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Abstract. Geochemical mapping is a fundamental tool for elucidating the distribution and behaviour of economically 

significant elements, and providing valuable insights for geological processes. Nevertheless, the quantification of uncertainty 

associated with geochemical mapping has just recently become a subject of widespread concern. This study presents a 10 

procedure, primarily consisting of the determination of homogeneous clusters, the recognition of elemental associations for 

each cluster, and the identification of geochemical anomalies, with the aim to account for the uncertainty of elemental 

association in geochemical mapping. To illustrate and validate the procedure, a case study was conducted wherein stream 

sediment geochemical samples from the northwestern Sichuan Province, China were processed to map anomalies associated 

with disseminated gold mineralization. The results indicate: (1) the representativeness of elemental association for the 15 

underlying geological process is an important source of uncertainty for geochemical mapping, (2) the procedure presented 

here is effective to address the uncertainty of elemental association in geochemical mapping, and (3) the study area can be 

classified into two clusters, each characterized by unique elemental associations that align well with the distribution of 

Paleozoic and Triassic lithological units, respectively. Furthermore, the region still holds great potential for the discovery of 

gold deposits, particularly in areas proximal to known mineralization sites. 20 

1 Introduction 

Geochemical mapping plays a vital role in understanding geological processes, discerning the distribution and behaviour of 

economically significant elements, and facilitating the assessment of the environmental impact of human activities (Bölviken 

et al., 1990; Cocker, 1999; Pearce et al., 2005; De Vivo et al., 2008; Grunsky et al., 2009; Hou et al., 2015; Wang et al., 2016; 

Talebi et al., 2019a; Zuo et al., 2019; Sammon et al., 2022). For example, the mapping of Sr- and Pb-isotopic variations in 25 

ocean floor basalts, or Nd- and Hf-isotopic variations in continental felsic igneous rocks enables the identification of 

geographically distinct compositional reservoirs within the deep Earth (Hart, 1984; Mole et al., 2014; Wang et al., 2023). In 

particular, the significance of geochemical maps in mineral exploration, which involves assisting in making informed 

decisions regarding exploration priorities by identifying concentrations of valuable elements, has been widely recognized 

(e.g., Rose et al., 1979; Cheng, 2007; Reimann et al., 2007; Carranza, 2008; Xie et al., 2008; Reimann et al., 2016).  30 
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Geochemical mapping entails the systematic collection of geochemical samples and processing of geochemical data through 

multiple steps, with the purpose of mapping spatial variations of geochemical elements and identifying anomalies patterns 

that may reflect critical geological processes beneath the Earth's surface (Smith and Reimann, 2008; Zuo et al., 2016, 2021a; 

Grunsky and de Caritat, 2020). Geochemical mapping typically involves four sequential steps: (1) identifying the indicative 35 

element or elemental association that is characteristic of the targeted geological process (e.g., mineralization), (2) predicting 

or simulating the spatial distribution of the indicator being studied, (3) optionally enhancing and delineating the geochemical 

signatures of interest, and (4) evaluating the geological significance of the geochemical signatures and their potential to 

indicate noteworthy geological events (Carranza, 2008; Grunsky and de Caritat, 2020; Wang and Zuo, 2022). It is important 

to note that the distinctive geochemical signatures of geological bodies (a.k.a. geochemical anomalies), produced by specific 40 

geological processes, can be frequently obscured by subsequent geological or non-geological processes prevailing at the 

Earth surface (Carranza, 2008; Cheng, 2012; Talebi et al., 2019b; Yousefi et al., 2019). In addition, geological processes that 

occur across different spatial and temporal scales tend to interact with each other in a multiplicative way. This can result in 

nonlinearity, heterogeneity, and a mixing of patterns in the resulting geochemical signatures (Cheng, 2012). The scale-

dependent nature and the potential involvement of various heterogeneous geological processes present considerable 45 

challenges for geochemical mapping, thereby imposing limitations and uncertainties onto its effectiveness in identifying 

relevant patterns. Properly addressing the uncertainty is hence crucial to leverage geochemical mapping to understand 

geological processes and make informed decisions in mineral resource prediction (Wang and Zuo, 2018, 2024; Sadeghi, 

2021; Zuo et al., 2021a). Previous studies have explored certain aspects of uncertainty that arise from the aforementioned 

steps involved in geochemical mapping for mineral deposits discovery (Costa and Koppe, 1999; Wang and Zuo, 2018, 2022; 50 

Ersoy and Yunsel, 2019; Chen et al., 2021; Sadeghi, 2021; Liu and Carranza, 2022; Wang et al., 2022; Sadeghi and Cohen, 

2023; Fan et al., 2024). However, there has been limited research focusing on the uncertainty associated with determining 

the elemental association as a proxy for the targeted geological process.  

Elements tend to be associated due to similar relative mobility in a certain geological process that occurs in unique chemical 

and physical conditions (White, 2020). For example, copper and gold frequently occur together due to their similar 55 

geochemical behaviour and affinity for certain geological processes, such as the porphyry copper-gold mineral systems 

(Sillitoe, 2010). Other notable instances can be found in the elemental associations of copper-nickel-platinum group 

elements within magmatic sulfide mineral systems, uranium-thorium in sandstone-hosted or vein-type uranium deposits, as 

well as the gold-silver-arsenic-antimony-mercury association observed in epithermal gold mineral systems (Pirajno, 2008; 

Robb, 2020). Note that certain elements may maintain consistent associations across a broad range of geological conditions, 60 

whereas others may coexist during most processes in deep-seated environments but become separated in surficial 

environments (Rose et al., 1979). Grunsky and de Caritat (2020) emphasized that stoichiometry governs the 

interrelationships among elements in geochemical data, thereby giving rise to distinct structural patterns within the data. 

