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Abstract  

Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe 

using ecosystem process models. Six ecosystem models (JSBACH-HIMMELI, LPX-Bern, LPJ-GUESS, JULES, CLM4.5 and 30 

CLM5) were compared to multi-model mean of ecosystem models and atmospheric inversions from the Global Carbon Project 

and up-scaled eddy covariance flux results for their temperature and precipitation responses and seasonal cycles of the regional 

fluxes. Two models with contrasting response patterns, LPX-Bern and JSBACH-HIMMELI, were used as priors in 

atmospheric inversions with Carbon Tracker Europe – CH4 in order to find out how the inversion attempts to change the prior 

fluxes in the posterior and how this alters the interpretation of the flux responses to temperature and precipitation. The inversion 35 
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attempted to move emissions of both models in posterior towards co-limitation by temperature and precipitation. In general 

high temperature and/or high precipitation periods often resulted in high posterior emissions. This was not the case for the 

warm and dry period of summer 2018. The process models showed strong temperature as well as strong precipitation responses 

for the region (51-91% of the variance explained by both), and the month of maximum emissions varied from May to 

September. However, multi-model means, inversions and up-scaled eddy covariance flux observations agreed on the month of 40 

maximum emissions, and had rather balanced temperature and precipitation responses. The set-up of different emission 

components (peatland emissions, mineral land fluxes) had a significant role in building up the response patterns. Considering 

the significant differences among the models, it is essential to pay more attention to the magnitude, composition, annual cycle 

and climate driver responses of wetland emissions in different regions. 

1 Introduction 45 

Wetlands are the largest natural source of methane, the second most important greenhouse gas, contributing about 30-40% to 

the global methane emissions (Saunois et al., 2020, Poulter et al., 2017). Temperature, soil moisture, water table depth and 

primary production drive the carbon accumulation, respiration and methane emissions from peatlands. Methane production 

takes place in water-saturated soil layers with limited oxygen availability via anoxic decomposition of soil organic matter by 

methanogenic microbes. In addition, mineral lands can act as a source of methane if the soil is very moist or inundated (Lohila 50 

et al., 2016, Wolf et al., 2011, see also Bansal et al., 2023), with a significant contribution from the organic layer on top of the 

soil. There are accurate peatland maps for the northern regions based on in situ data of peat layer thickness (e.g. Xu et al., 

2018, Tanneberger et al., 2017), which enable estimations of the peatland methane emissions by process models. The soil 

moisture and land inundation can also be estimated by models together with peat accumulation, though it is still challenging 

(e.g. Loisel, et al., 2021, Ito et al., 2020). 55 

 

In an attempt to realistically take into account the dynamical changes in total methane emitting area, many process models use 

wetland extent from remote sensing. However, this feature is badly represented especially in the boreal zone because forests 

shadow the inundated areas, and lakes are easily misinterpreted as inundated lands (e.g. Olefeldt et al., 2021, Mahoney et al., 

2020, Battaglia et al., 2020, Cohen et al., 2016, Chapman et al., 2016, Papa et al., 2006). Lakes do have methane emissions 60 

that may contribute up to one third of boreal biogenic emissions (Guo et al., 2020), but descriptions of lake methane processes 

are often missing from ecosystem models. Large lakes and rivers have been mapped with high precision, but small ponds, 

pools, seasonal inundation and low-order streams that may have high methane emissions are challenging to detect accurately 

(Olefeldt et al., 2021). Permanent water bodies (e.g., lakes, rivers and reservoirs) are usually removed to only cover inundated 

and non-inundated vegetated wetlands (Zhang et al., 2021). Inundation products are used either as static maps or with inter-65 

annual/ month-to-month variation. As a result, the model predictions of regional annual cycles of methane emission differ 

significantly and the future estimates of the total global methane emissions are highly variable (Stocker et al., 2013, Saunois 
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et al., 2020). Therefore it is useful to take a more climate-oriented perspective to the drivers of the methane emission in order 

to make better predictions of the responses to future climate change (Koffi et al., 2020), and to emphasize the regional 

approaches. It is important to study the responses of the emissions to air temperature and precipitation, as it defines the response 70 

of wetland emissions to climate change. 

 

Precipitation is the primary environmental driver for soil water dynamics during the growing season, and it can immediately 

impact the surface soil moisture, while its effect on the water table arises after a few days or weeks (e.g. Rinne et al., 2020, 

Gao et al., 2016).  Wide-spread inundation may appear in spring due to melting snow. In the future, the amount of precipitation 75 

is projected to increase in the boreal zone (Putnam et al.,2017, Ruosteenoja et al., 2016).  This would potentially lead to wetland 

expansion (Poulter et al., 2017), although increased evapotranspiration may counteract this (Helbig et al., 2020). Furthermore, 

rising temperature enhances methanogenesis in the wet soils (Koffi et al., 2020). While wetland extent is the most significant 

driver of methane emissions in process models (Poulter et al., 2017), soil temperature was shown to be the dominant driver for 

the inter-annual variability in methane emissions in North America and soil moisture in Western Siberian Lowlands in Russia 80 

(Thompson et al, 2017) according to atmospheric inversion modelling. Soil moisture was also connected to soil carbon content 

and methane emissions in Fennoscandia (Albuhaisi et al., 2023), and in Finnish landscape level studies (Räsänen et al., 2021, 

Vainio et al.,2021).  

