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Abstract. Watershed disturbances can have broad, long-lasting impacts that result in a range of streamflow response. 

Increasing watershed disturbance regimes, particularly such as from wildfire, is are a growing concern for watershed 10 

natural resource managementmanagers. The However, the influence of watershed disturbances on event-scale rainfall-

runoff patterns has proved challenging to untangleisolatedisentangle from undisturbed otherstreamflow variability, 

driving the need to increase the understanding of hydrologic controls on event runoff response. WeIn order to better 

isolate watershed disturbance effects, this study evaluates the influence of several time-varying hydrologic controls 

on event-scale rainfall-runoff patterns,  propose that hydrologic controls that vary through time,  due to the role of 15 

hydrologic controls that vary through time, including water year type, seasonality, and antecedent precipitation. may 

be used to untangle explain natural streamflow variability and better isolate the effects of wildfire. To better assess 

the influence of hydrologic controlswatershed disturbance on rainfall-runoff event patterns, wTo accomplish this, we 

developed the Rainfall-Runoff Event Detection and Identification (RREDI) toolkit, . The RREDI toolkit is an 

automated novel time-series event separation and attribution algorithm method that automates the pairing and 20 

attribution of precipitation and streamflow events, leveraginthat overcomes several limitations of existing techniquesg 

and building on existing rainfall-runoff event separation methods. The RREDI toolkit was used to generateA a dataset 

of 5042 rainfall-runoff event dataset of 5042 events was generated by the RREDI toolkit from a collection of nine 

western USA U.S. study watersheds spanning a range of streamflow regimes, watershed characteristicsproperties, and 

burn characteristics. Through analyzing the rainfall-runoff eventthis large dataset, we found that wwater year type and 25 

season were identified as significant controls and antecedent moisture as a limited control on rainfall-rainfall-runoff 

metricsresponsepatterns. The significance of antecedent precipitation was variable between watersheds, indicating a 

more complex relationship for this control. The identified significant time-varying hydrologic controls were then used 

to isolate theS influencepecific effects of wildfire disturbance on runoff response were then demonstrated on event 

runoff response infor two case study burned watersheds by first grouping rainfall-runoff events based on identified 30 

hydrologic controls, such as wet versus dry water year typesyears.. Post-fire rainfall-runoff events were found to have 

higher peak runoff than expected when compared to undisturbed trends within the identified watershed-specific 

significant condition groups. The watershed-specific permutations of significant controls resulted in unique significant 

condition group trends in the rainfall storm depth and peak runoff relationship in two contrasting watersheds. In 

general, for each of the significant condition groups post-fire peak runoff was higher than undisturbed peak runoff 35 
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except during winter in snow-dominated watersheds. Consideration of the time-varying hydrologic controls, 

particularly water year type and season, were identified as important when isolatinguntangling the influence of wildfire 

on the rainfall-runoff patterns. The role of water year type and season should be considered in future hydrologic 

analysis to better isolate the increasing and changing effects of wildfire on streamflows. The RREDI toolkit can could 

be readily further applied to investigate the influence of other watershed disturbances andhydrologic controls and 40 

watershed disturbances to increase understanding ofon rainfall-runoff patterns across the landscape.  

1. Introduction 

Watershed disturbances can have broad, long lasting, and variable impacts on watershed hydrology (Ebel and& 

Mirus, 2014). A range of disturbances including wildfire, drought, flood, insect infestation, invasive species, 

agriculture, urbanization, mining, and forest management have been observed to alter streamflow (Adams et al., 2012; 45 

Brantley et al., 2013; Ebel &and Mirus, 2014; Goeking &and Tarboton, 2020; Hopkins et al., 2015; Kelly et al., 2017; 

Miller &and Zégre, 2016). Wildfire is particularly impactful: since 2000 an average of 7.0 million acres has burned 

annually in the United StatesS (Hoover &and Hanson, 2021). Further, within a changing climate the observed 

occurrence and severity of wildfire has is increased in the western U.S.A in recent decadesing, presenting growing 

challenges for human and water security (Abatzoglou et al., 2021; Abatzoglou &and Williams, 2016; Hallema et al., 50 

2018; Murphy et al., 2018; Robinne et al., 2021). (Hallema et al., 2018; Murphy et al., 2018; Oakley, 2021; Robinne 

et al., 2021). Distilling the influence of watershed disturbance from the natural variability within streamflow has 

proved challenging across disturbance regimes (Beyene et al., 2021; Biederman et al., 2022; Hallema et al., 2017; 

Kinoshita &and Hogue, 2015; Long &and Chang, 2022; Newcomer et al., 2023; Saxe et al., 2018; Wine et al., 2018; 

Wine &and Cadol, 2016). A better understanding of hydrologic controls that vary in time in disturbed watersheds is 55 

critical for watershed management resiliency in the face of increasing disturbance regimes (Mirus et al., 2017).  

Wildfires can cause abrupt changes to hydrologic processes and properties resulting in altered streamflow patterns 

that change through time as the watershed recovers (Ebel & Mirus, 2014; Santi & Rengers, 2020; Wagenbrenner et 

al., 2021). Post-fire changes in soil properties and vegetation may alter runoff generation processes (Ebel, Moody, et 

al., 2012; Santi & Rengers, 2020). Altered soil properties may include changes in soil-water repellency and infiltration 60 

capacity, the presence of ash, and loss of soil organic matter (Balfour et al., 2014; Ebel, Moody, et al., 2012; Santi & 

Rengers, 2020). Loss of vegetation may alter evapotranspiration and interception within the watershed (Atchley et al., 

2018; Poon & Kinoshita, 2018; Santi & Rengers, 2020). The observed influence of these altered hydrologic properties 

on streamflow is variable in both the direction and magnitude of change. Total annual streamflow has been observed 

to increase (Bart, 2016; Beyene et al., 2021; Caldwell et al., 2020; Y. Guo et al., 2021; Hallema et al., 2017; Khaledi 65 

et al., 2022; Kinoshita & Hogue, 2015; Mahat et al., 2016; Owens et al., 2013; Saxe et al., 2018; Wine et al., 2018; 

Wine & Cadol, 2016), decrease (Balocchi et al., 2020; Biederman et al., 2022), and stay the same (Bart & Hope, 2010; 

Vore et al., 2020). Post-fire event flows have similarly been found to increase (Beyene et al., 2021; Hallema et al., 

2017; Mahat et al., 2016; Saxe et al., 2018), decrease (Balocchi et al., 2020), and show no significant change (Kinoshita 

& Hogue, 2015; Long & Chang, 2022; Newcomer et al., 2023; Nunes et al., 2020; Owens et al., 2013). This leaves 70 

questions about our ability to distill the influence of the wildfire disturbance from the watershed natural variability.  
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In addition to watershed disturbances, tTime-varying hydrologic controls including water year type (WYT), 

seasonality, and antecedent precipitation have been found to influence rainfall-runoff patternsevent runoff response. 

Water year type is a commonly used categorization to compare individual years against historical trends (Null & Viers, 

2013).  Variation betweenDifferent WYTs wet and dry yearsassociated with differences in  annual snowpack (Cayan, 75 

1995) or the occurrence and intensity of precipitation from monsoons or atmospheric rivers (Arriaga-Ramierez &and 

Cavazos, 2010; Pascolini-Campbell et al., 2015) may result in differences inalter runoff response (Biederman et al., 

2022; Null &and Viers, 2013). Examples of WYT variation drivers include variation in annual snowpack (Cayan, 

1995) or the occurrence and intensity of precipitation from monsoons or atmospheric rivers (Arriaga-Ramierez & 

Cavazos, 2010; Pascolini-Campbell et al., 2015). Seasonality, specifically seasons defined based on the annual 80 

hydrograph, can alter event runoff response across a range of watersheds (Jahanshahi and Booij, 2024; Merz et al., 

2006; Merz & Blöschl, 2009; Norbiato et al., 2009; Tarasova, Basso, Zink, et al., 2018b, Zheng et al., 2023). Seasonal 

Observed seasonal differences in rainfall-runoff patternsresponse have been attributed to precipitation type, 

rainfallstorm properties (intensity, depth), water balance, and antecedent wetness conditions (Berghuijs et al., 2014; 

Merz et al., 2006; Merz &and Blöschl, 2009; Norbiato et al., 2009; Tarasova, Basso, Zink, et al., 2018b, Zheng et al., 85 

2023;Jahanshahi and Booij, 2024). Finally, aAntecedent precipitation and antecedent moisture - and the more widely 

available proxy of antecedent precipitation - have also been found to alter event runoff response (Jahanshahi and 

Booij, 2024; Merz et al., 2006; Merz &and Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018b, Zheng et al., 2023). 

Antecedent precipitation is commonly used as a proxy for antecedent moisture (Jahanshahi and Booij, 2024; Merz & 

Blöschl, 2009; Mishra & Singh, 2003; Tarasova, Basso, Zink, et al., 2018b). Despite their established influence on 90 

event runoff response, these time-varying hydrologic controls are inconsistently considered in hydrologic disturbance 

studies. 

The event-scale enables a process-based understanding of driving hydrologic processes in catchment hydrology 

(Gupta et al., 2014; Sivapalan, 2009). 

