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Abstract  30 

Wetland methane responses to temperature and precipitation are studied in a boreal wetland-rich region in Northern Europe 

using ecosystem process models. Six ecosystem models (JSBACH-HIMMELI, LPX-Bern, LPJ-GUESS, JULES, CLM4.5 and 

CLM5) are compared to multi-model means of ecosystem models and atmospheric inversions from the Global Carbon Project 

and up-scaled eddy covariance flux results for their temperature and precipitation responses and seasonal cycles of the regional 

fluxes. Two models with contrasting response patterns, LPX-Bern and JSBACH-HIMMELI, are used as priors in atmospheric 35 
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inversions with Carbon Tracker Europe – CH4 in order to find out how the assimilation of atmospheric concentration data 

changes the flux estimates and how this alters the interpretation of the flux responses to temperature and precipitation. Inversion 

moves wetland emissions of both models towards co-limitation by temperature and precipitation. Between 2000 and 2018, 

periods of high temperature and/or high precipitation often resulted in increased emissions. However, the dry summer of 2018 

did not result in increased emissions despite the high temperatures. The process models show strong temperature as well as 40 

strong precipitation responses for the region (51-91% of the variance explained by both). The month with the highest emissions 

varies from May to September among the models. However, multi-model means, inversions and up-scaled eddy covariance 

flux observations agree on the month of maximum emissions and are co-limited by temperature and precipitation. The set-up 

of different emission components (peatland emissions, mineral land fluxes) have an important role in building up the response 

patterns. Considering the significant differences among the models, it is essential to pay more attention to the regional 45 

representation of wet and dry mineral soils and periodic flooding which contribute to the seasonality and magnitude of methane 

fluxes. The realistic representation of temperature dependence of the peat soil fluxes is also important. Furthermore, it is 

important to use process-based descriptions for both mineral and peat soil fluxes to simulate the flux responses to climate 

drivers. 

1 Introduction 50 

Wetlands are the largest natural source of methane, contributing about 30-40% to the global methane emissions (Saunois et 

al., 2020, Poulter et al., 2017). Wetlands considered in this study include those on peatlands and mineral lands as well as 

periodically inundated, i.e. flooded lands. Temperature, soil moisture, water table depth and primary production drive the 

carbon accumulation, respiration and methane emissions from peatlands and are modelled by ecosystem process models using 

atmospheric climate data such as temperature and precipitation as input to the simulations. Methane production takes place in 55 

water-saturated peat soil layers with limited oxygen availability via anoxic decomposition of soil organic matter by 

methanogenic microbes. There are accurate peatland maps for the northern regions based on in situ data of peat layer thickness 

(e.g. Xu et al., 2018, Tanneberger et al., 2017), which enable estimations of the peatland methane emissions by process models 

if the soil water table level and soil carbon processes providing substrate for methane production are well represented. Land 

not covered by peatlands includes mineral land. In addition, mineral lands can act as a source of methane if the soil is very 60 

moist or inundated (Lohila et al., 2016, Wolf et al., 2011, see also Bansal et al., 2023), with a significant contribution from the 

organic layer on top of the soil. The soil moisture and land inundation can also be estimated by models together with peat 

accumulation, though it is still challenging (e.g. Loisel, et al., 2021, Ito et al., 2020). Soil moisture is an important input variable 

for mineral soil emission modelling (e.g. Curry et al., 2007). 

 65 

In an attempt to realistically take into account the dynamical changes in total methane emitting area, many process models use 

wetland extent from remote sensing. However, this feature is badly represented especially in the boreal zone because forests 
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shadow the inundated areas, and lakes are easily misinterpreted as inundated lands (e.g. Olefeldt et al., 2021, Mahoney et al., 

2020, Battaglia et al., 2020, Cohen et al., 2016, Chapman et al., 2016, Papa et al., 2006). Lakes do have methane emissions 

that may contribute up to one third of boreal biogenic emissions (Guo et al., 2020), but descriptions of lake methane processes 70 

are often missing from ecosystem models. Large lakes and rivers have been mapped with high precision, but small ponds, 

pools, seasonal inundation and low-order streams that may have high methane emissions are challenging to detect accurately 

(Olefeldt et al., 2021). Permanent water bodies (e.g., lakes, rivers and reservoirs) are usually removed to only cover inundated 

and non-inundated vegetated wetlands (Zhang et al., 2021). Inundation products are used either as static maps or with inter-

annual/ month-to-month variation. As a result, the model predictions of regional annual cycles of methane emission differ and 75 

the future estimates of the total global methane emissions are highly variable (Stocker et al., 2013, Saunois et al., 2020). 

