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Abstract. Increasing watershed disturbance regimes, such as from wildfire, are a growing concern for natural resource 

managers. However, the influence of watershed disturbances on event-scale rainfall-runoff patterns has proved 

challenging to disentangle from other hydrologic controls. To better isolate watershed disturbance effects, this study 10 

evaluates the influence of several time-varying hydrologic controls on event-scale rainfall-runoff patterns, including 

water year type, seasonality, and antecedent precipitation. To accomplish this, we developed the Rainfall-Runoff 

Event Detection and Identification (RREDI) toolkit, an automated time-series event separation and attribution 

algorithm that overcomes several limitations of existing techniques. The RREDI toolkit was used to generate a dataset 

of 5042 rainfall-runoff events from nine western U.S. watersheds. Through analyzing this large dataset, water year 15 

type and season were identified as significant controls and antecedent moisture as a limited control on rainfall-runoff 

patterns. Specific effects of wildfire disturbance on runoff response were then demonstrated for two burned watersheds 

by first grouping rainfall-runoff events based on identified hydrologic controls, such as wet versus dry water year 

types. The role of water year type and season should be considered in future hydrologic analysis to better isolate the 

increasing and changing effects of wildfire on streamflow. The RREDI toolkit could be readily applied to investigate 20 

the influence of other hydrologic controls and watershed disturbances on rainfall-runoff patterns.  

1. Introduction 

Watershed disturbances can have broad, long lasting, and variable impacts on watershed hydrology (Ebel and 

Mirus, 2014). A range of disturbances including wildfire, drought, flood, insect infestation, invasive species, 

agriculture, urbanization, mining, and forest management have been observed to alter streamflow (Adams et al., 2012; 25 

Brantley et al., 2013; Ebel and Mirus, 2014; Goeking and Tarboton, 2020; Hopkins et al., 2015; Kelly et al., 2017; 

Miller and Zégre, 2016). Wildfire is particularly impactful: since 2000 an average of 7.0 million acres has burned 

annually in the U.S. (Hoover and Hanson, 2021). Further, with a changing climate the observed occurrence and 

severity of wildfire has increased in the western U.S. in recent decades, presenting growing challenges for human and 

water security (Abatzoglou et al., 2021; Abatzoglou and Williams, 2016; Hallema et al., 2018; Murphy et al., 2018; 30 

Robinne et al., 2021). Distilling the influence of watershed disturbance from the natural variability within streamflow 

has proved challenging across disturbance regimes (Beyene et al., 2021; Biederman et al., 2022; Hallema et al., 2017; 

Kinoshita and Hogue, 2015; Long and Chang, 2022; Newcomer et al., 2023; Saxe et al., 2018; Wine et al., 2018; Wine 
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and Cadol, 2016). A better understanding of hydrologic controls that vary in time in disturbed watersheds is critical 

for watershed management resiliency in the face of increasing disturbance regimes (Mirus et al., 2017).  35 

Time-varying hydrologic controls including water year type (WYT), seasonality, and antecedent precipitation 

have been found to influence event runoff response. Different WYTs associated with differences in annual snowpack 

(Cayan, 1995) or the occurrence and intensity of precipitation from monsoons or atmospheric rivers (Arriaga-

Ramierez and Cavazos, 2010; Pascolini-Campbell et al., 2015) may alter runoff response (Biederman et al., 2022; 

Null and Viers, 2013). Observed seasonal differences in rainfall-runoff patterns have been attributed to precipitation 40 

type, rainfall properties (intensity, depth), water balance, and antecedent wetness conditions (Berghuijs et al., 2014; 

Merz et al., 2006; Merz and Blöschl, 2009; Norbiato et al., 2009; Tarasova et al., 2018b, Zheng et al., 2023; Jahanshahi 

and Booij, 2024). Antecedent moisture - and the more widely available proxy of antecedent precipitation - have also 

been found to alter event runoff response (Jahanshahi and Booij, 2024; Merz et al., 2006; Merz and Blöschl, 2009; 

Tarasova et al., 2018b, Zheng et al., 2023). Despite their established influence on event runoff response, these time-45 

varying hydrologic controls are inconsistently considered in hydrologic disturbance studies. 

Large-sample hydrology studies are frequently used to investigate time-varying and static watershed controls on 

event-scale rainfall-runoff patterns. The rainfall-runoff event-scale enables a process-based understanding of driving 

hydrologic processes in catchment hydrology (Gupta et al., 2014; Sivapalan, 2009). Large-sample investigations into 

event-scale controls in Europe have found that time-varying hydrologic controls influence event runoff ratios (Merz 50 

et al., 2006; Merz and Blöschl, 2009; Norbiato et al., 2009; Tarasova et al., 2018a; Tarasova et al., 2018b, Zheng et 

al., 2023). A similar event-scale large-sample study of 432 U.S. watersheds evaluated only static controls on event 

runoff response, and identified aridity, topographic slope, soil permeability, rock type, and vegetation density as 

significant factors (Wu et al., 2021). None of these studies considered the separate impact of watershed disturbance. 

Conversely, the body of wildfire disturbed streamflow change literature has sporadically and inconsistently considered 55 

these time-varying hydrologic controls (e.g. Balocchi et al., 2020; Beyene et al., 2021; Biederman et al., 2022; Hallema 

et al., 2017; Kinoshita and Hogue, 2015; Long and Chang, 2022; Saxe et al., 2018; Wine et al., 2018; Wine and Cadol, 

2016). Long and Chang (2022) considered WYT and antecedent precipitation while investigating the influence of 

wildfire disturbance on event runoff response. However, they analyzed only a small-sample of rainfall-runoff events 

from two years, one pre- and one post-fire, in a sample of six watersheds in Oregon, U.S.  60 

