required-NHx) and excess ammonia (Excess-NHx) were calculated 241 

based on the acidic substances as follows (Wang et al., 2020):  242 
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2

3 34
x

2 2

[NO ] [HNO ][SO ] [Cl ] [HCl]
Required-NH  = 17  (         )

48 63 35.5 64 36.5

[Na ] [K ] [Ca ] [Mg ]
 17  (       )

23 39 20 12

−− −

+ + + +

 + + + +

−  + + +

 (3.1) 243 

x x xExcess-NH  = TNH   Required-NH−                    (3.2) 244 

where [W] represents the concentration of the substance (μg/m3). The significant linear 245 

fitting (R2 is greater than 0.96, and the slope is close to 1) in Fig. S6 demonstrates that 246 

the anions and cations at each site were close to the equilibrium state. Therefore, the 247 

organic acids in PM2.5 may have less effect on NH3 and NH
+ 

4  and were not considered 248 

in Formula 3.1. 249 

As shown in Fig. 3 and Table S8, compared to those in the PC, the concentration of 250 

Required-NHx in the DC significantly decreased (ranging from 37% at site R-JZ to 58% 251 

at site R-PY), while the concentration of Excess-NHx increased (ranging from 9% at 252 

site R-AY to 78% at site R-SQ). The reduction in the concentrations of sulfate and 253 

nitrate (Fig. S7) was responsible for the decrease in the concentration of Required-NHx. 254 

To sum up, in addition to meteorological conditions, the substantial reduction in 255 

anthropogenic emissions of SO2, NOx, and other pollutants in the DC had led to a 256 

decrease in acidic substances (e.g., sulfate and nitrate) in particles, in turn, resulting in 257 

more gas-phase NH3 concentration remaining in the atmosphere.  258 

3.3 Particle pH before and during COVID-19  259 

Diurnal patterns of particle pH in PC and DC at ten sites are summarized in Fig. 4 260 

with their average values listed in Table S9. PM2.5 shows consistent moderate acidity, 261 

with mean values in the range of 4.2–5.1, which were close to the values in previous 262 
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studies (Table S9). Compared to the PC, the particle pH at ten sites increased obviously 263 

in the DC, with the highest increase of 0.5 (U-ZK) and 0.3 (R-PY) at urban and rural 264 

sites, respectively, which were the subject of an in-depth discussion in the following 265 

text. 266 

To explore the dominant factors that determine the local particle pH level and result 267 

in the high pH during the DC, sensitivity tests of pH to chemical species (i.e., TNHx, 268 

TH2SO4, TNO3, TCl, TNa, K+, Ca2+, and Mg2+) and meteorological parameters (i.e., T 269 

and RH) were performed. A given range for a variable (i.e., TNHx) with corresponding 270 

average values of other parameters (i.e., TH2SO4, TNO3, TCl, TNa, K+, Ca2+, Mg2+, T, 271 

and RH) was input into the model and simulated to compare its effects on pH. As shown 272 

in Fig. S8, pH increases with the cation concentrations (i.e., TNHx, Na+, K+, Ca2+, and 273 

Mg2+) increasing as well as the anion concentrations (i.e., TH2SO4, TNO3, and Cl–), T 274 

and RH decreasing. According to the average values of input data during PC (Blue line 275 

in Fig. S8) and DC (Red line in Fig. S8) at U-ZK and R-PY sites respectively, the 276 

changes in pH (∆pH in Fig. 5) indicate that the decrease in TNHx concentration and the 277 

increase in T in DC led to a decrease in pH values (∆pH: 0.09 at U-ZK and 0.08 at R-278 

PY sites) compared to PC. However, this effect was outweighed by the decrease in 279 

TH2SO4 (∆pH: 0.07 and 0.8 at U-ZK and R-PY sites, respectively) and TNO3 (∆pH: 280 

0.05 and 0.4 at U-ZK and R-PY sites, respectively) concentrations as well as the 281 

increase in K+ (∆pH: 0.03 at U-ZK and 0.2 at R-PY site) and Mg2+ (∆pH: 0.01 at U-ZK 282 

and 0.04 at R-PY site) concentrations in the DC, and resulting in an overall increase in 283 

pH values in the DC. Furthermore, the relationship between particle pH with the 284 
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concentrations of Required-NHx, and Excess-NHx, which considers all chemical 285 

components, is investigated to examine the dominant factor on the increasing pH in DC. 286 

As shown in Fig. 6, the higher Excess-NHx concentrations in the DC led to higher 287 

increases in pH values (∆pH: 1 at U-ZK and 0.5 at R-PY site) than those in PC (∆pH: 288 

