Response to second round of reviewer comments for 'Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method' – EGUSPHERE-2023-2874

Benjamin J. Wallis, on behalf of the authors.

We thank the editor and reviewer for their time and effort in reading this revised manuscript. We are grateful for the reviewer's comments and have responded to them here.

The line field refers to the comment's line in the original manuscript, while 'new line' indicates the position of the relevant changes in the updated manuscript with tracked changes. There are no changes to the figures in this second set of revisions.

Reviewer 1:

ID	Comment	Line	Response	New
11	The definition of the GZ adopts something	36 -	We thank the reviewer for clarifying their previous	36 -
	written by H. Fricker, which refers to the ocean	54	position and agree that grounding line/zone	63
	grounding zone or the flexure zone. It is a point	-	terminology is somewhat mixed within the	
	of importance because some authors have		community since the recent increase in interest in	
	mapped the extent of this zone and call it GZ		tidal grounding line migration.	
	width. Yet, the grounding line itself is migrating			
	with the tide, atmospheric pressure and long		To address this, we have clarified our definition to	
	term. How do you resolve that? How will you		distinguish the 'flexure zone' where ice adjusts to HE	
	separate the fact that the flexure zone has some		excluding tides; the 'grounding line tidal migration	
	width, always is, typically 5 to 10 km, whereas		zone' which is the locus of true GL locations due to	
	the true grounding zone, which is the locus of		tide and IBE; and the 'grounding zone' to mean the	
	temporal variations of the position of the GL, is		combination of these two.	
	something more fundamental, more new -			
	because most folks did not have the data to look		We chose to maintain a broader definition of	
	at it (See Mohajerani et al. 2021). It is fine to		grounding zone, because it is useful to discuss	
	leave it like this, but as satellites provide more		'grounding zone features' such as pinning points and	
	and more into on the position of the GL, i.e. the		is less in conflict with older definitions of the	
	GZ, which is of high importance for model, their		grounding zone. By specifying the flexure zone and	
	misloading. Your choice, Lam not sure my		tidal migration zone, we resolve any ambiguities.	
	comment was understood. I hope this clarifies. I		We have also tightened up our use of the terms	
	can see that lots of people will be - and have		grounding zone and grounding line throughout the	
	been - confused.		paper.	
			The paragraph introducing this terminology now	
			reads:	
			'Rather than having a fixed location, the grounding	
			line is a transitory feature which constantly changes	
			over short (daily) and longer term (decadal)	
			timescales. It is located within a wider flexure zone	
			(sometimes also called the grounding zone), which	
			characterises the larger area $(1 - 10 \text{ km wide})$ where	
			the transition from grounded ice to complete	
			19010stutic equilibrium occurs (Bruni et dl., 2010, 2011: Erickar at al. 2000: Smith 1001: Vauahan	
			2011, FILKET EL UL, 2003, SHILLI, 1991, VUUYIUN, 1991) The flevure zone is made up of several	
			features: the most inland of these is the landward	
			limit of ocean induced ice flexure noint F which is	
			located slightly inland of the true GL noint G due to	
			the elastic properties of ice (Padman et al., 2018:	
			Rignot et al., 2011; Vaughan. 1994). In the seaward	
			direction this point is followed by the break in surface	
			slope, point Ib, and the landward limit of stable	
			hydrostatic equilibrium, point H. Additionally, in	
			locations where there is an ice plain at the flexure	
			zone, point Ib may be located inland of the GL, point	
			G (Brunt et al., 2011; Corr et al., 2001). Schematics	
			showing the cross section of the grounding line are	

			widely available in the literature (Brunt et al., 2010, 2011; Dawson and Bamber, 2017; Fricker et al., 2009; Friedl et al., 2020; Smith, 1991; Vaughan, 1994). The true grounding line is a sub-glacial feature, so cannot be directly detected by satellite remote sensing measurements, which must instead measure surface expressions which are proxies for the GL or are used to deduce the GL position. Additionally, the true GL where grounded ice loses contact with the bed can migrate with changing sea-level caused by ocean tides and atmosphere pressure variations by the inverse barometer effect (IBE). This range of short- term tidal grounding line migration has also been referred to as the grounding zone by recent publications (Mohajerani et al., 2021; Rignot et al., 2024). The extent of this migration is also controlled by bed topography, ice thickness and ice rheology (Brunt et al., 2010; Jonathan and R, 1994; Padman et al., 2018) and further complicated by non-linear tidal migrations, which can show threshold and hysteresis behaviour (Freer et al., 2023; Milillo et al., 2022). For the purposes of this study we use the following terminology: 'flexure zone' to describe the features of ice flexure relation to the transition from grounded to hydrostatic equilibrium, excluding tides; 'grounding line tidal migration zone' (TMZ) to describe the locus of true grounding line migration due to tides and IBE; and 'grounding zone' (GZ) to encompass the combination of these. We use 'grounding line' (GL) to mean the inland limit of the grounding zone identified by remote sensing methods, as this is the focus of this study, and we are explicit about which grounding zone feature this refers to where required.'	
1.2	Speckle tracking is 10 x times less accurate than phase mapping. This difference in performance has been thoroughly and extensively documented for velocity mapping in peer reviewed publications and is valid for a range of SARs. There is no reason to expect a difference in performance when mapping grounding lines, i.e. a differential motion. Speckle tracking has an intrinsic resolution of about 350 m because you have to average many pixels to get the offsets. The authors claim that they pick the GL within 400-500 m. This seems hard to believe and quite optimistic. I do not expect a precision to be better than 1 km, which is still useful	311	A very similar point to this was raised in the first round of review by reviewer 3. Please see the round of response to reviewers document comment 3.2. In response to this comment, we extended the discussion of errors in section 3.2 of the paper (reproduced from previous response to reviewers). We believe the changes made to reviewer 3's comments also adequately address this reviewer's comment. Firstly, the reviewer's assertion that GL position could only be determined to within 1 km is most likely based on a single offset tracking result, ie in differential range offset tracking (DROT). We have explicitly acknowledged that offset tracking is less sensitive than DInSAR in the manuscript: <i>'There are</i> <i>several limitations of DROT; it is around an order of</i> <i>magnitude less sensitive vertical motion than</i>	

	<i>DInSAR</i> ['] (Line 130). Our approach, however, is based on a time-series of offset tracking results over two years, improving the quality of the measurement compared to DROT.
	Secondly, the figure of 490 m uncertainty on the grounding line position is based on an extensive evaluation and intercomparison exercise described in section 3.2 of the manuscript. We believe this gives a transparent and fair evaluation of our method's performance against established datasets. Providing an uncertainty estimate based on comparison to contemporary DInSAR measurements gives readers an understanding of the performance of our method based in the accuracy of comparable established techniques. In our opinion this is the best way to communicate the performance of our method.
	The original response to reviewer 3's first round comment is reproduced below:
	As the reviewer suggests we have included the measurement error associated with DInSAR grounding line delineations, using the figure of \pm 100 m quoted by Rignot et al., 2011. Combining this uncertainty in quadrature with the bias plus standard deviation of our method gives an accuracy for our TMOC method of \pm 490 m.
	We have added the following text to describe this:
	'Assuming that the 2019 DInSAR GL is the best dataset to accurately validate the performance of the TMOC GL method, we estimate that TMOC places the GL 185 \pm 295 m seaward of the DInSAR GL location. When the upper limit of this bias and variability is combined with a standard error of DInSAR GL delineations of \pm 100 m (Rignot et al., 2011), we estimate the TMOC method can locate the grounding line position with an accuracy of \pm 490 m.'
	For these reasons we have not modified the manuscript in response to this comment.