Investigating large samples of rainfall-runoff events requires automated, transferable methods for time-series 

event separation. Common rainfall-runoff event separation techniques rely on established baseflow methods to isolate 

event flow (e.g. Chapman and Maxwell, 1996; Duncan, 2019; Eckhardt, 2005; Xie et al., 2020). Runoff events are 

then identified where baseflow diverges from total flow (Long and Chang, 2022; Mei and Anagnostou, 2015; Merz et 

al., 2006; Merz and Blöschl, 2009; Tarasova et al., 2018b). Giani et al. (2022b) identified the need for increased 65 

method transferability across watersheds as the baseflow separation methods require multiple calibrated parameters 

in each watershed. To increase transferability, separation methods use fewer modifying watershed parameters (Blume 

et al., 2007; Nagy et al., 2022) or time-series signal processing to identify rainfall-runoff events (Giani et al., 2022b; 

Patterson et al., 2020). The commonly used separation methods are not able to identify sub-daily rainfall-runoff events 

as many are developed or calibrated to use only daily streamflow (Long and Chang, 2022; Mei and Anagnostou, 2015; 70 
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Merz et al., 2006; Merz and Blöschl, 2009; Tarasova et al., 2018b). These methods cannot capture the sub-daily 

rainfall-runoff events that may result from convective rainfall events in mountainous watersheds (Kampf et al., 2016). 

Further, there are limitations in the existing available separation methods including the lack of identification of rainfall 

events with no runoff response and the filtering of diurnal cycling influenced runoff events that have limited the 

application of the available methods in snow-dominated watersheds. 75 

The objectives of this paper were twofold. The first was to describe and evaluate the performance of the Rainfall-

Runoff Event Detection and Identification (RREDI) toolkit, an automated time-series event separation method 

(Canham and Lane, 2022). The second objective was to apply the RREDI toolkit to investigate the influence of time-

varying hydrologic controls including WYT, season, antecedent precipitation, and wildfire on event runoff response. 

The specific research aims were to: (1) evaluate rainfall-runoff patterns and (2) identify significant time-varying 80 

hydrologic controls on event runoff response across nine western U.S. watersheds, and then (3) use these findings to 

explore the effects of wildfire in two burned case study watersheds. The resulting hydrologic patterns and time-varying 

controls are expected to reflect broader trends across western U.S. watersheds and provide foundational methods and 

understanding related to watershed disturbances.  

2. Study watersheds 85 

Nine watersheds in the western U.S. were selected for this analysis (Fig. 1 a) to span a wide range of watershed 

properties and streamflow regimes (Table 1). Watersheds were required to have at least 20 years of continuous 15-

minute streamflow records including at least 10 years of undisturbed streamflow records including from wildfire 

(MTBS, 2023; Falcone, 2011). Study watershed contributing areas ranged three orders of magnitude, from 14 km2 

(Ash Canyon Creek) to 2,966 km2 (Cache La Poudre River). The mean annual streamflow ranged from 38 mm (Camp 90 

Creek) to 1217 mm (Shitike Creek). The mean annual precipitation ranged from 531 mm (Cache La Poudre River) to 

1572 mm (Shitike Creek) (Falcone, 2011) and the mean annual potential evapotranspiration ranged from 401 mm 

(Valley Creek) to 780 mm (Wet Bottom Creek) (Falcone, 2011). Seven of the selected watersheds had snowmelt 

dominated flow regimes with average annual peak flows between April and June and two watersheds had wet season 

rain dominated regimes with average annual peak flows between January and February.  95 

Two of the nine study watersheds were selected for a more in-depth exploration of wildfire effects: Arroyo Seco 

and Clear Creek (Fig. 1 b, c). These watersheds both experienced high severity wildfires that burned a substantial 

portion of the watershed. The Station Fire (2009) burned 100% of Arroyo Seco (78% high and moderate burn severity) 

and the Twitchell Canyon Fire (2010) burned 25% of Clear Creek (15% high and moderate severity) (MTBS, 2023). 

Arroyo Seco and Clear Creek also present an interesting comparison, as they have very different contributing areas, a 100 

nearly three-fold difference in mean annual streamflow, and are rain and snowmelt dominated respectively. 
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Figure 1: Study watersheds. (a) Nine selected study watersheds (labeled). Case study burned watersheds (b) Arroyo Seco 

and (c) Clear Creek. Shown are watersheds (black), fire perimeters (red), and burn severity mosaics (MTBS, 2023).  105 

 

Table 1: Watershed characteristics for the study watersheds. Where PET is potential evapotranspiration.  

Watershed State 
USGS 

Gage ID 

 

Contributing 

Area 

(km2) 

Mean Annual 

Streamflow 

(mm) 

Mean Annual 

Precipitation* 

(mm) 

Mean 

Annual 

PET 

* 

(mm) 

Streamflow 

regime 

Arroyo 

Seco 

CA 11098000  42 203 788 776 Rain 

Ash 

Canyon 

Creek 

NV 10311200  14 225 759 479 Snow 

Cache La 

Poudre 

CO 06752260  2966 52 531 449 Snow 

Camp 

Creek 

CO 07103703  25 38 557 479 Snow 
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Watershed State 
USGS 

Gage ID 

 

Contributing 

Area 

(km2) 

Mean Annual 

Streamflow 

(mm) 

Mean Annual 

Precipitation* 

(mm) 

Mean 

Annual 

PET 

* 

(mm) 

Streamflow 

regime 

Clear Creek UT 10194200  426 74 537 508 Snow 

Shitike 

Creek 

OR 14092750  57 1217 1572 492 Snow 

Thompson 

River 

MT 12389500  1652 231 761 476 Snow 

Valley 

Creek 

ID 13295000  376 478 882 401 Snow 

Wet 

Bottom 

Creek 

AZ 09508300  94 131 617 780 Rain 

*(Falcone, 2011) 

 

2.1. Hydrologic data inputs 

Streamflow and precipitation data were obtained for each study watershed as follows. Daily and 15-minute 110 

streamflow records were retrieved from the U.S. Geological Survey’s (USGS) National Water Information System 

and used to calculate total annual streamflow data. Streamflow was defined as undisturbed before or more than six 

years post-fire while disturbed streamflow was within six-years post-fire (Ebel et al., 2022; Wagenbrenner et al., 

2021). The total annual precipitation at the centroid of each study watershed over the same period was retrieved from 

the Parameter-elevation Regressions on Independent Slopes Model (PRISM) gridded annual precipitation dataset 115 

(PRISM Climate Group, Oregon State University, 2022). Hourly precipitation time series were obtained for the 

watershed centroid from the Analysis of Record Calibration (AORC) 4 km2 resolution data product for water years 

1980 to 2022 (Fall et al., 2023). Linear interpolation was used to develop an instantaneous precipitation record at the 

AORC resolution of 1 mm by identifying uniform sub-timesteps within the hour timestep resolution. For example, 

hourly precipitation of 2 mm depth was uniformly spread over the hour with two timestamps of 1 mm each. The 120 

AORC data product was selected because of the hourly temporal resolution and comparable or higher correlation 

between the AORC data product and rain gage measurements compared to other gridded precipitation data products 

in studies in a mountainous area in Colorado, Louisiana, and the Great Lakes basins (Hong et al., 2022; Kim and 

Villarini, 2022; Partridge et al., 2024). 