Selected post-fire streamflow change studies have assessed some of these time-varying hydrologic controls, but 95 

to the best of the authors knowledge none to date have considered all three potential controls and very few studies 

have focused on the event scale. Of these three controls, WYT is most frequently considered when evaluating wildfire 

influence on streamflow (Beyene et al., 2021; Biederman et al., 2022; Hallema et al., 2017; Long & Chang, 2022; 

Wine & Cadol, 2016). A common method to account for the role of WYT variability is compare water year expected 

streamflow and observed streamflow to isolate the influence of the disturbance (Beyene et al., 2021; D. Guo et al., 100 

2023; Hallema et al., 2017; Mahat et al., 2016; Newcomer et al., 2023). Another method for pre- and post-fire 

comparison is water year typing based on total annual precipitation-streamflow relationships or annual percentiles 

(Biederman et al., 2022; Long & Chang, 2022). In addition to interannual variability, several studies have evaluated 

post-fire changes in total streamflow or flow statistics within specific seasons (Balocchi et al., 2020; Biederman et al., 

2022; Kinoshita & Hogue, 2015; Saxe et al., 2018; Wine et al., 2018). Antecedent precipitation is less commonly 105 

considered in post-fire streamflow response studies. Long & Chang (2022) used three-day antecedent precipitation to 

normalized runoff event volume, but found no altered streamflow significance. Lack of consistent consideration of 
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WYT, seasonal variability, and antecedent precipitation may help explain the inconsistency in observed post-fire 

effects on streamflow. 

Large-sample hydrology studies are frequently used to investigate time-varying and static watershed controls on 110 

event-scale rainfall-runoff patterns. The rainfall-runoff event-scale enables a process-based understanding of driving 

hydrologic processes in catchment hydrology (Gupta et al., 2014; Sivapalan, 2009). The event-scale enables a process-

based understanding of driving hydrologic processes in catchment hydrology (Gupta et al., 2014; Sivapalan, 2009). 

Large-sample investigations into event-scale controls in Europe have found that time-varying hydrologic controls 

influence event runoff ratios (Merz et al., 2006; Merz &and Blöschl, 2009; Norbiato et al., 2009; Tarasova, Basso, 115 

Poncelet, et al., 2018a; Tarasova, Basso, Zink, et al., 2018b, Zheng et al., 2023). A similar event-scale large-sample 

study of 432 U.S.A watersheds evaluated only static controls on event runoff response, and identified aridity, 

topographic slope, soil permeability, rock type, and vegetation density as significant factors (Wu et al., 2021). None 

of these studies considered the separate impact of watershed disturbance. Conversely, the body of wildfire disturbed 

streamflow change literature has sporadically and inconsistently considered these time-varying hydrologic controls 120 

(e.g. Balocchi et al., 2020; Beyene et al., 2021; Biederman et al., 2022; Hallema et al., 2017; Kinoshita &and Hogue, 

2015; Long &and Chang, 2022; Saxe et al., 2018; Wine et al., 2018; Wine &and Cadol, 2016). Long &and Chang 

(2022) considered WYT and antecedent precipitation while investigating the influence of wildfire disturbance on 

event runoff response. However, they analyzed only a small-sample of rainfall-runoff events from two years, one pre- 

and one post-fire, in a small- sample of six watersheds in Oregon, U.S.A.  125 

To iInvestigateing a large samples of rainfall-runoff events, requires the use of an automated, transferable methods 

for time-series event separation method is critical. The most cCommon rainfall-runoff event separation techniques 

relyies on established baseflow methods to isolate event flow (e.g. Chapman &and Maxwell, 1996; Duncan, 2019; 

Eckhardt, 2005; Xie et al., 2020). Runoff events are then identified where baseflow diverges from total flow (Long 

&and Chang, 2022; Mei &and Anagnostou, 2015; Merz et al., 2006; Merz &and Blöschl, 2009; Tarasova et al., 130 

2018b). Giani et al., (2022b) identified the need for increased method transferability across watersheds as the baseflow 

separation methods require the use of multiple calibrated parameters in each watershed. To increase transferability, 

separation methods use fewer modifying watershed parameters (Blume et al., 2007; Nagy et al., 2022) or time-series 

signal processing to identify rainfall-runoff events (Giani et al., 2022b; Patterson et al., 2020). The commonly used 

separation methods are not able to identify sub-daily rainfall-runoff events as many are developed or calibrated to use 135 

only daily streamflow (Long &and Chang, 2022; Mei &and Anagnostou, 2015; Merz et al., 2006; Merz &and Blöschl, 

2009; Tarasova et al., 2018b). These methods cannot capture the sub-daily rainfall-runoff events that may result from 

convective rainfall events in mountainous watersheds (Kampf et al., 2016). Further, there are limitations in the existing 

available separation methods including the lack of identification of rainfall events with no runoff response and the 

filtering of diurnal cycling influenced runoff events that have limited the application of the available methods in snow-140 

dominated watersheds. 

The objectives of this paper were twofold. The first was to describe and evaluate the performance of the Rainfall-

Runoff Event Detection and Identification (RREDI) toolkit, an automated  novel time-series event separation method 

(Canham &and Lane, 2022). The second objective was to apply the proposed methodthe RREDI toolkit to investigate 
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the influence of time-varying hydrologic controls including WYT, season, and antecedent precipitation, and wildfire 145 

on event runoff response. The specific aims of the investigation into time-varying hydrologic controls were toresearch 

questionsaims were to: (1) explore evaluate rainfall-runoff patterns and  and, (2) identify significant time-varying 

hydrologic controls on event runoff response across nine western U.S. watersheds. , andThe, ann,d then (3) use these 

findings to exploreexplore thethe effects of wildfire  findings from research questions 1 and 2 in two case study 

evaluate how time-varying hydrologic controls influence event runoff response in wildfire disturbed burned 150 

watershedswatershed case study watershedsies. We hypothesize that  accountingThe resulting hydrologic patterns and  

for these significant time-varying hydrologic controls will are expected to reflect broader trends across western U.S. 

watersheds and provide foundational methods and understanding related to watershed disturbancesuntangle the natural 

watershed streamflow variability, ultimately  thereby makingallow the influence of the wildfire disturbance more 

apparentto be isolated in the two case study watersheds.  155 

2. Study watersheds 

Nine study watersheds in the western USA U.S. were hand-selectedselected for this analysis (Fig. 1 a)  to 

satisfyspan a wide range of based on watershed properties and streamflow regimes (Table 1). , burn 

characteristics,from those with  and streamflow data availability.The nine selected watersheds spanned a wide range 

of watershed properties and burn characteristics (Fig.ure 1 a). First, we identified western USA watershedsWatersheds 160 

were required to have at least 20 years of continuous 15-minute streamflow records including at least 10 years of 

undisturbed streamflow records including from wildfire (MTBS, 2023; from the GAGES-II dataset (Falcone, 2011).  

with at least 20 years of continuous 15-minute streamflow data including at least 10 years of undisturbed streamflow 

including from wildfire  (Falcone, 2011MTBS, 2023).  The selected nine study watersheds spanned a large range of 

contributing areas, streamflow regimes, and burnwatershed characteristics conditions (Table 1).  TheStudy watershed 165 

contributing areas ranged over three orders of magnitude, from 14 km2 (Ash Canyon Creek) to 2,966 km2 (Cache La 

Poudre River)., with extents defined by the installation locations of the long-term USGS gauges. The mean annual 

streamflow ranged from 38 mm (Camp Creek) to 1217 mm (Shitike Creek) 12.1 m3s-1 in Thompson River to 38 

mm0.03 m3s-1 (in Camp Creek). The mean annual precipitation ranged from 531 mm (Cache La Poudre River) to 1572 

mcm in (Shitike Creek) to 531 mcm (in Cache La Poudre River) (Falcone, 2011) and the mean annual potential 170 

evapotranspiration ranged from 401 mm (Valley Creek) to 780 mcm in (Wet Bottom Creek) toand 401 mcm in (Valley 

Creek) (Falcone, 2011). The watersheds included a range of sSeven of the streamflow regimes elected watersheds 

including sevenhad snow melt dominated systemsflow regimes with average annual annual hydrograph peak flows 

dates between April and June and two watersheds had wet season rain dominated systemsregimes with average annual 

hydrograph peak datespeak flows between January and February.  175 

Two of the nine study watersheds were selected for a more in-depth exploration of watershed disturbancewildfire 

effects on rainfall-runoff events: Arroyo Seco and Clear Creek (Fig. 1 b, c). Figure. 1 b, c. These watersheds were 

selected first and foremost because they both experienced high severity wildfires during the period of available 

streamflow record that burned a significantsubstantial portion of the watershed (>25%) and with particularly high 

severity. The Station Fire (2009) burned 100% of Arroyo Seco (78% high and moderate burn severity) and the 180 
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Twitchell Canyon Fire (2010) burned 25% of Clear Creek (15% high and moderate severity) (MTBS, 2023).. 

Arroyo Seco and Clear CreekAdditionally, these two case studiesThese two watersheds a also providedpresent an 

interesting comparison with respect to watershed characteristics, as they are an order of magnitude difference in 

areahave very different contributing areas, a nearly threefour-fold difference in mean annual streamflow, and are 

rain andvs. snow-melt dominated respectively respectively, and have a four-fold difference in mean annual 185 

streamflow. 

 

All nine study watersheds were impacted with differing size and severity fires. The highest impacted was Arroyo 

Seco from the Station Fire (2009) with 100% area burned (78% high and moderate burn severity). The least impacted 

watershed was the Cache La Poudre River from the High Park Fire (2012) with 10% area burned (5% high and 190 

moderate severity). 

Of these, we identified watersheds with a greater than 5% area burned within the available record of 1984 to 2020 

from the MTBS database (Monitoring Trends in Burn Severity (MTBS), n.d.). This set was further reduced to 

watersheds with pre-fire and post-fire streamflow records of at least ten and six years respectively and minimal 

upstream anthropogenic influence, such as reservoirs. The watersheds spanned five magnitudes of contributing area 195 

(1.8 to 10,125 km2) and from 5 to 100% area burned. The final study watershed selection from this set were those with 

no other fires within the MTBS database exceeding 5% area burned within the watershed. The nine selected 

watersheds spanned a wide range of watershed properties and burn characteristics (Figure 1). 