Therefore, geological processes can be recognized by a continuum of variable responses. In this context, a linear model of 
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elements is commonly accepted as a suitable approach to capture the stoichiometry of rock-forming minerals and the 65 

subsequent processes (e.g., hydrothermal fluids, weathering) that bring about modifications in mineral structures (Grunsky 

and de Caritat, 2020; Grunsky et al., 2023). Multivariate statistical methods, such as principal component analysis (PCA), 

are usually applied to multielement geochemical data to identify the dominant components that generally reflect features 

related to mineralogy and depict geological processes. For instance, Grunsky and Kjarsgaard (2016) demonstrated the 

usefulness of PCA for statistically identifying the distinct geochemical kimberlite phases, which lead to efficiencies in the 70 

economic evaluation of kimberlite for diamonds in Saskatchewan, Canada; Mueller and Grunsky (2016) utilized min/max 

autocorrelation factor analysis on till geochemical survey data collected over the Melville Peninsula, Nunavut, Canada, and 

effectively predicted the underlying bedrock lithologies and recognized the associated glacial transport processes. Given its 

remarkable capability to capture nuanced and nonlinear interrelationships among model variables, machine learning has also 

been employed to identify significant elemental associations that can serve as representations of underlying geological 75 

processes (Zuo, 2018; Grunsky et al., 2023). For example, Wang et al. (2022) utilized a machine learning technique called 

recursive feature elimination to identify the elemental association patterns that serve as indicators for distinct types of tin 

mineralization.   

However, during a geochemical survey conducted within a designated area, various geological processes often manifest in 

distinct local regions due to the difference of geological conditions, and even within the same area, multiple processes can 80 

overlap and intertwine with each other. In a magmatic-hydrothermal gold mineral system (e.g., Masara gold district, 

Mindanao, Philippines), for example, different types of gold mineralization can take place at different stages and areas, as 

magmatic fluids evolve and interact with the wall rocks and outer fluids (Robb, 2020). The early high-temperature stage is 

characterized by porphyry-style mineralization, located at the core of the system directly above the underlying magma 

chamber, which primarily yields disseminated gold-copper sulfides such as chalcopyrite, bornite and molybdenite; in the 85 

intermediate stage, epithermal quartz-adularia-gold vein mineralization is prominent, forming a ring-shaped zone 

surrounding the porphyry core, which produced native gold and sulfides like pyrite, galena and sphalerite; the late stage is 

typically associated with low-sulfidation epithermal mineralization, occurring further outward from the core, which is 

characterized by quartz-carbonate veins with high Au/Ag ratios, and gold occurring as electrum with minerals like pyrite, 

marcasite, stibnite and realgar (Pirajno, 2008). Hot spring gold mineralization can also occur when the remaining magmatic 90 

fluids mix with meteoric water at the surface and cool further. It is important to note that the heterogeneous zonation 

observed in the mineral system can be even likely disrupted by structures such as faults, which serve as pathways for 

mineralizing fluids. In such a complicated context, relying solely on a single group of elements as a proxy for underlying 

geological processes can inevitably lead to uncertainties in the resulting geochemical patterns. Consequently, how to address 

the uncertainty arising from the representativeness of elemental associations in geological processes becomes a significant 95 

concern when utilizing geochemical mapping to comprehend the processes and aid in mineral resource prediction. 
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To mitigate the uncertainty inherent in defining elemental associations, this study introduces a workflow that utilizes fuzzy 

clustering to delineate homogeneous zones and further determines their respective elemental associations, complemented by 

PCA and geochemical anomaly detection techniques for refined geochemical mapping. To illustrate and validate the 100 

procedure, a case study was conducted wherein stream sediment geochemical samples from the northwestern Sichuan 

Province, China was processed, with the aim of delineating anomalies associated with sediment-hosted disseminated gold 

mineralization. 

2 Study area and data 

2.1 Geological setting 105 

The study area is situated in the northwestern region of Sichuan Province, China, encompassing a longitude range of 103°4′E 

to 104°36′30″E and a latitude range of 32°40′N to 34°N (Fig. 1).  

Located at the intersection of the Yangtze plate, North China plate and Songpan-Ganzi terrane, this area has been 

distinguished by active tectonic and magmatic processes throughout geological histories. These long-lived crustal dynamics 

exert significant controls on the formation and widespread distribution of gold mineralization observed across the region. 110 

Previous studies have revealed a strong correlation between the emplacement of large gold deposits and the presence of NW-

SE extending major tectonic faults, as well as the intersection of multiple faults and ring-shaped fault systems (e.g., Zhao, 

1995; Li, 1996; Wang et al., 2003; Liu et al., 2010). In this area, one can find stratigraphic units ranging from the Proterozoic 

to the Cenozoic. The distribution of these units is evidently controlled by regional faults, and they are also prone to 

undergoing metamorphism. The Triassic strata, which covers approximately 73% of the study area, predominates in the 115 

western and northern parts. It mainly consists of metamorphosed sandstones and slates that are interbedded with occasional 

volcanic rocks and limestones. These strata primarily represent shallow sea slope turbidite sedimentary environment and 

play a significant role as the main sources of materials for gold mineralization, as demonstrated by the isotopic and rare earth 

element geochemistry (Zheng et al., 1990; Chen, 1998; Wang et al., 2004; Zhang, 2014). The igneous rocks, which appear 

infrequently at the surface and are primarily confined to the southeastern portion of the study area, consist of various types 120 

such as granites, granodiorites, and monzogranites. Previous studies have indicated that hypabyssal calc-alkaline igneous 

rocks from the late Indonesian to Yanshanian period play a crucial role in the generation of hydrothermal fluids and the 

creation of geodynamic conditions that facilitate the remobilization and concentration of gold in this region (e.g., Li, 1996; 

Liu et al., 2010).  

