
1 
 

Employing Automated Electrical Resistivity Tomography for 

detecting short- and long-term changes in permafrost and active 

layer dynamics in the Maritime Antarctic 

Mohammad Farzamian1,2*, Teddi Herring3, Gonçalo Vieira2, Miguel Angel de Pablo4, Borhan 

Yaghoobi Tabar5, and Christian Hauck6  5 

 
1Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal 

2Centre for Geographical Studies, Associate Laboratory TERRA, IGOT, Universidade de Lisboa, Lisbon, Portugal 

3Department of Civil Engineering, University of Calgary, Canada 

4Unidad de Geología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain,  10 

5School of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran 

6Department of Geosciences, University of Fribourg, Fribourg, Switzerland 

 
*Correspondence to: Mohammad Farzamian (mohammad.farzamian@iniav.pt)  

 15 

 

 

 

 

 20 
 

 

 

 

 25 

 

 

 

 

 30 

 

 

mailto:mohammad.farzamian@iniav.pt


2 
 

Abstract 

Repeated electrical resistivity tomography (ERT) surveys can substantially advance the understanding of spatial and 

temporal freeze-thaw dynamics in remote regions, such as Antarctica, where the evolution of permafrost has been 35 

poorly investigated. To enable time-lapse ERT surveys in Antarctica, an automated ERT (A-ERT) system is required, 

as regular site visits are not feasible. In this context, we developed a robust A-ERT prototype and installed it in the 

Crater Lake CALM-S site at Deception Island, Antarctica to collect quasi-continuous ERT measurements. We 

developed an automated data processing workflow to efficiently filter and invert the A-ERT datasets and extract the 

key information required for a detailed investigation of permafrost and active layer dynamics.  40 

In this paper, we report on the results of two complete year-round A-ERT datasets collected in 2010 and 2019 at Crater 

Lake CALM-S site and compare them with available climate and borehole data. The A-ERT profile has a length of 

9.5 m with an electrode spacing of 0.5 m, enabling a maximum investigation depth of approximately 2 m. Our detailed 

investigation of the A-ERT data and inverted results shows that the A-ERT system can detect the active layer freezing 

and thawing events with high temporal resolution. The resistivity of the permafrost zone in 2019 is very similar to the 45 

values found in 2010, suggesting the stability of the permafrost over almost one decade at this site. The evolution of 

thaw depth exhibits a similar pattern in both years, with the active layer thickness fluctuating between 0.20-0.35 m. 

However, a slight thinning of the active layer is evident in early 2019, compared to the equivalent period in 2010.  

These findings show that A-ERT datasets, combined with the new processing workflow that we developed, are an 

effective tool for studying permafrost and active layer dynamics with very high resolution and minimal environmental 50 

disturbance. The ability of the A-ERT setup to monitor the spatiotemporal progression of thaw depth in two 

dimensions, and potentially in three dimensions, and to detect brief surficial refreezing and thawing of the active layer 

reveals the significance of the automatic ERT monitoring system to record continuous resistivity changes. An A-ERT 

monitoring setup with a longer profile length can investigate greater depths, offering effective monitoring at sites 

where boreholes are costly and invasive techniques are unsuitable. This shows that the A-ERT setup described in this 55 

paper can be a significant addition to the Global Terrestrial Network for Permafrost (GTN-P) and the Circumpolar 

Active Layer Monitoring (CALM) networks to further investigate the impact of fast-changing climate and extreme 

meteorological events on the upper soil horizons and work towards establishing an early warning system for the 

consequences of climate change.  
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1 Introduction 65 

Antarctica is home to 90% of the world's ice, making it a crucial influencer of the Southern Hemisphere and global 

atmospheric and cryospheric systems (Bockheim, 2004). An understanding of the distribution and properties of 

Antarctic permafrost is essential for the cryospheric sciences, but also for ecology and biological sciences, since it is 

a major control on ecosystem modification following climate-induced changes (Vieira et al., 2010). Despite its 

significance and compared with other components of the cryosphere, our understanding of Antarctic permafrost and 70 

its response to global change remains limited (Biskaborn et al. 2019, Hrbacek et al., 2023). This gap in permafrost 

knowledge holds true for much of Antarctica, excluding, perhaps, the McMurdo Dry Valleys (MDV), which have 

been the focus of substantial research efforts for several decades (Vieira et al., 2010). Systematic investigations on 

permafrost are less common in other Antarctic regions, and the majority of studies have been conducted in the vicinity 

of research stations. The harsh climate, environmental conditions, remoteness, and logistical difficulties and expenses 75 

impose limitations on permafrost research in Antarctica (Hrbacek et al., 2023). 

In the framework of the Global Terrestrial Network for Permafrost (GTN-P), three critical permafrost parameters have 

been designated as Essential Climate Variables (ECVs) by the Global Climate Observing System (GCOS) of the 

WMO: i. the Active Layer Thickness (ALT), representing the annual thaw depth above permafrost, with a primary 

focus on data gathered from the Circumpolar Active Layer Monitoring (CALM) network (Brown et al., 2000); ii. the 80 

Thermal State of Permafrost (TSP), encompassing permafrost temperature, systematically observed through an 

extensive network of boreholes over the long term (Biskaborn et al., 2019); and iii. The recently approved Rock 

Glacier Velocity, focuses on the movement of these prominent geomorphological features, especially in mountain 

permafrost environments (RGIK, 2023).  

Information on the spatial variability of the ALT in Antarctica primarily stems from monitoring sites under the CALM-85 

South (CALM-S) program. However, beyond the logistical difficulties and as well discussed by Hrbacek et al. (2023), 

the establishment of a CALM-S site in Antarctica faces additional challenges arising from the adverse ground surface 

conditions such as extensive bedrock outcrops and block fields, as well as mountainous terrains. These conditions 

hinder mechanical probing and accurate spatial measurements of ALT. Moreover, mechanical probing lacks the 

capability for real-time monitoring of thaw depth, as it is typically performed only once a year, frequently missing the 90 

date of maximum thaw depth. Monitoring of the TSP is also limited in Antarctica, especially concerning depths below 

the zero annual temperature amplitude, mainly due to logistical and technical constraints (Biskaborn et al., 2019). 

Furthermore, boreholes record data about discrete ground properties only in one dimension, rendering them 

impractical for comprehensive coverage. In the context of Antarctic research, logistical and technical constraints and 

ecologically sensitive ecosystems further discourage the use of invasive methodologies like boreholes (Farzamian et 95 

al., 2020). 