 



 

7 
 

 200 

 

Figure 1: Study watersheds. (a) Nine selected study watersheds (labeled). Case study burned watersheds (b) Arroyo Seco 

and (c) Clear Creek. Shown are watersheds (black),  and fire perimeters (red), and burn severity mosaics (MTBS, 2023).  
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The nine study watersheds spanned a large range of contributing areas, streamflow regimes, and burn conditions 205 

(Table 1). The contributing area range was three orders of magnitude, where the largest watershed, the Cache La 

Poudre River, was 2,966 km2, and the smallest, Ash Canyon Creek, was 14 km2. The watersheds included a range of 

streamflow regimes including seven snow melt dominated systems with average annual hydrograph peak dates 

between April and June and two wet season rain dominated systems with average annual hydrograph peak dates 

between January and February. All nine study watersheds were impacted with differing size and severity fires. The 210 

highest impacted was Arroyo Seco from the Station Fire (2009) with 100% area burned (78% high and moderate burn 

severity). The least impacted watershed was the Cache La Poudre River from the High Park Fire (2012) with 10% 

area burned (5% high and moderate severity). 

Table 1: Watershed characteristics properties and burn characteristics for the study watersheds. Where P is 

precipitation and PET is potential evapotranspiration.  215 

Watershed State 
USGS 

Gage ID 

 

Contributing 

Aarea 

(km2) 

Mean 

Annual 

Streamflow  

(mean 

annual) 

(mmm2 s-1) 

Mean Annual 

PrecipitationP 

(mean annual)* 

( 

(cmm) 

Mean 

Annual 

PET 

(mean 

annual)* 

(cmm) 

Streamflow 

regime 

Arroyo 

Seco 

CA 11098000  42 2030.27 7889 7767 Rain 

Ash 

Canyon 

Creek 

NV 10311200  14 2250.10 7596 479 Snow 

Cache La 

Poudre 

CO 06752260  2966 524.9 531 449 Snow 

Camp 

Creek 

CO 07103703  25 380.03 5576 479 Snow 

Clear 

Creek 

UT 10194200  426 741.0 5374 508 Snow 

Shitike 

Creek 

OR 14092750  57 12172.2 1572 492 Snow 

Thompson 

River 

MT 12389500  1652 23112.1 761 476 Snow 

Valley 

Creek 

ID 13295000  376 4785.7 882 401 Snow 
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Watershed State 
USGS 

Gage ID 

 

Contributing 

Aarea 

(km2) 

Mean 

Annual 

Streamflow  

(mean 

annual) 

(mmm2 s-1) 

Mean Annual 

PrecipitationP 

(mean annual)* 

( 

(cmm) 

Mean 

Annual 

PET 

(mean 

annual)* 

(cmm) 

Streamflow 

regime 

Wet 

Bottom 

Creek 

AZ 09508300  94 1310.39 6172 780 Rain 

*(Falcone, 2011) 

 

2.1. Hydrologic data inputs 

Streamflow and precipitation data were obtained for each study watershed as follows. Daily and  The 15-minute 

streamflow records were retrieved from the U.S. Geological Survey’s National Water Information System, and used 

to calculate daily, and total annual streamflow data for the full period of record were retrieved from the USGS 220 

streamflow gage. Additionally, sStreamflow was defined as undisturbed before or more than six years post-fire while 

disturbed streamflow was within six-years post-fire (Ebel et al., 2022; Wagenbrenner et al., 2021).  The total annual 

precipitation at the centroid of each study watershed over the same period for each year with available USGS annual 

streamflowused to classify WYT  was retrieved from thegridded Parameter-elevation Regressions on Independent 

Slopes Model (PRISM) gridded annual precipitation dataset (PRISM Climate Group, Oregon State University, 2022). 225 

Hourly precipitation time series were obtained for the watershed centroid from the Analysis of Record Calibration 

(AORC) 4 km2 resolution data product for water years 1980 to 2022 (Fall et al., 2023); National Weather Service 

Office of Water Prediction, 2021). Linear interpolation was used to develop an instantaneous precipitation record 

spread the hourly rainfall over the timestep at the AORC resolution of 1 mm by identifying uniform sub-timesteps 

within the hour timestep resolution. For example, hourly precipitation of 2 mm depth was uniformly spread over the 230 

hour with two timestamps of 1 mm each. The AORC data product was selected because of the hourly temporal 

resolution and comparable or  higher correlation between the AORC data product and rain gage measurements 

compared to other gridded precipitation data products in studies in a mountainous area in Colorado, USA,  Louisiana, 

USA, and the Great Lakes basins (Hong et al., 2022; Kim &and Villarini, 2022,; Partridge et al., 2024)). We 

additionally performed a comparison of storm events in a mountainous region, specifically in Clear Creek watershed, 235 

for water year 2011. We compared the AORC-based storm events at the corresponding locations of two rain gages: 

one temporary rain gage in the mountains installed after a wildfire (Murphy et al., 2019) and a NOAA COOP rain 

gage in the nearby valley 18 km from Clear Creek watershed (Beaver 4E, UT US COOP:420522). For the storm events 

in water year 2011, the average storm depth based on the AORC data product was less than that measured at the rain 

gage by 0.6 mm for the Clear Creek rain gage and by 8.3 mm for the NOAA COOP rain gage. Similarly, the average 240 

60-minute peak storm intensity for the AORC data product was less than the rain gage by 2.3 mm/hr for the Clear 

Creek rain gage and by 1.5 mm/hr for the NOAA COOP rain gage.Additionally, streamflow was defined as 
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undisturbed before or more than six years post-fire while disturbed streamflow was within six-years post-fire (Ebel et 

al., 2022; Wagenbrenner et al., 2021).   

3. Methods 245 

We describe the four key steps of the RREDI toolkit in section .3.1 (Fig.ure 2),) with additional in-depth details 

in, with additional details and all study specific RREDI toolkit parameters in Supplemental Information. (SI) section 

S1. RREDI toolkit. A rainfall-runoff event dataset, available in SI (Table S4), was created by applying the RREDI 

toolkit to nine western U.S.A watersheds (Figure 2). This dataset was then used to explore rainfall-runoff event 

patterns, identify significant time-varying hydrologic controls, and evaluate the influence of these controls on rainfall-250 

runoff patterns (in two case study wildfire disturbed watersheds (Fig.ure 2). The hydrologic conditions associated with 

each time-varying hydrologic control were identified and assigned for each rainfall-runoff event as described in section 

3.2. The assignedsorted rainfall-runoff events were then sorted by hydrologic condition and explored as described in 

section 3.3. Trends in rainfall-runoff event patterns were identified and using a LOWESS curve. Iinferential statistics 

were used to test the significance of the hydrologic conditions to identify the significant time-varying hydrologic 255 

controls for generalized runoff metric groups. The influence of the wildfire was then evaluated relative to the 

undisturbed runoff event significant condition group rainfall-runoff trends in two contrasting burned watersheds., 

Arroyo Seco and Clear Creek.   

 

 260 

Figure 2: Methods workflow to explore the influence of time-varying hydrologic controls on rainfall-runoff 

event patterns as described in this paper. The four key steps of the RREDI toolkit (black dashed box) are 

outlined: Step 1. Event pair identification, Step 2. Event timing, Step 3. Event metrics calculation, and Step 4. 

Event flagging. Major connections between workflow steps and study research questionsresearch aims (Q) are 

shown.   265 
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3.1. RREDI toolkit 

The RREDI toolkit was developed to automatically separate rainfall-runoff events for any watershed using time-

series signal processing in four steps (Fig.ure 2; SupplementalSupplemental Information) (Canham &and Lane, 2022). 

Given the inherent challenges of deterministically identifying rainfall-runoff events from only streamflow and 270 

precipitation data, we took a time-series signal processing approach that relies in part on expert understanding to 

define “accurate” rainfall-runoff events like numerous other large-sample hydrology studies including Patterson et al. 

(2020), Tarasova et al (2018b), and Giani et al. (2022b). Additional in-depth descriptions of each step are included in 

SI section S1. RREDI toolkit (Fig. S1-S5). All watershed specific and calibrated parameters used are also documented 

(Table S1, S2). Signal processing theory provided techniques including data smoothing, peak detection, and window 275 

processing that were used to automate detection of features from a time series (Patterson et al., 2020). The RREDI 

toolkit was fully automated using the open-source python language.   

 

In step 1 of the RREDI toolkit, rainfall-runoff event pairs and the associated event window were identified 

using daily streamflow and precipitation data based on the co-occurrence of separately identified rainfall and runoff 280 

events by separating precipitation time-series into storms rainfall storms and runoff into events using signal processing 

theory from the overlapping period of record (Fig.ure 2). Rainfall events were characterized by the duration, depth, 

and 60-minute intensity. For each rainfall-runoff event pair, the event window from the start of the rainfall to the end 

of runoff was passed to step 2determined. In step 2, tThe runoff event start, peak, and end timing and magnitude and 

the runoff event volume were then identified within that time window using then 15-minute streamflow data and the 285 

60-minute rainfallstorm intensity in step 2 (Fig.ure 2; Fig.ure 3). For each rainfall-runoff event, a set of 17 runoff 

metrics were calculated using the identified rainfall and runoff event timings in step 3 identified in step 3 (Fig.ure 2). 