3. Methods 125 

We describe the four key steps of the RREDI toolkit in section 3.1 (Fig. 2) with additional in-depth details in 

Supplemental Information section S1. A rainfall-runoff event dataset (Table S4) was created by applying the RREDI 
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toolkit to nine western U.S. watersheds. This dataset was then used to explore rainfall-runoff event patterns, identify 

significant time-varying hydrologic controls, and evaluate the influence of these controls on rainfall-runoff patterns 

(Fig. 2). The hydrologic conditions associated with each time-varying hydrologic control were identified and assigned 130 

for each rainfall-runoff event as described in section 3.2. The assigned rainfall-runoff events were then sorted by 

hydrologic condition and explored as described in section 3.3. Trends in rainfall-runoff event patterns were identified 

and inferential statistics were used to test the significance of the hydrologic conditions to identify significant time-

varying hydrologic controls for generalized runoff metric groups. The influence of wildfire was then evaluated relative 

to undisturbed significant condition group rainfall-runoff trends in two burned watersheds.  135 

 

 

Figure 2: Methods workflow to explore the influence of time-varying hydrologic controls on rainfall-runoff 

event patterns. The four key steps of the RREDI toolkit (black dashed box) are outlined: Step 1. Event pair 

identification, Step 2. Event timing, Step 3. Event metrics calculation, and Step 4. Event flagging. Major 140 

connections between workflow steps and research aims (Q) are shown.  

 

3.1. RREDI toolkit 

The RREDI toolkit was developed to automatically separate rainfall-runoff events for any watershed using time-

series signal processing in four steps (Fig. 2) (Canham and Lane, 2022). Given the inherent challenges of 145 

deterministically identifying rainfall-runoff events from only streamflow and precipitation data, we took a time-series 

signal processing approach that relies in part on expert understanding to define “accurate” rainfall-runoff events like 

numerous other large-sample hydrology studies including Patterson et al. (2020), Tarasova et al (2018b), and Giani et 

al. (2022b). Additional in-depth descriptions of each step are included in section S1 (Fig. S1-S5). All watershed 

specific and calibrated parameters used are also documented (Table S1, S2). Signal processing theory provided 150 

techniques including data smoothing, peak detection, and window processing that were used to automate detection of 
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features from a time series (Patterson et al., 2020). The RREDI toolkit was fully automated using the open-source 

python language.  

In step 1 of the RREDI toolkit, rainfall-runoff event pairs and the associated event window were identified 

using daily streamflow and precipitation data based on the co-occurrence of separately identified rainfall and runoff 155 

events by separating precipitation time-series into storms and runoff into events using signal processing theory from 

the overlapping period of record (Fig. 2). Rainfall events were characterized by the duration, depth, and 60-minute 

intensity. For each rainfall-runoff event pair, the window from the start of rainfall to the end of runoff was determined. 

In step 2, the runoff event start, peak, and end timing and magnitude and the runoff event volume were then identified 

within that time window using 15-minute streamflow data and 60-minute rainfall intensity (Fig. 2; Fig. 3). For each 160 

rainfall-runoff event, a set of 17 runoff metrics were calculated using the identified rainfall and runoff timings in step 

3 (Fig. 2). Metrics fell within four groups: runoff volume, runoff magnitude, runoff duration, and rainfall-runoff timing 

metrics (Fig. S4; Table S3). Selected metrics in each group, respectively, utilized further in this study were as follows 

(Fig. 3 b): event volume, runoff peak defined by the runoff peak magnitude, event duration calculated as the difference 

between the runoff event start and end times, and response time calculated as the difference between the rainfall start 165 

time and the runoff start time. Metrics were also normalized by their respective watershed contributing area to facilitate 

comparison between study watersheds. Finally, in step 4, event flagging was performed to remove incorrectly 

identified rainfall-runoff events falling within four event identification issues: gaps in 15-minute streamflow data, 

diurnal cycling identified by regular daily rises and falls of flow commonly due to irrigation or snow melt cycles (Fig. 

S5), duplicate rainfall-runoff events, and no identified runoff event end time (Fig. 2; Fig. S3). From a time-series 170 

analysis perspective, these misidentified rainfall-runoff events were very similar in appearance to true rainfall-runoff 

events but were functionally driven by different or uncertain processes that were not applicable to the application of 

the RREDI toolkit and thus removed.  

 

 175 

Figure 3. RREDI toolkit rainfall-runoff event examples and metrics. (a) Eight example rainfall-runoff events 

identified using the RREDI toolkit. Shown are the rainfall event (blue), the paired runoff event hydrograph 

(black), and the identified runoff start, peak, and end times and magnitudes (black dots). (b) An example 
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rainfall-runoff event showing relevant event metrics including runoff event volume, peak, duration, and 

response time. Separation (black dashed) between runoff event volume and baseflow is shown. 180 

 

A visual assessment of the RREDI toolkit performance was iteratively completed for all identified rainfall-runoff 

events within the wettest, mean, and driest water years for each study watershed. These years were selected based on 

the watershed average total precipitation from PRISM (Oregon State University, 2022). For each rainfall-runoff event, 

the runoff start, peak, and end timing and magnitude identified by the RREDI toolkit were visually compared with the 185 

same metrics independently identified by manual inspection similar to the performance assessment in other event 

separation methods (Giani et al., 2022b; Patterson et al., 2020; Tarasova et al., 2018b). A rainfall-runoff event was 

determined to be accurately identified by the RREDI toolkit if the runoff start, peak, and end magnitude and timing 

of each rainfall-runoff event were sufficiently similar to those timings identified through independent visual 

assessment such that the rise in runoff from the start to the peak and the runoff duration were considered reasonable. 190 