 

Atmospheric inverse models relying on atmospheric methane concentrations provide a top-down view of the responses of 85 

methane emissions to climate drivers, attempting to detach them from the underlying prior assumptions. In process models the 

responses are more subject to how the processes were built and dependencies constructed. Therefore, atmospheric inversion 

models can be used to inform process models on how they should improve their emission estimates and climate responses. It 

is also important to study the responses of the emissions to air temperature and precipitation, as they define the impact of 

climate change on wetland emissions. Here we compare temperature and precipitation responses from ecosystem process 90 

models participating in the H2020-CRESCENDO project for model development. We compare their results to the ensemble 

of models from the Global Carbon Project (GCP) 2020 estimation of the global methane budget (Saunois et al., 2020). We use 

two of the models as well as the average of the GCP land ecosystem model ensemble (Saunois et al., 2020, Poulter et al., 2017) 

as priors of wetland emissions to inversions with Carbon Tracker Europe – CH4 (Tsuruta et al., 2017) in order to determine 

the sensitivity of the inversion to its prior and how this changes the interpretation of the flux responses to precipitation and 95 

temperature change in the boreal region in Fennoscandia. As a result, we obtain an assessment for process-based models using 

atmospheric inversion modelling, providing guidance on how to improve their climate responses. We get an estimate of how 

the temperature and precipitation responses vary between the process models and how the extreme climate conditions of the 

recent years are reflected in the methane emissions. 

 100 
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2. Materials and methods 

The ecosystem process models are introduced here together with the inversion system, observations and other materials utilised 

in this study. Of the ecosystem models, the wetland descriptions of JSBACH-HIMMELI, LPJ-GUESS, JULES, CLM4.5 and 

CLM5 were further developed in the recent H2020-CRESCENDO project and results of the standalone simulations made for 

the project are used here. CLM5 and JULES results from the coupled Earth System Model simulations were also retrieved 105 

from the recent coupled model inter-comparison project phase 6 (CMIP6, Eyring et al., 2016) data archive, and utilized in the 

work. We also include the LPX-Bern v.1.4 model which participated in Global Carbon Project (GCP) 2020 estimation of 

global methane budget (Saunois et al., 2020). Further, the ensemble mean of 12 ecosystem models from GCP is used for 

comparisons with the individual models, as well as the GCP ensemble mean of atmospheric inversions. The ensemble mean 

of the GCP ecosystem models, as well as two ecosystem models with contrasting responses (JSBACH-HIMMELI and LPX-110 

Bern), were used as priors in atmospheric inversions with Carbon Tracker Europe – CH4. Models and simulation set-ups are 

briefly introduced below.  

2.1 JSBACH-HIMMELI 

The ecosystem process model JSBACH version 3.2 with HIMMELI methane module version 1.0 (hereafter called JSBACH-

H) was applied in this work. JSBACH is the land component of Max Planck Institute Earth System Model (MPI-ESM) version 115 

1.2 (Mauritsen et al, 2019) and includes a multilayer hydrology model (Hagemann and Stacke, 2015) and representation of 

soil carbon by YASSO model (Goll et al., 2015). The HIMMELI model, coupled to JSBACH, describes the emission of 

methane from peatlands (Raivonen et al., 2017), including production, oxidation, diffusion, plant transport and ebullition 

processes in a multi-layer wetland scheme. For soil organic matter (SOM) decomposition, JSBACH employs the soil carbon 

model YASSO (Tuomi et al., 2009; Goll et al., 2015). The specific conditions of peatlands were taken into account in YASSO, 120 

following the approach in the peatland carbon model for LPJ (Kleinen et al., 2012) and JSBACH peatland implementation in 

Kleinen et al. (2020). YASSO uses four C pools for leaf and woody litter, representing the carbon fractions soluble in acid 

(A), water (W), and ethanol (E), as well as a nonsoluble (N) fraction. A fifth carbon pool is a humus pool containing SOM that 

has already undergone substantial decomposition. For the application to peatlands, the humus pool was modified to represent 

a catotelm carbon pool containing the carbon in the permanently anoxic part of the soil column. For anaerobic decomposition 125 

in the acrotelm, a fraction of the soil column was determined that was below the current water table. Decomposition rates were 

reduced in this part of the soil column by multiplying decomposition rate constants for all C pools with a modification factor 

ηanox=0.35, following Wania et al. (2010). For the peatland-specific decomposition in the acrotelm, the relative mass flow 

magnitudes from nonsoluble to acid-soluble were reduced from p3,nonpeat=0.83 in the original formulation to p3,peat=0.66 for 

the peatland case. Furthermore, the mass flow magnitude from the nonsoluble to the catotelm C pool was set to pN2cato=0.17. 130 

