
1 
 

Leveraging a time-series event separation method to untangle 
time-varying hydrologic controls influence on wildfire disturbed 
streamflow  

Haley A. Canham1, Belize A. Lane1, Colin B. Phillips1, Brendan P. Murphy2 

1 Department of Civil and Environmental Engineering, Utah State University, Logan, UT, US 5 
2 School of Environmental Science, Simon Fraser University, Burnaby, BC, Canada 

Correspondence to: Haley A. Canham (haley.canham@usu.edu) 

Abstract. Watershed disturbances can have broad, long-lasting impacts that result in a range of streamflow response. 

Increasing disturbance regimes, particularly from wildfire, is a growing concern for watershed management. The 

influence of watershed disturbances on rainfall-runoff patterns has proved challenging to isolate from undisturbed 10 

streamflow variability due to the role of hydrologic controls that vary through time, including water year type, 

seasonality, and antecedent precipitation. To better assess the influence of watershed disturbance on rainfall-runoff 

event patterns we developed the Rainfall-Runoff Event Detection and Identification (RREDI) toolkit. The RREDI 

toolkit is a novel time-series event separation method that automates the pairing and attribution of precipitation and 

streamflow events, leveraging and building on existing event separation methods. A rainfall-runoff event dataset of 15 

5042 events was generated by the RREDI toolkit from a collection of nine western US study watersheds spanning a 

range of streamflow regimes, watershed properties, and burn characteristics. Through analyzing the rainfall-runoff 

event dataset, we found that water year type and season were significant controls on rainfall-runoff metrics. The 

significance of antecedent precipitation was variable between watersheds, indicating a more complex relationship for 

this control. The watershed-specific permutations of significant controls resulted in unique significant condition group 20 

trends in the rainfall storm depth and peak runoff relationship in two contrasting watersheds. In general, for each of 

the significant condition groups post-fire peak runoff was higher than undisturbed peak runoff except during winter 

in snow-dominated watersheds. Consideration of the time-varying hydrologic controls, particularly water year type 

and season, were identified as important when untangling the influence of wildfire on the rainfall-runoff patterns. The 

RREDI toolkit can be further applied to investigate the influence of other watershed disturbances and controls to 25 

increase understanding of rainfall-runoff patterns across the landscape.  

1. Introduction 

Watershed disturbances can have broad, long lasting, and variable impacts on watershed hydrology (Ebel & 

Mirus, 2014). A range of disturbances including wildfire, drought, flood, insect infestation, invasive species, 

agriculture,  urbanization, mining, and forest management have been observed to alter streamflow (Adams et al., 2012; 30 

Brantley et al., 2013; Ebel & Mirus, 2014; Goeking & Tarboton, 2020; Hopkins et al., 2015; Kelly et al., 2017; Miller 

& Zégre, 2016). Wildfire is particularly impactful: since 2000 an average of 7.0 million acres has burned annually in 

the US (Hoover & Hanson, 2021). Further, in a changing climate the occurrence and severity of wildfire is increasing 

(Hallema et al., 2018; Murphy et al., 2018; Oakley, 2021; Robinne et al., 2021). Distilling the influence of watershed 
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disturbance from the natural variability within streamflow has proved challenging across disturbance regimes. A better 35 

understanding of hydrologic controls that vary in time in disturbed watersheds is critical for watershed management 

resiliency in the face of increasing disturbance regimes (Mirus et al., 2017).  

Wildfires can cause abrupt changes to hydrologic processes and properties resulting in altered streamflow patterns 

that change through time as the watershed recovers (Ebel & Mirus, 2014; Santi & Rengers, 2020; Wagenbrenner et 

al., 2021). Post-fire changes in soil properties and vegetation may alter runoff generation processes (Ebel, Moody, et 40 

al., 2012; Santi & Rengers, 2020). Altered soil properties may include changes in soil-water repellency and infiltration 

capacity, the presence of ash, and loss of soil organic matter (Balfour et al., 2014; Ebel, Moody, et al., 2012; Santi & 

Rengers, 2020). Loss of vegetation may alter evapotranspiration and interception within the watershed (Atchley et al., 

2018; Poon & Kinoshita, 2018; Santi & Rengers, 2020). The observed influence of these altered hydrologic properties 

on streamflow is variable in both the direction and magnitude of change. Total annual streamflow has been observed 45 

to increase (Bart, 2016; Beyene et al., 2021; Caldwell et al., 2020; Y. Guo et al., 2021; Hallema et al., 2017; Khaledi 

et al., 2022; Kinoshita & Hogue, 2015; Mahat et al., 2016; Owens et al., 2013; Saxe et al., 2018; Wine et al., 2018; 

Wine & Cadol, 2016), decrease (Balocchi et al., 2020; Biederman et al., 2022), and stay the same (Bart & Hope, 2010; 

Vore et al., 2020). Post-fire event flows have similarly been found to increase (Beyene et al., 2021; Hallema et al., 

2017; Mahat et al., 2016; Saxe et al., 2018), decrease (Balocchi et al., 2020), and show no significant change (Kinoshita 50 

& Hogue, 2015; Long & Chang, 2022; Newcomer et al., 2023; Nunes et al., 2020; Owens et al., 2013). This leaves 

questions about our ability to distill the influence of the wildfire disturbance from the watershed natural variability.  

In addition to watershed disturbances, time-varying hydrologic controls including water year type (WYT), 

seasonality, and antecedent precipitation have been found to influence rainfall-runoff patterns. Water year type is a 

commonly used categorization to compare individual years against historical trends (Null & Viers, 2013).  Variation 55 

between WYT wet and dry years may result in differences in runoff response (Biederman et al., 2022; Null & Viers, 

2013). Examples of WYT variation drivers include variation in annual snowpack (Cayan, 1995) or the occurrence and 

intensity of precipitation from monsoons or atmospheric rivers (Arriaga-Ramierez & Cavazos, 2010; Pascolini-

Campbell et al., 2015). Seasonality, specifically seasons based on the annual hydrograph, can alter event runoff 

response across a range of watersheds (Merz et al., 2006; Merz & Blöschl, 2009; Norbiato et al., 2009; Tarasova, 60 

Basso, Zink, et al., 2018). Seasonal differences have been attributed to precipitation type, storm properties (intensity, 

depth), water balance, and antecedent wetness conditions (Berghuijs et al., 2014; Merz et al., 2006; Merz & Blöschl, 

2009; Norbiato et al., 2009; Tarasova, Basso, Zink, et al., 2018). Finally, antecedent precipitation and antecedent 

moisture have been found to alter event runoff response (Merz et al., 2006; Merz & Blöschl, 2009; Tarasova, Basso, 

Zink, et al., 2018). Antecedent precipitation is commonly used as a proxy for antecedent moisture (Merz & Blöschl, 65 

2009; Mishra & Singh, 2003; Tarasova, Basso, Zink, et al., 2018). Despite their established influence on event runoff 

response, these time-varying hydrologic controls are inconsistently considered in hydrologic disturbance studies. 