In this manner, we visually assessed 11% of rainfall-runoff events used in this study (774 rainfall-runoff events), that 

spanned a range of watersheds, watershed wetness conditions, and seasons. RREDI toolkit performance assessment 

results were summarized for each study watershed and across study watersheds (section 4.1). Performance results 

included the percent of RREDI-identified rainfall-runoff events within the wettest, mean, and driest water years with 

accurately identified timing output from the RREDI toolkit, the percent of rainfall-runoff events flagged in step 4, and 195 

the percent of rainfall-runoff events retained after removal of flagged rainfall-runoff events.  

3.2. Hydrologic condition identification and assignment 

Hydrologic conditions were identified and assigned for each rainfall-runoff event with respect to three time-

varying hydrologic controls: WYT, season, and antecedent precipitation. Water year type was assigned as wet or dry 

following Biederman et al. (2022) (Fig. 4 a; Fig. S6). Plots of annual cumulative runoff versus precipitation over the 200 

undisturbed period of record were used to visually identify pronounced annual precipitation breakpoints above which 

streamflow increased linearly with precipitation. Years (both undisturbed and disturbed) with annual precipitation 

above or below the threshold were then classified as wet or dry, respectively. For watersheds where no breakpoint 

was identified, the driest third of years (both undisturbed and disturbed) by annual precipitation were considered dry. 

Alternative methods such as change point detection may be able to more objectively identify that breakpoint, but 205 

automating water year or season identification was beyond the study scope. Winter, melt, and summer hydrologic 

seasons were identified for each watershed based on inspection of the average annual hydrograph and the earliest and 

latest mean (2001–2018) snow-off dates within the watershed (O’Leary III et al., 2020) (Fig. 4 b; Fig. S7). The start 

of winter season was uniformly set as November 1 to capture the change in precipitation pattern and type between 

summer and winter. Melt season started the month after the earliest snow-off date in the watershed and summer season 210 

started the month after the latest snow-off date to account for the lagged streamflow response to snowmelt. Watersheds 

with less than 10% area with an identified snowmelt date were considered to have no melt season (i.e., only winter 

and summer). In watersheds with no melt season, summer season started the month that baseflow dominated over 

winter rainfall peaks in the mean annual hydrograph. Event-scale antecedent precipitation was assigned as none 
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(<1mm), low (1-25mm), or high (>25mm) based on cumulative precipitation over the six days prior to the rainfall 215 

event start time (Long and Chang, 2022; Merz et al., 2006; Merz and Blöschl, 2009; Tarasova et al., 2018b) (Fig. 4 

c). When evaluating antecedent moisture to isolate the influence of soil moisture on runoff rather than snowmelt and 

rain-on-snow influences, only snow-off rainfall-runoff events were considered including only summer events in 

watersheds with a melt season and all events in watersheds without a melt season. We do not expect that using 

alternative available methods to assign rainfall-runoff events to hydrologic conditions would substantially alter the 220 

proposed approach or findings in this study. 

 

 

Figure 4: Example hydrologic condition identification for time-varying hydrologic controls. (a) Water year 

type wet (blue) and dry (orange) years for Arroyo Seco. The ordinary least squares linear regression lines for 225 

above and below the threshold are shown. (b) Seasons (vertical dashed) delineated from the undisturbed 

average annual hydrograph for a no-snow watershed (top) with winter and summer (Arroyo Seco) and a snow 

dominated watershed (bottom) with winter, melt, and summer (Clear Creek). The minimum and maximum 

snow melt dates are shown consecutively (purple dashed). (c) The six-day prior to rainfall start antecedent 
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precipitation period (between dashed) for an example rainfall-runoff event (rainfall is dark blue, runoff is 230 

black). Shown are all rainfall events that were summed within the antecedent precipitation period (light blue). 

 

3.3. Statistical assessment of rainfall-runoff patterns 

Several statistical methods were used to investigate the influence of the time-varying controls and wildfire 

disturbance on event runoff response. Trends in undisturbed rainfall-runoff event patterns were first evaluated using 235 

a LOWESS curve (Q1; Fig. 2). Inferential statistics and the kernel density estimation (KDE) distributions were used 

to assess the effects of time-varying hydrologic conditions on undisturbed rainfall-runoff event metrics (Q2; Fig. 2). 

The non-parametric Mann Whitney U Test was used to evaluate the effect of WYT, and the non-parametric Kruskal 

Wallis and Dunn Tests were used to evaluate the effect of season and antecedent precipitation, all at a 95% confidence 

level. The null hypothesis for all tests was that hydrologic conditions did not impact rainfall-runoff event metrics 240 

(Table S3). The effect size was calculated using the Glass biserial rank correlation coefficient for Mann Whitney U 

test results and the Eta squared test for Kruskal Wallis test results (Tables S7, S8, S9).  

The statistical test results for all area-normalized metrics were summarized into relative significance rates for 

each of four runoff metric groups across and within study watersheds to facilitate comparisons. The use of relative 

significance rates reduced the issue of multiple comparisons and reduced the emphasis on specific metric calculation 245 

methods. For each runoff metric group and hydrologic condition, the relative significance rate was calculated, either 

across all study watersheds or for an individual watershed, by dividing the number of statistically significant rainfall-

runoff event metrics in the category by the number of metrics in the runoff metric group. The relative importance of 

each time-varying hydrologic control was assessed by comparing the significance rates for each watershed and runoff 

metric group. 250 

3.4. Wildfire effects on rainfall-runoff patterns  

Additional analysis was performed for two contrasting burned study watersheds, Arroyo Seco and Clear Creek 

(Table 1; Fig. 1 b, c), to explore the influence of wildfire relative to other time-varying hydrologic controls (Q3; Fig. 