In light of these challenges, non-invasive geophysical techniques like Electrical Resistivity Tomography (ERT) 

emerge as a promising avenue to tackle some of these issues. ERT has become a standard tool in permafrost research 
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due to its capability to detect and monitor permafrost and active layer dynamics in two or three dimensions, leveraging 

the distinct contrast in electrical resistivity between frozen (more resistive) and unfrozen (more conductive) materials 100 

(Herring et al., 2023). Variations in resistivity between repeated ERT surveys are widely used to monitor the dynamics 

of the active layer, permafrost temperature, and unfrozen water content (Krautblatter et al., 2010; Oldenborger and 

LeBlanc, 2018). In this context, time-lapse ERT is an increasingly used tool for exploring permafrost-climate 

interactions and providing insights into how evolving climatic conditions influence permafrost over varying time 

scales, spanning decades in some cases (Mollaret et al., 2019; Buckel et al., 2022; Etzelmüller et al., 2020; Scandroglio 105 

et al., 2021). However, in the vast majority of cases, the ERT surveys are operated manually, necessitating frequent 

on-site visits which can be logistically complex and expensive. 

Recent advances in instrumentation have enabled automated ERT (A-ERT) data collection in permafrost 

environments, eliminating the need for repeated site visits. A-ERT equipment has been installed at several sites in the 

European Alps (e.g., Hilbich et al., 2011; Keuschnig et al., 2017) and more recently in the Arctic (e.g., Uhlemann et 110 

al., 2021; Tomaškovičová and Ingeman-Nielsen, 2023; Farzamian et al., 2024a) to monitor changing permafrost 

conditions. Farzamian et al. (2020) introduced a simple and robust A-ERT prototype for continuous permafrost 

monitoring in Antarctica. More recently, Farzamian et al. (2024b) reported the hardware details of this prototype with 

new adjustments to optimize the power demand of the system for better adaptation to monitoring in remote polar areas. 

This second prototype was installed on Livingston Island, Antarctica. These prototypes are low-cost, low power, 115 

automated, and can be operated with high temporal frequency, enabling the study of the impacts of short-term 

meteorological events on permafrost terrain, such as infiltration processes in the active layer. The first prototype was 

installed at Deception Island, and tested for year-round operation in 2010 (see Farzamian et al., 2020). More recently, 

in 2019, the authors upgraded and reinstalled the A-ERT system to study the active layer and permafrost conditions 

after almost one decade and to further evaluate the potential of its application for permafrost studies in remote areas. 120 

This recent development of A-ERT prototypes presents a new challenge for efficiently processing and inverting large 

volumes of datasets while extracting essential information from the A-ERT data. In our case, with over 1400 datasets 

per year, it is not feasible to manually filter and quality control each individual dataset, necessitating the development 

of automated data filtering and inversion procedures. This need will become even more critical in future as the number 

of A-ERT systems deployed increases, as new long-term monitoring projects are planned to span decades or more. 125 

Currently, most available commercial and open-source software packages lack adequate built-in filtering tools and 

inversion protocols and/or are cumbersome to use for A-ERT data with a very large number of repetitions. Therefore, 

establishing a suitable automated data processing tool becomes increasingly important. Although an effort has been 

made to establish best practices for filtering and inverting ERT datasets collected in permafrost environments (Herring 

et al., 2023), this workflow has not yet been applied to temporally dense time-series data. As discussed by Farzamian 130 

et al. (2024b), such time-series data require more sophisticated fine-tuning of data filtering and inversion parameters 

to process large datasets rapidly and efficiently. Additionally, various built-in analysis tools are necessary for a 

detailed assessment of permafrost and active layer dynamics in permafrost regions. These tools enable calculations 

such as the resistivity at virtual analysis (e.g., Hilbich et al., 2011), the average resistivity over time in a zone of 
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interest (e.g., Etzelmüller et al., 2020), and maximum gradients to delineate the thaw layer and permafrost interface 135 

depth (e.g., Herring and Lewkowicz, 2022). 

This manuscript has, therefore, two objectives: (1) to describe a new semi-automated processing workflow and show 

how it efficiently filters and inverts a large number of  ERT datasets, extracting the key information required for 

detailed assessment of permafrost and active layer dynamics, and (2) to compare the resistivity models obtained in 

2019 with those from 2010 (the latter having been presented in Farzamian et al. (2020)), in combination with climate, 140 

borehole and soil probing data to assess the active layer and permafrost conditions after almost one decade. The A-

ERT data and plots, as well as the companion Jupyter Notebook used to process the A-ERT data, are available at 

https://github.com/teddiherring/AERT. 

2 Material and Methods 

2.1 Study area and monitoring setup at Crater Lake CALM-S   145 

Deception Island, situated approximately 100 km north of the Antarctic Peninsula in the Bransfield Strait, is part of 

the South Shetlands archipelago (Fig. 1). The island is an active stratovolcano with a horseshoe-shaped rim and a 

diameter of 15 km, with a 9 km diameter caldera open to the sea and a maximum elevation at Mount Pond (539 m) 

(Prates et al., 2023). Around 57% of Deception Island is covered by glaciers, while about 47 km2 is glacier-free 

(Smellie and López-Martínez, 2002). The climate of Deception Island is cold-oceanic, characterized by frequent 150 

summer rainfalls and a moderate annual temperature range. Mean annual air temperatures near sea level hover around 

-3 °C. The weather conditions are heavily influenced by polar frontal systems, resulting in highly variable atmospheric 

circulation, including the possibility of winter rainfall, as well as summer snowfall (Styszynska, 2004). Deception 

Island is formed by the intercalation of lava flows, pyroclastic deposits, and ash. Many of the island's present-day 

glaciers are ash-covered, resulting from eruptions in 1967, 1969, and 1970. These eruptions buried the snow mantle, 155 

with remnants of buried snow still present in some areas outside the glacier areas. The deposits on the island are highly 

porous and insulating, with a significant ice content at the permafrost table. The active layer is thin, varying from 0.25 

to 1 m depth across different soils and boreholes show the presence of warm permafrost (Bockheim et al., 2013; 

Ramos et al., 2017; de Pablo et al., 2020). 

