
Changes in the manuscript are marked in cursive and bold. 

Response to Anonymous Referee #1 

This paper presents the python package StraitFlux, and demonstrates how it can be 

used to calculate ocean strait transports for various ocean model grids. It seems like 

a valuable and easy to use tool, and I appreciate the effort put into making this a 

public tool that can save other users a lot of time. I recommend that this manuscript 

is published after some clarifications are made: 

L4-5: A bit unclear what you mean by this sentence. Are you referring to the 

complications from the singularity at the true North Pole? Or errors in fields that are 

interpolated to standard lat/lon grid? 

We refer to errors being generated through regridding of the velocity fields onto 

regular lat/lon grids. We clarified it to the following: 

Use of data interpolated to standard latitude/longitude grids is not an option since 

transports computed from interpolated velocity fields are not mass consistent. 

L9: What exactly do you mean by the integrand for the second method? This word is 

not used for anything elsewhere in the manuscript. 

We refer to the velocity/temperature/salinity cross-sections, which need to be 

integrated over depth and along the strait to yield the net volume/heat/salinity 

transports. We changed it in the manuscript: 

Apart from the input data on the original model grids the user only needs to specify the 

start and end points of the required section to get the integrated net transports (for the 

first method) and cross-sections (for the second method). Integration of the cross-

sections along their depth and horizontal extent yields net transports in very good 

quantitative agreement with the line integration method. 

Eq. (4) ice is mentioned here, but not any further. Would be good to discuss further, 

e.g. by including an example of ice transport in the paper if mentioning it here. 

We adapted Fig. 10 to also show heat and ice transports. And adapted the 

associated sentence in the manuscript (L301-302): 

While we have not compared the cross-section method with the analytical solution as we 

did for the LM, we show the credibility of the VPM by comparing volume, heat and ice 

transports obtained through the LM and the VPM (Fig. 10). 



 
Figure 10. Comparison of volume, heat and ice transports obtained through the LM 

(solid) and through integration of cross-sections obtained through the VPM (dashed). The 

selected models use different grid types (see text) all with a horizontal resolution of about 

1°  

L86: Maybe briefly explain why closed volume transport is not generally the case? 

It is generally not the case for partial sections as transports are e.g. compensated by 

flows through other passages. Good examples are given by the four Arctic passages 

(Bering Strait, Fram Strait, the Canadian Archipelago and the Barents Sea Opening). 

Looking at the net flow into the Arctic, volume transports are balanced, however 

none of the individual straits feature balanced volume transports. This would 

generally introduce the dependence of the heat transports for the individual straits 

on the chosen temperature scale via T_ref.  

We adapted the sentence as follows: 

Previous studies (Schauer and Losch, 2019; Schauer and Beszczynska-Möller, 2009) 

correctly point out that true heat transports would actually demand closed volume 

transports through the examined straits. This is generally not the case for partial 

sections as transports may be compensated by flows through other passages and 

unbalanced volume transports would generally introduce the dependence of heat 

transports on the chosen temperature scale via T_ref.  

Schauer, U. and Beszczynska-Möller, A.: Problems with estimation and interpretation 

of oceanic heat transport – conceptual remarks for the case of Fram Strait in the 

Arctic Ocean, Ocean Sci., 5, 487–494, https://doi.org/10.5194/os-5-487-2009, 2009. 

Vector Projection Method: Is it using the same method for Arakawa A, B and C grids? 

Yes, in general the Vector Projection Method is independent of the Arakawa 

partition. Only the cell thicknesses have to be transformed to the correct u/v 

positions on the grid cell. 

Fig 2b. One of the cells is not in contact with the red line. From the text I understand 

that only cells in contact with the line is used.  

We added a cell not touching the reference line, as for the Vector Projection Method 



the cells in contact with the lines and also their neighboring cells are needed for the 

bilinear interpolation onto the reference line.  

We clarified it in the text at L116-118: 

For every grid cell touching the strait and their neighboring cells (needed later on for 

the interpolation onto the strait) we calculate direction vectors of the u and v 

components (blue and green arrows), and normal vectors pointing from the tracer grid 

cell in the direction of the strait (yellow arrows). 