Metrics fell within four runoff metric groups: runoff volume metrics, runoff magnitude metrics, runoff duration 

metrics, and rainfall-runoff timing metrics (Fig. S4; Table S3). Selected metrics in each group, respectively,, 

respectively, utilized further in this study included thosewere as follows (Fig.ure 3 b):. The runoff volume metric 290 

group included event volume,. The runoff magnitude metric group included runoff peak defined by the runoff peak 

magnitude, . The runoff duration metric group included event duration calculated as the difference between the runoff 

event start and end times, and . The rainfall-runoff timing metric group included response time calculated as the 

difference between the rainfallstorm start time and the runoff start time. Metricss were also normalized by dividing 

metric values by thetheir respective watershed contributing area to facilitate comparison between study watersheds. 295 

Finally, in step 4, event flagging was performed to remove incorrectly identified rainfall-runoff events falling within 

four rainfall-runoff event identification issues: gaps in 15-minute streamflow data, diurnal cycling identified by regular 

daily rises and falls of flow commonly due to irrigation or snow melt cycles (Fig. S5), duplicate rainfall-runoff events, 

and no identified runoff event end time (Fig.ure 2; Supplemental InformationFig. S3). Ffrom a time-series analysis 

perspective, tThese misidentified rainfall-runoff events were very similar in appearance to true rainfall-runoff events,  300 

but were functionally driven by different or uncertain processes that were not applicable to the application of the 

RREDI toolkit and thus removed. The RREDI toolkit was fully automated using the open-source python language.   
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 305 

Figure 3. RREDI toolkit rainfall-runoff event examples and metrics. (a) Eight example rainfall-runoff events 

identified using the RREDI toolkit. Shown are the rainfall event (blue), the paired runoff event hydrograph 

(black), and the identified runoff start, peak, and end times and magnitudes (black dots). (b) EAn example 

rainfall-runoff event showing relevant rainfall-runoff event metrics including runoff event volume, peak, 

duration, and response time. SEvent separation (black dashed) between runoff event flow volume and 310 

baseflow is shown. 

 

A visual assessment of the RREDI  systematictoolkit performance was iteratively completed for all RREDI-

identified rainfall-runoff events within the wettest, mean, and driest water years for each study watershed to 

systematically assess the RREDI toolkit performance. These years were selected based on the watershed average total 315 

precipitation from PRISM (Oregon State University, 2022).  assessment of the RREDI toolkit outputs was performed 

. For each of the study watersheds, all rainfall-runoff events occurring in the wettest, mean, and driest water years 

based on watershed average annual total precipitation (Oregon State University, 2022) were visually inspected. The 

For each rainfall-runoff event, theThe RREDI toolkit identified runoff start, peak, and end timing and magnitude 

identified by the RREDI toolkit were visually compared with the runoff start, peak, and end timing and 320 

magnitudeosesame metrics independently identified by visual manual inspection for each rainfall-runoff event 

following similar to the performance assessment methods used forin other event separation methods (Giani et al., 

2022b; Patterson et al., 2020; Tarasova et al., 2018b) and assessed with respect to the four event identification issues 

described above. A rainfall-runoff event was determined to be accurately identified by the RREDI toolkit if the runoff 

start, peak, and end magnitude and timing of each rainfall-runoff eEvents were sufficiently similar to those timings 325 

identified through indewere consideidentified pendent visual assessment such that the rise in runoff from the start to 

the peak and the runoff duration were considered reasonable. . In this manner, we visually assessed 11% of rainfall-

runoff events used in this study (774 rainfall-runoff events), that spanned a range of watersheds, watershed wetness 

conditions, and seasons.  RREDI toolkit performance assessment results were summarized for each study watershed 
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and overall across study watersheds (section 4.1). Performance results, included the percent of events RREDI-330 

identified rainfall-runoff events within the wettest, mean, and driest water years with accurately identified timing 

output from the RREDI toolkit, the percent of rainfall-runoff events flagged in step 4, and the percent of rainfall-

runoff events retained after removal of flagged rainfall-runoff events.  

3.2. Hydrologic condition identification and assignment 

Hydrologic conditions were identified and assigned for each rainfall-runoff event with respect to the three time-335 

varying hydrologic controls considered in this study: WYT, season, and antecedent precipitation. Instead of 

developing entirely new methods to define WYT or season across many watersheds with different hydrologic settings, 

we chose to provide sufficient details on methods and results of our expert-informed selections to support a robust, 

transparent assessment of these time-varying hydrologic variables on event runoff response.  Water year type was 

assigned as wet or dry following Biederman et al. (2022) based on total annual streamflow and watershed average 340 

total annual precipitation following Biederman et al. (2022) for all study watersheds (Fig.ure 4 a; FigureFig.ure. S6). 

Total annual streamflowPlots of annual cumulative runoff and versus precipitation were plotted forover the 

undisturbed period of record were used to visually identify pronounced the annual precipitation threshold breakpoints 

above which streamflow increased linearly with precipitation. Years (both undisturbed and disturbed) with annual 

precipitation above or below the threshold were then classified as wet or dry, respectively. For watersheds where no 345 

precipitation thresholdbreakpoint was identified, the driest third of years (both undisturbed and disturbed) by annual 

precipitation were considered dry. Alternative methods such as change point detection may be able to more objectively 

identify that breakpoint, but automating water year or season identification was beyond the study scope of our study. 

Winter, melt, and summer hydrologic seasons were identified for each watershed based on inspection of the average 

annual hydrograph and the earliest and latest mean (2001–2018) snow-off dates within the watershed (O’Leary III et 350 

al., 2020) (Fig.ure 4 b; FigureFig.ure. S7). The start of winter season was uniformly set as November 1 to capture the 

change in precipitation pattern and type between summer and winter. Melt season started the month after the earliest 

snow-off date in the watershed and summer season started the month after the latest snow-off date to account for the 

lagged streamflow response to snowmelt. Watersheds with less than 10% of the watershed area with an identified 

snow melt date were considered to have no melt season (i.e., only winter and summer). In watersheds with no melt 355 

season, summer season started the month where that baseflow dominated over winter rainfall storm peaks in the mean 

annual hydrograph. Rainfall-runoff eEEvent-scale antecedent precipitation was assigned as none (<1mm), low (1-

25mm), and or high (>25mm) based on the cumulative precipitation depth over the six days prior to the 

rainfallprecipitation event start time (Long &and Chang, 2022; Merz et al., 2006; Merz &and Blöschl, 2009; Tarasova, 

Basso, Zink, et al., 2018b) (Figure. 4 c). When evaluating antecedent moisture to isolate the influence of soil moisture 360 

on runoff rather than snowmelt and rain-on-snow influences, oOnly snow-off rainfall-runoff events were considered 

in this assessment, including only summer rainfall-runoff events in watersheds with a melt season and all rainfall-

runoff events in watersheds without a melt season, to isolate the influence of soil moisture on runoff rather than 

snowmelt and rain-on-snow influences. We do not expect that uWe do not expect that using alternative available 

methods other than those described here to adjust the thresholdsassign rainfall-runoff events to re-assign rainfall-365 

runoff events hydrologic conditions would substantially alter ourthe proposed approach or findings in this study. 
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Figure 4: Example hydrologic condition identification for time-varying hydrologic controls. (a) Water year 

type wet (blue) and dry (orange) years for Arroyo Seco. The ordinary least squares linear regression lines for 370 

above and below the threshold are shown. (b) Seasons (vertical dashed) delineated from the undisturbed 

average annual hydrograph for a no-snow watershed (top) with winter and summer (Arroyo Seco) and a snow 

dominated watershed (bottom) with winter, melt, and summer (Clear Creek). The minimum and maximum 

snow melt dates are shown consecutively (purple dashed). (c) The six-day prior to rainfallstorm start antecedent 

precipitation period (between dashed) for an example rainfall-runoff event (rainfall is dark blue, runoff is 375 

black). Shown are all rainfall eventsstorms thatwhich wereare summed within the antecedent precipitation 

period (light blue). 
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3.3. Statistical assessment of event-scale hydrologic variabilityrainfall-runoff patterns 

SeveralA number of statistical methods were used to investigate the influence of the time-varying controls and 380 

wildfire disturbance on event runoff response. To address the first research question (Q1; Fig.ure 2) Figure 2), tTrends 

in undisturbed rainfall-runoff event patterns were first evaluated using a LOWESS curve (Q1; Fig. 2). Inferential 

statistics and the kernel density estimation (KDE) distributions were then used to assess the effects of time-varying 

hydrologic conditions on undisturbed rainfall-runoff event metrics (Q2; Fig.ure 2). The non-parametric Mann Whitney 

U Test was used to evaluate the effect of WYT between the two hydrologic conditions, and the non-parametric Kruskal 385 

Wallis Test and Dunn Tests were was used to evaluate the effect of season and antecedent precipitation between three 

hydrologic conditions each, all at a 95% confidence level. If significant differences were found based on the Kruskal 

Wallis Test, the Dunn Test was used to identify specific significant hydrologic conditions. The null hypothesis for all 

tests was that hydrologic conditions did not impact rainfall-runoff event metrics (Table S3). The effect size for each 

significant test result was calculated using the Glass biserial rank correlation coefficient for the Mann Whitney U Ttest 390 

results and the Eta squared test for the Kruskal Wallis Ttest results (Tables S7, S8, S9).  

The statistical test results for all area-normalized metrics were summarized into relative significancet rates forby 

each of four runoff metric groups across and within study watersheds to facilitate comparisons to identify highlight 

significant important hydrologic controls on event runoff response. The use of the relative significancet rates reduced 

the issue of multiple comparisons and reduced the emphasis on specific metric calculation methods. SSummarizing 395 

by area-normalized runoff metrics facilitated comparison between different sized watersheds while . Ssummarizing 

by runoff metric groups facilitated comparison between time-varying hydrologic controls and reduced the emphasis 

on specific metric calculation methods. The relative importance of each time-varying hydrologic control was assessed 

for each watershed and runoff metric group. For each runoff metric group and hydrologic condition, the relative 

significance rate was calculated, either across all  for the study watersheds or for an individual watershed, together 400 

and individually by dividing the number of statistically significant rainfall-runoff event metrics in the category (based 

on the Mann Whitney U or Kruskal Wallis test) by the number of metrics in the runoff metric group. When a single 

hydrologic condition (e.g. melt season) was identified as significant by the Dunn Test, the significancet rate for thise 

condition was similarly calculated by dividing the number of significant rainfall-runoff event metrics for the condition 

by the number of metrics in the runoff metric group. The relative importance of each time-varying hydrologic control 405 

was assessed by comparing the significancet rates for each watershed and runoff metric group. 