Selected post-fire streamflow change studies have assessed some of these time-varying hydrologic controls, but 

to the best of the authors knowledge none to date have considered all three potential controls and very few studies 

have focused on the event scale. Of these three controls, WYT is most frequently considered when evaluating wildfire 70 

influence on streamflow (Beyene et al., 2021; Biederman et al., 2022; Hallema et al., 2017; Long & Chang, 2022; 
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Wine & Cadol, 2016). A common method to account for the role of WYT variability is compare water year expected 

streamflow and observed streamflow to isolate the influence of the disturbance (Beyene et al., 2021; D. Guo et al., 

2023; Hallema et al., 2017; Mahat et al., 2016; Newcomer et al., 2023). Another method for pre- and post-fire 

comparison is water year typing based on total annual precipitation-streamflow relationships or annual percentiles 75 

(Biederman et al., 2022; Long & Chang, 2022). In addition to interannual variability, several studies have evaluated 

post-fire changes in total streamflow or flow statistics within specific seasons (Balocchi et al., 2020; Biederman et al., 

2022; Kinoshita & Hogue, 2015; Saxe et al., 2018; Wine et al., 2018). Antecedent precipitation is less commonly 

considered in post-fire streamflow response studies. Long & Chang (2022) used three-day antecedent precipitation to 

normalized runoff event volume, but found no altered streamflow significance. Lack of consistent consideration of 80 

WYT, seasonal variability, and antecedent precipitation may help explain the inconsistency in observed post-fire 

effects on streamflow. 

Large-sample hydrology studies are frequently used to investigate time-varying and static watershed controls on 

event-scale rainfall-runoff patterns. The event-scale enables a process-based understanding of driving hydrologic 

processes in catchment hydrology (Gupta et al., 2014; Sivapalan, 2009). Large-sample investigations into event-scale 85 

controls in Europe have found that time-varying hydrologic controls influence event runoff ratios (Merz et al., 2006; 

Merz & Blöschl, 2009; Norbiato et al., 2009; Tarasova, Basso, Poncelet, et al., 2018; Tarasova, Basso, Zink, et al., 

2018). A similar event-scale large-sample study of 432 US watersheds evaluated only static controls on event runoff 

response, and identified aridity, topographic slope, soil permeability, rock type, and vegetation density as significant 

(Wu et al., 2021). None of these studies considered the separate impact of watershed disturbance. Long & Chang 90 

(2022) considered WYT and antecedent precipitation while investigating the influence of wildfire disturbance on 

event runoff response. However, they analyzed only a small-sample of rainfall-runoff events from two years, one pre- 

and one post-fire, in a small-sample of six watersheds in Oregon, US.  

The objectives of this paper were twofold. The first was to describe and evaluate the Rainfall-Runoff Event 

Detection and Identification (RREDI) toolkit, a novel time-series event separation method (Canham & Lane, 2022). 95 

The second was to apply the proposed method to investigate the influence of time-varying hydrologic controls 

including WYT, season, and antecedent precipitation on event runoff response. The specific aims of the investigation 

into time-varying hydrologic controls were to (1) explore rainfall-runoff patterns, (2) identify significant time-varying 

hydrologic controls on event runoff response, and (3) evaluate how time-varying hydrologic controls influence event 

runoff response in wildfire disturbed watersheds. We hypothesize that accounting for these time-varying hydrologic 100 

controls will untangle the natural watershed streamflow variability thereby making the influence of the disturbance 

more apparent.  

2. Study watersheds 

Nine study watersheds in the western US were selected based on watershed properties, burn characteristics, and 

streamflow data availability. First, we identified western US watersheds with at least 20 years of continuous 15-minute 105 

streamflow data (Falcone, 2011). Of these, we identified watersheds with a greater than 5% area burned within the 

available record of 1984 to 2020 from the MTBS database (Monitoring Trends in Burn Severity (MTBS), n.d.). This 
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set was further reduced to watersheds with pre-fire and post-fire streamflow records of at least ten and six years 

respectively and minimal upstream anthropogenic influence, such as reservoirs. The watersheds spanned five 

magnitudes of contributing area (1.8 to 10,125 km2) and from 5 to 100% area burned. The final study watershed 110 

selection from this set were those with no other fires within the MTBS database exceeding 5% area burned within the 

watershed. The nine selected watersheds spanned a wide range of watershed properties and burn characteristics (Figure 

1). 

 

 115 

Figure 1: Nine selected study watersheds (labeled). Shown are watersheds (black) and fire perimeters (red).  

 

The nine study watersheds spanned a large range of contributing areas, streamflow regimes, and burn conditions 

(Table 1). The contributing area range was three orders of magnitude, where the largest watershed, the Cache La 

Poudre River, was 2,966 km2, and the smallest, Ash Canyon Creek, was 14 km2. The watersheds included a range of 120 

streamflow regimes including seven snow melt dominated systems with average annual hydrograph peak dates 

between April and June and two wet season rain dominated systems with average annual hydrograph peak dates 

between January and February. All nine study watersheds were impacted with differing size and severity fires. The 

highest impacted was Arroyo Seco from the Station Fire (2009) with 100% area burned (78% high and moderate burn 

severity). The least impacted watershed was the Cache La Poudre River from the High Park Fire (2012) with 10% 125 

area burned (5% high and moderate severity). 
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Table 1: Watershed properties and burn characteristics for the study watersheds.  