The predominant type of gold deposits discovered in this area is sediment-hosted disseminated gold deposits, exemplified by 125 

the Dongbeizhai and Manaoke gold deposits. These deposits are primarily found within the Triassic marine sequences. They 

are characterized by the presence of microscopic and/or dissolved gold, as well as a mineral association for epithermal 

mineralization that includes arsenopyrite, pyrite, stibnite, among others. Furthermore, studies imply that there are variations 

in the geological and geochemical characteristics of different gold deposits due to individual differences in tectonic settings 
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and geological conditions. Consequently, these heterogeneities pose challenges for the processing of geochemical data (Li, 130 

1996; Chen, 1998; Chen et al., 2004; Deng et al., 2023). 

2.2 Geochemical survey data 

The geochemical data utilized in this research is derived from the China's National Geochemical Mapping Project, which 

was initiated in 1979 and has played a critical role in mineral exploration in China (Xie et al., 1997). It comprises 3,461  

composite stream sediment samples collected at a density of one composite sample per 4 km². Each sample was analysed for 135 

39 major, minor, and trace elements/oxides, that is, Ag, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cu, F, Hg, La, Li, Mn, Mo, Nb, 

Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, V, W, Y, Zn, Zr, SiO2, Al2O3, Fe2O3, K2O, Na2O, CaO and MgO. For comprehensive 

information regarding sample preparation, analytical methodologies, detection limits, and quality control, please refer to the 

works of Xie et al. (1997) and Wang et al. (2011). 

 140 

 
Figure 1: Simplified geological map of the study area in northwest Sichuan Province, China (after Wang and Zuo (2022)). 
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3 Methods 

3.1 The general workflow 

To effectively address the uncertainty in defining elemental associations for geochemical mapping, our workflow starts by 145 

employing clustering analysis to pinpoint homogeneous regions, each presumed to be characterized by a distinct elemental 

association. Subsequently, it ascertains the pertinent elemental associations for each identified cluster, with the ensemble of 

these associations representing the uncertainty. The workflow proceeds by performing multivariate geochemical anomaly 

mapping for each potential elemental association, ultimately synthesizing a comprehensive geochemical map through a 

linear weighting scheme based on the alternative maps. The workflow (Fig. 2) primarily consists of four consecutive parts:  150 

(1) identifying homogeneous regions through fuzzy clustering; 

Prior to cluster analysis, individual elements in a selected multivariate geochemical survey dataset are spatially interpolated. 

The interpolated maps are subsequently utilized as input for the fuzzy clustering method, commonly fuzzy c-means, to 

obtain membership values maps. The number of membership values maps is equal to that of clusters determined by 

optimization metrics, such as the Silhouette index (Rousseeuw, 1987), gap statistics (Tibshirani et al., 2001) or cluster 155 

validity index (Xie and Beni, 1991). The homogeneous local regions can then be determined by the largest membership 

value for each grid cell.  

(2) determining elemental associations for each region, which serve as indicators of the underlying targeted process; 

The geochemical survey data is initially partitioned into distinct subsets based on the criteria of sample assignment to 

specific clusters. Subsequently, each subset of data undergoes PCA, enabling the examination of elemental associations 160 

through a biplot analysis. By identifying a distinctive set of elements for each subset, representative of the geological 

processes of interest, a comprehensive understanding of targeted geological phenomena with uncertain elemental 

associations can be achieved.  

(3) recognizing multivariate anomalies based on each elemental association; 

A geochemical anomalies identification algorithm (e.g., local singularity analysis by Cheng (2007), deep autoencoder 165 

network by Xiong and Zuo (2016)) was firstly applied to the interpolated map of each element to enhance univariate 

anomaly patterns. Multivariate anomaly patterns were derived by integrating relevant univariate anomalies through PCA. For 

each potential elemental association linked to the underlying geological process, PCA was applied solely to the subset of 

elements within that assemblage. The first principal component score map, which captures the highest amount of variation, 

was retained to represent the multivariate anomaly patterns for given elemental association (e.g., Cheng, 2007). Note that the 170 

set of multivariate anomaly maps, each corresponding to an alternative elemental association, represent the propagation of 

uncertainty stemming from using elemental associations as proxies for underlying geological processes. 

(4) integrating alternative anomaly patterns to generate a comprehensive map of anomalies.  

To mitigate the uncertainty inherent in defining elemental association for geochemical mapping, the multivariate anomalies 

maps were further integrated into a comprehensive anomaly map using a linear weighting model. The weights assigned to 175 
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each map, in this study, correspond to the membership values obtained from fuzzy clustering, specifically to the cluster from 

which the map was derived. Since fuzzy clustering inherently normalizes memberships, these values intrinsically account for 

each domain's spatial representation and influence. 

 
Figure 2: The general workflow for geochemical anomalies mapping by accounting for the uncertainty of elemental association. 180 

 

3.2 Fuzzy c-means clustering 

The aim of clustering is to divide a set of 𝑁𝑁 data points into 𝐶𝐶  clusters, such that data points within a cluster exhibit 

similarity while in different clusters are dissimilar. Clustering serves the purpose of extracting a set of cluster prototypes, 

enabling a compact representation of the dataset with several homogeneous subsets (Kaufman and Rousseeuw, 2009). Fuzzy 185 

set theory assumes that data points may not belong exclusively to a single set, but rather have a degree of membership 

uncertainty that can be addressed through the utilization of a membership function (Zadeh, 1965). Integration of fuzzy logic 

with data mining techniques has emerged as a fundamental aspect of soft modelling to address such uncertainty (Bezdek, 

2013). Fuzzy c-means (FCM), firstly developed by Dunn (1973), is such an unsupervised soft clustering technique that 

allows data points to be classified into multiple clusters with varying degrees of membership (Bezdek et al., 1984). FCM is 190 

an iterative algorithm that computes cluster centres and membership values to minimize the following objective function 