The study site, Crater Lake CALM-S, is located on a small, relatively flat plateau-like surface covered with volcanic 160 

and pyroclastic deposits. Positioned at an altitude of 85 m above sea level, it lies north of Crater Lake (62°59′06.7″ S, 

60°40′44.8″ W). The selection of this site was based on its flat characteristics, absence of summer snow cover, 

considerable distance from known geothermal anomalies, exposure to regional climate conditions, and proximity to 

the Spanish station Gabriel de Castilla. The Crater Lake CALM-S site comprises a 100×100 m grid with 121 nodes 

for mechanical probing spaced at 10 m intervals as shown in Fig. 1. It was established in January 2006 and has 165 

undergone several upgrades since its installation. The site includes the monitoring of air temperature, active layer and 

permafrost temperatures, active layer thickness, and snow thickness.  

https://github.com/teddiherring/AERT
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Air temperature has been monitored since 2009 by using a Tinytag Plus 2 logger device by Gemini, with PT100 

external temperature probe inserted into a Solar Radiation Shield installed on a mast at 160 cm above the ground. Data 

is recorded hourly with a resolution of 0.01 ºC and an accuracy of 0.04 ºC. Ground temperatures are monitored in the 170 

shallow borehole at node 3,3 of the CALM Site (S3,3), down to 160 cm. This borehole, cased with air-filled PVC pipe, 

contains an array of DS1922L iButton miniature temperature logger by Maxim at depths of 2.5, 5, 10, 20, 40, 80, and 

160 cm to measure ground temperature with a resolution of 0.0625 ºC and an accuracy of 0.5 ºC. Snow thickness 

estimation is calculated using near-surface air temperature DS1922L iButton sensors installed on a vertical wood stake 

at heights of 2.5, 5, 10, 20, 40, 80, and 160 cm above the ground (de Pablo et al., 2016). Snow thickness is derived 175 

considering the changes in the thermal behavior of consecutive temperature devices along the mast when snow 

covers/uncovers one sensor, following the classical method (Lewkowicz, 2008). Manual measurements of thaw depth 

are conducted annually in the summer, covering 121 nodes spaced at 10 m intervals (Ramos et al., 2017). 

The ground surface at the Crater Lake CALM-S site is devoid of vegetation, and the mean annual air temperature 

(MAAT) recorded between January 28, 2009, and January 22, 2014, was -3.0 °C. Permafrost shows a thickness of 180 

about 4.5 m as recorded at the S1 borehole (De Pablo et al., 2016), with temperatures from -0.3 °C to -0.9 °C. The 

active layer thickness varies from 25 to 40 cm (Ramos et al., 2017), and is controlled by differences in surface deposits 

and snow cover duration, mainly associated with wind exposure.  

 

 185 
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Figure 1: Location of the A-ERT setup at Crater Lake CALM-S site in Deception Island. The A-ERT box casing the 

4POINTLIGHT_10W resistivity meter instrument, solar-panel-driven battery, and multi-electrode connectors [A], 

electrodes were buried in the ground and were connected to the cables [B]; solar panels [C]; Complementary environmental 

parameters are monitored close to the A-ERT profile at node (3,3) of the CALM's grid including borehole ground 190 

temperatures [D]; snow thickness [E]; and air temperature [F]. 
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2.2 A-ERT monitoring setup  

The A-ERT system, using a 4POINTLIGHT_10W (Lippmann) resistivity meter, originally deployed in 2010 (see 

Farzamian et al., 2020), was upgraded and reinstalled in February 2019 for long-term quasi-continuous monitoring 

along the same transect in the vicinity of the ground temperature borehole S3,3. The upgrades compared to 2010 include 195 

the measurement of battery voltage and the temperature of the resistivity meter at the time of each ERT survey. These 

upgrades allow us to monitor the power demand of the system and the temperature fluctuations to which the resistivity 

meter is exposed. The hardware details of this A-ERT setup are very similar to those described in detail in Farzamian 

et al. (2024b) although our setup at Deception Island does not have the timer solution to switch off the system after 

each survey. The same survey parameters were used to collect A-ERT data in 2010 and 2019, enabling comparison of 200 

the two datasets. A-ERT surveys were performed using the Wenner electrode configuration for optimized energy 

consumption and higher vertical resolution to best differentiate the active layer-permafrost boundary (Loke, 2002). 20 

electrodes with a spacing of 0.5 m were installed at the site, yielding 56 individual data points for each monitoring 

data set at six data levels. The measurements started in February 2019 and were repeated every 6 hours. The 

measurements were stored in the internal memory of 4POINTLIGHT_10W device. This study focuses on A-ERT data 205 

collected from February 2019 to February 2020, offering a year-round dataset showcasing the A-ERT data variability 

and allowing for a comparison with the original A-ERT dataset from 2010. Mechanical probing before the A-ERT 

installation in 2019 and after data download in 2020 allows also for a comparison with ALT data derived from 

mechanical probing. 

2.3 A-ERT data processing 210 

ERT data can be susceptible to various sources of noise, such as poor galvanic contact, random errors, and polarization 

effects. In our setup, poor galvanic contact and the measurement of high resistivities at very low currents are 

considered to be the dominant sources of error. To improve the quality of the data and identify poor quality 

measurements, we applied a minimum of 5 and a maximum of 9 stacks per quadrupole, with a target standard deviation 

of 2%. While stacking variance can be useful for identifying bad measurements, we observed that it is possible for 215 

outlier measurements to have low stacking errors. This suggests that relying solely on stacking error is ineffective for 

data processing, as has been discussed by other authors (e.g., Tso et al., 2017). Therefore, additional filtering is 

necessary to automatically identify and remove poor-quality data. Automated data filtering workflows are particularly 

valuable in our setup, where the large number of datasets per year makes manual data checking and filtering 

impractical. 220 

Following the automated data filtering routine outlined by Herring et al. (2023), we implemented a series of filtering 

steps. Each filtering step required quantitative thresholds of data quality, which were determined empirically by 

iteratively testing the filtering algorithm on random subsets of the data and selecting thresholds that worked well for 

all datasets. In the first filtering step, we removed data points where the apparent resistivity was less than or equal to 

0, data points with a stacking error greater than 2%, and measurements with anomalously high apparent resistivity, 225 

defined as values greater than 9 times the standard deviation of the entire technically filtered dataset to account for 



9 
 

different types of measurement error. This removal of physically unrealistic values is a reasonable data filtering step 

for any site. Next, in Step 2, the moving median filter calculated a moving median of logarithmic apparent resistivities 

along each depth level in the pseudosection, using a window of 5 data points (except at the edges of the pseudosection, 

where a smaller window was necessary). Data points that deviated from the moving median by more than 7% were 230 

removed. We also introduced a filtering step (Step 3) that identified "bad" electrodes by evaluating how many data 

points associated with a particular electrode were removed in the previous steps. If more than 25% of the data points 

measured by an electrode were removed, all the remaining data points from that electrode were discarded. Finally, in 