Therefore, instead of studying response to wetland extent, it is useful to take a more climate-oriented perspective to the drivers 

of the methane emission in order to make better predictions of the responses to future climate change (Koffi et al., 2020).  

Further, it is important to emphasize the regional approaches as the drivers of emissions vary widely in their spatial distribution, 

climate and ecosystem type (Stavert et al., 2020).  It is important to study the responses of the regional emissions to air 80 

temperature and precipitation, as it defines the response of regional wetland emissions to climate change.  

 

Precipitation is the primary environmental driver for soil water dynamics during the growing season, and it can immediately 

impact the surface soil moisture, while its effect on the water table becomes apparent after a few days or weeks (e.g. Rinne et 

al., 2020, Gao et al., 2016).  Wide-spread periodical inundation, i.e. flooding may appear in spring due to melting snow. In the 85 

future, the amount of precipitation is projected to increase in the boreal zone (Putnam et al.,2017, Ruosteenoja et al., 2016).  

This would potentially lead to wetland expansion (Poulter et al., 2017), although increased evapotranspiration may counteract 

this (Helbig et al., 2020). Furthermore, rising temperature enhances methanogenesis in the wet soils (Koffi et al., 2020). While 

wetland extent is the most significant driver of methane emissions in process models (Poulter et al., 2017), soil temperature 

was shown to be the dominant driver for the inter-annual variability in methane emissions in North America and soil moisture 90 

in Western Siberian Lowlands in Russia (Thompson et al, 2016) according to atmospheric inversion modelling and analysis 

of the results using climate reanalysis data (Dee et al., 2011). Soil moisture was also connected to soil carbon content and 

methane emissions in Fennoscandia (Albuhaisi et al., 2023), and in Finnish landscape level studies (Räsänen et al., 2021, 

Vainio et al.,2021).  

 95 

Atmospheric inverse models rely on atmospheric methane concentrations, and they provide a top-down view of the methane 

emissions. Their results can be used to study responses of regional methane emissions to climate drivers. In process models 

the responses are more subject to how the processes were built and dependencies constructed, and how the fluxes were up-

scaled. Therefore, it is worthwhile comparing the atmospheric inversion models to process models and study how their regional 

emission estimates and climate responses differ. Here we compare temperature and precipitation responses from ecosystem 100 

process models participating in the H2020-CRESCENDO project for model development. We compare their results to the 
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ensemble of models from the Global Carbon Project (GCP) 2020 estimation of the global methane budget (Saunois et al., 

2020). We use two of the models as well as the average of the GCP land ecosystem model ensemble (Saunois et al., 2020, 

Poulter et al., 2017) as priors of wetland emissions to inversions with Carbon Tracker Europe – CH4 (Tsuruta et al., 2017). 

We determine the sensitivity of the inversion to its prior and how this changes the interpretation of the flux responses to 105 

precipitation and temperature change in the boreal region in Fennoscandia. As a result, we obtain an assessment for process-

based models using atmospheric inversion modelling, providing guidance on how to improve their climate responses. We get 

an estimate of how the temperature and precipitation responses vary between the process models and how the extreme climate 

conditions of the recent years are reflected in the methane emissions. 

 110 

2. Materials and methods 

The ecosystem process models are introduced here together with the inversion system, observations and other materials used 

in this study. Of the ecosystem models, the wetland descriptions of JSBACH-HIMMELI, LPJ-GUESS, JULES, CLM4.5 and 

CLM5 were further developed in the recent H2020-CRESCENDO project and results of the standalone simulations made for 

the project are used here. CLM5 and JULES results from the coupled Earth System Model simulations were also retrieved 115 

from the recent coupled model inter-comparison project phase 6 (CMIP6, Eyring et al., 2016) data archive, and utilized in the 

work. We also include the LPX-Bern v.1.4 model which participated in Global Carbon Project (GCP) 2020 estimation of 

global methane budget (Saunois et al., 2020). Further, the ensemble mean of 12 ecosystem models from GCP is used for 

comparisons with the individual models, as well as the GCP ensemble mean of atmospheric inversions. The ensemble mean 

of the GCP ecosystem models, as well as two ecosystem models with contrasting responses (JSBACH-HIMMELI and LPX-120 

Bern), were used as priors in atmospheric inversions with Carbon Tracker Europe – CH4. Models and simulation set-ups are 

briefly introduced below and in Table 1.  