Watershed State 

Contributing 

area 

(km2) 

USGS 

Gage ID 
Fire 

Ignition 

Year 

Area 

burned 

(%) 

Arroyo Seco CA 42 11098000 Station Fire 2009 100 

Ash Canyon Creek NV 14 10311200 Waterfall Fire 2004 63 

Cache La Poudre CO 2966 06752260 High Park Fire 2012 10 

Camp Creek CO 25 07103703 Waldo Canyon Fire 2012 85 

Clear Creek UT 426 10194200 Twitchell Canyon Fire 2010 25 

Shitike Creek OR 57 14092750 Waterfalls 2 Fire 2012 76 

Thompson River MT 1652 12389500 Chippy Creek Fire 2007 15 

Valley Creek ID 376 13295000 Halstead Fire 2012 27 

Wet Bottom Creek AZ 94 09508300 Willow Fire 2004 84 

 

2.1. Hydrologic data inputs 

Streamflow and precipitation data were obtained for each study watershed. The 15-minute, daily, and total annual 130 

streamflow data for the full period of record were retrieved from the USGS streamflow gage. The total annual 

precipitation at the centroid of each study watershed used to classify WYT was retrieved from PRISM (Oregon State 

University, 2022). Hourly precipitation time series were obtained for the watershed centroid from the Analysis of 

Record Calibration (AORC) 4km2 resolution data product for water years 1980 to 2022 (National Weather Service 

Office of Water Prediction, 2021). Linear interpolation was used to spread the hourly rainfall over the timestep at the 135 

AORC resolution of 1 mm. The AORC data product was selected because of higher correlation between the AORC 

data product and rain gage measurements compared to other gridded precipitation data products in studies in Louisiana 

and the Great Lakes basins (Hong et al., 2022; Kim & Villarini, 2022). We additionally performed a comparison of 

storm events in a mountainous region, specifically in Clear Creek watershed, for water year 2011. We compared the 

AORC-based storm events at the corresponding locations of two rain gages: one temporary rain gage in the mountains 140 

installed after a wildfire (Murphy et al., 2019) and a NOAA COOP rain gage in the nearby valley 18 km from Clear 

Creek watershed (Beaver 4E, UT US COOP:420522). For the storm events in water year 2011, the average storm 

depth based on the AORC data product was less than that measured at the rain gage by 0.6 mm for the Clear Creek 

rain gage and by 8.3 mm for the NOAA COOP rain gage. Similarly, the average 60-minute peak storm intensity for 

the AORC data product was less than the rain gage by 2.3 mm/hr for the Clear Creek rain gage and by 1.5 mm/hr for 145 

the NOAA COOP rain gage. 

3. Methods 

We describe the four key steps of the RREDI toolkit in section 3.1 (Figure 2), with additional details in 

Supplemental Information. A rainfall-runoff event dataset was created by applying the RREDI toolkit to nine western 
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US watersheds (Figure 2). This dataset was then used to explore rainfall-runoff event patterns, identify significant 150 

time-varying hydrologic controls, and evaluate the influence of these controls in wildfire disturbed watersheds (Figure 

2). The hydrologic conditions associated with each time-varying hydrologic control were identified and assigned for 

each event as described in section 3.2. The sorted rainfall-runoff events were then explored as described in section 

3.3. Trends in rainfall-runoff event patterns were identified using a LOWESS curve. Inferential statistics were used to 

test the significance of the hydrologic conditions to identify the significant time-varying hydrologic controls for 155 

generalized runoff metric groups. The influence of the wildfire was then evaluated relative to the undisturbed runoff 

event significant condition group trends in two contrasting watersheds, Arroyo Seco and Clear Creek.   

 

 

Figure 2: Methods workflow to explore the influence of time-varying hydrologic controls on rainfall-runoff 160 

event patterns as described in this paper. The four key steps of the RREDI toolkit (black dashed box) are 

outlined: Step 1. Event pair identification, Step 2. Event timing, Step 3. Event metrics calculation, and Step 4. 

Event flagging. Major connections between workflow steps and study research questions (Q) are shown.   

 

3.1. RREDI toolkit 165 

The RREDI toolkit was developed to automatically separate rainfall-runoff events for any watershed using time-

series signal processing in four steps (Figure 2; Supplemental Information) (Canham & Lane, 2022). Signal processing 

theory provided techniques including data smoothing, peak detection, and window processing that were used to 

automate detection of features from a time series (Patterson et al., 2020). In step 1, rainfall-runoff event pairs and the 

associated event window were identified using daily streamflow and precipitation data based on the co-occurrence of 170 

separately identified rainfall events by separating precipitation timeseries into storms and runoff events using signal 

processing theory from the overlapping period of record (Figure 2). For each event pair, the event window from the 

start of the rainfall to the end of runoff was passed to step 2. The runoff event start, peak, and end timing and magnitude 
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and the runoff event volume were then identified using then 15-minute streamflow data and the 60-minute storm 

intensity in step 2 (Figure 2; Figure 3). For each rainfall-runoff event, a set of 17 metrics were calculated using the 175 

rainfall and runoff event timings in step 3 (Figure 2). Metrics fell within four runoff metric groups: runoff volume 

metrics, runoff magnitude metrics, runoff duration metrics, and rainfall-runoff timing metrics (Fig. S4; Table S3). 

Selected metrics utilized further in this study included those as follows (Figure 3 b). The runoff volume metric group 

included event volume. The runoff magnitude metric group included runoff peak defined by the runoff peak 

magnitude. The runoff duration metric group included event duration calculated as the difference between the runoff 180 

event start and end times. The rainfall-runoff timing metric group included response time calculated as the difference 

between the storm start time and the runoff start time. Metrics were also normalized by contributing area to facilitate 

comparison between study watersheds. Finally, in step 4, event flagging was performed to remove incorrectly 

identified events falling within four event identification issues: gaps in 15-minute streamflow data, diurnal cycling, 

duplicate events, and no identified event end time (Figure 2; Supplemental Information). The RREDI toolkit was fully 185 

automated using the open-source python language.   

 

 

Figure 3. RREDI toolkit rainfall-runoff event examples and metrics. (a) Eight example rainfall-runoff events 

identified using the RREDI toolkit. Shown are the rainfall event (blue), the paired runoff event hydrograph 190 

(black), and the identified runoff start, peak, and end times and magnitudes (black dots). (b) Example event 

showing relevant rainfall-runoff event metrics including event volume, peak, duration, and response time. 

Event separation (black dashed) between event flow volume and baseflow is shown. 

 

A systematic assessment of the RREDI toolkit outputs was performed. For each of the study watersheds, all 195 

rainfall-runoff events occurring in the wettest, mean, and driest water years based on watershed average annual total 

precipitation (Oregon State University, 2022) were visually inspected. The RREDI toolkit identified runoff start, peak, 

and end timing were compared with those identified by visual inspection and assessed with respect to the four event 

identification issues described above. RREDI toolkit performance assessment results for each watershed and overall 
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included the percent of events with accurately identified timing output from the RREDI toolkit, the percent of events 200 

flagged in step 4, and the percent of events retained after removal of flagged events.  