And at L123-125: 

The projection vectors’ magnitudes are then used to compute orthogonal transports at all 

grid cells touching the strait and their neighboring cells. In the final step, these 

transports are interpolated bilinearly onto the closest points on the reference line (black 

crosses in Fig. 2b, called T_proj henceforth) and divided by the respective cell thicknesses 

on the reference line to obtain velocities. 

L124-126: Why do you convert velocities to transports and then after interpolation 

divide by the respective cell thicknesses to obtain velocities again, instead of just 

interpolating the velocities? 

As pointed out at L47-49 and at L.292-295 and Fig. 9 interpolation of the velocities 

(=vector components) prior to the transport calculation may compromise the 

conservation properties of the model and therefore it may lead to quite substantial 

interpolation errors (see Figure 9) and unrealistic behavior in the simulated system, 

especially in regions with complex topography, sharp gradients or complex flow 

patterns. By calculating the orthogonal transports first (= scalar quantities) we 

ensure that the conservation properties of the models are maintained. 

We changed the paragraph as follows: 

In the final step, these transports are interpolated bilinearly onto the closest points on the 

reference line (black crosses in Fig. 2b, called T_proj henceforth) and divided by the 

respective cell thicknesses on the reference line to obtain velocities. This results in velocity 

cross-sections of the vertical plane which are spaced irregularly along the along-strait 

distance (x) in accordance with the distribution of T_proj points. The interpolation onto 

evenly distributed points on the section, to e.g. enable the calculation of differences with 

other models/reanalyses, is initially left to the user and eventually will be included in a 

future version of StraitFlux. By calculating transports (scalar quantities) prior to the 

interpolation onto the strait we ensure that the conservation properties of the 

models are maintained. This ensures that integration of the cross-sections along 

the along-strait distance (x) and depth (z) provides net transports, which agree very well 

with the values obtained by the LM (see Sect. 3).  

L155: How is a straight reference line drawn between the endpoints? Is it following 

the shortest/great-circle distance along a sphere? Or can it be defined to e.g. follow a 

specific latitude? 

When two endpoints are given the reference line is drawn following the shortest 

distance along the sphere. Therefore, if the 2 endpoints have the same latitude, the 



strait will automatically follow this specific latitude. There is also the option to 

provide a list of individual coordinates by setting the functions ‘set_latlon’ to True 

and providing latitude and longitude points via the ‘lat_p’ and ‘lon_p’ parameters. We 

clarified it in the manuscript: 

The determination of section positions for transport calculations is accomplished in the 

def_indices function. Users can specify the start and end points of a section using the 

‘coords’ parameter in the ‘transports’ function. The section will then follow the 

shortest distance along the sphere. Alternatively, users may pass specific 

coordinates by setting the ‘set_latlon=True’ parameter and providing a list of 

latitude (‘lat_p’) and longitude (‘lon_p’) points. The latter option also allows the 

calculation of "kinked" sections. 

Write also somewhere how the example straits used in the paper are defined, e.g. 

specify the start and endpoints used. Or a latitude for the Fram Strait. 

We added the coordinates (start and endpoints) as table in the appendix: 

 

And added the following sentence in the Validation section:  

The exact definitions (start and end points) of all straits used throughout this 

paper are given in the Appendix (Tab. A1). 

L167: How are the points i on the refline defined? 

i is the index that we use to select the points along the equally spaced reference line. 

In the newest version of StraitFlux(v1.0.4) spacing of the reference line is dependent 

of the resolution of the used modelling grid (see Reviewer 2 minor comment 7). E.g. 

0.1° spacing for a model with 0.25° horizontal resolution, would mean that i moves 

along the reference line with 0.1° steps. 

Following a comment from Reviewer 2 we changed Fig.3 to be easier to comprehend 

and changed the caption to the following: 

 



Figure 3. Illustration of the indices selection process using select_points. Lines of 

constant latitude/longitude are shown in grey. a) and b) Determination of consecutive 

grid-cells on the native grid. Distances (orange lines) of the 4 grid-cells (blue dots) 

surrounding the current grid-cell (red dot) are compared for all equally spaced 

points i along the reference line. c) Specification whether a u or v component should be 

taken. Black arrows show movement from one grid cell to the next, blue arrows 

show the chosen u or v component. 