2.1 JSBACH-HIMMELI 

The ecosystem process model JSBACH version 3.2 with HIMMELI methane module version 1.0 (hereafter called JSBACH-

H) was applied in this work. JSBACH is the land component of Max Planck Institute Earth System Model (MPI-ESM) version 125 

1.2 (Mauritsen et al, 2019) and includes a multilayer hydrology model (Hagemann and Stacke, 2015) and representation of 

soil carbon by YASSO model (Goll et al., 2015). The HIMMELI model, coupled to JSBACH, describes the emission of 

methane from peatlands (Raivonen et al., 2017), including production, oxidation, diffusion, plant transport and ebullition 

processes in a multi-layer wetland scheme. For soil organic matter (SOM) decomposition, JSBACH employs the soil carbon 

model YASSO (Tuomi et al., 2009; Goll et al., 2015). The specific conditions of peatlands were taken into account in YASSO, 130 

following the approach in the peatland carbon model for LPJ (Kleinen et al., 2012) and JSBACH peatland implementation in 

Kleinen et al. (2020). YASSO uses four C pools for leaf and woody litter, representing the carbon fractions soluble in acid 

(A), water (W), and ethanol (E), as well as a nonsoluble (N) fraction. A fifth carbon pool is a humus pool containing SOM that 
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has already undergone substantial decomposition. For the application to peatlands, the humus pool was modified to represent 

a catotelm carbon pool containing the carbon in the permanently anoxic part of the soil column. For anaerobic decomposition 135 

in the acrotelm, a fraction of the soil column was determined that was below the current water table. Decomposition rates were 

reduced in this part of the soil column by multiplying decomposition rate constants for all C pools with a modification factor 

ηanox=0.35, following Wania et al. (2010). For the peatland-specific decomposition in the acrotelm, the relative mass flow 

magnitudes from nonsoluble to acid-soluble were reduced from p3,nonpeat=0.83 in the original formulation to p3,peat=0.66 for 

the peatland case. Furthermore, the mass flow magnitude from the nonsoluble to the catotelm C pool was set to pN2cato=0.17 140 

for improved peat accumulation rate. The water table level is simulated using a TOPMODEL approach (Kleinen et al., 2020) 

and the substrate for methane production is received from JSBACH soil anoxic respiration. Other versions of JSBACH-H have 

been lately developed for studying drained peatland forest management options (Tyystjärvi et al., 2024, in discussion, preprint 

available, Li et al., 2024, in print, pre-proof available). Methane fluxes in mineral lands are driven by soil moisture from 

JSBACH hydrology model. The wet mineral soil emissions depend on the soil heterotrophic respiration from JSBACH and a 145 

soil moisture threshold is applied for the emissions using approach by Spahni et al (2011). Soil sink for methane is calculated 

using a model by Curry et al. (2007) for methane diffusion and oxidation in dry soils.  JSBACH-H was run at 0.1° resolution 

over the domain (Fig. 1), with land cover from EU-CORINE interpreting bogs and inland freshwater marshes as methane 

emitting peatlands (HIMMELI approach) and all other lands as mineral lands. For reference, global runs were also made with 

1.875° resolution following the GCP protocol (see Sect. 1.1.8).  150 

2.2 LPX-Bern 

The Land surface Processes and eXchanges (LPX-Bern) model version 1.4 (Lienert and Joos, 2018, Stocker 2013, Spahni et 

al., 2013, Spahni et al., 2011) is a dynamic global vegetation model. The vegetation composition for a given land-use class is 

determined dynamically, allowing the different plant functional types to compete for resources. The configuration with 

DYPTOP (Dynamical Peatland Model Based on TOPMODEL) combines an inundation model with a model that determines 155 

peatland growth conditions to simulate the peatland spatial distribution and temporal changes. DYPTOP accounts for the 

feedback between inundation dynamics, regional hydrology and peatland establishment, and estimates the distribution of 

peatlands versus mineral lands. The LPX-Bern model simulates peatland-specific soil carbon dynamics informed by water 

table position and peatland specific vegetation classes (Sphagnum, Graminoids relevant for the boreal zone), and interaction 

of the carbon and nitrogen cycles. Methane production, oxidation and transport processes are calculated according to Wania 160 

et al., (2010). Model runs were originally made with 0.5° resolution, following the GCP protocol (see Sect. 1.1.8). 