0.3 at U-ZK and 0.2 at R-PY site), thus Excess-NHx concentrations may be the key 289 

factor in promoting the pH values. 290 

3.4 The influence of pH on HONO. 291 

The observed HONO concentrations decreased by 18% and 54% at U-ZK (0.8 ppb) 292 

and R-PY (0.9 ppb) sites in the DC, respectively, compared to those (1.0 and 2.2 ppb) 293 

in the PC. Moreover, all the known HONO production sources rates including Pemi, POH 294 

+ NO, Pground, Pground+hv, Paerosol, Paerosol+hv, and Pnitrate (Fig. 7, Fig S9 and S10) show a 295 

decreasing trend from PC to DC, with the total reductions of 38% (from 30% to 45% 296 

in the scenario with the minimum and maximum uncertainty, respectively) and 79% 297 

(from 77% to 82% in the scenario with the minimum and maximum uncertainty, 298 

respectively) for U-ZK and R-PY, respectively. At the U-ZK, Pground+hv decreased the 299 

most (84%), while at the R-PY, Pnitrate had the largest decrease about 85%, which was 300 

speculated to be related to the decrease of NOx and NO3
- concentration in DC. Note that 301 

the reduction rates in the overall known source and almost individual sources were 302 

greater than the reduction rates in HONO concentrations (Figs. 7 and 8), thus we 303 

hypothesized that there should be other sources capable of promoting HONO 304 

production.  305 

There were positive correlations between HONO with SO2, Excess-NHx, SO
2- 

4 , and 306 

pH (Fig. S12) indicating that the R1 reaction might form an amount of HONO and 307 

contribute to less reduction in the observed HONO concentrations. Considering that R1 308 

mainly reacts in the liquid phase, the calculated reaction rates of R1 under the conditions 309 
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of RH > 60% in the PC and DC periods are illustrated in Figs. 8 and S12. Despite the 310 

decrease in NO2 and SO2 concentrations in the DC, the increase in particle pH, 311 

increasing HSO
- 

3 concentration in the aqueous phase, promoted the R1 reaction rates by 312 

58% and 59% at U-ZK and R-PY (Figure 8), respectively. Consequently, the enhanced 313 

R1 reaction might prevent a large decrease in HONO (18% at U-ZK and 53% at R-PY) 314 

under the conditions of a significant reduction in vehicle emissions and a decline of 66% 315 

and 69% in NO2 concentrations at U-ZK and R-PY, respectively. 316 

3.5 Uncertainty 317 

According to sensitivity tests of pH (Fig. S8) and R1 (Fig. S12), pH increases with 318 

the concentrations of cations (TNHx, TNa, K+, Ca2+, and Mg2+) and OC increasing as 319 

well as anions (TH2SO4, TNO3, and Cl-) concentrations, T, and RH decreasing. R1 320 

reaction rate increases with the concentrations of AWC, NO2, SO2, pH, and pressure, 321 

while increasing as well as T decreasing. Therefore, two extreme scenarios (i.e., the 322 

maximum and minimum rate scenarios) were evaluated to estimate the uncertainty of 323 

pH, and R1 based on the measurement uncertainties at the U-ZK and R-PY sites. Figure 324 

S13 suggests that the two extreme scenarios can lead to –10–7% and –71–125% 325 

uncertainties at the U-ZK site and –10–7% and –78–123% uncertainties at the R-PY 326 

site for pH and R1, respectively. Even considering the above uncertainty in Fig. 8, it can 327 

still be observed that during the DC period, the decrease in HONO was less than that 328 

of NO2, and the rate of the R1 reaction increased. 329 

Considering the conclusions of this study are based solely on observational data, 330 



17 

 

there are certain limitations. For example, only the changes in the R1 reaction of PM2.5 331 

were calculated, without considering variations in components, pH values, and R1 332 

reaction rates of coarse particles. Additionally, although this study selected scenarios 333 

with RH > 60% to calculate the R1 reaction to ensure the presence of a liquid phase, it 334 

is evident that this approach overlooks some R1 reactions. Furthermore, due to 335 

thermodynamic model calculations of pH values, changes in the mixed state of particle 336 

components, and the omission of organic acids, alongside the absence of gaseous HNO3 337 

and HCl in this study, these factors may lead to inaccuracies in pH value simulations 338 

and uncertainty in R1 calculations(Pye et al., 2020;Haskins et al., 2018;Nah et al., 2018). 339 

Therefore, there is a certain degree of uncertainty in the conclusions regarding the 340 

growth of R1 reactions in this paper. Nevertheless, by calculating the changes in R1 341 

reactions, this study provides a possible explanation for the relatively small decrease in 342 