We adapted the indexing for Fig3c) in the text (L176-178): 

For instance, to get to cell j in Fig. 3c, we came from left, hence the v component of cell j is 

taken. In order to get to cell j + 1 we come from below, therefore the u component of cell j 

+ 1 is taken. 

And we added the following footnote: 

Note that we follow the native grid points (x,y) and the local direction of x is not 

necessarily west-east and the local direction of y not south-north. For instance, 

coming from left here means coming from point [xi-1,yi] to point [xi,yi]. 

L230-231: I don’t understand why the difference between velocity components is 

taken? Has it something to do with correcting the positions on the Arakawa grid? 

To calculate the projections for the vector projection method we need vectors 

pointing in the direction of the velocity components, we call them “direct vectors” (= 

u_dir and v_dir in Eq.7; blue and green arrows in Fig. 2b) pointing from one u/v-point 

to the next u/v-point. To obtain the direct vectors we simply take the difference 

between the u/v points (in cartesian coordinates) of two neighboring cells which 

gives us the desired vector between those points. 

Possibly we created some confusion using the term direct vectors instead of 

direction vectors, so we changed it to the following: 

For the projection of the u and v velocities onto the strait, direction vectors and normal 

vectors for every grid-cell are determined using the functions calc_dir_vec and 

calc_normvec. Direction vectors are assumed to point from one grid-cell to the 

neighboring ones and are simply calculated by taking the difference between the 

Cartesian coordinates of ux,y and ux+1,y for udir and the difference between the Cartesian 

coordinates of vx,y and vx,y+1 for vdir. 



Fig 7: I cannot fully understand this figure, and how the angle alpha is defined. 

Intuitively, I would think u was defined negative if the absolute value of the angle 

between r and u_dir was more than 90 degrees. 

Alpha is the angle between u_dir and the strait (=vector r). If the angle is smaller than 

180 degrees u is defined negative, and if it’s >180° u is defined positive.  

It’s not about u pointing to the east or west, we always consider the 

positioning of u to the strait. In Fig. 7 transports into the grey area are defined 

positive and out of it negative. Due to the curvature of the strait the 2 points on the 

left pass the strait (black bold line) from the other side than the points on the right 

side. The angle between u_dir at the upper left and lower left points and r at those 

points is >180° and therefore u_dir is counted positive. However, for the two points 

on the right, the angle is <180° and u_dir is counted negative.  

We adapted the figure and included the r-vectors and the alpha-angles to make it 

easier to comprehend: 

  

 

L241-243: I don’t understand this sentence, and why the u and v components are 

scaled. 

The formulation was a bit misleading. By “scale” we actually meant the projection of 

u/v onto the orthogonal. With “scale” we just meant to express that u/v have to be 

multiplied by the norm of the projection vector as not 100% of u/v actually pass 

through the strait. [for flows parallel to the strait actually 0% pass through (“scaling” 

factor of 0) and for flows orthogonally onto the strait 100% pass through (“scaling” 

factor of 1)] 

We changed the formulation to omit the phrase “scale”: 

Using the norm of the projection vectors, the u and v components of every vertical layer 

are projected orthogonally onto the strait To enhance conservation properties, we 

additionally multiply by the actual cell thicknesses of the cells before 

interpolation.  



L293: What is ESMFgrid? Do you mean xesmf’s Regridder? 

Yes, we changed it to: 

We compare both, bilinear and conservative interpolation as defined in xESMF, a python 

package for regridding, and calculate volume and heat transports through the sum of 

Arctic main gateways (Fram Strait, Barents Sea Opening, Davis Strait and Bering Strait) for 

the CanESM5 model. 

Fig 12. Maybe add in figure title or text that this is the Transports for the Fram Strait. 