2). Significant hydrologic condition groups were identified for the rainfall depth versus runoff peak relationship. To 

do this, the undisturbed rainfall-runoff events in each watershed were sorted into hydrologic condition permutations 255 

of the significant hydrologic controls for peak runoff. A power trend was fit to each permutation using ordinary least 

squares regression. The significant condition groups were identified by combining the permutations with similar 

power trends. An updated power trend was fit to each significant condition group.  

Considering the runoff peak metric, the influence of wildfire on event runoff response was then evaluated relative 

to each significant condition group undisturbed trend and standard deviation. The percentage of post-fire rainfall-260 

runoff events falling above and over one standard deviation above the significant condition group trend was calculated 

for all post-fire years combined and individually. The calculated percentages were compared to the expected 50% 

above the trend line and 16% above one standard deviation. 
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4.  Results 

4.1. RREDI toolkit performance  265 

The RREDI toolkit resulted in a dataset of 5042 rainfall-runoff events across the nine study watersheds (Table 

S4). 7026 rainfall-runoff events were initially identified after step 2. Of these, 774 rainfall-runoff events (11% of total 

events, 5 to 34% of events by watershed) were inspected for runoff event timing and flagging accuracy (Table 2). 

Rainfall-runoff events were identified at a 69% accuracy rate pre-flagging (step 2) and a 90% accuracy rate after 

flagging (step 4). The occurrence rates for each of the four known issues across watersheds were 2% for 15-minute 270 

streamflow data gaps, 13% for diurnal cycling, 4% for duplicate rainfall-runoff events, and 15% for no identified end 

time rainfall-runoff events (Table S5). The total rainfall-runoff event retention rate after flagging was 72%, with the 

highest retention rate of 83% in Arroyo Seco and the lowest of 45% in Camp Creek. The rainfall-runoff event dataset 

generated by the RREDI toolkit was sufficiently large to allow for the use of the described inferential statistical 

methods (Table S6). 275 

  

Table 2: RREDI toolkit performance results including pre- and post-flagging rainfall-runoff event accuracy 

rates and pre- and post-flagging retention counts (#) and rates across the study watersheds.  

Watershed 

Rainfall-runoff 

event accuracy 

pre-flagging 

(%) 

Rainfall-runoff 

event accuracy 

post-flagging 

(%) 

Rainfall-runoff 

events retained 

post-flagging 

(#) 

Rainfall-runoff 

events retained  

post-flagging 

(%) 

Arroyo Seco 88 91 394 83 

Ash Canyon Creek 75 78 374 75 

Cache La Poudre 80 93 1208 72 

Camp Creek 42 88 162 45 

Clear Creek 77 89 886 73 

Thompson River 67 91 449 75 

Shitike Creek 62 93 663 75 

Valley Creek 74 91 624 73 

Wet Bottom Creek 70 100 282 63 

Overall 69 90 5042 72 

 

4.2. Undisturbed rainfall-runoff patterns 280 

Across watersheds, event runoff peak generally increased with rainfall depth (Fig. 5). A breakpoint in these 

relationships was visually identified at approximately 10 mm rainfall depth, above which the runoff peak increases 

more rapidly with increasing rainfall depth. The breakpoint was most apparent in Arroyo Seco, Shitike Creek, and 
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Wet Bottom Creek. Arroyo Seco, Cache La Poudre River, Camp Creek, and Wet Bottom Creek had larger spreads in 

the LOWESS curve residuals compared to the other five watersheds.  285 

 

Figure 5: The relationship between rainfall depth (mm) and runoff peak (m3 s-1 km-2) for undisturbed rainfall-

runoff events in all study watersheds and each individual watershed. Dashed black lines are LOWESS curves. 

 

Differences were apparent in four selected undisturbed runoff event metric distributions based on WYT, season, 290 

and antecedent precipitation. In both Arroyo Seco and Clear Creek watersheds, wet years exhibited higher median 

values than dry years for runoff volume, peak, duration, and response time metrics (Fig. 6). Winter had higher 

median values than summer for runoff volume, peak, and response time metrics in Arroyo Seco, but directional 
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shifts were less consistent in Clear Creek. The highest median peak runoff and shortest median response time 

occurred during high antecedent precipitation conditions in both watersheds.  295 

 

 

Figure 6: Undisturbed rainfall-runoff event KDE distributions for hydrologic conditions for natural log 

transformed WYT, season, and antecedent precipitation in (a) Arroyo Seco and (b) Clear Creek for four 

selected runoff metrics: volume, peak, duration, and response time. Distributions are colored by hydrologic 300 
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condition. The median value of each distribution is shown (dashed line). Significant differences between 

distributions are indicated (*). Note there is no melt season in Arroyo Seco.  

 

In Arroyo Seco and Clear Creek, all three time-varying hydrologic controls were significant with respect to the 

undisturbed rainfall-runoff events, but relative significance rates varied by runoff metric and watershed (Fig. 6; Table 305 

3). Water year type was the most often significant hydrologic control across the four selected runoff metrics in Arroyo 

Seco while season was the most often significant control in Clear Creek (Fig. 6; Table 3). Antecedent precipitation 

had the lowest relative significance rates in both watersheds and exhibited the most variation by runoff metric. Peak 

runoff was the most often significant runoff metric across study watersheds and hydrologic controls (Tables S7, S8, 

S9), and was significant across all hydrologic controls in both Arroyo Seco and Clear Creek except antecedent 310 

precipitation in Clear Creek (Fig. 6; Table 3). Conversely, the least frequently significant runoff metric varied across 

hydrologic controls, including runoff duration and response time for WYT, runoff duration for season, and runoff 

volume for antecedent precipitation (Tables S7, S8, S9). Even so, WYTs exhibited significant differences in runoff 

response time in Arroyo Seco and seasons exhibited significant differences in runoff duration in Clear Creek (Fig. 6; 

Table 3).  315 

 

Table 3: Undisturbed rainfall-runoff event hydrologic condition statistical test p-value results for the Mann 

Whitney U Test (WYT) and Kruskal Wallis and Dunn Tests (season, antecedent precipitation) for Arroyo Seco 

and Clear Creek for four selected area-normalized runoff event metrics. Shading indicates rejection of the null 

hypothesis at a significance level of 0.05. In shaded cells, an indicator marks the significantly different condition 320 

from the Dunn Test and no indicator means all conditions were significantly different. 