3.2. Hydrologic condition identification and assignment 

Hydrologic conditions were identified and assigned for each rainfall-runoff event with respect to the three time-

varying hydrologic controls considered in this study: WYT, season, and antecedent precipitation. Events were also 

defined as undisturbed or disturbed, where disturbed events were those occurring within six years post-fire (Ebel et 205 

al., 2022; Wagenbrenner et al., 2021). Water year type was assigned as wet or dry based on total annual streamflow 

and watershed average total annual precipitation following Biederman et al. (2022) for all study watersheds (Figure 4 

a; Fig. S6). Total annual streamflow and precipitation were plotted for the undisturbed period of record to visually 

identify the annual precipitation threshold above which streamflow increased linearly with precipitation. Years (both 

undisturbed and disturbed) with annual precipitation above or below the threshold were then classified as wet or dry, 210 

respectively. For watersheds where no precipitation threshold was identified, the driest third of years (both undisturbed 

and disturbed) by annual precipitation were considered dry. Winter, melt, and summer hydrologic seasons were 

identified for each watershed based on inspection of the average annual hydrograph and the earliest and latest mean 

(2001 - 2018) snow-off dates within the watershed (O’Leary III et al., 2020) (Figure 4 b; Fig. S7). The start of winter 

season was uniformly set as November 1 to capture the change in precipitation pattern and type between summer and 215 

winter. Melt season started the month after the earliest snow-off date and summer season started the month after the 

latest snow-off date to account for the lagged streamflow response to snowmelt. Watersheds with less than 10% of the 

watershed with an identified snow melt date were considered to have no melt season (i.e., only winter and summer). 

In watersheds with no melt, summer started the month where baseflow dominated over winter storm peaks in the mean 

annual hydrograph. Event antecedent precipitation was assigned as none (<1mm), low (1-25mm), and high (>25mm) 220 

based on the cumulative precipitation depth over the six days prior to the precipitation event start time (Long & Chang, 

2022; Merz et al., 2006; Merz & Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018) (Figure 4 c). Only snow-off events 

were considered in this assessment, including only summer events in watersheds with a melt season and all events in 

watersheds without a melt season, to isolate the influence of soil moisture on runoff rather than snowmelt and rain-

on-snow influences.  225 
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Figure 4: Example hydrologic condition identification for time-varying hydrologic controls. (a) Water year 

type wet (blue) and dry (orange) years for Arroyo Seco. The ordinary least squares linear regression lines for 

above and below the threshold are shown. (b) Seasons (vertical dashed) delineated from the undisturbed 

average annual hydrograph for a no-snow watershed (top) with winter and summer (Arroyo Seco) and a snow 230 

dominated watershed (bottom) with winter, melt, and summer (Clear Creek). The minimum and maximum 

snow melt dates are shown consecutively (purple dashed). (c) The six-day prior to storm start antecedent 

precipitation period (between dashed) for an example rainfall-runoff event (rainfall is dark blue, runoff is 

black). Shown are all storms which are summed within the antecedent precipitation period (light blue). 

 235 

3.3. Statistical assessment of event-scale hydrologic variability 

A number of statistical methods were used to investigate the influence of the time-varying controls and wildfire 

disturbance on event runoff response. Trends in undisturbed rainfall-runoff patterns were first evaluated using a 

LOWESS curve. Inferential statistics and the kernel density estimation (KDE) distributions were then used to assess 
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the effects of time-varying hydrologic conditions on undisturbed rainfall-runoff event metrics. The non-parametric 240 

Mann Whitney U Test was used to evaluate the effect of WYT, and the non-parametric Kruskal Wallis Test was used 

to evaluate the effect of season and antecedent precipitation, all at a 95% confidence level. If significant differences 

were found based on the Kruskal Wallis Test, the Dunn Test was used to identify specific significant hydrologic 

conditions. The null hypothesis for all tests was that hydrologic conditions did not impact event metrics.  

The statistical test results for all area-normalized metrics were summarized by runoff metric group across and 245 

within study watersheds to identify significant hydrologic controls on event runoff response. Summarizing by area-

normalized metrics facilitated comparison between watersheds. Summarizing by runoff metric groups facilitated 

comparison between time-varying hydrologic controls and reduced the emphasis on specific metric calculation 

methods. The relative importance of each time-varying hydrologic control was assessed for each watershed and runoff 

metric group. For each metric group, the significance rate was calculated for the study watersheds together and 250 

individually by dividing the number of significant event metrics by the number of metrics in the runoff metric group. 

When a single hydrologic condition was identified as significant by the Dunn Test, the significant rate for the condition 

was calculated by dividing the number of significant event metrics for the condition by the number of metrics in the 

runoff metric group.  

Watershed specific significant condition groups were identified for the storm depth and runoff peak relationship 255 

in two contrasting watersheds: Arroyo Seco and Clear Creek. The undisturbed rainfall-runoff events in each watershed 

were sorted into hydrologic condition permutations of the significant hydrologic controls for peak runoff. A power 

trend was fit to each permutation using ordinary least squares regression. The significant condition groups were 

identified by combining the permutations with similar power trends. An updated power trend was fit to each significant 

condition group.  260 

The influence of the wildfire disturbance on event runoff response was then evaluated within each significant 

condition group. The percent of post-fire events above the significant group trend and the percent one standard 

deviation above the trend was calculated for all combined and individual years post-fire. The post-fire percent above 

the significant group trend and the standard deviation was compared to the expected 50% and 16%, respectively.     

4. Results 265 

4.1. RREDI toolkit performance  

The RREDI toolkit performed well across the nine study watersheds and resulted in a rainfall-runoff event dataset 

of 5042 events (Table S4). 7026 events were initially identified by the RREDI toolkit in step 2. Of these, 774 events 

(11% of total events, 5 to 34% range across study watersheds) were systematically inspected for event timing and 

flagging accuracy (Table 2). Events were identified at a 69% accuracy rate pre-flagging (step 2) and the accuracy rate 270 

rose to 90% after flagging (step 4). The identified occurrence rate for each of the four known issues across all 

watersheds was 2% for 15-minute streamflow data gaps, 13% for diurnal cycling, 4% for duplicate events, and 15% 

for no identified end time events (Table S5). The total event retention rate after flagging was 72%, with the highest 

retention rate of 83% in Arroyo Seco and the lowest of 45% in Camp Creek. 

  275 
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Table 2: RREDI toolkit rainfall-runoff performance results including event accuracy, flagging, and retention 

rates across the study watersheds.  

