Supplement: The effect of different Climate and Air Quality policies in China on in situ Ozone production in Beijing

Beth S. Nelson¹, Zhenze Liu^{2a}, Freya A. Squires^{1b}, Marvin Shaw^{1,3}, James R. Hopkins^{1,3}, Jacqueline F. Hamilton^{1,3}, Andrew R. Rickard^{1,3}, Alastair C. Lewis^{1,3}, Zongbo Shi⁴, James D. Lee^{1,3}

⁵ ¹Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.

²School of Geosciences, The University of Edinburgh, Edinburgh, UK.
³National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK.
⁴School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B152TT, UK.

10

^anow at: School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

^bnow at: British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK

Correspondence to: Beth S. Nelson (beth.nelson@york.ac.uk)

15

Figure S1: Diel mean campaign mixing ratios of glyoxal (purple) and modelled mixing ratios of glyoxal (brown).