The water table level is simulated using a TOPMODEL approach (Kleinen et al., 2020) and the substrate for methane 

production is received from JSBACH soil anoxic respiration. Other versions of JSBACH-H have been lately developed for 
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studying drained peatland forest management options (Tyystjärvi et al, manuscript, Li et al, manuscript). Methane fluxes in 

mineral lands are driven by soil moisture from JSBACH hydrology model. The wet mineral soil emissions depend on the soil 

heterotrophic respiration from JSBACH and a soil moisture threshold is applied for the emissions using approach by Spahni 135 

et al (2011). Soil sink for methane is calculated using a model by Curry et al. (2007) for methane diffusion and oxidation in 

dry soils.  JSBACH-H was run at 0.1° resolution over the domain (Fig. 1), with land cover from EU-CORINE interpreting 

bogs and inland freshwater marshes as methane emitting peatlands (HIMMELI approach) and all other lands as mineral lands. 

For reference, global runs were also made with 1.875° resolution following the GCP protocol (see Sect. 1.1.8).  

2.2 LPX-Bern 140 

The Land surface Processes and eXchanges (LPX-Bern) model version 1.4 (Lienert and Joos, 2018, Stocker 2013, Spahni et 

al., 2013, Spahni et al., 2011) is a dynamic global vegetation model. The vegetation composition for a given land-use class is 

determined dynamically, allowing the different plant functional types to compete for resources. The configuration with 

DYPTOP (Dynamical Peatland Model Based on TOPMODEL) combines an inundation model with a model determining 

suitability for peatland growth conditions to simulate the peatland spatial distribution and temporal changes. DYPTOP 145 

accounts for the feedback between inundation dynamics, regional hydrology and peatland establishment, and estimates the 

distribution of peatlands versus mineral lands. The LPX-Bern model simulates peatland-specific soil carbon dynamics 

informed by water table position and peatland specific vegetation classes (Sphagnum, Graminoids relevant for the boreal zone), 

and interaction of the carbon and nitrogen cycles. Methane production, oxidation and transport processes are calculated 

according to Wania et al., (2010). Model runs were originally made with 0.5° resolution, following the GCP protocol (see Sect. 150 

1.1.8). 

2.3 LPJ-GUESS 

The Lund-Potsdam-Jena General Ecosystem Simulator version 4.0 (LPJ-GUESS, Lindeskog et al., 2013, Smith et al., 2014) 

with methane module WHyMe (Wania et al, 2010) is a process-based dynamic vegetation and biogeochemistry model and the 

terrestrial biosphere component in the European community Earth-System Model (EC-Earth-Veg, Hazeleger and Bitanja, 155 

2012, Döscher et al. 2021). WHyMe simulates methane production, three pathways of methane transport (diffusion, plant-

mediated transport and ebullition) and methane oxidation. LPJ-GUESS-WHyMe stand-alone simulations for CRESCENDO 

project were made at a 0.5° resolution using a prescribed peatland map. In general, LPJ-GUESS land use is described by the 

Land Use Harmonization version 2 (Hurtt et al, 2020).  

 160 

2.4 CLM 

The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM). CLM uses the 

biogeochemical configuration of Biome-BGC (Koven et al., 2013). CLM version 4.5 (Oleson et al., 2013) is the land 
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component of CESM version 1.2 and of the CMCC Coupled Model version 2 (CMCC-CM2, Cherchi et al, 2019) ) and CMCC 

Earth System Model version 2 (CMCC-ESM2, Lovato et al, 2022). CLM version 5.0 (Lawrence et al., 2019) is the land 165 

component of CESM version 2 (Danabasoglu et al, 2020) and of the Norwegian Earth System Model 2 (NORESM2, Seland 

et al., 2020). CLM4.5 and CLM5 differ e.g. in their description of nutrient dynamics, hydrology parameterization, root profile, 

nitrogen cycling, and phenology (Lawrence et al., 2019); a new feature in CLM5 is e.g. rain threshold for growth of deciduous 

vegetation (Peano et al., 2021). The methane emission scheme in CLM includes production, oxidation, ebullition, diffusion 

and plant transport processes in several soil layers (Meng et al., 2012, Riley et al., 2011). Methane production in the soil layers 170 

is calculated as a fraction of aerobic respiration and takes into account e.g. soil pH. Aerobic respiration depends on soil 

temperature, carbon content and soil moisture. The methane oxidation rate is co-limited by oxygen concentration and methane 

concentration. The total emissions of a grid cell are calculated for the land area that is considered water-saturated. The saturated 

and unsaturated grid cell area fractions are determined according to a topographic index approach. In addition, the model takes 

into explicit account multiple processes during e.g. melting period and thus the saturated fraction can vary largely over the 175 

growing season, affecting the methane emissions. 