We added it to the figure caption: 

Figure 12. Volume and heat transport time series at Fram strait for ten selected CMIP6 

models from Heuzé et al. (2023) (solid) and our LM estimates (dashed). 

L339: ITF: please define abbreviation 

We defined it as Indonesian Throughflow. 

If possible, can you sketch an example showing why interpolation methods make 

such large errors? Or cite eventual other papers who discuss why? I find it a little 

hard to imagine how interpolation errors can give such large errors in the net Arctic 

volume transport. 

The net Arctic volume transport is quite sensitive to small inaccuracies in the 

calculation, as large transports through the individual straits (e.g. >2Sv for the 

Barents Sea Opening) add up to a very small net transport (about 0.2Sv). 

Nevertheless, we discovered an error in our interpolation from curvilinear to native 

grid concerning the rotation of the vector components. Therefore, we repeated the 

calculation for Drake Passage and the RAPID array (see Figure below), two sections 

where the grid of the considered CanESM5 model is regular and therefore the 

rotation of the vector components may be omitted. Interpolation errors are smaller 

than what we showed in Fig. 9, however especially for the RAPID array, a very long 

strait with a relatively small net volume transport, they are still quite significant. 

Complications due to the rotation of u/v will possibly introduce even larger errors 

further north (although probably smaller than what we’ve assumed before). We 

changed the figure and revised the whole paragraph: 

Interpolation of the vector components u and v onto regular grids is quite complex 

and may lead to significant errors in the calculated transports. The complexity 

arises from the rotation of the u and v components in comparison to the directions 

on a geographic latitude-longitude grid. Regridding would involve rotating the wind 

components to the new wind direction (eastward/northward) prior to the 

interpolation as done e.g. by He et al., 2019 (https://doi.org/10.1038/s41558-018-

0387-3). However, for the rotation the exact grid angle at each grid cell is needed, 

which is not standard output for most CMIP6 models and reanalyses. Outten 2018 

(https://doi.org/10.1175/JreCLI-D-18-0058.1) found that small inaccuracies in the 

used angles, e.g. the exact position of the angles in the grid cell (center vs. cell 

edges or corners) may lead to differences in the calculated transports. Even if the 

model configurations and grid angles were archived correctly, it is still hard to 

guarantee the conservation properties of the interpolated fluxes. Fig. 9 compares 

https://doi.org/10.1038/s41558-018-0387-3
https://doi.org/10.1038/s41558-018-0387-3
https://doi.org/10.1175/JCLI-D-18-0058.1


transports calculated from interpolated u and v values on a regular grid with those 

derived from u and v on the native grid for the CanESM5 model. Transports are 

calculated through Drake passage and the RAPID array, two straits where the 

native grid of the CanESM5 model is not distorted, and therefore any errors 

connected to the rotation of the velocity components are avoided. Even here 

interpolation (both bilinear and conservative as defined in xESMF) leads to 

significant deviations from the actual transports obtained through both StraitFlux 

methods. Especially so at the RAPID array, a very long strait with a relatively small 

net volume transport.  

An alternative approach would be to write each vector in terms of scalar vorticity 

and streamfunction using Helmholtz decomposition, remap those scalar quantities 

to a regular grid and then recover eastward and northward velocity components 

using gradients.  

 
Figure 9. Display of the interpolation error for volume (left) and heat (right) 

transports at the RAPID array and at Drake passage from the CanESM5 model (1° 

resolution). 

 

Typos: 

L268: radiant - should be radians 

We corrected it. 

L313: VPN – should be VPM 

We corrected it. 

L360: Gitlab – maybe you mean github instead, since the urls provided go to github? 

Yes, we changed it to github. 



L373 i.a. – should be i.e. (?) 

We changes it to “for instance”. 

L383: northern most – cut space between words 

We corrected it. 

L397: downlaoded – should be downloaded 

We corrected it. 

 

 

  



Response to Referee #2 (Wang, Shizhu) 

Given the important roles of ocean circulation in shaping the climate system, 

correctly diagnosing the volume/salinity/heat transport in the ocean models is 

always important but complicated by different model grid configurations. 