ℒ𝑚𝑚 = ��𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝐷𝐷𝑖𝑖𝑖𝑖2
𝑁𝑁

𝑗𝑗=1

𝐶𝐶

𝑖𝑖=1

,                                                                                                                                                                                      (1) 
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where 𝐶𝐶 denotes the number of clusters, 𝑁𝑁 is number of data points, 𝑚𝑚(𝑚𝑚 > 1) is a hyperparameter that controls the degree 

of fuzzy overlap, which refers to how fuzzy the boundaries between clusters are; 𝜇𝜇𝑖𝑖𝑖𝑖�0 ≤ 𝜇𝜇𝑖𝑖𝑖𝑖 ≤ 1� is a continuous value 

between 0 and 1, and represents the degree of membership of the 𝑗𝑗th data point in the 𝑖𝑖th cluster; 𝐷𝐷𝑖𝑖𝑖𝑖 is the distance between 195 

the 𝑗𝑗th data point 𝑥𝑥𝑗𝑗  and the 𝑖𝑖th cluster centre 𝑐𝑐𝑖𝑖 , for which the Euclidean distance is commonly used such that 𝐷𝐷𝑖𝑖𝑖𝑖 =

�𝑥𝑥𝑗𝑗 − 𝑐𝑐𝑖𝑖�
2
. Note that for a given data point, the sum of its membership values for all clusters is constant one, namely 

�𝜇𝜇𝑖𝑖𝑖𝑖

𝐶𝐶

𝑖𝑖=1

= 1, 𝑗𝑗 = 1,2,⋯ ,𝑁𝑁,                                                                                                                                                                             (2) 

The classical FCM computes distances 𝐷𝐷𝑖𝑖𝑖𝑖  between data points and cluster centres using a Euclidean distance metric. 

However, other dissimilarity metrics can also be employed to establish alternative clustering algorithms. For instance, 200 

Gustafson and William (1978) presented a fuzzy clustering algorithm that computes distances using a Mahalanobis distance 

metric, which enables to account for correlations and variations in multiple dimensions or variables. The implementation of 

FCM closely resembles that of k-means, and for specific algorithmic details, one can refer to the work of Suganya and 

Shanthi (2012).  

A key advantage of FCM lies in its flexibility in assigning gradual memberships to account for uncertainty. Hence, FCM has 205 

been one of the most widely used fuzzy clustering algorithms in data science and machine learning applications (e.g., Fatehi 

and Asadi, 2017; Benjumea et al., 2021; Zhang et al., 2021). 

In this study, we employed the Xie-Beni Validity Index (Xie and Beni, 1991) to determine the optimal cluster number, which 

is defined as 

𝑆𝑆 =
∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖2𝑁𝑁

𝑗𝑗=1
𝐶𝐶
𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑖𝑖

𝑁𝑁 �min𝑖𝑖,𝑗𝑗=1,⋯𝐶𝐶,𝑖𝑖≠𝑗𝑗�𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗�
2
�

,                                                                                                                                                            (3) 210 

This index evaluates the dataset’s geometric structure and membership degrees, offering a measure of cluster compactness 

and separation. A lower index value signifies elevated cluster density and distinction.  

3.3 Derivation of the comprehensive anomaly map 

Assuming the 𝐶𝐶 elemental associations are 𝐸𝐸𝐸𝐸𝑖𝑖(𝑖𝑖 = 1,2,⋯ ,𝐶𝐶) , and the multivariate anomaly map for elemental association 

𝐸𝐸𝐸𝐸𝑖𝑖 is 𝐴𝐴𝑖𝑖, the comprehensive anomaly map can be derived through the following formula 215 

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝜇𝜇𝑖𝑖⨀𝐴𝐴𝑖𝑖

𝐶𝐶

𝑖𝑖=1

,                                                                                                                                                                                        (4) 

where 𝜇𝜇𝑖𝑖 represents the membership values map for the 𝑖𝑖th cluster; the operator ⨀ denotes ‘Hadamard product’, that is, the 

element-wise product.  When considering two matrices, designated as 𝐴𝐴 and 𝐵𝐵, both of which have identical dimensions 𝑚𝑚 

by 𝑛𝑛, one can compute the Hadamard product 𝐴𝐴⨀𝐵𝐵. This results in a matrix with matching dimensions, where each element 

(𝐴𝐴⨀𝐵𝐵)𝑖𝑖𝑖𝑖  is the product of the corresponding elements from 𝐴𝐴  and 𝐵𝐵 , namely (𝐴𝐴⨀𝐵𝐵)𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 × 𝐵𝐵𝑖𝑖𝑖𝑖 . Note that the 220 
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membership values, ranging from 0 to 1, serve as a quantitative representation of each cell sample’s affiliation with the 

identified clusters (hence the corresponding elemental associations), thereby facilitating the integration of multiple anomaly 

maps through the Hadamard product. Moreover, while our anomaly scores, derived from the singularity exponent, require no 

scaling due to their dimensionless nature, we acknowledge that the Hadamard product can also be applied to scaled anomaly 

scores, provided they are normalized to ensure comparability across different measures. 225 

4 Results and discussions 

4.1 The uncertainty of elemental associations related to gold mineralization 

Zuo et al. (2021b) explored the lower-order statistics of the ore-forming element Au in this dataset by using exploratory 

statistical graphs, including boxplot, histogram, and quantile-quantile plot. The result suggested that the original 

concentrations of Au exhibit an evidently positively-skewed and heavy-tailed distribution, implying that the geochemical 230 

data might originate from more than one geological process, with gold mineralization imposing an important influence in 

shaping the distribution. A global elemental association, consisting of Au, As, Sb, and Cu, has also been identified in this 

area by applying PCA for compositional data onto fifteen trace elements (i.e., Ag, As, Au, Cd, Ba, Bi, Cu, Hg, Mn, Mo, Pb, 