CLM4.5 simulations were originally made at 1.25 x 0.9375° resolution and CLM5 at a 0.5° resolution. Results of the CLM5/ 

NorESM2-LM coupled simulation from the CMIP6 data archive (https://esgf-node.llnl.gov/projects/cmip6/) are also used in 

this study.  

2.5 JULES 180 

 

JULES-ES version 1.0 (JULES) is the Earth System configuration of the Joint-UK Land Environment Simulator, and land 

component of the UK community Earth System Model UKESM1 (Sellar et al., 2019).   Wetlands JULES stand-alone 

simulations were made at a 1.875 x 1.25 resolution. Results of the JULES-ES/ UKESM1-0-LLES-ES-1.0, coupled simulation 

from the CMIP6 data archive (https://esgf-node.llnl.gov/projects/cmip6/) are also used in this study. The wetland methane 185 

emission in JULES is calculated from soil temperature and substrate availability, and this is then multiplied by grid box 

saturated fraction (calculated using a topographic index approach) to give the grid box methane emissions (Gedney et al., 

2004). Recently, the scheme was updated to calculate methane production on multiple vertical soil layers (Comyn‐Platt et al., 

2018). It also includes an empirical decay factor for oxidation (see Chadburn et al., 2020) 

2.6 Global Carbon Project models 190 

The Global Carbon Project (GCP) effort for assessing global methane emissions (Saunois et al., 2020) included contributions 

from ecosystem models and atmospheric inversion models. The land surface model simulations followed a protocol (Saunois 

et al., 2020), where the models were run with prescribed remote-sensing based year-to year varying wetland area and dynamics 

dataset WAD2M (Wetland Area Dynamics for Methane Modeling, Zhang et al., 2021) and common climate drivers. This 

ensemble, of which we used data from 12 models (ELM, DLEM, TEM_MDM, TRIPLEX-GHG, JSBACH, JULES, LPJ-MPI, 195 
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LPJ-WSL, LPJ-GUESS, LPX-Bern, ORCHIDEE, VISIT), is hereafter referred as GCP-diag. We also used data from model 

runs where the models used their own approaches to simulate the wetland distributions. This ensemble mean of 8 models 

(ELM, JSBACH, JULES, LPJ-MPI, LPJ-WSL, LPX-Bern, ORCHIDEE, VISIT), is below referred as GCP-prog. The GCP 

effort included atmospheric inversion model simulations to provide a top-down view of emissions informed by atmospheric 

concentration observations. Here we used a mean of five inversion models (TM5-4DVAR, NIES-TM, NICAM-TM 4D-VAR, 200 

GELCA, CTE – CH4, set-ups described in Saunois et al., 2020) for comparing the seasonal cycle of process model wetland 

emissions to seasonality from inversions. Wetland methane fluxes were extracted from the flux totals by the participating 

research groups and the share thus depends on the individual approaches chosen, and on the priors used. In addition to GCP 

prior other priors like the one from the WETCHIMP ensemble mean (Melton et al., 2013), or e.g. VISIT ecosystem model 

were used by the inversion models listed above.  In the GCP protocol the prior wetland emission information needed for the 205 

inversions was obtained from the climatological mean of models from a previous study by Poulter et al., (2017). The GCP-

prior from the protocol was used in this work as a prior for Carbon Tracker Europe – CH4 inversions, as well as other priors 

from LPX-Bern and JSBACH-H (see sect. 1.1.9). 

2.7 Ecosystem model simulations 

The experimental set-ups to run the ecosystem models typically include spin-up by recycling the climate mean and variability 210 

from a decadal time period in the beginning of the 20th century, and transient carbon dioxide, climate and land-use runs over 

several decades until present day. The CRESCENDO models (JULES, CLM4.5, CLM5 and LPJ-GUESS) were run with 

climate from CRUNCEP version 7 (Viovy et al., 2018) from 1901-2014. For the GCP models and LPX-Bern the simulations 

covered the period from 1901 through the end of 2017, forced by CRU-JRA reconstructed climate fields (Harris, 2019). 

JSBACH-H was run from 1999 to 2018 with climate from CRU-HARMONIE, and globally with CRU-JRA.   215 

Ecosystem process model results were provided on a 0.5 -degree grid (or 0.1 degree for JSBACH-H). All flux results including 

atmospheric inversion results and up-scaled eddy fluxes were processed and analysed on a 1x1 degree grid. Further, the 

JSBACH-H, LPX-Bern and GCP-prior results were remapped by bilinear interpolation onto 1x1 degree grid for use in CTE-

CH4 atmospheric inversions.   