Step 4, any datasets where more than 30% of the data had been filtered in the previous steps were considered of poor 

quality and were not inverted, as the results would be too unreliable in a time-lapse modeling context. 235 

2.4 ERT data inversion and analysis  

Following the data filtering, all data were inverted using pyGIMLi, an open-source software package for geophysical 

modeling and inversion (Rücker et al., 2017). An L1 or “blocky” model norm was used due to its ability to better 

resolve sharp boundaries and large resistivity contrasts (Loke et al., 2003), like those expected between the thawed 

surface layer and the frozen ground beneath. Since the choice of regularization parameter controls the relative 240 

weighting of model and data misfit terms in the inversion, it is important to choose this parameter judiciously to avoid 

an overly smooth or noisy model. Here, the regularization parameter was optimized by L-curve using a built-in 

pyGIMLi function, a process which tests several regularization values and determines the optimal value (Günther et 

al., 2006). A simple linear noise model is typically used to estimate data error (Tso et al., 2017). Here, a noise model 

was created with 4% relative noise and a small noise floor, taken to be 0.001. The starting model was set to a 245 

homogenous model of the average apparent resistivity for the first dataset in each monitoring period, while subsequent 

inversions used the previous inverted model (i.e., a “cascaded” inversion approach). The inversion proceeded until 2 

was equal to 1 (i.e., the data were fit to within the assumed noise levels), a maximum number of iterations was reached 

(here set to 20 iterations), or the inversion converged (here taken to be when the objective function changed by less 

than 1% between iterations). 250 

After inversion, several analyses were conducted in order to extract the key information required for a detailed 

investigation of permafrost and active layer dynamics. Similar to Farzamian et al. (2020), inverted resistivities were 

plotted for a virtual borehole in the center of the profile, close to the existing borehole S3,3, enabling easy visualization 

of temporal patterns and comparison of inverted resistivities of A-ERT data from 2019 to 2010. This virtual borehole 

analysis is also used to compare the A-ERT results to the corresponding temporal borehole thermal variations obtained 255 

from S3,3.  In addition, the model coverage, which is calculated with a built-in pyGIMLi function by summing the 

entries of the Jacobian and normalizing by cell volume, was incorporated as an opacity filter in order to assess the 

reliability of the models. 

To delineate the active layer and permafrost and to map the progression of thaw depth, we used the vertical resistivity 

gradients method. This method is a reliable way to identify structurally simple unfrozen/frozen interfaces (Herring 260 

and Lewkowicz, 2022) based on their large resistivity contrast. At Crater Lake, the presence of an ice-rich top of 
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permafrost layer improves this approach, since it results in a very high resistivity contrast. Thaw depths were only 

interpreted when the near-surface resistivity was low (i.e. unfrozen). The results were then compared to the manual 

probing data and borehole temperatures. Furthermore, to facilitate assessment of temporal resistivity changes in the 

permafrost zone, a zone of interest was delineated at the center of the resistivity model from 2-7.5 m along the survey 265 

and 0.5-1.5 m depth. This zone of interest represents a well-resolved zone of the permafrost (i.e., beneath the 

permafrost table and in a region of higher sensitivity away from the edges of the model). Similar methodologies to 

examine resistivity in a zone of interest have been applied in previous studies (e.g., Etzelmüller et al., 2020; Kneisel 

et al., 2014; Mollaret et al., 2019). 

3 Results  270 

3.1 Analysis of observational data 

Figure 2 shows mean monthly air temperatures and snow thickness at Crater Lake from 2010 to 2019, observed close 

to the middle of the A-ERT transect (see Fig.1 for the locations of sensors and A-ERT profile), to present the general 

trends in temperatures and snow thickness in this period. Mean monthly air temperatures at Crater Lake from 2010 to 

2019 showed a slight cooling until 2015 followed by a slight warming, with mean annual air temperatures ranging 275 

from -3.2 ºC in 2015 to -0.8 ºC in 2018. Mean monthly snow thickness followed a general trend similar to the air 

temperature, with years such as 2011 and 2019 showing shallow snow pack (<10 cm), while 2014, 2015 and 2016 

showed longer and thicker snow cover (> 20 cm). Overall, the data shows that interanual conditions are variable both 

in snow cover and temperature, and that 2010 and 2019 have comparable temperatures, but different snow regimes. 

 280 

Figure 2: Mean monthly air temperatures and snow thickness at Crater Lake from 2010 to 2019, observed close to the 

middle of the A-ERT transect. 

Figure 3 shows detailed variations in snow cover thickness, air, and borehole temperature during the A-ERT 

monitoring periods in 2010 and 2019. Snow cover during winter was generally thin, with only 5 to 30 cm thickness 

and frequent snow-free periods (Fig. 3a). The number of days with snow cover was lower in 2019 (85 days) compared 285 
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to 2010 (118 days).  In addition, the snow thickness was also thinner in general in 2019 and the difference became 

more evident during October, which showed either snow-free or very thin (i.e. less than 5 cm) snow cover in 2019. 

The air temperature fluctuation (Fig. 3b) is very similar in 2010 and 2019, ranging from -13.8 to 2.8 °C in 2010 and 

from -13.9 to 2.8 °C in 2019. The mean annual air average temperature is slightly lower in 2019 (-2.9 °C vs -2.3 °C 

in 2010) and the standard deviation was also slightly higher in 2019 (3.4 °C vs 3.2 °C in 2010), suggesting 2019 was 290 

a slightly colder year with slightly larger temperature fluctuations at this site. Air and shallow ground temperature are 

generally well-coupled when there is no snow cover and with a slight phase lag when snow is present. 

The ground temperature at three depths (5, 20, and 80 cm) is shown in Fig. 3c-e for the node at S3,3. Temperature 

fluctuates significantly at shallower depths (i.e., within the active layer) during the year, with temperatures at 5 cm 

depth ranging from -7.5 to 2.1 °C and -8.6 to 3.1 °C in 2010 and 2019 respectively and from -6 to 0.5 °C and -7.1 to 295 

1 °C at 20 cm depth in 2010 and 2019, respectively, reflecting the snow cover variability and air temperature 

fluctuations. The average ground temperature at these depths was slightly colder (i.e., 0.1°C) in 2019 compared to 

2010. Active layer freezing started in mid-April in 2010 and in mid-May in 2019, showing a delay of about one month 

between 2010 and 2019. Due to the thin snow cover during freezing, and its late onset, as well as the lack of significant 

soil moisture, no zero-curtain is evident in either year. In contrast, there is a zero-curtain phase of almost one month 300 

during the thawing season starting from mid-October in both years. During both years and apart from seasonal freezing 

and thawing, brief and superficial changes of the ground temperature around 0 ºC are very frequent. A more detailed 

discussion of these short-lived meteorological events is presented by Farzamian et al. (2020). Similar surficial 

refreezing events can be also identified in 2019 in April and May.  