Sb, Sn, W, and Zn). Furthermore, the spatial patterns of this elemental association confirm its correlation with gold 

mineralization and its relationship with the distribution of fault systems that controlled the mineralization (Zuo et al., 2021b). 235 

However, relying solely on a single elemental association might not adequately represent the potential mineralization in this 

area. This limitation arises from the inherent heterogeneity and multi-stage nature of gold mineralization, as indicated by 

previous geological studies (e.g., Chen, 1998; Chen et al., 2004; Deng et al., 2023). According to Li (1996), this study area 

exhibits at least two distinct types of gold mineralization. The first type is predominantly controlled by structures, and is 

typically characterized by hydrothermal minerals such as arsenopyrite, stibnite, realgar, orpiment, and microscopic natural 240 

gold. The common elemental association observed in this type is Au-As-Sb-Hg. The second type of gold mineralization is 

primarily controlled by igneous veins. The typical hydrothermal minerals associated with this type include pyrite, 

arsenopyrite, stibnite, barite, and microscopic natural gold, which are also accompanied by contact metasomatism-derived 

chalcopyrite and galena, among others. This type of mineralization exhibits an elemental association of Au-As-Sb-Ba-Cu-Pb. 

Other studies, such as Chen (1998), Zhao (1999), Wang et al. (2004) and Deng et al. (2023), also suggest that high-245 

temperature hydrothermal fluids play a crucial role in remobilizing and concentrating ore-forming elements. Therefore, 

elements such as W and Sn can also serve as indicators for gold mineralization in this area. Consequently, while the 

elemental association Au-As-Sb is commonly observed across the gold deposits in this region, individual deposits exhibit 

enrichment in certain pathfinder elements that are characteristic of the local mineralization. 

 250 
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Figure 3: Optimal cluster number determined by the cluster validity index (Xie and Beni, 1991). Note that a total of 100 
experiments were conducted to achieve a robust result. 

 

Based on the procedure outlined in Section 2.1, we initially applied inverse distance weighting (IDW) to the same fifteen 255 

trace elements investigated by Zuo et al. (2021b) . The cell size was set to 1 km, and the local interpolation utilized a default 

value of 12 neighbours in ArcGIS. Subsequently, FCM was performed onto the interpolated maps. Various cluster numbers 

were explored, and the optimal value of 2 was determined based on the cluster validity index (Fig. 3). The FCM analysis 

assigned each grid cell a membership value indicating its degree of belongingness to each of the two clusters (Figs. 4a and b). 

A cluster label could be specified to each cell with the largest membership value. The clustering results reveal that Cluster 2 260 

is primarily distributed in the southeast of the study area, while Cluster 1 is distributed pervasively throughout the rest of the 

study area. Cluster 1 mainly reflects the distribution of Triassic sequences, while Cluster 2 mainly reflects the distribution of 

Paleozoic sequences (Fig. 1). The marginal plot in Figure 4c indicates that Cluster 2 is characterized by evidently higher 

concentrations of Au and As. This observation is consistent with the geological knowledge that the Paleozoic carbonaceous 

silty shale formation exhibits a high geochemical background in elements related to gold mineralization, and serves as one of 265 

the most important sources of materials for gold mineralization in this area (e.g., Li, 1996; Zhang, 2014).  
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Figure 4: Fuzzy c-means clustering of the interpolated maps. (a) Distribution of the fuzzy membership values for cluster 1, (b) 
distribution of the fuzzy membership values for cluster 2, and (c) marginal plot showing the distribution of data points for Au 270 
concentrations against As concentrations. Note that the concentration values were logarithmically transformed and standardized 
for improved visualization. 

 

To identify potential elemental associations that indicate gold mineralization in this area, we performed PCA separately on 

the data from each of the two clusters. The resulting biplot, which depicted the first two principal components, was utilized 275 

for visual exploration of the elemental associations. The biplot analysis indicates that the first two principal components 

account for a total of 55% of the variation within the elements in Cluster 1, while in Cluster 2, the explained variation is 61% 

(Figs. 5a and b). In a biplot, the angle between two vectors that represent geochemical elements can provide an 

approximation of their correlation (Gabriel, 1971; Reimann et al., 2011). By applying this principle, we can identify the 

potential elemental associations indicative of gold mineralization by examining the relationship between each element and 280 

the ore-forming element Au. In addition, we also incorporated geological knowledge regarding expected elemental 

associations and the distribution of known gold deposits depicted in the biplot to determine an elemental association that 

closely aligns with the known deposits. For Cluster 1, the elemental association identified, in descending order of correlation 

with the ore-forming element Au, is Au-W-As-Sb-Ba-Hg. Similarly, for Cluster 2, the sequence is Au-As-W-Sn-Sb-Hg-Pb-

Bi, as evidenced by the biplots in Figs. 5a and b. These elemental associations demonstrate strong consistency with the 285 

aforementioned geological knowledge and can effectively predict the majority of known gold deposits. 

 
Figure 5: Biplots of the first two principal components obtained from PCA of (a) Cluster 1 and (b) Cluster 2. Note that the red 
points represent the projections of the known gold deposits. The shaded orange rectangle encompassed the elements that show 
good correlations with the ore-forming element Au. 290 
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4.2 Mapping single- and multi-element anomalies patterns 

The interpolated maps of the elements that show correlations with ore-forming element Au for both clusters (i.e., Au, As, W, 

Sb, Sn, Hg, Ba, Pb, Bi) were used further for mapping local singularities, which can help quantify whether the local 

geochemical pattern is enriched or depleted. The effectiveness of local singularity exponents in enhancing anomaly patterns 295 

by mitigating the mask effect of heterogeneous local backgrounds has been well established (e.g., Cheng, 2007; Chen and 