2.8 CTE - CH4 220 

Carbon Tracker Europe – CH4 (CTE-CH4) is a data assimilation system that optimizes total global CH4 fluxes (Tsuruta et al., 

2017), developed from Carbon Tracker Europe for CO2 (Peters et al., 2005; van der Laan-Luijkx et al., 2017). The system is 

based on an ensemble Kalman filter with 500 ensemble members and a fixed lag assimilation window of 5 weeks. Atmospheric 

methane observation data, mostly surface in situ observations from the OBSPACK v2.0 compilation (Cooperative Global 

Atmospheric Data Integration Project, 2020), is assimilated into the system. The TM5 atmospheric chemistry transport model 225 

(Krol et al., 2005) is applied to simulate the atmospheric transport of methane. The runs were forced by the ERA-Interim 

meteorological reanalysis (Dee et al., 2011). The prior natural surface fluxes which are optimized by CTE-CH4 come from 
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ecosystem process models. Results from the two models introduced above (LPX-Bern and JSBACH-H), and the mean of the 

GCP models, were used as priors in the inversions. The fluxes are optimized on a 1x1 degree resolution in Europe, but here 

we studied the sum of emissions from a region in Northern Europe (Fennoscandia), as the posterior fluxes from the inversions 230 

were better constrained over that larger region than 1x1 degree given the limited number of surface stations. In Northern 

Europe there were over 10 atmospheric stations that continuously or semi-continuously observed methane between the years 

2005 and 2018 (see Fig. 1). For anthropogenic emissions we used estimates from EDGAR v5.0 (Crippa et al., 2020) for fire 

GFED v4.1s (Giglio et al., 2013), and for termites VISIT (Ito et al., 2012), and for oceanic sources we used estimates based 

on ECMWF data (Tsuruta et al., 2017). The set-up of CTE-CH4 is described in more detail in Tenkanen et al. (2021).  235 

2.9 Up-scaled flux observations 

The gridded wetland flux product was based on up-scaling of observed (eddy covariance) methane fluxes (Peltola et al., 2019).  

Fluxes from 25 northern (>45°N) sites were used in constructing random forest models, which consist of a large number of 

regression trees. Random forest is a machine-learning algorithm that can be used for classification or regression analyses 

(Breiman, 2001). The random forest model had originally 15 explanatory input variables, e.g. temperature, precipitation, 240 

satellite data of greenness index etc. The up-scaled product was prepared for three wetland maps (LPX-Bern DYPTOP, Stocker 

et al., 2014, GLWD, Lehner and Döll, 2004, and PEATMAP, Xu et al., 2018). The comparisons were made against the grid-

wise mean of the three emission maps available for years 2013 and 2014. 

2.10 Climate 

Meteorological data for studying temperature and precipitation responses was obtained from CRU-JRA. The CRU-JRA dataset 245 

is constructed by re-gridding reanalysis data (JRA, produced by the Japanese Meteorological Agency, Kobayashi et al., 2015), 

aligned with the CRU TS 4.04 data (Harris 2019, 2020). The CRU-JRA dataset includes (0.5° x 0.5°) gridded 2-m temperature 

and total precipitation, which are used in this work. 

 

To test the effect of alternative temperature and precipitation data, we studied the coupled model runs from the CMIP6 archive, 250 

where JULES was coupled with UK-ESM and CLM5 with NOR-ESM2, CESM2 and CESM2-WACCM and thus subject to, 

and interacting with the climate from the coupled model. The results did not change significantly in terms of placing the highest 

methane emissions in the temperature-precipitation space (see Suppl Figure S1), creating confidence in the validity of the 

CRU-JRA climate data approach. In general, CRU gridded datasets are found to be suitable for vegetation analyses and well 

comparable to e.g. MERRA-2 and ERA5-Land reanalysis datasets, performing well even in remote areas with few observations 255 

(Zandler et al., 2020).  

 

The summer months from May to October were examined, as their mean temperatures were always above zero in Fennoscandia 

(Fig. 2). In May, the soil may still be in freezing or meltwater/inundation state in the northernmost parts of Fennoscandia, but 
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as some of the models above already produce high emissions in that month, we decided to include May in the calculation. 260 

Monthly average temperatures were calculated for those growing season months over the time period from 2000 to 2018. 

Average precipitation was calculated using precipitation data from the current month and one month before, to include the 

delay effect in soil water content and thereby correlating better with methane emissions (see e.g. Poulter et al., 2017).  

 

Flux correlations with precipitation and temperature were calculated using the Matlab® statistical package. The proportion of 265 

explained CH4 emission variance explained by temperature (T) and precipitation (P) and both together (TP) were solved using 

the regress function in the statistical package, performing a least squares fit of flux results on a linear model with temperature 

and precipitation as predictors (see also Chatterjee et al., 1986).  

 

3. Results 270 

Natural wetland fluxes, including those from peatlands and wet and dry mineral lands as well as inundated lands are studied 

below for their growing season temperature and precipitation responses in Fennoscandia. Six process models and the mean 

CH4 emissions from the GCP models are included, as well as results from CTE-CH4 inversions. The results are analysed in 

order to examine how the inversions propose to change the prior CH4 emissions and how the temperature and precipitation 

responses, and the seasonal cycle of emissions change in the posterior. The seasonal cycle is also compared to up-scaled eddy 275 

covariance flux observations. 