Temperature fluctuations at the deeper layers (i.e. 80 cm), just below the permafrost table show smaller amplitudes 305 

ranging from -3.9 to close to 0 °C in both years (Fig. 3e). While the temperature range of the permafrost is similar 

between the two years, permafrost is slightly warmer during the first nine months of the year in 2019 and then slightly 

colder during the last three months. These small differences can be attributed to air temperature and snow cover 

differences, such as the cold event in early October 2019 that penetrated deeper in the absence of snow cover, leading 

to slightly lower temperatures in the last three months of 2019.  310 
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Figure 3: Comparative plots of 2010 and 2019: daily snow cover depth (a); air temperature (160 cm above the surface) (b); 

and ground temperatures at 5 cm (ground surface) (c); 20 cm (active layer) (d); and 80 cm (permafrost) depths (e).  
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3.2 Analysis of apparent resistivity data 315 

Figure 4 shows an example of the application of a multi-step data processing workflow. Although the majority of 

datasets collected in 2010 and 2019 exhibit excellent quality, the presented example serves for illustrative purposes to 

demonstrate the functionality of the filtering scheme. Fig. 4a represents the original data, while Figs. 4b-d display the 

filtered data after each step of the process. Through this multi-step data processing workflow, poor quality 

measurements and anomalous data points were effectively eliminated, showcasing the effectiveness of the filtering 320 

procedure. This workflow was automated and applied to all datasets, enabling rapid and efficient identification and 

elimination of problematic data based on the same qualitative criteria. For other sites and applications, each step should 

be tested and threshold values adjusted as needed, as optimal values (specifically for steps 2-4) depend on the site 

conditions and data quality. 

 325 

Figure 4: Multi-step data filtering to remove noisy data points: (a) field measurements; (b) data after application of filtering 

step 1 (removal of measurements that were <= 0, had poor repeatability, or were outliers relative to the rest of the dataset); 

(c) data after application of filtering step 1 and step 2 (moving median filter); and (d) data after the application of filtering 

step 1, step 2, and step 3 (bad electrode filter). 

Overall, the A-ERT data in both years exhibited high quality, with less than 1% of data points being removed by 330 

filtering and less than 0.5% of A-ERT datasets being discarded due to poor quality (Fig. 5). Almost all of the discarded 

datasets were from the winter when the active layer is frozen and contact resistances at the electrodes are high (>100 
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kOhm). After processing and filtering the measurements, the mean daily apparent resistivity (ρa) values for each data 

level between 2010 and 2019 were plotted (Fig. 6).  

 335 

Figure 5: Data points removed using the automated data filtering routine for 2010 (top) and 2019 (bottom). Overall, less 

than 1% of the data were removed. 

In general, there is good agreement between the apparent resistivity data from 2010 (ρa2010) and 2019 (ρa2019), both 

during winter and summer. The shallow data, corresponding to electrode spacings of 0.5 m and 1 m and investigation 

depths of ~0.25 and 0.5 m, exhibit the highest temporal variability in both years, as these measurements are more 340 

influenced by significant resistivity changes during phase change processes (i.e., freeze and thaw events within the 

active layer) which are more frequent close to the ground surface. In mid-April, the ρa2010 data for 0.5 m and 1 m 

electrode spacing experience a sharp rise in apparent resistivity within a two-week period, starting from values below 

20 kΩm and exceeding 500 kΩm by early May, indicating the onset of the seasonal freezing. ρa2019 data show a similar 

sharp rise in apparent resistivity in mid-May from values below 30 kΩm to larger than 500 kΩm in mid-May, but 345 

within a shorter time interval (one week). This suggests a one-month delay in the seasonal freezing between 2010 and 

2019 and agrees well with borehole information presented in Fig. 3c-e. The sharp increase in apparent resistivity in 

both years is attributed to the abrupt phase change upon freezing in the absence of a significant snow cover during 
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April and May. Deeper levels, corresponding to electrode spacing of 1.5 m, 2 m, 2.5 m, and 3 m and investigation 

depths of ~ 0.75-1.5 m, exhibit a delayed response, indicating the advancement of the freezing front, which aligns 350 

with the gradual decrease in the permafrost temperature with depth (see Fig. 3e). 

Conversely, the beginning of the seasonal thawing phase in both years is characterized by a steady decrease in apparent 

resistivity, starting on October 4th and extending until the end of October in 2010, and starting on October 15th and 

continuing until mid-November in 2019. The gradual decrease in apparent resistivity during the thawing season, as 

opposed to the abrupt phase change in autumn, can be attributed to the presence of snow cover (Farzamian et al., 355 

2020). The snow cover acts as an insulating layer, preventing the subsurface from being directly affected by warm air 

signals in spring, thereby dampening the thawing process. Furthermore, the melting snow provides infiltrating water 

into the active layer at close to 0ºC, which refreezes in contact with the colder ground (Scherler et al., 2010). During 

thawing, latent heat is absorbed and the temperature remains at 0 ºC (zero-curtain effect). Similar to the temperature 

evolution, the deeper layers experience a delay in the resistivity decrease compared to shallower layers. Notably, this 360 

decrease in apparent resistivity was more gradual in 2010 compared to 2019, particularly at the beginning of the 

thawing season, where the resistivity decrease is sharper during October 15-20 compared to 2019. This is in good 

agreement with the temperature and snow cover data (Fig. 3).  

Aside from the seasonal resistivity changes, the daily apparent resistivity fluctuations during 2010 and 2019 are 

generally small. However, there are notable fluctuations observed in both years, which are associated with brief 365 

surficial refreezing of near-surface layers during summer or short thawing periods in winter, as reported previously 

by Farzamian et al. (2020), resulting from short-lived meteorological extreme events with rapid and superficial 

changes in ground temperature around 0 ºC.  