3.4. Statistical aWildfire effects on rainfall-runoff patternsresponse ssessment in wildfire disturbed 

watersheds 

Additional statistical methods wereanalysis was performed onfor two contrasting burned study watersheds, 

Arroyo Seco and Clear Creek (Table 1; Fig. 1 b, c), to further explore the influence of wildfire disturbance relative to 410 

other time-varying hydrologic controls (Q3; Figure. 2). Arroyo Seco and Clear Creek were contrasting watersheds, 

with differing watershed characteristics, notably contributing area and streamflow regimes (Table 1) and burn 

characteristics (Fig.ure 1 b, c). For this analysis, rainfall-runoff events were defined as undisturbed or disturbed, where 

disturbed rainfall-runoff events were those occurring within six years post-fire (Ebel et al., 2022; Wagenbrenner et 

al., 2021). For the two wWatersheds, specific sSignificant hydrologic condition groups were identified for the rainfall 415 
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storm depth and versus runoff peak relationship. in two contrasting watersheds: Arroyo Seco and Clear Creek.  To do 

this, the undisturbed rainfall-runoff events in each watershed were sorted into hydrologic condition permutations of 

the significant hydrologic controls for peak runoff. A power trend was fit to each permutation using ordinary least 

squares regression. The significant condition groups were identified by combining the permutations with similar 

power trends. An updated power trend was fit to each significant condition group.  420 

TConsidering the runoff peak metric, the influence of the wildfire disturbance on event runoff response was then 

evaluated relative to each significant condition group undisturbed trend and standard deviation. The percentage of 

wildfire disturbedpost-fire rainfall-runoff events falling above and over one standard deviation above the significant 

condition group trend and one standard deviation was calculated for all post-fire years combined and individually. 

The calculated post-fire rainfall-runoff event percents percentages were compared to the expected 50% above the 425 

trend line and 16% above theone standard deviation. 

    

4. Results 

4.1. RREDI toolkit performance  

The RREDI toolkit performed well across the nine study watersheds and resulted in a rainfall-runoff event dataset 430 

of 5042 rainfall-runoff events across the nine study watersheds (Table S4). 7026 rainfall-runoff events were initially 

identified after step 2 by the RREDI toolkit in step 2. Of these, 774 rainfall-runoff events (11% of total events, 5 to 

34% range of events across study watershedsby watershed) were systematically inspected for runoff event timing and 

flagging accuracy (Table 2). Accuracy rates were calculated based on the comparison of the RREDI toolkit identified 

and independently visually identified runoff event start, peak, and end timing. Rainfall-runoff Eevents were identified 435 

at a 69% accuracy rate pre-flagging (step 2) and a 90% the accuracy rate rose to 90% after flagging (step 4). The 

identified occurrence rates for each of the four known issues across all watersheds was were 2% for 15-minute 

streamflow data gaps, 13% for diurnal cycling, 4% for duplicate rainfall-runoff events, and 15% for no identified end 

time rainfall-runoff events (Table S5). The total rainfall-runoff event retention rate after flagging was 72%, with the 

highest retention rate of 83% in Arroyo Seco and the lowest of 45% in Camp Creek. The rainfall-runoff event dataset 440 

generated by the RREDI toolkit was sufficiently large to allow for the use of the described inferential statistical 

methods (Table S6). 
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Table 2: RREDI toolkit rainfall-runoff performance results including pre- and post-flagging rainfall-runoff 

event accuracy rates and pre- and post-flagging retention numbers (#) and rates, flagging, and retention rates 445 

across the study watersheds.  

Watershed 

Rainfall-runoff 

Eevent accuracy 

pre-flagging 

(%) 

Rainfall-runoff 

eEvent accuracy 

post-flagging 

(%) 

Rainfall-runoff 

eEvents retained 

post-flagging 

(#) 

Rainfall-runoff 

eEvents retained  

post-flagging 

(%) 

Arroyo Seco 88 91 394 83 

Ash Canyon Creek 75 78 374 75 

Cache La Poudre 80 93 1208 72 

Camp Creek 42 88 162 45 

Clear Creek 77 89 886 73 

Thompson River 67 91 449 75 

Shitike Creek 62 93 663 75 

Valley Creek 74 91 624 73 

Wet Bottom Creek 70 100 282 63 

Overall 69 90 5042 72 

 

4.2. Hydrologic variabilityUndisturbed rainfall-runoff patterns 

The resulting rainfall-runoff event dataset consisting of 5042 rainfall-runoff events across the study watersheds 

allowed for a data-driven analysis of event runoff patterns and controls. The rainfall-runoff event dataset was 450 

sufficiently large such that the proportion of rainfall-runoff events in the hydrologic conditions for each watershed 

should allow for the use of the described inferential statistical methodsrainfall-runoff events were assigned to all 

hydrologic conditions in each watershed (Table S6). For undisturbed rainfall-runoff events aAcross all the study 

watersheds, there was an increasing trend inevent runoff peak generally with increasinged with rainfallstorm depth 

(Fig.ure 5). A slope breakA breakpoints in these relationships was was visually identified at approximately 10 mm 455 

rainfall storm depth, above which the runoff peak increases more rapidly with increasing rainfallstorm depth. Variation 

between runoff peak and rainfallstorm depth existed across the watersheds. The identified slope breakbreakpoint was 

most apparent in three watersheds: Arroyo Seco, Shitike Creek, and Wet Bottom Creek. Rainfall-runoff eEvents above 

the threshold in the other six watersheds were limited. Four watersheds, Arroyo Seco, Cache La Poudre River, Camp 

Creek, and Wet Bottom Creek had larger spreads in the LOWESS curve residuals compared to the other five 460 

watersheds. Detailed undisturbed rainfall-runoff event results are presented here for the two case study watersheds, 

The remainder of the study results focus on two contrasting watersheds, Arroyo Seco and Clear Creek and Arroyo 

Seco (Fig.ure 1 a; Table 1). 



 

18 
 



 

19 
 

 465 

Figure 5: The relationship between rainfall depth (mm) and runoff peak (m3 s-1 km-2) for uUndisturbed rainfall-

runoff events in all study watersheds and each individual watershedfor rainfallstorm depth (mm) and runoff 

peak (m3 s-1 km-2). A Dashed black lines are LOWESS curves (dashed black line) for the undisturbed rainfall-

runoff events for all study watersheds and each individual watershed is shown. 

 470 

Clear dDirectional shiftsDifferences that varied by runoff metric and watershed were apparent in four selected 

undisturbed runoff event metric undisturbed rainfall-runoff event distributions for based on WYT, season, and 

antecedent precipitation. In both Arroyo Seco and Clear Creek watersheds, wet years had a exhibited higher median 

values than dry years for runoff volume, peak, duration, and response time runoff metrics (Fig.ure 6). Winter had 

higher median values than summer for runoff volume, peak, and response time runoff metrics in Arroyo Seco, but 475 

directional shifts were not asless consistent in direction in Clear Creek. For With respect to antecedent precipitation, 
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in both Arroyo Seco and Clear Creek, tThe largest highest median peak runoff and shortest median response time was 

foroccurred during high antecedent precipitation conditions in both Arroyo Seco and Clear Creekwatersheds.   

 

 480 

 

Figure 6: Undisturbed rainfall-runoff event KDE distributions for hydrologic conditions for natural log 

transformed WYT, season, and antecedent precipitation in (a) Arroyo Seco and (b) Clear Creek for four 

selected runoff metrics: volume, peak, duration, and response time. Distributions are colored by hydrologic 
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condition. The median value of each distribution is shown (dashed line). Significant differences between 485 

distributions is are indicated (*). Note there is no melt season in Arroyo Seco.  

 

In Arroyo Seco and Clear Creek, aAll three time-varying hydrologic controls were found to be significant forwith 

respect to the in undisturbed rainfall-runoff events in Arroyo Seco and Clear Creek, but relative significance rates 

varied by event runoff metric and watershed (Fig.ure 6; Table 3). Water year type was the most often significant 490 

hydrologic control across the four selected runoff metrics in Arroyo Seco while season was the most often significant 

control in Clear Creek (Fig.ure 6; Table 3). Antecedent precipitation was the least significant control had the lowest 

relative significance rates in both watersheds and exhibited the most variation in significance betweenby runoff metrics 

across the two watersheds. Of the four selected runoff metrics, pPeak runoff was most commonly significantwas the 

most often significant runoff metric across all the study watersheds for alland three time-varying hydrologic controls 495 

(Tables S7, S8, S9), and was . Peak runoff was also significant across the threeall time-varying hydrologic controls 

for in both Arroyo Seco and Clear Creek except antecedent precipitation in Clear Creek (Fig.ure 6; Table 3). 

Conversely, the least frequently significant least common significant runoff metric least frequently identified as 

significant varied across all the study watershedshydrologic controls varied by runoff metric, including runoff duration 

and response time for WYT, runoff duration for season, and runoff volume for antecedent precipitation (Tables S7, 500 

S8, S9). Despite being least commonly frequently significant overallEven so, WYTs corresponded withexhibited 

significant differences in runoff response time for WTY in Arroyo Seco and seasons corresponded withexhibited 

significant differences in runoff duration for season in Clear Creek were significant (Fig.ure 6; Table 3).  

 

Table 3: Undisturbed rainfall-runoff event hydrologic condition statistical test p-value results for the Mann 505 

Whitney U Test (WYT) and Kruskal Wallis and Dunn Tests (season, antecedent precipitation) for Arroyo Seco 

and Clear Creek for four selected area -normalized runoff event metrics. Shading indicates rejection of the null 

hypothesis at a significance level of 0.05. In shaded cells, an indicator marks the significantly different condition 

from the Dunn Test and no indicator means all conditions were significantly different. 