Watershed 
Time-varying hydrologic 

control 

Runoff event metric statistical test p-values 

Volume Peak Duration Response time 

Arroyo Seco Water year type <0.001 <0.001 0.05 0.005 

Season 0.48 0.013 0.15 0.47 

Antecedent precipitation 0.55 <0.001 + 0.29 0.33 

Clear Creek Water year type 0.009 <0.001 0.56 0.60 

Season <0.001 * <0.001 <0.001 # <0.001 # 

Antecedent precipitation 0.34 0.05 0.15 0.32 

Seasons: * Winter, ^ Melt, # Summer 

Antecedent precipitation: & None, ~ Low, + High 

 

Water year type and season differentiate runoff event metrics (>50% relative significance rate) (Fig. 7), but results 

varied across watersheds and runoff metric groups. For example, in Arroyo Seco, the relative significant rate was 

100% for the WYT runoff volume metric group (both runoff volume and runoff ratio were significant (Table S3, Table 325 

S7)) but only 33% for the WYT runoff duration metric group. When averaging across watersheds, the runoff duration 

and magnitude metric groups were differentiated with respect to both WYT and season (Fig. 7 a). The relative 

significance rates of most metric groups in Arroyo Seco (Fig. 7 b) and Clear Creek (Fig. 7 c) exceeded the watershed-
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average rates. Compared to the watershed-average, WYT was generally more differentiating of runoff response in 

Arroyo Seco, Ash Canyon Creek, Camp Creek, and Shitike Creek; less differentiating in Clear Creek, Valley Creek, 330 

and Wet Bottom Creek; and similarly important in Cache La Poudre River and Thompson River (Fig. S8). By contrast, 

compared to the watershed-average, season was generally more differentiating of runoff response in Cache La Poudre 

River, Clear Creek, Thompson River, and Valley Creek, less differentiating in Ash Canyon Creek and Camp Creek; 

and similarly differentiating in Arroyo Seco, Shitike Creek, and Wet Bottom Creek (Fig. 7 b; Fig. S8). 

 335 

 

Figure 7: Summary plots of the relative significance rates of four runoff event metric groups (colored bars) 

with respect to three time-varying hydrologic controls (x-axis) for all watersheds (top panel), Arroyo Seco, and 

Clear Creek (bottom panel) under undisturbed conditions. The 50% relative significance rate is indicated 
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(black dashed). The hatching within the season and antecedent precipitation bars represents statistically 340 

different hydrologic conditions from the Dunn Test, where no hatching indicates all conditions were different.  

Compared with WYT and season, antecedent precipitation did a poor job of differentiating event runoff response 

across watersheds (Fig. 7). Compared to the watershed-average, antecedent precipitation better differentiated runoff 

magnitude metrics in Arroyo Seco (Fig. 7 b) and all runoff metric groups in Clear Creek (Fig. 7 c) and was generally 

less differentiating of runoff response in Camp Creek, Shitike Creek, and Valley Creek and similarly differentiating 345 

in Cache La Poudre River, Thompson River, and Wet Bottom Creek (Fig. S8). 

4.3. Wildfire effects on rainfall-runoff patterns 

Several significant condition groups and trends emerged for the undisturbed rainfall depth versus peak runoff 

relationship in Arroyo Seco and Clear Creek (Fig. 8). The watershed specific significant condition groups were 

identified from eight and six hydrologic condition permutations of the watershed specific significant hydrologic 350 

controls, respectively (Fig. S9). The three significant condition groups in Arroyo Seco were (1) wet none+low, (2) 

wet high, and (3) dry. The four significant condition groups in Clear Creek were (1) summer, (2) winter, (3) wet melt, 

and (4) wet dry. Significant condition group trends were only assessed above 10 mm rainfall depth in Arroyo Seco, 

consistent with the rainfall depth threshold observed in this watershed (Fig. 5). Each significant condition group’s 

power trend fell within a different portion of the full rainfall-runoff event distribution (Fig. 8; Table S10).  355 
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Figure 8: Significant condition groups for event runoff peak (m3 s-1 km-2) in Arroyo Seco and Clear Creek. 

Shown for the rainfall depth versus runoff peak relationship are the undisturbed trends (black) and significant 

condition group trends (colored) and their standard deviation bounds (dashed). The undisturbed (top) and 

post-fire rainfall-runoff events within each significant condition group are plotted.  360 

 

For the rainfall depth versus runoff peak relationship, the portion of post-fire rainfall-runoff events that plotted 

both above and one standard deviation above the significant condition group undisturbed trends was generally greater 

than undisturbed expectations (Fig. 8; Table S11). In Arroyo Seco, post-fire events plotted above the significant 

condition group trend more than 50% of the time for all groups and above one standard deviation more than 16% of 365 

the time for all groups except dry. In Clear Creek, post-fire events plotted above one standard deviation from the 

undisturbed trend more than expected for all groups except winter. In general, the percent of post-fire rainfall-runoff 

events above the significant condition group trend and one standard deviation decreased with increasing time since 

fire as illustrated in Figure 8 by decreasing point size.  
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5. Discussion 370 

5.1. RREDI toolkit  

The RREDI toolkit automatically separated co-varying streamflow and precipitation time-series into rainfall-

runoff events using an approach that was transferable across watersheds. The RREDI toolkit had an overall accuracy 

rate of 90%, ranging from 78 to 100% across study watersheds. There were no clear watershed characteristics 

influencing performance. Lower rainfall-runoff event accuracy rates in Ash Canyon Creek, Camp Creek, and Clear 375 

Creek may be associated with factors including poor quantification of rainfall timing, water withdrawals, temporally 

aggregated streamflow, and extended periods of diurnal cycling. Accuracy increased after the removal of flagged 

rainfall-runoff events for all study watersheds. Rainfall-runoff event retention rates were below average in Camp 

Creek and Wet Bottom Creek, but post-flagging accuracy rates were near average and 100%, respectively. Both 

watersheds have flashy hydrology and substantial periods of low flow diurnal cycling that resulted in several identified 380 

rainfall-runoff event pairs where no event runoff response was identified. 