Watershed 

Event accuracy 

pre-flagging 

(%) 

Event accuracy 

post-flagging 

(%) 

Events retained 

post-flagging 

(#) 

Events retained  

post-flagging 

(%) 

Arroyo Seco 88 91 394 83 

Ash Canyon Creek 75 78 374 75 

Cache La Poudre 80 93 1208 72 

Camp Creek 42 88 162 45 

Clear Creek 77 89 886 73 

Thompson River 67 91 449 75 

Shitike Creek 62 93 663 75 

Valley Creek 74 91 624 73 

Wet Bottom Creek 70 100 282 63 

Overall 69 90 5042 72 

 

4.2. Hydrologic variability 

The resulting rainfall-runoff event dataset consisting of 5042 events across the study watersheds allowed for a 280 

data-driven analysis of event runoff patterns and controls. The dataset was sufficiently large such that rainfall-runoff 

events were assigned to all hydrologic conditions in each watershed (Table S6). For undisturbed events across all the 

study watersheds, there was an increasing trend in runoff peak with increasing storm depth (Figure 5). A slope break 

was identified at 10 mm storm depth, above which the runoff peak increases more rapidly with increasing storm depth. 

Variation between runoff peak and storm depth existed across the watersheds. The identified slope break was most 285 

apparent in three watersheds: Arroyo Seco, Shitike Creek, and Wet Bottom Creek. Events above the threshold in the 

other six watersheds were limited. Four watersheds, Arroyo Seco, Cache La Poudre River, Camp Creek, and Wet 

Bottom Creek had large spreads in the LOWESS curve residuals compared to the other five watersheds. The remainder 

of the study results focus on two contrasting watersheds, Clear Creek and Arroyo Seco (Figure 1; Table 1). 
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 290 

Figure 5: Undisturbed rainfall-runoff events for storm depth (mm) and runoff peak (m3 s-1 km-2). A LOWESS 

curve (dashed black line) for the undisturbed events for all study watersheds and each individual watershed is 

shown. 

 

Clear directional shifts that varied by runoff metric and watershed were apparent in four selected runoff metric 295 

undisturbed event distributions for WYT, season, and antecedent precipitation. In both Arroyo Seco and Clear Creek, 

wet years had a higher median value than dry years for volume, peak, duration, and response time runoff metrics 

(Figure 6). Winter had higher median values than summer for volume, peak, and response time runoff metrics in 

Arroyo Seco but shifts were not as consistent in direction in Clear Creek. For antecedent precipitation in both Arroyo 

Seco and Clear Creek, the largest median peak runoff and shortest median response time was for high antecedent 300 

precipitation.   

https://doi.org/10.5194/egusphere-2023-2875
Preprint. Discussion started: 2 January 2024
c© Author(s) 2024. CC BY 4.0 License.



13 
 

 

Figure 6: Undisturbed rainfall-runoff event KDE distributions for hydrologic conditions for WYT, season, and 

antecedent precipitation in (a) Arroyo Seco and (b) Clear Creek for four selected runoff metrics: volume, peak, 

duration, and response time. Distributions are colored by hydrologic condition. The median value of each 305 

distribution is shown (dashed line). Significant difference between distributions is indicated (*). Note there is 

no melt season in Arroyo Seco.  
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All time-varying hydrologic controls were found to be significant but significance varied by event runoff metric 

and watershed (Figure 6; Table 3). Water year type was the most often significant across the four selected runoff 310 

metrics in Arroyo Seco while season was the most often significant in Clear Creek (Figure 6; Table 3). Antecedent 

precipitation was the least significant control in both watersheds and exhibited the most variation in significance 

between runoff metrics across the two watersheds. Of the four selected runoff metrics, peak runoff was most 

commonly significant across all the study watersheds for all three time-varying hydrologic controls (Tables S7, S8, 

S9). Peak runoff was also significant across the three time-varying hydrologic controls for both Arroyo Seco and Clear 315 

Creek except antecedent precipitation in Clear Creek (Figure 6; Table 3). Conversely, the least common significant 

metric across all the study watersheds varied by runoff metric, including duration and response time for WYT, duration 

for season, and volume for antecedent precipitation (Tables S7, S8, S9). Despite being least commonly significant 

overall, response time for WTY in Arroyo Seco and duration for season in Clear Creek were significant (Figure 6; 

Table 3).  320 

 

Table 3: Undisturbed rainfall-runoff event hydrologic condition statistical test results for the Mann Whitney 

U Test (WYT) and Kruskal Wallis and Dunn Tests (season, antecedent precipitation) for Arroyo Seco and 

Clear Creek for four selected runoff event metrics. Shading indicates rejection of the null hypothesis at a 

significance level of 0.05. In shaded cells, an indicator marks the significantly different condition from the Dunn 325 

Test and no indicator means all conditions were significantly different. 

Watershed 
Time-varying hydrologic 
control 

Event metrics 

Volume Peak Duration Response time 

Arroyo Seco Water year type <0.001 <0.001 0.05 0.005 

Season 0.48 0.013 0.15 0.47 

Antecedent precipitation 0.32 <0.001 + 0.57 0.12 
Clear Creek Water year type 0.009 <0.001 0.56 0.60 

Season <0.001 * <0.001 <0.001 # <0.001 # 

Antecedent precipitation 0.07 0.11 0.003 & 0.008 & 
Seasons: *Winter, ^Melt, #Summer 
Antecedent precipitation: &None, ~Low, +High 
 

Water year type and season were generally more important while antecedent precipitation was generally less 

important, evaluated by the relative significance rates, across all study watersheds (Figure 7). However, time-varying 

hydrologic control importance varied for individual watersheds and area-normalized runoff metric groups. The 330 

watershed-average WYT significance rate exceeded 50% for runoff volume and runoff magnitude metric groups 

(Figure 7 a). Water year type was more important than the watershed-average for all metric groups in Arroyo Seco 

(Figure 7 b) and for runoff magnitude and runoff  volume metrics groups in Clear Creek (Figure 7 c). Water year type 

was generally more important than the watershed-average in Arroyo Seco, Ash Canyon Creek, Camp Creek, and 

Shitike Creek; less important in Clear Creek, Valley Creek, and Wet Bottom Creek; and similarly important in Cache 335 

La Poudre River and Thompson River (Fig. S8). 
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Figure 7: Area-normalized event runoff metric group significance summary rates for statistical test results. 

Individual plots for the watershed-average (a), Arroyo Seco (b), and Clear Creek (c). Shown are the average 340 

significance rates within the four rainfall-runoff metric groups including runoff volume metrics (blue), runoff 

magnitude metrics (red), runoff duration metrics (grey), and rainfall-runoff timing metrics (purple). Bars are 

grouped by time-varying hydrologic control (WYT, season, antecedent precipitation). The WYT group shows 

results of the Mann Whitney U Test. The season and antecedent precipitation groups show results from the 

Kruskal Wallis Test. The hatching within the bars represents statistically different individual hydrologic 345 

conditions from the Dunn Test where no hatching indicates all hydrologic conditions were statistically different. 