Watershed 
Time-varying hydrologic 

control 

Rainfall-rRunoff eEvent metric statistical test p-valuess 

Volume Peak Duration Response time 

Arroyo Seco Water year type <0.001 <0.001 0.05 0.005 

Season 0.48 0.013 0.15 0.47 

Antecedent precipitation 0.5532 <0.001 + 0.2957 0.3312 

Clear Creek Water year type 0.009 <0.001 0.56 0.60 

Season <0.001 * <0.001 <0.001 # <0.001 # 

Antecedent precipitation 0.3407 0.0511 0.15003 & 0.320.008 & 

Seasons: *Winter, ^Melt, #Summer 

Antecedent precipitation: &andNone, ~Low, +High 

 510 

Water year type and season were generally more important differentiating differentiate runoff event metrics 

(greater than> 50% averagerelative significance rate) while antecedent precipitation was generally less 
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importantdifferentiating of runoff event metric values across all study watersheds, evaluated by the relative 

significance rates, across all study watersheds (Fig.ure 7). However, but time-varying hydrologic control 

importanceresults varied for individualacross watersheds and area-normalized runoff metric groups. For example, in 515 

Arroyo Seco, the relative significant rate was 100% for the WYT runoff volume metric group was 100%(, as two out 

of the two metrics within this group,both runoff volume and runoff ratio (Table S3), were found to be significant by 

the Mann Whitney U Testsignificant (Table S3, Table S7)) while the significance rate for thebut only 33% for the 

WYT runoff duration metric group with respect to WYT was 33% because only one out of three metrics was 

significant. The When averaging across watersheds, the runoff duration and magnitude metric groups were 520 

differentiated with respect to both WYT and season relative significance rate for the runoff duration with respect to 

WYT averaged across all nine study watersheds was 72%. The watershed-averageWith respect to WYT, across all 

study watersheds, WYT the average significance rates of runoff volume and runoff magnitude metric groups exceeded 

50%  exceeded 50% for runoff volume and runoff magnitude metric groups (Fig.ure 7 a). In Arroyo Seco, Water year 

type was more important than the watershed-average ftThe averagerelative significance rates of allmost metric groups 525 

in Arroyo Secoexceeded those calculated across watersheds or all metric groups in Arroyo Seco (Fig.gure 7 b) and for 

runoff magnitude and runoff  volume metrics groups in Clear Creek (Fig. 7 c) the average significance rates of runoff 

magnitude and volume metric groups exceeded exceeded those calculated across watershedsthe watershed-average 

rates (Fig.ure 7 c). Compared to the watershed-average, WWYTater year type was generally more important 

differentiating of runoff response than the watershed-average in Arroyo Seco, Ash Canyon Creek, Camp Creek, and 530 

Shitike Creek than across all watersheds; less important differentiating in Clear Creek, Valley Creek, and Wet Bottom 

Creek than across all watersheds; and similarly important significantimportant in Cache La Poudre River and 

Thompson River to the average significance across watersheds  (Fig. S8). By contrast, compared to the watershed-

average, season was generally more differentiating of runoff response in Cache La Poudre River, Clear Creek, 

Thompson River, and Valley Creek, less differentiating in Ash Canyon Creek and Camp Creek; and similarly 535 

differentiating in Arroyo Seco, Shitike Creek, and Wet Bottom Creek (Fig. 7 b; Fig. S8). 
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 540 

Figure 7: Summary plots of the statisticalrelative significance rates of four aArea-normalized event runoff 

event metric s averaged by runoff metric groups (colored bars) with respect to three time-varying hydrologic 

controls (x-axis) significance summary rates for statistical test results . Individual plots for show results forthe 

watershed-average aAll Wwatersheds (atop panel), Arroyo Seco (b), and Clear Creek (cbottom panel) under 

undisturbed conditions. The 50% relative significance rate is indicated (black dashed). Shown are the average 545 

significance rates within tThe four rainfall-runoff metric groups include including runoff volume metrics 

(blue), runoff magnitude metrics (red), runoff duration metrics (grey), and rainfall-runoff timing metrics 

(purple) metrics. Bars are grouped by time-varying hydrologic control (WYT, season, antecedent 

precipitation). The Water Year Type (WYT) group significance rates are based on shows results of the Mann 

Whitney U Test. The season and antecedent precipitation groups significance rates show results fromare based 550 
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on the Kruskal Wallis Test. The hatching within the season and antecedent precipitation bars represents 

statistically different individual hydrologic conditions from the Dunn Test, where no hatching indicates all 

hydrologic conditions were statistically different. The 50% relative significance rate is highlighted indicated 

(black dashed).  

 555 

The Across watersheds, the average significance rate of the runoff volume and magnitude metric groups with 

respect to season exceeded 50%, suggesting that season generally acted as a hydrologic control season watershed-

average significance rate exceeded 50% for runoff volume and runoff magnitude metric groups (Fig.ure 7 a). In Arroyo 

Seco, no runoff metric groups were better differentiated with respect to season than the average significance across 

all watersheds (Fig. 7 b). Conversely, all runoff metric groups  in Clear Creek were better differentiated with respect 560 

to season than across all watersheds (Fig. 7 c). Season was more important than the watershed-average for in no metric 

groups in Arroyo Seco (Fig.ure 7 b) and for all metric groups in Clear Creek (Fig.ure 7 c). Season was generally more 

important differentiating than the watershed-average in Cache La Poudre River, Clear Creek, Thompson River, and 

Valley Creek than when considering all watersheds; less important differentiating in Ash Canyon Creek and Camp 

Creek; and similarly important differentiating in Arroyo Seco, Shitike Creek, and Wet Bottom Creek (Fig. S8). 565 

Across watersheds, theCompared with WYT and season, antecedent precipitation did a poor job of differentiating 

event runoff response across watersheds  average runoff metric significance rates never exceeded 50% with respect to 

antecedent precipitation The antecedent precipitation watershed-average significance rate exceeded 50% for no metric 

groups (Fig.ure 7 a). InCompared to the watershed-average, antecedent precipitation better differentiated  Arroyo 

Seco, the runoff magnitude, duration, and timing metrics groups in Arroyo Seco wasere better differentiated with 570 

respect to antecedent precipitation than when considering all watersheds (Fig. 7 b) Antecedent precipitation was more 

important than the watershed-average for the runoff magnitude , runoff duration, and rainfall-runoff timing metric 

groups in Arroyo Seco (Fig.ure 7 b) and inall runoff metric groups in Clear Creek for all four runoff volume, runoff 

duration, and rainfall-runoff timing metric groups in Clear Creekwere better differentiated (Fig.ure 7 c), and . 

Antecedent precipitation was generally more important than the watershed-average in Arroyo Seco and Clear Creek; 575 

less important differentiating of runoff response in Ash Canyon Creek, Camp Creek, Shitike Creek, Thompson 

River,and Valley Creek, and Wet Bottom Creek; and similarly important differentiating in Arroyo Seco, Cache La 

Poudre River, Thompson River, and Wet Bottom Creek (Fig. S8) than when considering all watersheds (Fig. S8). 

4.3. Hydrologic variability in wildfire disturbedRainfall-runoff trendspatterns in burned watersheds 

Three and four unique Several significant condition groups and trends emerged for them undisturbed rainfallstorm 580 

depth and versus peak runoff relationship in Arroyo Seco and Clear Creek, respectively (Fig.ure 8). The watershed 

specific significant condition groups were identified from eight and six hydrologic condition permutations of the 

watershed specific significant hydrologic controls in Arroyo Seco and Clear Creek, respectively (Fig. S9). The three 

significant condition groups in Arroyo Seco were (1) wet none+low, (2) wet high, and (3) dry. The four significant 

condition groups in Clear Creek were (1) summer, (2) winter, (3) wet melt, and (4) wet dry. Significant condition 585 

group trends were only assessed above 10 mm rainfallstorm depth in Arroyo Seco, consistent with the rainfallstorm 
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depth threshold observed in this watershed (Fig.ure 5). Each significant condition group’s power trend was distinct, 

fallingfell within a different portion of the un-groupedfull rainfall-runoff all-events distribution (Fig.ure 8; Table S10).  
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 590 

Figure 8: Significant condition groups for event runoff peak (m3 s-1 km-2) in Arroyo Seco and Clear Creek. 

Shown for the rainfallstorm  depth (mm) versusand runoff peak relationship are the undisturbed trends (black) 

and  (m3 s-1 km-2). Shown are the significant condition group trends (colored) and thei rand one standard 

deviation bounds (dashed).for each of the significant condition group (colored) and the un-grouped the trend 

when considering all undisturbed rainfall-runoffall- events trend (black).  The undisturbed rainfall-runoff 595 

events (top) and post-fire rainfall-runoff events within each significant condition group are plottedshown..   

 

For the rainfall depth versus runoff peak relationship, the The portion of post-fire rainfall-runoff events that 

plotted both above and one standard deviation above the significant condition group undisturbed trends was generally 

greater than undisturbed expectationsthat fell above the significant condition group trend for the undisturbed rainfall 600 

depth versus peak runoff relationship was generally greater than expected  for peak runoff in Arroyo Seco and Clear 

Creek, however this varied by significant condition group (Fig.ure 8;). The percent of post-fire rainfall-runoff events 

above the significant condition group trend was at least 50% for all significant condition groups in Arroyo Seco and 

all groups groups except winter in Clear Creek ( Table S11). In Arroyo Seco, post-fire events plotted above the 

significant condition group trend more than 50% of the time for all groups and above one standard deviation more 605 

than 16% of the time for all groups except dry. In Clear Creek, post-fire events plotted above one standard deviation 
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from the undisturbed trend more than expected for all groups except winter. The percent of rainfall-runoff events more 

than one standard deviation above the significant condition group trend was at least 16% for all significant condition 

groups except dry in Arroyo Seco and all except winter in Clear Creek. In general, the percent of post-fire rainfall-

runoff events above the significant condition group trend and one standard deviation decreased with increasing time 610 

since fire as illustrated in Figure 8 by decreasing point size (Figure 8; Table S11).  