Cheng, 2016; Li et al., 2017; Gonçalves et al., 2018; Wang et al., 2018; Xiao et al., 2018; Behera and Panigrahi, 2021). For 

detailed theoretical and algorithmic information on local singularity analysis (LSA), please refer to Cheng (2007). Figure 6 

illustrates the distributions of singularity exponents estimated using the sliding window-based technique developed by Cheng 

(2007). It can be observed that the local patterns indicated by singularity exponents are clear and remain scarcely unaffected 300 

by the heterogeneous geological background. The singularities for the primary indicative elements, such as Au, As, W, Sb, 

exhibit strong spatial correlations with the distribution of known gold deposits. In addition, the distribution of singularity for 

elements Au, As, Sb and Bi, which are often associated with hydrothermal systems and can exhibit significant mobility, 

align well with the distribution of geological structures in this area. It is noteworthy that all the elements studied here exhibit 

evident anomaly patterns (i.e., positive singularity), regardless of their strength, in the vicinity of the giant Dongbeizhai gold 305 

deposit (highlighted by white solid rectangles in Fig. 6). In contrast, certain gold deposits may not display anomaly patterns 

in the singularity maps generated for specific elements. However, in the maps of other elements, discernible anomaly 

patterns can be identified for these gold deposits, as indicated by the white dashed rectangles in Figure 6. Such observation 

highlights the inherent uncertainty associated with indicative elements in relation to localized gold mineralization.  

 310 
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Figure 6: The distribution of local singularity exponents for single element within the set of elements that show correlation with Au 
for both Cluster 1 and Cluster 2: (a) Au, (b) As, (c) W, (d) Sb, (e) Sn, (f) Hg, (g) Ba, (h) Pb, and (i) Bi. Note that a series of square 
windows, with half window sizes ranging from 1 km to 13 km at 2 km intervals, were utilized for the sliding window-based 
singularity mapping technique.   315 

 

To delineate the comprehensive anomaly patterns with the combined elements for both Cluster 1 and Cluster 2, we applied 

PCA onto the singularity exponents for elements in the identified elemental associations (Fig. 5). The first principal 

components account for 46% and 53% of the total variance for Cluster 1 and Cluster 2, respectively. The multi-element 
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anomaly patterns for the two clusters exhibit similarities in general, in that they align well with the geological structures and 320 

can effectively predict known gold mineralization. However, there are variations in the local details of the anomaly patterns 

across different clusters. Furthermore, the overall anomaly intensity for Cluster 1 (Fig. 7a) is slightly higher compared to 

Cluster 2 (Fig. 7b). Notably, the resulting map for Cluster 1 exhibits distinct multi-level patterns in certain local areas, which 

are very weak or even absent for Cluster 2. The multi-element anomaly for the two clusters were further integrated into a 

comprehensive anomaly map using a linear weighting scheme that utilized the fuzzy membership values as weights. The 325 

resulting map preserves the common patterns that display good correlation with known gold mineralization (Fig. 7c). More 

importantly, the integrated singularity map also underscores the importance of detecting underlying geological structures and 

mineralization patterns in the western portion of the study area. 

 

 330 
Figure 7: The first principal component scores showing the distribution of combined singularities obtained by applying PCA to 
singularities of (a) Au-W-As-Sb-Ba-Hg for Cluster 1, and (b) Au-As-W-Sn-Sb-Hg-Pb-Bi for Cluster 2. The comprehensive map of 
anomalies patterns integrated from the combined singularities maps based on fuzzy membership values is shown in (c). Note that 
local patterns enclosed by white dashed rectangles in (a) and (b) indicate the difference between the multi-element anomaly map 
for Cluster 1 and 2. 335 

 

4.3 Model evaluation 

To evaluate the performance of the result presented in Figure 7c, we additionally identified multi-element anomaly patterns 

while disregarding the uncertainty of elemental associations. This was then used as the benchmark for performance 

comparison, referred to hereafter as the “global reference case”. The elemental association adopted for the global reference 340 

case is Au-As-Sb-Cu, with the purpose of being aligned with the study of Zuo et al. (2021b). The multi-element anomaly 

patterns were derived consistently with those for each elemental association in the case with uncertainty considered. This 

was achieved by applying PCA to the univariate anomaly maps of Au, As, Sb, and Cu, and retaining the first principal 

component to represent the multivariate anomaly map (Fig. 8a). It exhibits strong spatial correlation with the geological 

structures and known gold mineral deposits. However, differences can also be easily observed when comparing it to the 345 
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results obtained from the procedure that accounts for the uncertainty of elemental associations, which will be referred to 

hereafter as the "case with uncertainty". For example, there is no anomaly present in the vicinity of the easternmost known 

gold mineralization, as indicated by the white dashed rectangle in Figure 8a. In contrast, clear anomaly patterns associated 

with this deposit can be observed in the resulting map for the case that considers uncertainty (Fig. 7c).  

In the present study, the multi-element anomaly patterns for the two cases were verified using the success-rate curves in 350 

terms of their capability in predicting the known mineralization, which was obtained by plotting cumulative percentage of 

known gold deposits against cumulative percentage of anomaly patterns area (e.g., Carranza, 2008). In general, the result 

from the case with uncertainty outperforms the global reference case (Fig. 8b). The success-rate curves also suggest that 

approximately the top 6% of the total area can predict around 54% of known mineralization (point A), regardless of whether 

we consider the global reference case or that accounts for the uncertainty of elemental associations. However, when a larger 355 

area is delineated to predict the gold mineralization from 54% (point A) to 83% (point B), the success-rate curve exhibits 

distinct behaviours between the two scenarios. The case that considers uncertainty can consistently predict the same 

proportion of known gold mineralization with a relatively lower percentage of study area than the global reference case 

(𝑟𝑟𝑝𝑝
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 𝑟𝑟𝑝𝑝

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 in Fig. 8b). By examining the incremental areas delineated by the cut-off values corresponding to 

points A and B for the two scenarios, we were able to visually discern the disparities in the spatial distribution of 360 

geochemical patterns that contribute to the different performance observed between these two points. This is achieved by 

subtracting the cumulative area corresponding to the threshold defined by point A from that of point B for each scenario, 

thus isolating the specific regions responsible for the discrepancy in performance (Fig. 8c). The global reference case placed 

a greater emphasis on the southeastern region, as indicated by the dashed rectangle in Fig. 8c, which is distinguished by 

elevated geochemical backgrounds for most indicative elements due to the prevalence of Paleozoic gold-enrichment 365 

lithologic units. This observation suggests that the procedure proposed in this study might have the potential to mitigate the 

impact of heterogeneous geochemical backgrounds in geochemical anomaly mapping.  