The 50% rate is highlighted (black dashed).  
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The season watershed-average significance rate exceeded 50% for runoff volume and runoff magnitude metric 

groups (Figure 7 a). Season was more important than the watershed-average for in no metric groups in Arroyo Seco 350 

(Figure 7 b) and for all metric groups in Clear Creek (Figure 7 c). Season was generally more important than the 

watershed-average in Cache La Poudre River, Clear Creek, Thompson River, and Valley Creek; less important in Ash 

Canyon Creek and Camp Creek; and similarly important in Arroyo Seco, Shitike Creek, and Wet Bottom Creek (Fig. 

S8). 

The antecedent precipitation watershed-average significance rate exceeded 50% for no metric groups (Figure 7 355 

a). Antecedent precipitation was more important than the watershed-average for runoff magnitude, runoff duration, 

and rainfall-runoff timing metric groups in Arroyo Seco (Figure 7 b) and for runoff volume, runoff duration, and 

rainfall-runoff timing metric groups in Clear Creek (Figure 7 c). Antecedent precipitation was generally more 

important than the watershed-average in Arroyo Seco and Clear Creek; less important in Ash Canyon Creek, Camp 

Creek, Shitike Creek, Thompson River, Valley Creek, and Wet Bottom Creek; and similarly important in Cache La 360 

Poudre River (Fig. S8). 

Three and four unique significant condition groups and trends emerged for the storm depth and peak runoff 

relationship in Arroyo Seco and Clear Creek, respectively (Figure 8). The watershed specific significant condition 

groups were identified from eight and six hydrologic condition permutations of the watershed specific significant 

hydrologic controls in Arroyo Seco and Clear Creek, respectively (Fig. S9). The three significant condition groups in 365 

Arroyo Seco were (1) wet none+low, (2) wet high, and (3) dry. The four significant condition groups in Clear Creek 

were (1) summer, (2) winter, (3) wet melt, and (4) wet dry. Significant condition group trends were only assessed 

above 10 mm storm depth in Arroyo Seco consistent with the storm depth threshold observed in this watershed (Figure 

5). Each significant condition group power trend was distinct, falling within a different portion of the all-events 

distribution (Figure 8; Table S10).  370 
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Figure 8: Significant condition groups for Arroyo Seco and Clear Creek for storm depth (mm) and runoff peak 

(m3 s-1 km-2). Shown are the significant group trends and one standard deviation for each of the significant 

condition group (colored) and the all-events trend (black). The undisturbed rainfall-runoff events (top) and 

post-fire events within each significant condition group are shown.   375 

 

The portion of post-fire events that fell above the significant condition group trend was generally greater than 

expected for peak runoff in Arroyo Seco and Clear Creek, however this varied by significant condition group (Figure 

8). The percent of post-fire events above the significant condition group trend was at least 50% for all significant 

condition groups in Arroyo Seco and all groups except winter in Clear Creek (Table S11). The percent of events more 380 

than one standard deviation above the significant condition group trend was at least 16% for all significant condition 

groups except dry in Arroyo Seco and all except winter in Clear Creek. In general, the percent of post-fire events 

above the significant condition group trend and one standard deviation decreased with increasing time since fire 

(Figure 8; Table S11).  
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5. Discussion 385 

5.1. RREDI toolkit  

The rainfall-runoff event dataset generated by the RREDI toolkit allowed for a large-sample analysis of 

hydrologic trends and controls across the study watersheds. The toolkit had an overall 90% event accuracy rate, 

ranging from 78 to 100% across study watersheds. There were no clear physio-climatic patterns to the performance. 

Lower event accuracy rates in Ash Canyon Creek, Camp Creek, and Clear Creek may be associated with a range of 390 

factors including poor quantification of storm timing, water withdrawals, temporally aggregated streamflow, and 

extended periods of diurnal cycling. The event accuracy increased after removal of flagged events for all study 

watersheds. Event retention rates were below average in Camp Creek and Wet Bottom Creek but post-flagging event 

accuracy rates were near average and 100%, respectively. Both watersheds have flashy hydrology and substantial 

periods of low flow diurnal cycling. This resulted in several identified event pairs where the event runoff response 395 

was outside of the allowable response window. 

Quantification of storm events influenced the RREDI toolkit performance, where storm timing was a common 

reason for poor event identification. A gridded precipitation data product was used to overcome sparse rain gage 

density and limited or sporadic periods of record in the mountainous western US. The rainfall measured in valleys, 

where long term rain gages are more common (such as the NOAA COOP network), often diverges from mountain 400 

rainfall characteristics due to orographic gradients (Roe, 2005). Differences in rain gage distance to the watershed also 

complicated inter-watershed comparison. Using gridded precipitation allowed for a spatially consistent precipitation 

time series to be created for all study watersheds. The centroid of the watershed was used here, but future work could 

incorporate watershed averaged precipitation or other methods to capture precipitation spatial variability (Giani et al., 

2022; Kampf et al., 2016; Wang et al., 2023). The high spatial and temporal resolution of the AORC data product 405 

performed well compared to rain gage measurements (Hong et al., 2022; Kim & Villarini, 2022). However, the hourly 

temporal resolution did result in some loss of information related to short duration, high intensity storms as 

precipitation was linearly interpolated across the timestep.  

The RREDI toolkit time-series event separation method was transferable across diverse watersheds using only 

two watershed specific parameters, and addressed several common issues identified by past studies. The most common 410 

rainfall-runoff event separation technique relies on established baseflow methods to isolate event flow (e.g. Chapman 

& Maxwell, 1996; Duncan, 2019; Eckhardt, 2005; Xie et al., 2020). Runoff events are then identified where baseflow 

diverges from total flow (Long & Chang, 2022; Mei & Anagnostou, 2015; Merz et al., 2006; Merz & Blöschl, 2009; 

Tarasova, Basso, Zink, et al., 2018). However, Giana et al., (2022) identified the need for increased method 

transferability across watersheds. To increase transferability, methods use fewer modifying watershed parameters 415 

(Blume et al., 2007; Nagy et al., 2022) or time-series signal processing, as used in the RREDI toolkit, to identify 

events (Giana et al., 2022; Patterson et al., 2020). A comparison of a baseflow separation method against a time-series 

signal processing method found good agreement in event identification rates and metrics with the added bonus of 

transferability in the latter method (Giana et al., 2022). The RREDI toolkit performed best when separating discrete 

rainfall-runoff events, however with the implementation of the flagging algorithm was able to address issues that have 420 

been limiting in other methods. The baseflow separation methods use daily streamflow (Long & Chang, 2022; Mei & 
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Anagnostou, 2015; Merz et al., 2006; Merz & Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018), however by using 

15-minute streamflow the RREDI toolkit could identify and characterize sub-daily events. The use of time-series 

signal processing also allowed for the identification of events with no runoff response, providing more information 

about the rainfall thresholds and antecedent conditions required for runoff generation. An algorithm to remove diurnal 425 

cycling events was also implemented, something not previously addressed.  