The RREDI toolkit performance was affected by precipitation data processing challenges, particularly the 

accurate identification of rainfall timing. A gridded precipitation data product was used to overcome sparse rain gage 

density and limited or sporadic periods of record in the mountainous western U.S. The rainfall measured in valleys, 

where long term rain gages are more common (such as the NOAA COOP network), often diverges from mountain 385 

rainfall characteristics due to orographic gradients (Roe, 2005). Differences in rain gage distance to the watershed and 

watershed outlet also complicated inter-watershed comparison. Using gridded precipitation allowed for a spatially 

consistent precipitation time series to be created for all study watersheds. The centroid of the watershed was used to 

extract precipitation as the best available method given the large computational requirement for additional watershed 

analysis, but future work could incorporate watershed average precipitation or other methods to better capture spatial 390 

variability (Giani et al., 2022a; Kampf et al., 2016; Wang et al., 2023). The high spatial and temporal resolution of the 

AORC data product performed well compared to rain gage measurements (Hong et al., 2022; Kim and Villarini, 2022; 

Partridge et al., 2024). However, the hourly temporal resolution did result in some loss of information related to short 

duration, high intensity rainfall events as precipitation was linearly interpolated across the timestep.  

The RREDI toolkit time-series event separation method improves on existing methods by being readily 395 

transferable across diverse watersheds and implementing an event flagging algorithm. Watershed transferability, a 

need identified by Giani et al., (2022b), was accomplished here using time-series signal processing and only two 

watershed parameters. By using 15-minute streamflow time-series, the RREDI toolkit could identify and characterize 

sub-daily rainfall-runoff events, a critical limitation in many other time-series separation methods (Long and Chang, 

2022; Mei and Anagnostou, 2015; Merz et al., 2006; Merz and Blöschl, 2009; Tarasova et al., 2018b). The use of 400 

time-series signal processing also allowed for the identification of rainfall events with no runoff response, providing 

more information about precipitation thresholds and antecedent wetness conditions required for runoff generation. An 

algorithm to remove diurnal cycling events was also implemented, something not previously addressed.  

The time-series event separation method introduced in this study allowed for large-sample hydrologic analysis to 

investigate event-scale rainfall-runoff patterns and controls. Future work could expand this analysis to a larger set of 405 

watersheds and potential controls (Gupta et al., 2014). The RREDI toolkit could also be applied to address other 
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pressing event-scale hydrologic challenges, including the influence of other watershed disturbances (e.g. urbanization, 

forest treatments, insect infestation) (Ebel and Mirus, 2014; Goeking and Tarboton, 2020), evaluation of design rainfall 

events, flood prediction, or event recurrence interval analysis. Beyond rainfall-runoff event analysis, the RREDI 

toolkit could be used to identify paired rainfall-runoff events in other rainfall-peaking time-series data relationships 410 

such as water quality events (e.g., turbidity) or soil moisture events.  

5.2. Undisturbed rainfall-runoff patterns  

Differences in the significance of time-varying hydrologic controls between study watersheds correspond with 

the findings of other large-sample rainfall-runoff analysis (Jahanshahi and Booij, 2024; Merz et al., 2006; Merz and 

Blöschl, 2009; Norbiato et al., 2009; Tarasova et al., 2018a; Tarasova et al., 2018b; Wu et al., 2021, Zheng et al., 415 

2023). Variability in the significance of runoff metrics within a watershed underline the importance of comparing 

similar metrics between watersheds and studies to assess event runoff response. Differences between event runoff 

response in wet and dry years were significant across the runoff metrics in six of the seven watersheds where a WYT 

precipitation threshold was identified (Fig. 7; Fig. S8). This aligns with Biederman et al.'s (2022) finding that the 

threshold between wet and dry years was important in event runoff response in semi-arid watersheds. Differences in 420 

rainfall-runoff processes between wet and dry years, such as the interaction between soil drainage and vegetation 

rooting depth may drive these observed differences in runoff response (Bart, 2016; Biederman et al., 2022). High 

interannual variation in snowpack (Cayan, 1995) may be a driver in WYT significance identified in six of the seven 

snow-dominated watersheds. Water year type was significant for one of the two rain dominated watersheds, Arroyo 

Seco, which may be explained by the extreme interannual variability in the frequency and intensity of atmospheric 425 

rivers that generate most of the precipitation (Lamjiri et al., 2018). Surprisingly, WYT was not significant in Wet 

Bottom Creek despite interannual variation in the summer North American Monsoon in this watershed (Arriaga-

Ramierez and Cavazos, 2010; Pascolini-Campbell et al., 2015). This may be because, despite the monsoon influence, 

most of the watershed precipitation instead comes from winter rainfall events (Arriaga-Ramierez and Cavazos, 2010). 

Seasonal differences in event runoff response were significant across the runoff metrics in seven watersheds 430 

including both snow- and rain-dominated systems (Fig. 7; Fig. S8). Similar patterns have been observed across other 

watersheds spanning a range of precipitation and streamflow regimes and catchment properties (Jahanshahi and Booij, 

2024; Merz et al., 2006; Merz and Blöschl, 2009; Norbiato et al., 2009; Tarasova et al., 2018a, Zheng et al., 2023). In 

snow-dominated watersheds, observed seasonality has been attributed to differences in precipitation type (Merz et al., 

2006; Merz and Blöschl, 2009; Tarasova et al., 2018b), seasonal water balance (Berghuijs et al., 2014; Merz et al., 435 

2006; Tarasova et al., 2018a), and the influence of snow on antecedent moisture conditions (Hammond and Kampf, 

2020; Jahanshahi and Booij, 2024; Merz et al., 2006; Merz and Blöschl, 2009; Norbiato et al., 2009). Seasonality in 

rain-dominated watersheds has been attributed to differences in rainfall properties (intensity, depth) and antecedent 

moisture driven by seasonal water balance (Berghuijs et al., 2014; Jahanshahi and Booij, 2024; Merz and Blöschl, 

2009; Tarasova et al., 2018b). In fact, seasonal water balance has been identified as more important than topography 440 

in event runoff response differences between watersheds (Merz et al., 2006). As rainfall properties were separately 

accounted for in this analysis by evaluating event runoff response with respect to specific rainfall metrics (e.g. rainfall 
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depth), the significance of seasonality is likely associated with seasonal differences in evapotranspiration and soil 

moisture.  