 

 
Figure 8: A comparison made between the performance of the mapped results, predicting known gold mineralization, in two 370 
scenarios: the global reference case that does not consider the uncertainty (a) and the case presented in this study that accounts for 
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the uncertainty of elemental associations (Fig. 7c). The success-rate curves for these two scenarios are shown in (b), and the 
incremental areas delineated by the cut-off values corresponding to the two points A and B in (b) for the two scenarios are 
displayed in (c). Note that colors in (c) are rendered with 30% transparency. As a result, areas where the two color patterns 
overlap appear as a blended color, distinct from regions with only a single color pattern (e.g., the southeastern region outlined by 375 
the dashed rectangle). 

 

To derive a quantitative metric for accuracy assessment, this study also utilized the receiver operating characteristic (ROC) 

curve and the area under curve (AUC) methodology, as described by Fawcett (2006). When constructing a ROC curve, 

negative examples that represents the absence or non-occurrence of mineralization event are required to be used along with 380 

the positive examples (i.e., known gold mineralization) to evaluate the performance of a binary classification model. In 

addition, studies also suggested that the number of negative examples should be comparable to that of positive examples to 

ensure a balanced evaluation. We randomly generated a set of negative examples under the constraint that they are located 

outside the 3 km local neighbourhood of known deposits (Fig. 8a). Moreover, the number of negative examples was set to 

match that of known mineral deposits. The ROC curves in Figure 9a depict the true positive rate (TPR) and false positive 385 

rate (FPR) at various classification thresholds for both the case considering the uncertainty of elemental associations and the 

global reference case. The AUC values were determined to be 0.8 for the global reference case, and 0.85 for the case with 

uncertainty. Therefore, when compared to the global reference case, the case with uncertainty demonstrates superior overall 

performance in terms of accurately identifying known gold mineralization while minimizing false positives. Considering the 

potential uncertainties involved in calculating the AUC value, we proceeded to randomly generate multiple sets of negative 390 

examples. Specifically, a total of 300 sets were created to mitigate potential biases or peculiarities that may exist in a single 

negative example set. The results (Fig. 9b) suggest that the case accounting for uncertainty in elemental associations, on 

average, outperforms the global reference case in predicting known mineralization. The non-overlapping notches of the 

boxes signify a statistically significant median difference between the two cases. Also, it should be noted that the case with 

uncertainty exhibits higher sensitivity to the selection of negative examples. Given that the elemental association for the 395 

global reference case involves a total of four elements, we additionally investigated a scenario where only the top four 

relevant elements were retained for the two clusters. It is evident from the results (Fig. 9b) that this particular case even 

exhibits superior performance compared to the previous two cases on average. This observation indicates that the 

incorporation of certain elements that exhibit weak correlation with the ore-forming element Au may offer limited or even 

detrimental contributions to the accurate mapping of geochemical anomalies. 400 
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Figure 9: (a) The ROC curves and AUC values for the global reference case and the case considering the uncertainty of elemental 
associations, (b) the notched boxplot showing the AUCs from 300 experiments that sample different negative examples for the two 
scenarios. Here an additional combination of elemental associations for the two clusters, both of which consist of the top four 405 
relevant elements, were also examined. The elemental associations denoted by A1, A2, B1 and B2 are A1: {Au, W, As, Sb}, A2: {Au, 
W, As, Sb, Ba, Hg}, B1: {Au, As, W, Sn}, and B2: {Au, As, W, Sn, Sb, Hg, Bi, Pb}. Note that the notched boxplot applies a “notch” 
around the median, which serves as a visual representation of the median’s confidence interval. 

 

4.4 Delineation of significant geochemical anomalies 410 

To further delineate significant geochemical anomalies for guiding subsequent mineral exploration, the weights of evidence 

method was used to derive the statistical t-values, which allows for defining significant anomalies (Bonham-Carter, 1994). 

The t-value serves as a measure of the significance of spatial correlation between point features and polygons, with higher t-

values indicating stronger spatial correlation. Typically, a t-value = 1.96 can be taken to be a threshold above which the 

spatial correlation can be regarded statistically significant at a significance level of 0.05.  415 
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Figure 10: The student’s t values (a) and the delineated geochemical anomalies (b) based on the multi-element anomaly scores 
derived from the case considering the uncertainty of elemental association (Fig. 7c). Note that different levels of anomalies were 
overlaid onto the hillshade map of the study area. 420 

 

The t-values for the resulting anomaly scores map (Fig. 7c), as depicted in Figure 10a, demonstrate an increasing trend as the 

threshold rises from 0 to 0.42. It is important to note that the portion of the study area with an anomaly score ≥ 0.42 occupies 

only 7% of the total area, yet it contains 60% of the total number of mineral deposits. In addition, the t-value reaches 1.96 at 

an anomaly score of 0.03. The two values 0.03 and 0.42, along with an arbitrarily determined anomaly score of 0.21 nearly 425 

at their midpoint, were utilized as thresholds to define the weak anomaly (0.03-0.21), moderate anomaly (0.21-0.42) and 

strong anomaly (≥ 0.42) (Fig. 10b). The result shows that the delineated patterns are directly associated with the known gold 

deposits. Notably, most of the known deposits are spatially linked to multi-level anomaly patterns. We also preliminarily 

delimited some significant anomalies based on the following criteria: (a) presence of multi-level anomaly patterns, (b) 

proximity to known deposits, (c) proximity to geological structures. The delimited anomalies (Fig. 10b) should be further 430 

investigated and validated with other evidences for undiscovered gold deposits. 