3.1 Temperature and precipitation responses 

The responses of the monthly CH4 emissions to temperature and precipitation varied among the models in Fennoscandia (Fig. 

3). According to JULES, LPJ-GUESS, JSBACH-H and CLM5, the highest emissions coincided with high temperature, while 

in CLM4.5 the highest emissions resided in the mid-temperature - low precipitation range. In LPX-Bern the highest emissions 280 

coincided with high precipitation. GCP-diag and GCP-prog had the highest emissions more evenly distributed in the high 

temperature – high precipitation regime, as could be expected from a mean of several models.  

 

The regressions in Fig. 3 show the correlation of LPJ-GUESS, JSBACH-H and JULES emissions with temperature, indicating 

that the variance explained was significant. Correlations with precipitation were generally weaker, but still dominated over 285 

temperature in LPX-Bern, and CLM4.5. Air temperature and precipitation could together explain at maximum 91% of the flux 

variation (JSBACH-H), but sometimes only 51% (CLM4.5). Multiple regression was performed using least squares fit of flux 

results on a linear model with temperature and precipitation as predictors. P-values for the full model were always < 0.01. 

 

LPX-Bern, JSBACH-H and GCP-prior were used as prior fluxes in the CTE-CH4 inversions to see how inversion attempts to 290 

change the CH4 emissions in Fennoscandia and how the temperature and precipitation responses change in the optimised 
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fluxes. In total, inversions increased the emissions from LPX-Bern priors by 33% and decreased from JSBACH-H priors by 

21%, thus bringing the flux estimates closer together. The inversion increased emissions from the GCP prior in the northern 

parts of Fennoscandia where peatlands are mostly located, and reduced emissions in the southern parts, in total decreasing by 

6%. The inversions also increased emissions from the LPX-Bern prior especially in northern Fennoscandia, while there were 295 

both decreases and increases from the JSBACH-H prior, with decreases being stronger on average (Suppl Fig S2).  

 

For LPX-Bern the largest posterior increases, i.e. posterior/prior multipliers, were suggested for the high temperature months 

(Fig. 4). The highest increases from the prior (posterior/prior > 2.0, i.e. above 92 % percentile of all values) occurred above 

mean monthly temperature of 12.3 °C (64 % percentile of all temperature values). The highest increase was proposed for July 300 

2014 with second highest mean temperature of 16.7 °C. However, the July 2018 record high heatwave with mean temperature 

of 17.2 °C was not among the highest posterior increases. The precipitation was record low, only 43 mm in July, which may 

explain the result. Some of the highest precipitation months like August 2008, 2016 and July-September 2007 with 

precipitation exceeding 100 mm, were already above average in the prior emissions but still experienced a large increase in 

the posterior. 305 

 

For JSBACH-H the largest increases were mostly proposed at the high precipitation regime. The highest increases from the 

prior (above unity, i.e. above 88% percentile of all values) occurred above 72 mm of precipitation (51% percentile). Anomalous 

high precipitation periods such as those in August 2008 and 2016 and July-September 2007 were significantly increased in the 

posterior emissions, similarly to LPX-Bern. JSBACH-H predicted the largest prior emissions during the warmest months, July 310 

2018 being the highest, followed by July 2014, 2010, 2005 and 2006. In the posterior the fluxes were decreased, but still the 

emissions stayed at relatively high level except for 2018, which was close to average.  A decrease in soil water table may play 

a role, as June and July 2018 (and 2014 and 2006) suffered from lack of precipitation.  

 

In simulations with the GCP-prior the largest increases were appointed to months with highest prior fluxes and otherwise rather 315 

scattered over the temperature-precipitation space. In addition, July 2018 did not show high posterior fluxes here, while the 

highest precipitation months were high also in the posterior. The overall posterior emission pattern followed that of the prior. 

There was no bias towards high temperature or precipitation regimes, which suggests a balanced prior. The temperature and 

precipitation correlations of the posterior fluxes were generally weaker than those of the prior for all models (Suppl Table S1), 

but the correlations of the flux multiplier indicated a nudge towards a stronger temperature response in LPX-Bern and a 320 

stronger precipitation response in JSBACH-H. For the GCP-prior the flux multiplier correlations were weak. 
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3.2 Model components and seasonal cycle 

In order to find the reasons behind the specific temperature and precipitation responses, we studied the mean seasonal cycles 

of the emissions and also the different model components. Generally, the total wetland fluxes are summed up from peatland 325 

emissions, wet and dry mineral land fluxes as well as emissions from inundated lands, and these fluxes have different seasonal 

cycles. Here JSBACH-H and LPJ-GUESS were studied because of their contrasting temperature and precipitation 

dependencies. 

 

The LPX-Bern components for peatland fluxes and wet mineral land emissions were largest in magnitude, and comparable to 330 

each other in Fennoscandia, but their seasonal cycles were somewhat different (Fig. 5).  The soil moisture and consequently 

the wet mineral land area peaked in autumn, and thus the wet mineral land emissions were at maximum in October in contrast 

to peatland emissions, which were at maximum in August. When all components were summed up, an annual cycle was created 

with maximum wetland emissions in September and October. 