 

 370 
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Figure 6: Apparent resistivity data of the A-ERT profile averaged for each electrode spacing for 2010 (top) and 2019 

(bottom). 375 

3.3 Analysis of inverted resistivity models 

3.3.1 2D models 

Figure 7 shows monthly modeled resistivity results for the years 2010 and 2019. The model coverage was plotted as 

an opacity filter to show where the model was more sensitive to the data (higher opacity) and less sensitive to the data 

(lower opacity). The data utilized in this analysis are from the 15th day of each month at 12:00 for both years, 380 

showcased side by side for comparison. The RMS errors indicate that the inverted models are able to reproduce field 

data reasonably well. RMS errors for ERT data collected in permafrost environments usually range between 2-10%, 

with higher values typically recorded in winter (Herring et al., 2023), which is in good agreement with the results from 

the Crater Lake A-ERT dataset. 

The resistivity pattern observed along the A-ERT monitoring transect at the CALM-S site exhibits two distinct 385 

resistivity zones, and this distinction is evident in both years. The first zone, extending to a maximum depth of 

approximately 0.4 m during the summer months in both years, corresponds to the active layer, characterized by 
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substantial resistivity changes during freezing and thawing events. The deeper zone captures the permafrost down to 

a depth of 2 m. The resistivity of both the active layer and permafrost zones show minimal lateral variation along this 

small transect, suggesting spatially homogeneous ground conditions in the study area. This observation aligns well 390 

with thaw depth measurements obtained using a mechanical probe, which also indicated limited spatial variability at 

this CALM site, particularly around the location of the A-ERT setup. 

The top 40 cm, representing the active layer, undergoes the largest resistivity changes primarily during seasonal 

freezing and thawing events. In 2010, the most substantial resistivity changes commenced in May when the active 

layer froze. However, in 2019, the substantial resistivity changes associated with seasonal freezing are observed a 395 

month later in June, as already detected by borehole data (see Fig. 3c-e). Once the active layer freezes, heat is lost 

from deeper layers (i.e., permafrost zone), reducing unfrozen water content and consequently increasing resistivity in 

the winter months, as observed in both 2010 and 2019. While resistivity models in 2010 are generally similar to those 

in 2019 during winter, variations in resistivity values are also evident. For instance, modeling results in September 

and October show an overall more resistive subsurface in 2019 compared to the equivalent period in 2010, which can 400 

be attributed to cooler ground temperatures on September 15 and October 15, 2019, as seen in Fig. 3c-e. 

The initiation of seasonal thawing is marked by a resistivity drop in November for both years. As the active layer 

thaws and heat flows into the permafrost zone, unfrozen water content increases and subsequently resistivity decreases 

are observed in December and January. An interesting episode that shows the relevance of A-ERT data for monitoring 

is the resistivity increase in the active layer in December 2010 following seasonal thawing. This indicates a brief 405 

surficial refreezing of the near-surface layer during this period, as also evident in the apparent resistivity data (Fig. 6). 

Shallow ground temperature data at 5 cm (see Fig. 3c) similarly recorded this brief freezing episode, occurring after 

subzero air temperatures during this period. 

 

 410 
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Figure 7. 2D inverted resistivity models showing mid-month resistivity profiles for 2010 (left) and 2019 (right). The 

vertical black line denotes the position of the virtual borehole, and the red box denotes the zone of interest. 
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3.3.2 Virtual borehole  415 

To better interpret temporal patterns in resistivity over time, resistivity values were extracted at a virtual borehole at 

the midpoint of the survey section. Figure 8 shows the evolution of inverted resistivity over time in the virtual borehole 

at the S3,3 location during 2010 and 2019 (see Fig. 7 for the position of the virtual borehole). As in Fig. 7, the model 

coverage was plotted as an opacity filter to show where the model was more sensitive to the data (higher opacity) and 

less sensitive to the data (lower opacity). The resistivity values and model sensitivities varied depending on the season. 420 

In the summer, lower sensitivity at depth is due to preferential electrical current flow through the thawed active layer 

(cf. Herring and Lewkowicz, 2022). Resistivity values in areas of the model with lower sensitivity should therefore 

be interpreted with caution.  

There is a good agreement between modeled results from 2010 and 2019 in terms of temporal and vertical resistivity 

values and their variability both during winter and summer. In both years, the highest resistivity values were observed 425 

in winter and near the permafrost table at depths around 0.40 m. This can be attributed to the cyclic process of water 

infiltration from snow or rain accumulating on top of the permafrost table, which undergoes repeated thawing and 

refreezing, forming an ice-rich layer (see for example Shur et al., 2005). The most drastic resistivity changes in the 

active layer occurred during the freezing phases in April 2010 and May 2019, with a one-month lag between the two 

years. The active layer remained frozen until October in both years, except for a brief surficial thawing event between 430 

May 7th and 14th in 2010. Similarly, resistivity changes near the surface during winter coincided with consecutive 

cooling and warming of the active layer in both years (see Fig. 3). 

Overall, the subsurface down to approximately 0.70 m exhibited lower resistivity values in 2010. This is likely due to 

slightly higher ground temperatures at shallower layers, as discussed in section 3.1. The difference becomes more 

pronounced in May and June, with frequent warming events in 2010 that were absent in 2019. Increasing temperatures 435 

led to higher unfrozen water content and increased ion mobility, resulting in decreased resistivity. Interestingly, the 

slightly lower subsurface temperatures at greater depths (beyond 0.70 m) during October and November 2019 were 

reflected in the resistivity models, resulting in higher resistivity compared to the equivalent period in 2010. 

The estimated active layer depth using the maximum gradient method is shown as a red line in Fig. 8. The good 

agreement between the estimated depths and frost probe measurements (black dots) shows that maximum gradients 440 

are a reliable way to determine thaw layer depth and that A-ERT data can be used to infer real-time progression of 

thaw depth throughout the year. Based on these results, it can be concluded that the active layer at this site remains 

comparatively stable during the summer months in both years, with minor fluctuations ranging between ~0.20 and 

0.35 m.  