HONO during the epidemic period. 343 

4. Conclusions  344 

Elevated NH3 concentration was observed during the COVID-19 pandemic at both 345 

urban and rural sites in China. In addition to the rise in T and decrease in RH during the 346 

COVID-19 pandemic, which favored the conversion of NH
+ 

4  to NH3, the significant 347 

decrease in sulfate and nitrate concentrations led to the decline in Required-NHx and 348 

was beneficial to the particle-phase NH
+ 

4  portioning to gas-phase NH3. Furthermore, 349 

under the environmental conditions of increased anion concentrations (especially 350 

sulfate and nitrate) and increased cation concentrations, the pH values increased by 0.5 351 
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and 0.3 at U-ZK and R-PY sites increased during the pandemic, respectively. 352 

Consequently, the high pH values accelerated the formation rate of HONO through the 353 

oxidation-reduction reaction of NO2 with SO2 (an increase of 58% at U-ZK and 59% at 354 

R-PY, respectively), partially compensating for the decrease in HONO concentration 355 

caused by the decline in vehicle emissions, NO2 and NO
- 

3  concentrations during the 356 

COVID-19 pandemic.  357 

5. Implications  358 

HONO plays a crucial role as a precursor to OH radicals in the tropospheric 359 

atmosphere (Xue, 2022). There have been significant observations of high HONO 360 

concentrations in urban areas during the daytime, leading to a growing interest in 361 

understanding its sources in atmospheric chemistry (Jiang et al., 2022;Xu et al., 2019). 362 

The heterogeneous reaction mechanism of NO2 on aerosol surfaces is currently the 363 

focus of research on HONO sources, particularly in regions with elevated levels of 364 

atmospheric particulate matter, where it could potentially become a major contributor 365 

to HONO production (Zhang et al., 2022;Liao et al., 2021b). One of the pathways for 366 

heterogeneous reactions on aerosol surfaces is the redox reaction of NO2 with SO2. 367 

However, the significance of this reaction in HONO production in the real atmosphere 368 

is often overlooked, as it relies on the high pH of aerosols (Ge et al., 2019). In recent 369 

years, there has been increasing attention on the enhancing effect of NH3 on the redox 370 

reaction, with laboratory experiments demonstrating its ability to generate substantial 371 

amounts of HONO (Ge et al., 2019). This study highlights the importance of this 372 



19 

 

reaction based on actual atmospheric observations. Furthermore, numerous studies 373 

have indicated that if control over NH3 emissions continues to relax while SO2 and NO2 374 

emissions decrease, the particle pH in future China is expected to rise steadily (Xie et 375 

al., 2020;Song et al., 2019;Wang et al., 2020). Consequently, the redox reaction of NO2 376 

with SO2 could become a significant source of HONO in China. Therefore, it is crucial 377 

to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in 378 

the particle pH.  379 
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Figures: 705 

 706 

Figure 1.  Temporal variations of a. NH3, b. NH
+ 

4 , and c. TNHx at the urban and rural 707 

sites before (PC) and during (DC) the COVID-19 outbreak, respectively. The shaded 708 

areas of the curve represent the maximum and minimum values.709 
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 710 

Figure 2.  Daily variation of NH3 concentrations at ten sites before (PC) and during (DC) the COVID-19 outbreak. The green dots represent the 711 

location of ten sites and their size represents the concentration of NH3; In each box, the top, middle, and bottom lines represent the 75, 50, and 25 712 

percentiles of statistical data, respectively; the upper and lower whiskers represent the 90 and 10 percentiles of statistical data, respectively.  713 



 

37 

 

 714 

Figure 3.  Box diagram of changes in Required-NHx at ten sites before (PC) and during 715 

(DC) the COVID-19 outbreak. In each box, the top, middle, and bottom lines represent 716 

the 75, 50, and 25 percentiles of statistical data, respectively; the upper and lower 717 

whiskers represent the 90 and 10 percentiles of statistical data, respectively.718 
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 719 

Figure 4.  Diurnal patterns of pH at ten sites before (PC) and during (DC) the COVID-19 outbreak. In each box, the top, middle, and bottom 720 

lines represent the 75, 50, and 25 percentiles of statistical data, respectively; the upper and lower whiskers represent the 90 and 10 percentiles of 721 

statistical data, respectively.722 
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  723 

Figure 5. Changes of pH (∆pH) through the sensitivity tests (Figure S5 and S6) by 724 

changing parameters between PC and DC at the a. U-ZK and b. R-PY sites. 725 

 726 

Figure 6. Particle pH corresponds to increasing TNHx at U-ZK and R-PY sites to 727 

examine the effects of major indicators of NH3 (i.e., TNHx, Required-NHx, and Excess-728 