5. Discussion 

5.1. RREDI toolkit  

The RREDI toolkit was developed to automatically separated  co-varying streamflow and precipitation time-

series into rainfall-runoff events in a method using an approach that could be applied in any watershed isis transferable 615 

across watersheds. The rainfall-runoff event dataset generated by the RREDI toolkit allowed for a large-sample 

analysis of hydrologic trends and controls across the study watersheds. The RREDI toolkit had an overall accuracy 

rate of 90%,  rainfall-runoff event accuracy rate, ranging from 78 to 100% across study watersheds. There were no 

clear watershed characteristics influencing physio-climatic patterns to the performance. Lower rainfall-runoff event 

accuracy rates in Ash Canyon Creek, Camp Creek, and Clear Creek may be associated with a range of with factors 620 

including poor quantification of rainfall storm timing, water withdrawals, temporally aggregated streamflow, and 

extended periods of diurnal cycling. The rainfall-runoff event aAccuracy increased after the removal of flagged 

rainfall-runoff events for all study watersheds. Rainfall-runoff eEvent retention rates were below average in Camp 

Creek and Wet Bottom Creek, but post-flagging rainfall-runoff event accuracy rates were near average and 100%, 

respectively. Both watersheds have flashy hydrology and substantial periods of low flow diurnal cycling that . This 625 

resulted in several identified rainfall-runoff event pairs where no the event runoff response was identifiedoutside of 

the allowable response window. 

Quantification of rainfallstorm events influenced tThe RREDI toolkit performance, was effected by precipitation 

data processing challenges, particularly the accurate where rainfallstorm timing was a common reason for poor 

rainfall-runoff event identification of rainfall timing. A gridded precipitation data product was used to overcome sparse 630 

rain gage density and limited or sporadic periods of record in the mountainous western U.SA.. The rainfall measured 

in valleys, where long term rain gages are more common (such as the NOAA COOP network), often diverges from 

mountain rainfall characteristics due to orographic gradients (Roe, 2005). Differences in rain gage distance to the 

watershed and watershed outlet also complicated inter-watershed comparison. Using gridded precipitation allowed for 

a spatially consistent precipitation time series to be created for all study watersheds. The centroid of the watershed 635 

was used to extract precipitation here as the best available method given the large computational requirement for 

additional watershed summaryanalysis, but future work could incorporate watershed averaged precipitation or other 

methods to better  capture precipitation spatial variability (Giani et al., 2022a; Kampf et al., 2016; Wang et al., 2023). 

The high spatial and temporal resolution of the AORC data product performed well compared to rain gage 

measurements (Hong et al., 2022; Kim &and Villarini, 2022; Partridge et al., 2024). However, the hourly temporal 640 

resolution did result in some loss of information related to short duration, high intensity rainfall eventsstorms as 

precipitation was linearly interpolated across the timestep.  
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The RREDI toolkit time-series event separation method improves on existing methods by being readily is iswas 

transferable across diverse watersheds using only two watershed specific parameters, and implementing an event 

flagging with the implementation of the flagging algorithm addressed issues that have been limiting in other methods. 645 

addressesd several common issues identified by past studies.Watershed transferability, a need identified by Giani et 

al., (2022b), was accomplished here using time-series signal processing and only two watershed parameters in the 

RREDI toolkit. Good agreement in rainfall-runoff event identification rates and metrics was found between a 

timeseries signal processing method and a baseflow separation method with the bonus of transferability in the former 

method (Giani et al., 2022b). The most common rainfall-runoff event separation technique relies on established 650 

baseflow methods to isolate event flow (e.g. Chapman & Maxwell, 1996; Duncan, 2019; Eckhardt, 2005; Xie et al., 

2020). Runoff events are then identified where baseflow diverges from total flow (Long & Chang, 2022; Mei & 

Anagnostou, 2015; Merz et al., 2006; Merz & Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018b). However, Giania 

et al., (2022b) identified the need for increased method transferability across watersheds. To increase transferability, 

methods use fewer modifying watershed parameters (Blume et al., 2007; Nagy et al., 2022) or time-series signal 655 

processing, as used in the RREDI toolkit, to identify rainfall-runoff events (Giania et al., 2022b; Patterson et al., 2020). 

A comparison of a baseflow separation method against a time-series signal processing method found good agreement 

in rainfall-runoff event identification rates and metrics with the added bonus of transferability in the latter method 

(Gianai et al., 2022b). The RREDI toolkit performed best when separating discrete rainfall-runoff events, however 

with the implementation of the flagging algorithm was able to address issues that have been limiting in other methods. 660 

The baseflow separation methods use daily streamflow (Long & Chang, 2022; Mei & Anagnostou, 2015; Merz et al., 

2006; Merz & Blöschl, 2009; Tarasova, Basso, Zink, et al., 2018b), however Bby using 15-minute streamflow time-

series, the RREDI toolkit could identify and characterize sub-daily rainfall-runoff events, a critical limitation in many 

other time-series separation methods (Long &and Chang, 2022; Mei &and Anagnostou, 2015; Merz et al., 2006; Merz 

&and Blöschl, 2009; Tarasova et al., 2018b). The use of time-series signal processing also allowed for the 665 

identification of rainfall events with no runoff response, providing more information about precipitation the rainfall 

thresholds and antecedent wetness conditions required for runoff generation. An algorithm to remove diurnal cycling 

events was also implemented, something not previously addressed.  

The time-series event separation method introduced in this study allowed for large-sample hydrologic analysis to 

investigate event-scale rainfall-runoff patterns and controls. Future work could expand this analysis to a larger set of 670 

watersheds and potential controls (Gupta et al., 2014). The RREDI toolkit could also be applied to address other 

pressing event-scale hydrologic challenges, including the influence of other watershed disturbances (e.g. urbanization, 

forest treatments, insect infestation) (Ebel &and Mirus, 2014; Goeking &and Tarboton, 2020), evaluation of design 

rainfall events, flood prediction, or event recurrence interval analysis. Beyond rainfall-runoff event analysis, the 

RREDI toolkit could be used to identify paired rainfall-runoff events in other rainfall-peaking time-series data 675 

relationships such as water quality events (e.g., turbidity) or soil moisture events.  

5.2. Undisturbed rainfall-runoff event patternsHydrologic variability  

In general, across the study watersheds, WYT and season were significant time-varying hydrologic controls on 

event runoff response while antecedent precipitation played a lesser role, but significance varied by watershed and 
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runoff metric. Differences in the significance of time-varying hydrologic controls between study watersheds 680 

corresponds with the findings of other large-sample rainfall-runoff analysis (Jahanshahi and Booij, 2024; Merz et al., 

2006; Merz &and Blöschl, 2009; Norbiato et al., 2009; Tarasova, Basso, Poncelet, et al., 2018a; Tarasova, Basso, 

Zink, et al., 2018b; Wu et al., 2021, Zheng et al., 2023). Variability in the significance of runoff metrics within a 

watershed within a watershed underlined the importance of comparing similar metrics between watersheds and studies 

to assess event runoff response. Differences between event runoff response in wet and dry years were significant 685 

across the runoff metrics in six of the seven watersheds where a WYT precipitation threshold was identified (Fig.ure 

7; Fig. S8). This aligns with Biederman et al.'s (2022) finding that the threshold between wet and dry years were was 

important in event runoff response in semi-arid watersheds. Differences in rainfall-runoff processes in between wet 

and dry years, such as the interaction between soil drainage and vegetation rooting depth as the watershed recovers, 

may drive these observed differences in runoff response (Bart, 2016; Biederman et al., 2022). High interannual 690 

variation in snowpack (Cayan, 1995) may be a driver in  WYT significance identified  in six of the seven snow-

dominated watersheds. Water year type was significant for one of the two rain dominated watersheds, Arroyo Seco, 

which may be explained by the. In Arroyo Seco, extreme interannual variability in the interannual frequency and 

intensity of atmospheric rivers that bring generate a majority ofmost of the precipitation may explain the WYT 

significance (Lamjiri et al., 2018). Surprisingly, WYT was not significant in Wet Bottom Creek despite interannual 695 

variation in the summer North American Monsoon in this watershed (Arriaga-Ramierez &and Cavazos, 2010; 

Pascolini-Campbell et al., 2015). This may be because, despite the monsoon influence, the majority ofmost of the 

watershed precipitation in this watershed instead instead comes from winter rainfall eventsstorms (Arriaga-Ramierez 

&and Cavazos, 2010).    

Seasonal differences in event runoff response were significant across the runoff metrics in seven watersheds 700 

including both snow- and rain-dominated systems (Fig.ure 7; Fig. S8). Similar patterns have been observed across 

other a variety of watersheds spanning with a range of precipitation and streamflow regimes and watershed catchment 

properties (Jahanshahi and Booij, 2024; Merz et al., 2006; Merz &and Blöschl, 2009; Norbiato et al., 2009; Tarasova, 

Basso, Poncelet, et al., 2018a, Zheng et al., 2023). In snow-dominated watersheds, observed seasonality has been 

attributed to differences in precipitation type (Merz et al., 2006; Merz &and Blöschl, 2009; Tarasova, Basso, Zink, et 705 

al., 2018b), seasonal water balance (Berghuijs et al., 2014; Merz et al., 2006; Tarasova, Basso, Poncelet, et al., 2018a), 

and the influence of snow on antecedent moisture conditions (Hammond &and Kampf, 2020; Jahanshahi and Booij, 

2024; Merz et al., 2006; Merz &and Blöschl, 2009; Norbiato et al., 2009). Seasonality in rain-dominated watersheds 

has been attributed to differences in rainfall storm properties (intensity, depth) and antecedent moisture driven by 

seasonal water balance (Berghuijs et al., 2014; Jahanshahi and Booij, 2024; Merz &and Blöschl, 2009; Tarasova, 710 

Basso, Zink, et al., 2018b). In fact, seasonal water balance has been identified as more important than topography in 

event runoff response differences between watersheds (Merz et al., 2006). As rainfallstorm properties were separately 

accounted for in this analysis by evaluating event runoff response with respect to specific rainfallstorm  metrics (e.g. 

rainfallstorm depth), the significance of seasonality is likely associated with seasonal differences in evapotranspiration 

and soil moisture.  715 
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Antecedent precipitation was only significant across the runoff metrics in onetwo very arid watersheds, Arroyo 

Seco and Clear Creek (Fig.ure 7; Fig. S8). These This finding indicates a complexity in this time varying hydrologic 

control as these findings contrast with our expectation that antecedent precipitation, as a proxy for antecedent soil 

moisture, would be a control on rainfall-runoff patterns. Antecedent precipitation has been used has a proxy for 

antecedent soil moisture in several studies (Jahanshahi and Booij, 2024; Long &and Chang, 2022; Merz et al., 2006; 720 

Tarasova, Basso, Zink, et al., 2018b) and in the SCS curve method for runoff generation (Mishra &and Singh, 2003). 