The small temporal variability in thaw depth can be attributed to the presence of an ice-rich transient layer and 445 

permafrost table at this site, and to the cool summers that characterize the Maritime Antarctic, which do not heat 

significantly the soil. In January 2010, the average thaw depth was approximately 0.3 m, exhibiting a slight increase 

from late January until mid-March. These fluctuations correspond to higher air temperatures and subsequent active 
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layer warming, as evidenced by the shallow ground temperature measurements. The deepening of the active layer is 

followed by a rapid and brief freezing phase in mid-March, induced by subzero air temperatures. As the active layer 450 

cools and the infiltrating water above the permafrost table potentially refreezes, the active layer thins in late March 

and April, preceding the seasonal freezing. The thawing of the active layer initiates again at the beginning of 

November, with a relatively thinner thaw depth (around 0.2 m) at the start of the thawing season. However, the thaw 

depth gradually increases in late December as the active layer warming extends to greater depths, influenced by 

warmer air signals during this period. The abrupt rise in resistivity observed in December coincides with the brief 455 

active layer freezing occurring in that month. In 2019, the thaw depth is slightly thinner before the seasonal freezing 

(~ 0.1 m compared to the equivalent period in 2010). In contrast to 2010, 2019 showed more frequent brief active 

layer freezing events before seasonal freezing. This could account for a slightly thinner thaw depth in 2019 compared 

to the same period in 2010, as these events may lead to the freezing of unfrozen water atop the permafrost table, 

contributing to the shallowing of the active layer. In contrast, A-ERT did not detect any brief active layer thawing 460 

event in 2019, unlike the occurrence in May 2010. 

 

 

Figure 8: Inverted resistivities at a virtual borehole in the center of the ERT survey for 2010 (top) and 2019 (bottom) and 

interpreted thaw depth. Probed thaw depths are shown. 465 

3.3.3 Average resistivity in zone of interest 

To gain deeper insight into the resistivity changes within the permafrost zone and to examine the permafrost stability 

after almost a decade, daily and monthly average resistivity within the zone of interest (2<x<7.5 m and 0.5<z<1.5 m, 

see Fig. 7) were calculated and presented in Fig. 9. Box plot analysis was conducted on monthly data to depict the 

variability of resistivity within each month. The daily changes in resistivity within the zone of interest (Fig. 9a) align 470 

well with the ground temperature at a depth of 80 cm (permafrost zone, see Fig. 3e), indicating that resistivity 
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variations follow permafrost temperature trends. Generally, there is good agreement between resistivities in 2010 and 

2019 during the summer months and before seasonal freezing in April, as well as the winter period from June to 

September. During these periods, the resistivity difference is minimal, mirroring the small difference in ground 

temperature at 80 cm depth. A significant disparity in average resistivities occurs in May due to a phase change lag 475 

between 2010 and 2019, as seasonal freezing began about one month earlier in 2010 than it did in 2019. From October 

onward, the daily average resistivity tends to be higher in 2019 and remains elevated towards the end of the year. The 

most substantial difference is observed in October, aligning well with the ground temperature at 80 cm depth, where 

the temperature difference is most pronounced during this period. In the context of monthly resistivity changes, Fig. 

9b also reveals that the monthly average resistivities in 2010 and 2019 are quite similar, except during seasonal 480 

freezing, influenced by a one-month lag, and during the thawing season, influenced by slightly colder permafrost 

temperatures in late 2019. As anticipated, the most significant resistivity changes within each month and throughout 

the year occur during seasonal freezing and thawing events, driven by substantial subsurface resistivity changes during 

phase changes. The ongoing A-ERT monitoring will allow for the calculation of average resistivities at the yearly, 

seasonal and monthly intervals, thus potentially providing new parameters that will enable the assessment of long-485 

term permafrost changes. The analysis of parameter variability, such as the box plots in Fig. 9b, will enable the 

characterization of extreme melt or cooling events and the assessment of their impacts on the ground thermal regime. 

 

Figure 9. Average resistivity within the zone of interest (2<x<7.5 m and 0.5<z<1.5 m) for (a) all datasets; (b) grouped by 

month. The zone of interest is plotted in Fig. 7.  490 
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4 Discussion  

The analysis of A-ERT data reveals predominantly good quality, with only a few problematic measurements observed 

during winter (Fig. 5) when subsurface freezing occurs and electrode contact may consequently be poor. However, 

the small number of bad measurements does not affect the real-time monitoring of subsurface resistivity and, 495 

consequently, thaw depth progression. The applied data processing technique enabled reliable spatiotemporal mapping 

of the subsurface, providing better insights on seasonal freezing and thawing as well as brief active layer freezing and 

thawing events than would be obtained by borehole temperature monitoring alone. However, it is important to note 

that due to the homogeneity of the study site and the minimal variability of thaw depth along the A-ERT setup, 

significant lateral variability has not been observed in our modeling results. Additionally, the size of our A-ERT 500 

transect is relatively small compared to other A-ERT studies, where more pronounced lateral variations along the ERT 

transects are typically observed (e.g., Hilbich et al., 2011; Supper et al., 2014; Keuschnig et al., 2017). A-ERT 

monitoring, particularly using longer profile lengths, is expected to be even more advantageous at heterogeneous sites 

where point-location monitoring cannot capture lateral variability. 

The depth of the maximum resistivity gradient correlated well with probed thaw depth, demonstrating that A-ERT can 505 

be used to accurately determine thaw depths over time. It is important to note that the resolution of thaw depth using 

this method depends on the acquisition parameters (e.g., electrode spacing and array type) that govern the resolution 

capabilities of the survey, and also how finely the model is discretized. In this case, the cell heights in the top 0.4 m 

of the model were between 5-7 cm, with smaller cell sizes near the ground surface and gradually larger cells towards 

the base of the model. 510 

The consistent patterns of resistivity changes observed during the seasonal freezing and thawing events in both years 

indicate that the sharp and rapid rise in resistivity (active layer freezing) during winter, followed by a gradual and 

smoother resistivity change over a longer period of time (active layer thawing), are likely typical for this site. These 

patterns can be attributed to the dynamics of snow cover and ground moisture, which were well-resolved by A-ERT 

in both observation periods. The A-ERT modeling results also reveal a consistently stable active layer at this site 515 

throughout the summer months in both years, with slight fluctuations within the range of approximately 0.20 to 0.35 

m. However, the active layer appears slightly thinner and more resistive in early 2019. This can be attributed to slightly 

colder air and surface temperatures in early 2019, along with the impact of frequent brief freezing of the active layer 

before seasonal freezing in 2019, as detected by A-ERT. The ability of the A-ERT system to capture these rapid 

changes in the active layer, as a result of short-lived meteorological extreme events (see Farzamian et al., 2020), 520 

reaffirms the significance of the automatic ERT monitoring system in recording continuous resistivity changes. 

The A-ERT setup provided valuable insights into the permafrost condition and evolution of ground ice at this site. 