Antecedent precipitation was only significant across the runoff metrics in one very arid watershed, Clear Creek 445 

(Fig. 7; Fig. S8). These findings contrast with our expectation that antecedent precipitation, as a proxy for antecedent 

soil moisture, would be a control on rainfall-runoff patterns. Antecedent precipitation has been used has a proxy for 

antecedent soil moisture in several studies (Jahanshahi and Booij, 2024; Long and Chang, 2022; Merz et al., 2006; 

Tarasova et al., 2018b) and in the SCS curve method for runoff generation (Mishra and Singh, 2003). Past studies 

have found conflicting results in the significance of antecedent precipitation. Both 10-day antecedent precipitation 450 

(Merz et al., 2006) and antecedent soil moisture in Italy (Merz and Blöschl, 2009; Tarasova et al., 2018b) and 5-day 

antecedent precipitation in Iran (Jahanshahi and Booij, 2024) have been found to influence event runoff response. 

However, 10-day antecedent precipitation in Germany (Tarasova et al., 2018b) and 3-day antecedent precipitation in 

Oregon, U.S. (Long and Chang, 2022) were not significant controls at the event scale. A possible reason why 

antecedent precipitation was not significant in most study watersheds may be the dominance of the seasonal water 455 

balance (Jahanshahi and Booij, 2024; Merz et al., 2006) which may not be captured in short window (<10 day) 

antecedent precipitation (Tarasova et al., 2018b). To mitigate this, Tarasova et al. (2018b) suggested applying a longer 

antecedent precipitation window (30-60 days) to better account for seasonal changes in the water balance.  

5.3. Wildfire effects on rainfall-runoff patterns  

Consideration of WYT and seasonality was critical to discerning the influence of wildfire disturbance on event 460 

runoff response. The influence of wildfire was most apparent in the winter in Arroyo Seco and summer in Clear Creek 

(Fig. 8). The differences in post-fire response between Arroyo Seco and Clear Creek is consistent with the large range 

of post-fire responses observed across western U.S. watersheds (Hallema et al., 2017; Saxe et al., 2018). In Arroyo 

Seco, for each year post-fire the event runoff peak magnitudes were greater than expected based on the undisturbed 

rainfall-runoff event distribution. This post-fire increase in runoff peak is consistent with previously observed 465 

increases in total annual flow in the watershed (Bart, 2016; Beyene et al., 2021). In Arroyo Seco, the first two years 

post-fire were wet and the subsequent years were dry. Without considering the dry years separately, the influence of 

the fire would have been obscured within the full undisturbed rainfall-runoff event distribution. Distilling disturbed 

event runoff response from natural WYT variability has been identified as a challenge by other studies (Biederman et 

al., 2022; Hallema et al., 2017; Long and Chang, 2022; Mahat et al., 2016; Newcomer et al., 2023; Owens et al., 2013). 470 

Without consideration of WYT, interannual hydrologic variability may obscure changes in post-fire rainfall-runoff 

patterns (Mahat et al., 2016; Newcomer et al., 2023; Owens et al., 2013) or falsely exaggerate the impact of wildfire 

if, for example, a fire is followed by very wet years as occurred in Arroyo Seco and Clear Creek.  

Altered post-fire rainfall-runoff patterns also appear to be seasonal (Fig. 8). In Clear Creek, post-fire peak runoff 

was greater than expected every year in summer, but the trend was inconsistent in winter and melt seasons. Biederman 475 

et al. (2022) similarly observed greater post-fire changes observed in summer than winter in watersheds in the 

southwest U.S. Wildfire has also been found to influence snow accumulation and melt timing (Ebel et al., 2012; 

Gleason et al., 2019; Kampf et al., 2022; Maina and Siirila‐Woodburn, 2020). However, less wildfire influence on 

event runoff response in the winter and melt seasons in snow-dominated watersheds like Clear Creek makes sense 
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because snow accumulation and melt dynamics likely dominate runoff response during these periods. The altered 480 

post-fire summer rainfall-runoff events would have been obscured by the larger snowmelt events without considering 

seasonality in Clear Creek. In Oregon, where Long and Chang (2022) found no significant change between pre- and 

post-fire rainfall-runoff patterns despite comparing two dry years, seasonality may have similarly obscured post-fire 

effects.  

6. Conclusions 485 

This study presents and utilizes the RREDI toolkit, an automated and transferable time-series signal processing 

event separation and attribution algorithm, to disentangle the influence of time-varying hydrologic controls on event 

runoff response. A dataset of 5042 rainfall-runoff events was generated by applying the RREDI toolkit to nine study 

watersheds in the western U.S. This dataset was used to investigate rainfall-runoff event patterns, identify significant 

time-varying hydrologic controls by watershed and runoff metric group, and evaluate how the identified controls 490 

influence event runoff response and the effects of wildfire in two case study burned watersheds. Water year type and 

season were generally found to be significant hydrologic controls, but results varied between watersheds and runoff 

metrics. Antecedent precipitation was generally less significant, indicating a more complex influence on runoff 

response consistent with the literature. In Arroyo Seco and Clear Creek, post-fire rainfall-runoff events generally 

exhibited higher peak runoff for a given rainfall depth than expected based on the undisturbed trends. Grouping 495 

rainfall-runoff events into significant hydrologic condition groups helped to reveal the effects of wildfire on event 

runoff response. Study findings improve fundamental understanding of multiple, confounding controls on event 

rainfall-runoff patterns and emphasize the need to consider the influence of interannual and seasonal variability to 

better isolate watershed disturbance effects. Better understanding the effects of watershed disturbances on streamflow 

patterns is critical to managing our natural resources under increasing disturbance regimes. 500 
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