Past studies have found conflicting results in the significance of antecedent precipitation. Both 10-day antecedent 

precipitation in Italy (Merz et al., 2006) and antecedent soil moisture in Italy (Merz &and Blöschl, 2009; Tarasova, 

Basso, Zink, et al., 2018b) and 5-day antecedent precipitation in Iran (Jahanshahi and Booij, 2024) have been found 

to influence event runoff response. However, 10-day antecedent precipitation in Germany (Tarasova, Basso, Zink, et 725 

al., 2018b) and 3-day antecedent precipitation in Oregon, U.S.A (Long &and Chang, 2022) were not significant 

controls at the event scale. A possible reason why antecedent precipitation was not identified as significant in 

mosteightseven study watersheds may be the dominance of the seasonal water balance (Jahanshahi and Booij, 2024; 

Merz et al., 2006) which may not be captured in short window (<10 day) antecedent precipitation (Tarasova, Basso, 

Zink, et al., 2018b). To mitigate this, Tarasova, Basso, Zink, et al. (2018b) suggested applying a longer antecedent 730 

precipitation window (30-60 days) to better account for seasonal changes in the water balance.  

In both Arroyo Seco and Clear Creek, significant condition groups revealed distinct trends within the storm depth 

and runoff peak relationship (Figure 8). In Arroyo Seco, the runoff peak for a given storm was lower in significant 

condition groups with dry condition events than those with wet condition events. Further, with increasing storm depth, 

the dry significant condition group trend deviated further below the all-events trend. A possible reason for the 735 

divergence between the wet and dry significant group trends is differences in dominant runoff processes (Bart, 2016; 

Biederman et al., 2022) driven by strong interannual variation in wetness conditions (Merz & Blöschl, 2009; Tarasova, 

Basso, Zink, et al., 2018). Antecedent precipitation was important during wet years in Arroyo Seco. Interestingly, high 

antecedent precipitation mattered more at low storm depths, where the high wet significant condition group trend 

returned to the all-events trend with increasing storm depth. This may be due to an increasingly overwhelming 740 

overland runoff response to larger storms that diminishes the influence of antecedent precipitation. Too few events in 

the dry significant condition group limited separation of antecedent precipitation so this remains inconclusive.   

In Clear Creek, season was the primary driver separating the significant condition groups (Figure 8). This aligns 

with findings in other snow-dominated watersheds where the seasonal water balance was the primary driver of 

differences in rainfall-runoff patterns (Merz et al., 2006). This dominance of seasonal water balance over event 745 

antecedent precipitation likely explains why antecedent precipitation was not significant in the Clear Creek significant 

condition groups. Similar to other snow-dominated watersheds, the peak runoff response was highest during the melt 

and lower in the summer (Merz & Blöschl, 2009). Separation of wet and dry years was only significant during melt, 

likely due to the dominance of winter precipitation and interannual variance in snowpack in this watershed (Arriaga-

Ramierez & Cavazos, 2010; Cayan, 1995). Summer was the most responsive season to increasing storm depth. 750 

Without the influence of the snowpack during summer, this responsiveness is consistent with the findings in rain-

dominated Arroyo Seco.  
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5.3. Wildfire-effects on rainfall-runoff patternsHydrologic variability in wildfire disturbed watersheds  

Consideration of WYT and seasonality was critical to discerning the influence of wildfire disturbance on event 

runoff response. The influence of wildfire was most apparent in the winter in Arroyo Seco and summer in Clear Creek 755 

(Fig.ure 8). The differences inbetween post-fire response betweenin Arroyo Seco and Clear Creek is consistent with 

the large range of post-fire responses observed across western U.S.A watersheds (Hallema et al., 2017; Saxe et al., 

2018). In Arroyo Seco, for each year post-fire the peeventak  runoff peak magnitudesevents were greater than expected 

based on the undisturbed rainfall-runoff event distribution. This post-fire increase in runoff peak is consistent with 

previously observed increases in total annual flow in the watershed (Bart, 2016; Beyene et al., 2021). In Arroyo Seco, 760 

the first two years post-fire were wet years and the subsequent years were dry. Without considering the dry years 

separately, the influence of the fire would have been obscured within the full undisturbed rainfall-runoff event 

distribution. Distilling disturbed event runoff response from natural WYT variability has been identified as a challenge 

by other studies (Biederman et al., 2022; Hallema et al., 2017; Long &and Chang, 2022; Mahat et al., 2016; Newcomer 

et al., 2023; Owens et al., 2013). Without consideration of WYT, interannual hydrologic variability may obscure 765 

changes in post-fire rainfall-runoff patterns (Mahat et al., 2016; Newcomer et al., 2023; Owens et al., 2013) or falsely 

exaggerate the impact of wildfire if, for example, a fire is followed by very wet years as occurred in Arroyo Seco and 

Clear Creek Clear Creek.  

Altered post-fire rainfall-runoff patterns also appeared to be seasonal, as observed in Clear Creek (Fig.ure 8). In 

Clear Creek, post-fire peak runoff was greater than expected every year in summer, but the trend was inconsistent in 770 

winter and melt seasons. Biederman et al. (2022) similarly observed identified a similar trend, greater post-fire changes 

observed in the summer than the wwinter, in watersheds in the southwest U.SA. Wildfire has also been found to 

influence snow accumulation and melt timing (Ebel, Hinckley, et al., 2012; Gleason et al., 2019; Kampf et al., 2022; 

Maina &and Siirila‐Woodburn, 2020). However, less wildfire influence on event runoff response in the winter and 

melt seasons in snow-dominated watersheds like Clear Creek makes sense because snow accumulation and melt 775 

dynamics likely dominate runoff response during these periodsseasons. The altered post-fire summer rainfall-runoff 

events would have been obscured by the larger snowmelt runoff events without considering the seasonality of rainfall-

runoff events in Clear Creek. In Oregon, where Long &and Chang (2022) found no significant change between pre- 

and post-fire rainfall-runoff patterns despite comparing two dry years, the seasonality of rainfall-runoff events may 

have similarly obscured post-fire impacts as effects they did in Clear Creek.  780 

6. Conclusions 

This study presents and utilizes the RREDI toolkit, a transferable novel time-series signal processing based event 

separation and attribution algorithmmethod, to disentangleto investigate untangle the influence of time-varying 

hydrologic controls including WYT, season, and antecedent on wildfire disturbed  event runoff response. A rainfall-

runAoff event  dataset, consisting of 5042 rainfall-runoff events was generated by applying the RREDI toolkit to nine 785 

study watersheds in the western U.SA. This dataset was used to investigate rainfall-runoff event patterns (Q1), identify 

significant time-varying hydrologic controls by watershed and runoff metric group,  (Q2), and evaluate how the 

identified controls influence event runoff response and the effects of wildfire in in two case study burned wildfire 
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disturbed watersheds (Q3). Results revealed in generalacross the nine watersheds , Water Year Type and season were 

generally found to be significant time-varying hydrologic controls, but results  however significant controls varied 790 

betweenacross watersheds and runoff metrics. Antecedent The significance of antecedent precipitation was generally 

less significant, varied betweenacross watersheds, indicating a more complex influence relationship foon runoff 

response r this control consistent with the literature. The identified significant controls were used to explore the 

influence of wildfire disturbance Unique trends were identified within significant condition groups in two burned 

contrasting watersheds,In Arroyo Seco and Clear Creek, post-fire . Within each of the identified significant condition 795 

groups, the portion of post-fire rainfall-runoff events that fell above tgenerally exhibited higher peak runoff for a given 

rainfall depth than expected based on the undisturbed trends. Grouping rainfall-runoff events into significant 

hydrologic condition groups helped to reveal the effects of wildfire on event runoff response. Study findings improve 

fundamental understanding of multiple, confounding controls on event rainfall-runoff patterns and emphasize the need 

to consider the influence of interannual and seasonal variability to better isolate watershed disturbance effects. Better 800 

understanding the effects of watershed disturbances on streamflow patterns is he significant condition group trend was 

generally greater than expected for peak runoff. Consideration of the significantse time-varying controls promoted the 

isolation untangling of wildfire disturbance on event runoff response. This analysis has increased the understanding 

of controls on rainfall-runoff patterns on streamflow and emphasized the importance of consideration of significant 

hydrologic controls in in undisturbed and disturbed watersheds. Thiscritical to managing our natural resources  805 

elevates the ability to prepare for watershed managunder ement in a future with increasing disturbance regimes. 

 

Code and Data Availability: All code for data processing and visualization is available upon request from the author. 

The RREDI Toolkit python code and documentation for creation of the rainfall-runoff event dataset used in this study 

can be accessed via Hhydroshare at https://www.hydroshare.org/resource/797fe26dfefb4d658b8f8bc898b320de// 810 

(Canham &and Lane, 2022). Streamflow data from the USGS is publicly available at 
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