Our detailed analysis indicates that there is no significant change in permafrost (e.g., ice degradation) after almost a 

decade. As shown, most of the differences in resistivity between 2010 and 2019 can be attributed to seasonal 

temperature variations and a phase change lag between these years. These findings align with the non-statistical 525 

insignificant warming trend in mean annual near-surface temperatures in the South Shetlands (0.028°C/year) from 
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2006 to 2020, as reported by Hrbacek et al. (2023) and also climate data obtained from this site (see Fig. 2). We 

anticipate that the site-specific conditions of our study site, characterized by an ice-rich permafrost table (confirmed 

by A-ERT data and cores), contributed to the stability of permafrost against potential degradation. In order to more 

accurately assess ice content at A-ERT monitoring sites, future work could incorporate additional complementary 530 

geophysical surveys, such as seismic surveys, which can significantly enhance our ability to quantify ice content. For 

example, seismic travel times can be used in a four-phase model (Hauck et al., 2008; 2011) to quantify water, air, and 

ice contents for a given porosity model. The joint application of ERT and seismic reflection data, combined with 

petrophysical joint inversion approaches (Wagner et al., 2019, Mollaret et al., 2020) have enabled quantitative 

estimates of water, air, ice, and rock volumes. These techniques could further improve ice content quantification and 535 

monitoring of its temporal evolution. 

Compared to current traditional approaches such as boreholes and mechanical probing, A-ERT offers several practical 

advantages. Boreholes only provide limited 1D depth profiles at specific locations, which is insufficient to capture the 

variability observed in a spatial context. In addition, and in our case, the thaw depth variability in the 0.2-0.35 m range, 

seen in the resistivity data plotted at a virtual borehole, cannot be reflected in the ground temperature borehole data 540 

due to the lack of sensors in these depths. Furthermore, borehole data cannot offer the insights into the spatial and 

temporal variability of ground ice needed to evaluate permafrost stability. On the other hand, while mechanical 

probing can be used to determine the spatial variability of thaw depth over larger areas, it becomes impractical in 

many Antarctic regions with coarse and bouldery sediments or thick active layers.  Moreover, logistical challenges 

and adverse weather conditions can impede manual probing at consistent time intervals, leading to biased information 545 

regarding thaw depth dynamics. These same logistical and weather challenges also apply to manually repeating ERT 

measurements, as reported by Etzelmüller et al. (2020), making the A-ERT method also advantageous over traditional 

manual ERT monitoring. 

The high-resolution quantitative data from electrical resistivity measurements offer objective insights into changes in 

ground conditions, influenced by both climate conditions and geothermal heat fluxes. This data reveals variations in 550 

thermal state, ice content, and moisture, with the capability for monitoring at short and long time intervals. Given that 

the Global Climate Observing System defines ECVs as those physical, chemical, or biological variables, or groups of 

linked variables, that critically contribute to the characterization of Earth's climate (Bojinski et al. 2014), we propose 

that electrical resistivity has the potential to become a new ECV. This designation would promote its broader 

application and provide valuable data for understanding permafrost dynamics. Unlike the 1D nature of borehole 555 

temperatures, electrical resistivity methods can be used to characterize 2D transects or 3D volumes, enabling the 

observation of both vertical and lateral permafrost changes, thus bridging the gap between remote sensing observations 

and point data. 

 

 560 
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5 Conclusion and outlook 

Geophysical techniques, especially ERT measurements, have become increasingly common in permafrost science to 

study active layer and permafrost dynamics. Low-cost and low-power monitoring resistivity systems, such as the A-

ERT system presented in this study, offer a unique means to investigate detailed freezing and thawing processes in 

permafrost regions in remote areas. This system can be operated with high temporal frequency, enabling the study of 565 

short-term meteorological events on permafrost and active layer dynamics, as well as consistent analysis of long-term 

changes. Our detailed investigation of the A-ERT data and inversion modeling results shows that the A-ERT system 

detected the seasonal and brief surficial active-layer freezing and thawing events, as well as the phase change lag of 

almost one month between 2010 and 2019 during seasonal freezing. Without automated ERT monitoring, an 

identification of these events and the real-time progression of the thaw depth would not be possible. With the 570 

continuation of A-ERT measurements for long-term monitoring at Crater Lake, as well as on other sites in Antarctica 

(we have recently installed A-ERT systems in Livingston, King George and James Ross islands), future calculations 

of monthly and even yearly resistivity changes within the permafrost zone can be conducted to assess permafrost 

stability. We propose that electrical resistivity could be used as a new Essential Climate Variable for evaluating long-

term permafrost changes and would be a valuable complement to other climate and borehole data. 575 

Processing large resistivity time series data in such harsh environments needs to be carefully executed before any 

interpretation. The processing tool presented in this work, supported by the companion Jupyter Notebook, forms the 

basis for a semi-autonomous high-throughput processing workflow for dense temporal datasets collected by A-ERT 

systems. The implemented filtering tool processes all A-ERT data consistently using the same criteria, identifying and 

removing bad measurements, ensuring efficient handling of a large number of A-ERT data and facilitating the prompt 580 

extraction of key information. The inversion process was then carried out using the open-source pyGIMLi library, and 

further processing was performed afterward to extract key information from a large amount of A-ERT data efficiently 

and quickly to study the active layer and permafrost dynamics. For example, inverted resistivity plots at a virtual 

borehole enabled an efficient assessment of changing site conditions over short and long time scales and allowed for 

comparison to measured temperatures and manual probing. The gradient method applied in this study was an efficient 585 

way to delineate the interface between the thawed surface layer and underlying frozen ground. Calculating resistivity 

averages over a zone of interest (i.e., permafrost zone) also enhanced the assessment of permafrost conditions after 

almost a decade. Future work could incorporate additional information, like borehole temperatures, probed thaw 

depths, or other geophysical data, to constrain the inversion and increase model reliability. Furthermore, co-located 

seismic datasets could be used to quantify subsurface ice content. 590 

Antarctic ice-free regions are facing rapid changes, forced by changes in solar radiation, temperature, snow, and 

rainfall events. Consequently, alterations of the active layer and permafrost are expected, potentially generating a 

cascade of effects mainly associated with surface and subsurface hydrology and geomorphic dynamics. These changes 

have the potential to impact terrestrial ecosystems, infrastructure, and nearshore and lacustrine environments. In this 
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context, future installations of A-ERT monitoring systems will contribute to gaining deeper insights into permafrost 595 

and active layer dynamics in Antarctica and permafrost regions globally. 
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