Winkelbauer et al. present two new methods in calculating ocean transport, with 

one sticking to the original model grid lines and the other following strict vector 

projection and interpolation. Both methods work well with different Arakawa grids, 

and the results given by these two methods are very similar to assumed analytical 

results. And I would say the code is versatile in that users can define strait sections 

in different ways (to my understanding, 3 ways in defining the straits). What makes 

me more satisfied is that the code is organized into a Python package and 

maintained in GitHub, which facilitates its future upgrade and public use. Both the 

paper and the code are well written and I think the paper should be published after 

considering/answering my following suggestions/questions. 

Major concerns: 

I know that this is a scientific rather than a technical documentation, but some 

technical details are still needed to help the readers understand the calculation 

process. 

1. Line123-125: I have difficulty in understanding the processes given here. Are 

the transports or projection vectors “interpolated bilinearly onto the closest 

points on the reference line? Put it another way, after the projection vectors 

of all touched cells are calculated, what is the next? Do we (1) calculate 

transports using these projection vectors of the touched cells (which might 

need the length of the reference line that falls into each grid cell), then 

interpolate the transport value onto the closest points on the reference line, 

or (2) interpolate the projection vectors onto the reference line. Also, the 

transports are “divided by the respective cell thicknesses on the reference 

line”. What do you mean “thickness” here? Vertical thickness or the length of 

the horizontally overlapped part? I suggest the authors to rewrite these 3-4 

sentences and give it in a more clear way. 

(1) is the correct assumption, however the term “transport” was probably a bit 

misleading. We use the projection vectors and multiply the projected u and v 

components with the respective vertical thickness (different before and after 

the interpolation), but not with the respective length of the reference line (not 

needed as we would need to divide by exactly the same length after the 

interpolation to obtain velocities again). This is done for every grid cell that 

touches the reference line and it’s neighboring grid cells (those are needed 

for the interpolation in the next step, see minor comment 5), the “transports” 

are then interpolated onto the closest points on the reference line (T_proj) 

and to obtain velocities again we divide by the vertical thicknesses/extents at 

the T_proj points. 



We changed the sentences to the following: 

Using the magnitudes of the projection vectors we calculate the u and v 

components pointing orthogonally onto the strait at all grid cells touching 

the strait and their neighboring cells (needed for the bilinear interpolation). 

Then, we multiply them with the respective vertical cell thicknesses at the 

u/v points and interpolate those orthogonal “transports” bilinearly onto the 

closest points on the reference line (black crosses in Fig. 2b, called T_proj 

henceforth). In a final step we divide by the vertical thickness of the cells on 

the reference line to obtain velocities again.  

2. Line190: Section2.2.3 talks about the halo grids (some people call these halos 

or halo grids. E.g., https://github.com/pangeo-data/xESMF/issues/109). This 

section deserves more sentences because the authors only said “these 

conditions have to be handled with care” but how? A detailed discussion on 

the halos might go beyond the scope of the current manuscript, but I would 

like to see more discussion on how to overcome the halos in order to a 

smooth use of StraitFlux. An example on dealing with the halo grid problem 

would be even better. 

In the newest version of StraitFlux (v1.0.4) we implemented an automatic 

check where the algorithm checks whether any overlapping points exist at the 

cyclic or the northern boundary points, and if so, those are removed. While 

quite strait forward with the cyclic points, it’s a bit trickier to account for all 

the different handlings of the northern boundary points. We tested the 

indices selection for a strait going “over” the northern boundary of the tripolar 

grids for multiple models with different boundary definitions (CanESM5, 

CMCC-CM2-SR5, ACCESS-CM2, CAMS-CSM1-0, IPSL-CM6A-LR, EC-Earth3) and 

in all cases the new version of StraitFlux selected the correct indices to avoid 

duplicates and/or gaps. Below a figure of the indices selection for the CMCC-

CM2-SR5 model, which pivots the 2 top points at the northern boundary. The 

colorful cells show “duplicate points which are pivoted” onto the “other” side 

(see jump in x indices). The blue and red filled dots show the selected u and v 

indices. The blue “empty” dot in the right panel corresponds to the top blue 

filled dot in the left panel and is not used. Even for a complicated case as this 

no cells are counted twice and also no gaps are present (we have a u index 

between the green and red cell (left, index 80) and between the neighboring 

blue and yellow cell (right, index 279)). While the selection worked perfectly 

fine for the tested models, we still can’t guarantee that it will work for all 

possible conditions, therefore the code still outputs the warning: “Attention: 