The time-series event separation method introduced in this study allowed for large-sample hydrologic analysis to 

investigate event-scale rainfall-runoff patterns and controls. Future work could expand this analysis to a larger set of 

watersheds and potential controls (Gupta et al., 2014). The RREDI toolkit could also be applied to address other 

pressing event-scale hydrologic challenges, including the influence of other watershed disturbances (e.g. urbanization, 430 

forest treatments, insect infestation) (Ebel & Mirus, 2014; Goeking & Tarboton, 2020), evaluation of design rainfall 

events, flood prediction, or event recurrence interval analysis. Beyond rainfall-runoff event analysis, the RREDI 

toolkit could be used to identify paired events in other rainfall-peaking time-series data relationships such as water 

quality events (e.g., turbidity) or soil moisture events.  

5.2. Hydrologic variability  435 

In general, across the study watersheds, WYT and season were significant time-varying hydrologic controls on 

event runoff response while antecedent precipitation played a lesser role, but significance varied by watershed and 

runoff metric. Differences in the significance of controls between study watersheds corresponds with the findings of 

other large-sample rainfall-runoff analysis (Merz et al., 2006; Merz & Blöschl, 2009; Norbiato et al., 2009; Tarasova, 

Basso, Poncelet, et al., 2018; Tarasova, Basso, Zink, et al., 2018; Wu et al., 2021). Variability in the significance of 440 

runoff metrics within a watershed underlined the importance of comparing similar metrics between watersheds and 

studies to assess event runoff response. Differences between event runoff response in wet and dry years were 

significant across the runoff metrics in six of the seven watersheds where a WYT precipitation threshold was identified 

(Figure 7; Fig. S8). This aligns with Biederman et al.'s (2022) finding that the threshold between wet and dry years 

were important in event runoff response in semi-arid watersheds. Differences in runoff processes in wet and dry years, 445 

such as the interaction between soil drainage and vegetation rooting depth as the watershed recovers, may drive these 

observed differences in runoff response (Bart, 2016; Biederman et al., 2022). High interannual variation in snowpack 

(Cayan, 1995) may be a driver in WYT significance in six of the seven snow-dominated watersheds. Water year type 

was significant for one of the two rain dominated watersheds, Arroyo Seco. In Arroyo Seco, extreme variability in the 

interannual frequency and intensity of atmospheric rivers that bring a majority of the precipitation may explain the 450 

WYT significance (Lamjiri et al., 2018). Surprisingly, WYT was not significant in Wet Bottom Creek despite 

interannual variation in the summer North American Monsoon in this watershed (Arriaga-Ramierez & Cavazos, 2010; 

Pascolini-Campbell et al., 2015). This may be because despite the monsoon, the majority of precipitation in this 

watershed instead comes from winter storms (Arriaga-Ramierez & Cavazos, 2010).    

Seasonal differences in event runoff response were significant across the runoff metrics in seven watersheds 455 

including both snow- and rain-dominated systems (Figure 7; Fig. S8). Similar patterns have been observed across a 

variety of watersheds with a range of precipitation and streamflow regimes and watershed properties (Merz et al., 

2006; Merz & Blöschl, 2009; Norbiato et al., 2009; Tarasova, Basso, Poncelet, et al., 2018). In snow-dominated 
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watersheds, observed seasonality has been attributed to differences in precipitation type (Merz et al., 2006; Merz & 

Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018), seasonal water balance (Berghuijs et al., 2014; Merz et al., 2006; 460 

Tarasova, Basso, Poncelet, et al., 2018), and the influence of snow on antecedent moisture conditions (Hammond & 

Kampf, 2020; Merz et al., 2006; Merz & Blöschl, 2009; Norbiato et al., 2009). Seasonality in rain-dominated 

watersheds has been attributed to differences in storm properties (intensity, depth) and antecedent moisture driven by 

seasonal water balance (Berghuijs et al., 2014; Merz & Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018). In fact, 

seasonal water balance has been identified as more important than topography in event runoff response differences 465 

between watersheds (Merz et al., 2006). As storm properties were separately accounted for in this analysis by 

evaluating event runoff response with respect to specific storm metrics (e.g. storm depth), the significance of 

seasonality is likely associated with seasonal differences in evapotranspiration and soil moisture.  

Antecedent precipitation was only significant across the runoff metrics in two very arid watersheds, Arroyo Seco 

and Clear Creek (Figure 7; Fig. S8). This finding indicates a complexity in this time varying hydrologic control as 470 

these findings contrast with our expectation that antecedent precipitation, as a proxy for antecedent soil moisture, 

would be a control on rainfall-runoff patterns. Antecedent precipitation has been used has a proxy for antecedent soil 

moisture in several studies (Long & Chang, 2022; Merz et al., 2006; Tarasova, Basso, Zink, et al., 2018) and in the 

SCS curve method for runoff generation (Mishra & Singh, 2003). Past studies have found conflicting results in the 

significance of antecedent precipitation. Both 10-day antecedent precipitation in Italy (Merz et al., 2006) and 475 

antecedent soil moisture (Merz & Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018) have been found to influence 

event runoff response. However, 10-day antecedent precipitation in Germany (Tarasova, Basso, Zink, et al., 2018) 

and 3-day antecedent precipitation in Oregon, US (Long & Chang, 2022) were not significant controls at the event 

scale. A possible reason why antecedent precipitation was not identified as significant in seven study watersheds may 

be the dominance of the seasonal water balance (Merz et al., 2006) which may not be captured in short window (<10 480 

day) antecedent precipitation (Tarasova, Basso, Zink, et al., 2018). To mitigate this, Tarasova, Basso, Zink, et al. 

(2018) suggested applying a longer antecedent precipitation window (30-60 days) to better account for seasonal 

changes in the water balance.  