 335 

JSBACH-H wetland emissions were strongly dominated by the peatland component, which had a maximum in July. Wet 

mineral land component had a broad maximum from August to October, and the dry mineral land sink had a maximum during 

the warmest summer months (July and August, see Fig 1.). All components added together suggested highest emissions in 

July.  

 340 

The CTE-CH4 inversions moved the monthly flux maximum from July to August when JSBACH-H was used as prior in the 

inversion and from September-October to August-September when LPX-Bern was used as prior (Fig 6). The flux maximum 

of the GCP-prior was in August and did not change in the posterior. Comparing the change maps for northern Fennoscandia, 

the inversion with the JSBACH-H and LPX-Bern priors positioned the fluxes to a higher level in August, while in July the 

fluxes were placed at a lower level with respect to the seasonal mean adjustment (Suppl Fig S3), indicating similar changes in 345 

the posterior regardless of the prior, and that the changes mostly took place in northern peatland areas with high methane 

emissions.  

 

For the rest of the models, the peak of the total emissions varied from May (CLM4.5) to August, see Fig. 7. The GCP inversion 

results (mean of five inversion models) peaked during August similarly to the prior. The up-scaled eddy covariance flux 350 

observations (estimated from Peltola et al. 2019 results using mean of the three flux maps) had a broader maximum in July-

August, however the temporal extent of the data was quite limited, only two years. Inspection of the model fluxes for the same 

time period, however, did not reveal significant differences.  
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4. Discussion 

According to process models, air temperature and precipitation explain a large proportion of the variation in wetland methane 355 

emissions from Fennoscandia, which is not surprising given that they comprise major seasonal forcing of the models. Some 

models (JSBACH-H, LPJ-GUESS and JULES) were clearly more constrained by temperature. The reason behind this 

behaviour could be linked to strong temperature dependencies in the process descriptions (production, oxidation, transport). 

Precipitation has a dual role: it presumably increases the wetland area by wetting dry upland soils and raises the water table in 

the permanent wetlands. Weak precipitation constraint could also arise from using constant/neglecting the wet mineral soil 360 

emissions or maintaining static proportions of wet and dry mineral land area over the growing season. For JSBACH-H the 

reason could possibly be in the temperature dependency of the peatland processes or too small wet mineral land area as opposed 

to dry land, and in LPJ-GUESS only peatland emissions were included and they had consistently high water table levels. LPX-

Bern emissions were strongly constrained by precipitation. In LPX-Bern the wet mineral lands had a large contribution to the 

emissions, the dynamic wet mineral land area being at largest after prolonged precipitation and generally in autumn (September 365 

- October) when the evapotranspiration had already decreased from high growing season levels. According to observations at 

a boreal site in Hyytiälä, Finland, however, mineral lands were wet and emitting more methane during early season (May- 

July) than in August – October (Vainio et al., 2021). In total, the site always acted as a sink of methane with confined emission 

patches. The representativity of the finding may be limited since the observations covered only two years, but similar findings 

have been published earlier (e.g. Kaiser et al., 2018, Warner et al., 2019).  370 

 

A modeling study by Poulter et al. (2017) concluded that in boreal regions CH4 emissions were best correlated with wetland 

area, followed by temperature and precipitation (as applied with one-month delay).  However, methane emissions were highly 

correlated with temperature in some models (e.g. JULES) which had a high temperature sensitivity. In general, the increased 

high latitude emissions were consistent with the increase in boreal air temperatures. Sensitivity of the boreal methane emissions 375 

to air temperature was confirmed by Koffi et al. (2020), noting that the co-limitation of temperature and precipitation would 

emerge for the more southern climate zones. According to Figure 2 in Koffi et al. (2020), LPX-Bern was slightly less 

temperature sensitive in the boreal zone than the other models, in agreement with the results in our study. Flux observation - 

based global and northern latitude studies by Knox et al. (2019, 2021) and Peltola et al. (2019) also emphasized the importance 

of temperature in controlling the wetland emissions, though water table level might become important at sites where water 380 

table level is below surface for a significant part of the year.  