Strait crossing the northern boundary – make sure correct indices are 

chosen!”. We added the figure to the appendix and adapted the text as 

follows: 



 
Figure A1. Indices selection across the northern boundary for the CMCC-CM2-

SR5 model. The top two rows of grid cells are rotated along the northern 

boundary, colorful cells show duplicate cells which are pivoted at the top 

boundary (= same cells but upside down). Filled blue dots show selected u 

indices, filled red dots show selected v indices. Empty blue dot shows 

overlapping point which is not selected. 

These conditions have to be handled with care, as especially the volume transport 

calculation is very sensitive and can yield useless results when there is a gap in the 

integration line or if any grid-cells are counted twice. StraitFlux automatically 

checks for overlapping cyclic boundary points and drops any duplicates. This 

should ensure correct transport calculations across the zonal boundaries 

independent of how the models deal with periodicity. Similarly concerning 

the north boundary conditions StraitFlux automatically selects the correct 

indices and avoids gaps and/or duplicates. We tested this successfully for an 

arbitrary line going over the top boundary of the model grids for various 

CMIP6 models with different boundary conditions (CMCC-CM2-Sr5, EC-Earth3, 

CanESM5, ACCESS-CM2, CAMS-CSM1-0, IPSL-CM6A-LR). Fig. A1 in the appendix 

shows an example for the CMCC-CM2-SR5 model. StraitFlux correctly 

chooses the indices so that a continuous line without overlaps is formed. 

While the indices selection worked for the tested models, the generated 

indices should still be checked to ensure a continuous line also for more 

complicated boundary conditions. Therefore, the code automatically outputs 

the warning “Attention: Strait crossing the northern boundary – make sure 

correct indices are chosen!” when moving across the boundary of the grid. 

 



Minor concerns: 

Dear  

1. Line5: transports computed from those are not mass/volume 

We changed it to: 

Use of data interpolated to standard latitude/longitude grids is not an option 

since transports computed from interpolated velocity fields are not mass 

consistent. 

2. Line45: it’s not just the artificial meridional velocity. The artificial zonal velocity 

does not point to the true east either. 

we adapted the sentence to the following: 

While solving the numerical problem of a singularity over the ocean, those 

curvilinear grids complicate the calculation of oceanic transports, especially in the 

proximity of the poles, as velocities in the direction of the artificial poles do not 

point in the direction of the true north and artificial zonal velocities do not 

point to the true east. 

3. Line46: “angle of the grid-lines” is always 90 degree since we are using general 

orthogonal curvilinear coordinates. I think you mean the angle between 

gridlines and regular lon-lat lines. 

Yes, we adapted it: 

The exact position of the poles, the angle between the native gridlines and 

regular longitude-latitude lines, as well as the horizontal and vertical 

resolution varies between different models, forming a vast amount of different 

grid types that complicate inter-comparison between different models and to 

observations. 

4. Line81: Do xe and xw have to be land points in the code? Is possible to 

calculate transports between water points using the current version? 

It is possible to calculate transports between water points, however results 

should be viewed with caution as water will also pass to the left/right of the 

defined strait and the exact position of currents in the models is not known. 

Therefore, the code produces the requested transports, but it also gives a 

warning saying '!!!ATTENTION!!!: first/last point water, recheck indices line!' 

We added the following: 

The boundaries z_b, x_1, x_2 should be chosen such that no water can "escape" the 

desired coast-to-coast section. This can be ensured if x_e and x_w are land points 

and the auxiliary fields describing model ocean depths are used appropriately. It 

is also possible to calculate transports between two water points, however 

results should be viewed with caution and their meaningfulness is left to the 

discretion of the user. 