 

4.5 The implications and limitations of the procedure for mapping geochemical anomalies under uncertainty 

Geochemical patterns result from dynamic geological systems that are open, nonlinear, complex, and subject to spatial and 

temporal variations. The intrinsic heterogeneity of these patterns poses challenges in identifying and understanding the 435 

underlying constituent geological processes based on geochemical data, thus leading to inherent uncertainties. Specific 

geological processes are commonly considered to have the potential to be reliably represented by certain elemental 

associations. Therefore, in order to address the uncertainties and hence improve our comprehension of geological processes 

and the performance of mineral resource prediction, it is crucial to identify and analyse the diverse possible elemental 

associations present in a study area.  440 

The procedure presented here identified two distinct clusters within the study area, and they are characterized by different 

elemental associations related to gold mineralization. Cluster 1 covers a significantly larger area and predominantly 

encompasses the Triassic formations, whereas the other cluster is primarily composed of the Paleozoic lithologic units. 

These two clusters can be approximately differentiated by the regional Heye fault belt, trending NW-SE, and the Minjiang 

fault belt, trending S-N, which serve as the boundaries between the above geological units. Studies have also demonstrated 445 

the significant influence of regional fault belts in constraining and delineating areas where various geological processes have 

occurred throughout geological history. These processes encompass sedimentation, magmatic activities, metamorphism, and 

mineralization events (Wang and Liang, 2004). The presence of regional structures in the area highlights the evident spatial 

heterogeneity in the geological composition across various regions and throughout different geological time periods. The 

study area was recognized as a passive continental margin during the late Proterozoic to Paleozoic era, characterized by the 450 
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development of sedimentary cover layers primarily consisting of terrigenous clastics with minor occurrences of carbonate 

and siliceous rocks. However, during the Mesozoic era, the area experienced tectonic movements associated with the ancient 

Tethys, resulting in extensive folding within regions where Paleozoic sequences are distributed. In other areas, intense 

faulting occurred, accompanied by the deposition of extensive thick flysch sequences during the Triassic period. These 

flysch sequences have proved to be crucial sources of ore-forming materials (Wang et al., 2003). The regional geochemical 455 

analysis suggests that the Paleozoic lithological units are characterized by a higher geochemical background level of Au 

compared to the Triassic formations (Zhao, 1995). In addition, according to previous studies (e.g., Zhao, 1995), there is a 

discernible pattern where the temperature of the mineralization-related fluids increases from north to south. This geological 

knowledge can be further supported by the elemental association observed in Cluster 2 in this study, which includes high-

temperature hydrothermal elements such as Sn, W, and Bi. 460 

Note that the current procedure only account for the dissimilarity of elemental concentrations during fuzzy clustering, while 

disregarding the tectonic settings and geological conditions of the data points. Consequently, it is evident that Cluster 2 

includes irregular and disconnected areas in addition to the major southeastern area that exhibits a high geochemical 

background (Fig. 4), although the membership values of these scattered areas are relatively lower. Note that these small 

areas are characterized by high concentration values for the selected geochemical elements. However, the geological 465 

sequence in these areas is Triassic, which differs from that of the southeastern area. Therefore, future studies should focus on 

extending classical fuzzy clustering algorithms to account for geological constraints, or take spatial connectivity into 

consideration as an additional constraint. We also acknowledge that relying solely on the biplots to determine elemental 

associations can introduce additional uncertainty. This is because only part of the variation is explained by the biplot itself, 

and there is a lack of widely accepted criteria to determine the optimal subset of elements that exhibit a strong correlation 470 

with the ore-forming element of interest. Nevertheless, the case study presented here indicates that the procedure that 

considers the uncertainty of elemental associations provide a promising approach to achieve superior performance in 

geochemical anomalies mapping compared to the global case where such uncertainty is not taken into account. 

5 Conclusions 

In this study, we have developed a procedure that accounts for the uncertainty of elemental associations as an indicator of the 475 

underlying geological process of interest, aiming to improve geochemical mapping. A case study of processing stream 

sediment geochemical samples to map geochemical anomalies linked to disseminated gold mineralization in the 

northwestern Sichuan Province, China was presented to illustrate and validate the procedure. Three main conclusions could 

be drawn thereby: 

(1) determination of an elemental association as an indicator of the underlying geological process is an important source of 480 

uncertainty for geochemical mapping; 
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(2) the procedure outlined in this study, which mainly comprises fuzzy clustering, principal component analysis, and 

geochemical anomaly identification, provides an effective framework for addressing the uncertainty associated with 

elemental associations in geochemical mapping. Also, note that the procedure allows for the incorporation of alternative 

methods for fuzzy clustering, determination of elemental associations, and identification of geochemical anomalies, rather 485 

than being limited to the methods employed in this particular study. This provides greater flexibility and adaptability to suit 

different research contexts; 

(3) two distinct clusters can be identified within the study area, aligning closely with the distribution of lithological units 

impacted by predominant regionally geological processes. Moreover, the procedure presented here demonstrates, on average, 

superior performance compared to the global reference case in accurately predicting gold mineralization. The delineated 490 

anomaly patterns show potential for the discovery of more gold deposits in this region. It is worth noting that attention 

should also be paid towards the western areas, where minimal gold deposits have been uncovered thus far. However, weak 

anomalies persist in these regions, possibly indicative of deeply buried mineralization and underlying structures. 
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