NHx) on aerosol acidity. Particle pH was calculated by using a wide range of TNHx 729 

(25–130 μg/m3) and average values of other parameters in PC and DC of U-ZK and R-730 

PY sites. The concentrations of TNHx, Required-NHx, and Excess-NHx with 731 

corresponding pH values are marked by a hollow box, hollow circle, and arrow 732 

respectively. The yellow and blue background colors correspond to the NHx-poor and 733 

NHx-rich, respectively. 734 
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 735 

Figure 7. Comparison of HONO sources at a. U-ZK and b. R-PY sites before (PC) and 736 

during (DC) the COVID-19 outbreak. The calculation method can be found in Text S4. 737 

 738 

 739 

Figure 8. Decline ratios of a. NO2, b. HONO concentration, and c. HONO production 740 

rate at U-ZK and R-PY sites before (PC) and during (DC) the COVID-19 outbreak. The 741 

center point represents the mean value, and the upper and lower whiskers represent the 742 

95% confidence interval of the mean. The shadows in the figure represent the 743 

uncertainties of NO2 measurement (±10%), HONO measurement (±20%), and the 744 
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HONO formation rate of R1 reaction (–78–123%), respectively. 745 

 746 

Table: 747 

Table 1. Changes in concentrations (mean ± standard deviation) of NH3, NH
+ 

4 , and 748 

TNHx at ten sites during entire periods (Average), before (PC), and during (DC) the 749 

COVID-19 outbreak.  750 

Sites Substances Average (μg/m³) PC (μg/m³) DC (μg/m³) 

U-SMX NH3 13.8 ± 10.8 12.6 ± 10.1 14.5 ± 11.1 

NH
+ 

4  10.9 ± 7.2 14.2 ± 7.2 8.8 ± 6.5 

TNHx 22.9 ± 14.1 24.9 ± 14.5 21.7 ± 13.8 

U-ZK NH3 15.6 ± 8.3 12.7 ± 6.5 17.4 ± 8.8 

NH
+ 

4  13.6 ± 9.3 19.1 ± 8.4 10.3 ± 8.1 

TNHx 28.6 ± 13.7 30.9 ± 12.8 27.1 ± 14.0 

U-ZMD NH3 13.1 ± 8.4 11.6 ± 8.2 14.0 ± 8.4 

NH
+ 

4  13.9 ± 9.8 19.6 ± 10.3 10.3 ± 7.5 

TNHx 25.7 ± 14.6 30.3 ± 15.1 22.8 ± 13.5 

U-XY NH3 7.0 ± 4.3 5.7 ± 4.0 7.9 ± 4.3 

NH
+ 

4  11.0 ± 7.7 15.4 ± 7.6 8.3 ± 6.5 

TNHx 17.6 ± 9.8 20.6 ± 10.1 15.7 ± 9.2 

R-AY NH3 19.0 ± 8.4 17.9 ± 8.3 19.7 ± 8.4 

NH
+ 

4  19.3 ± 12.9 26.4 ± 13.7 15.0 ± 10.3 

TNHx 36.6 ± 18.2 41.7 ± 20.4 33.4 ± 16.0 

R-XX NH3 21.7 ± 10.2 18.1 ± 9.3 23.8 ± 10.1 

NH
+ 

4  15.9 ± 10.4 20.6 ± 11.0 13.0 ± 8.8 

TNHx 34.9 ± 17.0 35.1 ± 18.8 34.8 ± 15.8 

R-PY NH3 19.8 ± 9.4 16.8 ± 8.1 21.7 ± 9.6 

NH
+ 

4  17.4 ± 11.8 25.3 ± 12.6 12.4 ± 8.0 

TNHx 35.2 ± 17.8 39.4 ± 19.8 32.6 ± 15.7 

R-JZ NH3 25.3 ± 11.5 24.1 ± 11.5 25.9 ± 11.4 

NH
+ 

4  17.3 ± 11.3 22.7 ± 11.6 14.2 ± 9.9 

TNHx 40.8 ± 20.1 42.9 ± 22.8 33.5 ± 18.2 

R-SQ NH3 15.0 ± 7.9 10.3 ± 5.2 17.7 ± 7.9 

NH
+ 

4  13.4 ± 8.5 18.9 ± 8.6 10.3 ± 6.7 

TNHx 26.3 ± 13.2 25.5 ± 14.0 26.8 ± 12.7 

R-NY NH3 5.5 ± 3.1 4.3 ± 2.7 6.2 ± 3.2 

NH
+ 

4  10.2 ± 6.9 13.3 ± 7.2 8.4 ± 6.1 

TNHx 14.8 ± 8.5 16.0 ± 9.5 14.1 ± 7.8 
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