5. In Figure 2b, four grid cells with blue, green and yellow arrows are shown. The 

one on the upper-left corner is misleading because the red reference line 

does not touch it. 



We added a cell not touching the reference line, as it is also needed for the 

bilinear interpolation of the orthogonal transports onto the strait. 

We clarified it in the text at L116-118: 

For every grid cell touching the strait and their neighboring cells (needed for 

the interpolation onto the strait) we calculate direction vectors of the u and v 

components (blue and green arrows), and normal vectors pointing from the tracer 

grid cell in the direction of the strait (yellow arrows). 

And at L123-125: 

Using the magnitudes of the projection vectors we calculate the u and v 

components pointing orthogonally onto the strait at all grid cells touching the 

strait and their neighboring cells (needed for the bilinear interpolation). 

Then, we multiply them with the respective vertical cell thicknesses at the u/v 

points and interpolate those orthogonal “transports” bilinearly onto the closest 

points on the reference line (black crosses in Fig. 2b, called T_proj henceforth). In a 

final step we divide by the vertical thickness of the cells on the reference line to 

obtain velocities again. 

6. Line155: The authors said “the section can be kinked”. Here does “kinked” 

mean a zigzag line? If it does, then this is good because we do need zigzag 

sections from time to time. According to the definition 

of def_indicies() function, this is only possible if set_latlon = 

True and lon_p and lat_p are provided. Maybe you can put it more clear in the 

paper or in the code documentation. 

Yes that’s true, at the moment that’s the only way to define zigzag sections. 

We added the following: 

The determination of section positions for transport calculations is 

accomplished in the def_indices function. Users can specify the start and end 

points of a section using the ‘coords’ parameter in the ‘transports’ function. 

The section will then follow the shortest distance along the sphere. 

Alternatively, users may pass specific coordinates by setting the 

‘set_latlon=True’ parameter and providing a list of latitude (‘lat_p’) and 

longitude (‘lon_p’) points. The latter option also allows the calculation of 

"kinked" sections.  

7. Line157: a reference line “consisting of equally spaced latitude-longitude 

pairs”. What is the interval between points on the reference line? (about 

0.1deg according to def_indices(), but why?) 

We chose 0.1 deg to ensure that also the higher resolution (0.25°x0.25°) 

models don’t skip any points. This works great for models with a resolution of 

up to approx. 0.25°x0.25° (lower resolution models produce duplicate indices, 

however those are removed automatically), for even higher resolution models 

we advise to use an even denser spacing. We adapted the code for the 

newest version of StraitFlux (v1.0.4), so that the resolution is checked 

automatically, and the interval is adapted accordingly to 0.4*resolution 



(so about 0.4 for 1° models and 0.1 for 0.25° models and even higher for 

higher resolution models). We added the following to the manuscript: 

Using the ‘coords’ option the function generates a reference line (ref_line) 

consisting of equally spaced latitude-longitude pairs whereat the interval 

between points on the reference line is set automatically be suitable for the 

resolution of the model. When passing coordinates via the ‘set_latlon=True’ 

option we advise the user to use intervals not larger than 0.4 times the 

resolution of the model (e.g., intervals of 0.1° for models with a resolution of 

about 0.25°) as coarser intervals might lead to the skipping of grid points 

and generate broken lines. Providing coordinates at high resolution might 

create duplicates in the indices found, however those will be removed 

automatically. 

8. Line165: when I read the manuscript, I thought that if the interval between 

two neighboring points on the reference line is very small, then there should 

be duplicates in the indices found by select_points(). And when I read the code 

of check_availability_indices(), I realized that duplicates will be removed by the 

code automatically. But I still think it will be better if the authors explicitly 

write out that “there might exist duplicates in the indices found 

by select_points(), but the code will later on remove the duplicates 

automatically”. This helps reader like me to release the puzzles. 

See answer above 

9. Line170: the first and last point should be land grid points. Again, is it possible 

to calculate transports between two ocean grid points? 