 

The CTE-CH4 inversions quite unanimously attempted to move the seasonal maximum of the emissions towards August. This 

is supported by the GCP inversion ensemble and the observation-based up-scaled eddy covariance fluxes, mapped over 

Fennoscandia. Warwick et al. (2016) also found that seasonal cycles of methane mixing ratios at northern high latitudes above 385 

50° N were improved when the seasonal maximum in northern high-latitude wetland emissions predicted by process models 
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was delayed by one month from July to August. In our work, many models had their seasonal maxima in July or August, 

notable exceptions being CLM4.5 and CLM5 (bias towards spring) and LPX-Bern (bias towards autumn). The dominance of 

mineral land over peatland emissions may delay the month of the maximum emissions, as well as using a large wetland extent 

in late summer. Placing more peatlands in the southern parts of the region (like in GCP-diag) or having a weak temperature 390 

response could bring an earlier and longer seasonal emission maximum. A pronounced inundation period after snow melt 

could induce large methane emissions in spring. Phenology may also play a role, however modelled start to the growing season 

was usually delayed from satellite observations in northern latitudes (Peano et al., 2021). According to flux measurements at 

boreal peatlands, the month of highest emissions was July or August depending on the year (e.g. Rinne et al., 2020). Lake 

emissions are often not present in process models but are seen by inversions. They might delay the emission maximum in dry 395 

years when wetland emissions diminish towards end of the summer due to decreasing soil water table level but lake emissions 

continue.  

 

The summer months with the highest mean temperatures were not always anomalous in CTE-CH4 posterior fluxes. JSBACH-

H predicted the largest prior emissions during the warmest months. In the posterior and especially in July 2018 the fluxes were 400 

decreased, possibly because of the decrease in soil water table level as June and July 2018 suffered from a lack of precipitation 

(see e.g. Peters et al., 2020). Rinne et al. (2020) also noted that methane emissions in four out of five Fennoscandian wetland 

sites were decreased in 2018 due to a decrease in water table levels. The summer months with high precipitation often resulted 

in high posterior emissions. The year 2011 with observed high methane emissions from upland soil in northern Fennoscandia 

(Lohila et al., 2016) did not stand out in posterior emissions, but large increases were assigned to high precipitation periods in 405 

e.g. August 2008, 2016 and late summer 2007. August was also the month of the average seasonal precipitation maximum, 

while the average temperature maximum was in July. 

 

 

5. Conclusions 410 

The ecosystem models showed variable responses of methane emissions to temperature and precipitation for the Fennoscandia 

region. However, multi-model means, inversions and up-scaled eddy covariance flux observations agreed on the month of 

maximum emissions and had rather balanced temperature and precipitation responses which were not significantly changed 

from prior to posterior in inversions. When two models with contrasting response patterns were used as priors to inversion, 

the inversion attempted to move emissions of both in posterior towards co-limitation of temperature and precipitation. The set-415 

up of different emission components (peatland emissions, mineral land fluxes) had a significant role in building up the response 

patterns. Peatland emissions determined the month of maximum emissions in the models that were more sensitive to 

temperature, while wet mineral soil emissions determined the timing of the maximum in the case of strong precipitation 

sensitivity. This applies to multi-year average response patterns, noting that the models were sensitive to precipitation in the 
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anomalous cases of severe droughts with significant water table drawdown in pristine peatlands and corresponding reductions 420 

in methane emissions. Depending on the model, wet mineral soil and inundated land emissions can modify the seasonality of 

methane emissions together with peatland emissions. Therefore, it is essential to pay more attention to the role of the individual 

emission components, their magnitude, annual cycle and spatial extent in different regions, and in general consider how the 

fluxes should be scaled up from site to region (see also Bansal et al., 2023, Knox et al., 2020, Treat et al., 2018, Tuovinen et 

al., 2019). Furthermore, it is important to study the overall responses of the emissions to air temperature and precipitation, as 425 

it defines the response of wetland emissions to climate change. 
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Figure 1. Study region in Northern Europe.  
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Figure 2. Mean seasonal cycle of a) temperature and b) precipitation in Fennoscandia over the years 2000-2018 (CRU-JRA dataset). 795 

Shading refers to the highest and lowest monthly averages. 
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Figure 3. Temperature and precipitation responses of wetland methane emissions from six ecosystem models and mean of GCP 800 

diagnostic and prognostic models in Fennoscandia. Circles refer to monthly averages in May - October during years 2000-2018. R2: 

Proportion of explained CH4 emission variance explained by temperature (T) and precipitation (P) and both together (TP).  
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 805 

Figure 4. Temperature and precipitation responses of prior, posterior and posterior/prior methane emissions in Fennoscandia. 

Circles refer to monthly averages in May - October during years 2000-2018.  
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Figure 5. Seasonal cycle of CH4 emission components in Fennoscandia for a) JSBACH-H and b) LPX-Bern. Shading refers to 

maximum and minimum monthly emissions over years 2000 - 2018.  
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Figure 6. Seasonal cycle of the wetland CH4 emissions in Fennoscandia according to the CTE-CH4 inversion model (post) with 

JSBACH-H, LPX-Bern and GCP-prior as priors. Shading refers to maximum and minimum monthly emissions over years 2000 - 

2018. 
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Figure 7. Seasonal cycle of methane emissions in Fennoscandia according to ecosystem models, mean of GCP diagnostic, prognostic, 

prior, inversion ensemble models (Saunois et al., 2020) and up-scaled eddy covariance flux observations (Peltola et al., 2019). Shading 

refers to the largest and smallest members of the GCP diagnostic model ensemble. 835 
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