In both Arroyo Seco and Clear Creek, significant condition groups revealed distinct trends within the storm depth 

and runoff peak relationship (Figure 8). In Arroyo Seco, the runoff peak for a given storm was lower in significant 485 

condition groups with dry condition events than those with wet condition events. Further, with increasing storm depth, 

the dry significant condition group trend deviated further below the all-events trend. A possible reason for the 

divergence between the wet and dry significant group trends is differences in dominant runoff processes (Bart, 2016; 

Biederman et al., 2022) driven by strong interannual variation in wetness conditions (Merz & Blöschl, 2009; Tarasova, 

Basso, Zink, et al., 2018). Antecedent precipitation was important during wet years in Arroyo Seco. Interestingly, high 490 

antecedent precipitation mattered more at low storm depths, where the high wet significant condition group trend 

returned to the all-events trend with increasing storm depth. This may be due to an increasingly overwhelming 

overland runoff response to larger storms that diminishes the influence of antecedent precipitation. Too few events in 

the dry significant condition group limited separation of antecedent precipitation so this remains inconclusive.   

https://doi.org/10.5194/egusphere-2023-2875
Preprint. Discussion started: 2 January 2024
c© Author(s) 2024. CC BY 4.0 License.



21 
 

In Clear Creek, season was the primary driver separating the significant condition groups (Figure 8). This aligns 495 

with findings in other snow-dominated watersheds where the seasonal water balance was the primary driver of 

differences in rainfall-runoff patterns (Merz et al., 2006). This dominance of seasonal water balance over event 

antecedent precipitation likely explains why antecedent precipitation was not significant in the Clear Creek significant 

condition groups. Similar to other snow-dominated watersheds, the peak runoff response was highest during the melt 

and lower in the summer (Merz & Blöschl, 2009). Separation of wet and dry years was only significant during melt, 500 

likely due to the dominance of winter precipitation and interannual variance in snowpack in this watershed (Arriaga-

Ramierez & Cavazos, 2010; Cayan, 1995). Summer was the most responsive season to increasing storm depth. 

Without the influence of the snowpack during summer, this responsiveness is consistent with the findings in rain-

dominated Arroyo Seco.  

Consideration of WYT and seasonality was critical to discerning the influence of wildfire disturbance on event 505 

runoff response. The influence of wildfire was most apparent in the winter in Arroyo Seco and summer in Clear Creek 

(Figure 8). The differences between post-fire response in Arroyo Seco and Clear Creek is consistent with the large 

range of post-fire responses observed across western US watersheds (Hallema et al., 2017; Saxe et al., 2018). In 

Arroyo Seco, for each year post-fire the peak runoff events were greater than expected based on the undisturbed event 

distribution. This post-fire increase in runoff peak is consistent with previously observed increases in total annual flow 510 

in the watershed (Bart, 2016; Beyene et al., 2021). In Arroyo Seco, the first two years post-fire were wet years and 

the subsequent years were dry. Without considering the dry years separately, the influence of the fire would have been 

obscured within the full undisturbed event distribution. Distilling disturbed event runoff response from natural WYT 

variability has been identified as a challenge by other studies (Biederman et al., 2022; Hallema et al., 2017; Long & 

Chang, 2022; Mahat et al., 2016; Owens et al., 2013). Without consideration of WYT, interannual hydrologic 515 

variability may obscure changes in post-fire rainfall-runoff patterns (Mahat et al., 2016; Owens et al., 2013) or falsely 

exaggerate the impact of wildfire if, for example, a fire is followed by very wet years as occurred in Clear Creek.  

Altered post-fire rainfall-runoff patterns also appeared to be seasonal, as observed in Clear Creek (Figure 8). In 

Clear Creek, post-fire peak runoff was greater than expected every year in summer but the trend was inconsistent in 

winter and melt. Biederman et al. (2022) identified a similar trend, greater post-fire change observed in the summer 520 

than the winter, in watersheds in the southwest US. Wildfire has also been found to influence snow accumulation and 

melt timing (Ebel, Hinckley, et al., 2012; Gleason et al., 2019; Kampf et al., 2022; Maina & Siirila‐Woodburn, 2020). 

However, less wildfire influence on event runoff response in the winter and melt in snow-dominated watersheds like 

Clear Creek makes sense because snow accumulation and melt likely dominate runoff response during these seasons. 

The altered post-fire summer events would have been obscured by the larger melt events without considering the 525 

seasonality of rainfall-runoff events in Clear Creek. In Oregon, where Long & Chang (2022) found no significant 

change between pre- and post-fire rainfall-runoff patterns despite comparing two dry years, the seasonality of events 

may have obscured post-fire impacts as they did in Clear Creek.  
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6. Conclusions 

This study presents and utilizes the RREDI toolkit, a novel time-series event separation method, to investigate 530 

the influence of time-varying hydrologic controls including WYT, season, and antecedent on wildfire disturbed event 

runoff response. A rainfall-runoff event dataset, consisting of 5042 events was generated by applying the RREDI 

toolkit to nine study watersheds in the western US. This dataset was used to investigate rainfall-runoff event patterns, 

identify significant time-varying hydrologic controls, and evaluate how the identified controls influence event runoff 

response in wildfire disturbed watersheds. Results revealed in general, WYT and season were significant time-varying 535 

hydrologic controls however significant controls varied across watersheds and runoff metrics. The significance of 

antecedent precipitation varied across watersheds, indicating a more complex relationship for this control consistent 

with the literature. Unique trends were identified within significant condition groups in two contrasting watersheds, 

Arroyo Seco and Clear Creek. Within each of the significant condition groups, the portion of post-fire events that fell 

above the significant condition group trend was generally greater than expected for peak runoff. Consideration of 540 

these time-varying controls promoted the untangling of wildfire disturbance on event runoff response. This analysis 

has increased the understanding of controls on rainfall-runoff patterns in undisturbed and disturbed watersheds. This 

elevates the ability to prepare for watershed management in a future with increasing disturbance regimes. 

 

Code and Data Availability: All code for data processing and visualization is available upon request from the author. 545 

The RREDI Toolkit python code and documentation for creation of the rainfall-runoff event dataset used in this study 

can be accessed via hydroshare at https://www.hydroshare.org/resource/797fe26dfefb4d658b8f8bc898b320de/ 

(Canham & Lane, 2022). Streamflow data from the USGS is publicly available at 

https://dashboard.waterdata.usgs.gov/ and the AORC precipitation gridded dataset is publicly available at 

https://hydrology.nws.noaa.gov/aorc-historic/. Wildfire perimeters are available at https://www.mtbs.gov/ and PRISM 550 

gridded precipitation data are available at https://prism.oregonstate.edu/.  
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