Yes, it is possible, although we would advise to do it with caution. We adapted 

the sentence to the following:  

To prevent water from "escaping", we advise the user to place the first and last 

point of the defined section over land. Transports may also be calculated for 

sections between two ocean points, however a warning will be given to the 

user as those should be treated with caution. 

10. Line175-176: left/right/above/below 

It is straightforward to use these words to depict the directions of the grid line, but 

cautions need to be taken where grid lines are distorted greatly in the Arctic Ocean. 

For example, in a tripolar grid, if we draw a section following a meridional grid line in 

the Arctic Ocean (e.g., along the Lomonosov ridge), is the cell coming from left/right 

or above/below to its next one? 

Note that the orientation of left/right/above/below is defined concerning the native 

grid indices (x,y), therefore the local direction of x is not necessarily west-east. E.g. 

coming from left in this sense means coming from x-1 to x. This should distinctly 

assign each direction (coming from above/below/left/right) to one move along the 

native gridlines (coming from yi+1/yi-1/xi-1/xi+1), even for straits in the far north (see 

indices of Lomonosov on tripolar grid below). 



 

We adapted Fig. 3 to show the indices selection process in respect to the native grid 

lines (x and y instead of lat/lon on the figure axes). Latitude and Longitude lines are 

shown in grey. Further, we changed the grid cell indices in Fig. 3c) to j to avoid 

confusion with the indices along the strait i in 3a+b).  

 

 Figure 3. Illustration of the indices selection process using select_points. Lines of 

constant latitude/longitude are shown in grey. a) and b) Determination of consecutive 

grid-cells on the native grid. Distances (orange lines) of the 4 grid-cells (blue dots) 

surrounding the current grid-cell (red dot) are compared for all equally spaced 

points i along the reference line. c) Specification whether a u or v component should be 

taken. Black arrows show movement from one grid cell to the next, blue arrows 

show the chosen u or v component. 

We adapted the indexing for Fig3c) in the text (L176-178): 

For instance, to get to cell j in Fig. 3c, we came from left, hence the v component of cell j is 

taken. In order to get to cell j + 1 we come from below, therefore the u component of cell j 

+ 1 is taken. 

And we added the following footnote: 

Note that we follow the native grid points (x,y) and the local direction of x is not 

necessarily west-east and the local direction of y not south-north. For instance, 

coming from left here means coming from point [xi-1,yi]to point [xi,yi]. 

 



1. Line227: similar to Line165: Are duplicates found by the code removed 

automatically? 

Yes, they are. We adapted the section to the following: 

As for the LM, the first step is to find the closest points on the native grids to the 

reference line. The selection of the indices proceeds similar as for LM. 

However, herein additionally to the closest points to the reference line also 

the four immediate neighboring cells of the closest points are used. Those 

are needed for the interpolation of the transports onto the reference line 

(as described in section 2.1.2). Again, any duplicate indices are removed 

automatically. 

 

2. Line313: typo “VPN”. 

We corrected it. 

3. Line339: ITF needs to be clarified. 

We clarified it as Indonesian Throughflow Region. 

4. Line373: what is “i.a.”? 

We changes it to “for instance”. 

5. Line392: I can see that on github, there is an instruction on how to install 

StraitFlux. My own experience, however, is that I can shoot myself in the foot 

if I mix the use of conda and pip. In consideration of the future update of 

StraitFlux (e.g., Line128-129), I strongly encourage the authors to upload this 

tool to conda-forge. 

Thank you for the idea, we will consider uploading StraitFlux to conda-forge  

for a future version. 

 

6. Line397: typo “downlaoded”. 

We corrected the typo. 

Code bugs: 

I test the code by myself and I do encounter some errors which turn out to be 

caused by bug in the code. When I ran the Examples.ipynb script, I got the following 

error. 

TypeError: check_Arakawa() takes 4 positional arguments but 5 were given. 

Then I found that check_Arakawa() only accepts 4 rather than 5 positional arguments. 

So in line113 and line131 of mastersciprt_line.py, there should be no 

the product parameter. 

Thank you for checking the code. We corrected the error in the newest version of 

StraitFlux (v1.0.4). 

 

 