2.3 LPJ-GUESS 

The Lund-Potsdam-Jena General Ecosystem Simulator version 4.0 (LPJ-GUESS, Lindeskog et al., 2013, Smith et al., 2014) 

with methane module WHyMe (Wania et al, 2010) is a process-based dynamic vegetation and biogeochemistry model and the 

terrestrial biosphere component in the European community Earth-System Model (EC-Earth-Veg, Hazeleger and Bitanja. 165 
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2012, Döscher et al. 2021). LPJ-GUESS land use is described by the Land Use Harmonization version 2 (Hurtt et al, 2020). 

WHyMe simulates methane production, three pathways of methane transport (diffusion, plant-mediated transport and 

ebullition) and methane oxidation. LPJ-GUESS-WHyMe stand-alone simulations for CRESCENDO project were made using 

a prescribed peatland map at a 0.5° resolution. 

 170 

2.4 CLM 

 

The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM). CLM uses the 

biogeochemical configuration of Biome-BGC (Koven et al., 2013). CLM version 4.5 (Oleson et al., 2013) is the land 

component of CESM version 1.2 and of the CMCC Coupled Model version 2 (CMCC-CM2, Cherchi et al, 2019) ) and CMCC 175 

Earth System Model version 2 (CMCC-ESM2, Lovato et al, 2022). CLM version 5.0 (Lawrence et al., 2019) is the land 

component of CESM version 2 (Danabasoglu et al, 2020) and of the Norwegian Earth System Model 2 (NORESM2, Seland 

et al., 2020). CLM4.5 and CLM5 differ e.g. in their description of nutrient dynamics, hydrology parameterization, root profile, 

nitrogen cycling, and phenology (Lawrence et al., 2019); a new feature in CLM5 is e.g. rain threshold for growth of deciduous 

vegetation (Peano et al., 2021). The methane emission scheme in CLM includes production, oxidation, ebullition, diffusion 180 

and plant transport processes in several soil layers (Meng et al., 2012, Riley et al., 2011). Methane production in the soil layers 

is calculated as a fraction of aerobic respiration and takes into account e.g. soil pH. Aerobic respiration depends on soil 

temperature, carbon content and soil moisture. The methane oxidation rate is co-limited by oxygen concentration and methane 

concentration. The total emissions of a grid cell are calculated for the land area that is considered water-saturated. The saturated 

and unsaturated grid cell area fractions are determined according to a topographic index approach. In addition, the model takes 185 

into explicit account multiple processes during e.g. melting period and thus the saturated fraction can vary largely over the 

growing season, affecting the methane emissions. 

CLM4.5 simulations were originally made at 1.25 x 0.9375° resolution and CLM5 at a 0.5° resolution. Results of the CLM5/ 

NorESM2-LM coupled simulation from the CMIP6 data archive (https://esgf-node.llnl.gov/projects/cmip6/) are also used in 

this study.  190 

2.5 JULES 

 

JULES-ES version 1.0 (JULES) is the Earth System configuration of the Joint-UK Land Environment Simulator, and land 

component of the UK community Earth System Model UKESM1 (Sellar et al., 2019). The wetland methane emission in JULES 

is calculated from soil temperature and substrate availability, and this is then multiplied by grid box saturated fraction 195 

(calculated using a topographic index approach) to give the grid box methane emissions (Gedney et al., 2004). Recently, the 

scheme was updated to calculate methane production on multiple vertical soil layers (Comyn‐Platt et al., 2018). It also includes 
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an empirical decay factor for oxidation (see Chadburn et al., 2020). Wetlands JULES stand-alone simulations were made at a 

0.5° x 0.5° resolution. Results of the JULES-ES/ UKESM1-0-LLES-ES-1.0, coupled simulation from the CMIP6 data archive 

(https://esgf-node.llnl.gov/projects/cmip6/) are also used in this study.  200 

2.6 Global Carbon Project models 

The Global Carbon Project (GCP) effort for assessing global methane emissions (Saunois et al., 2020) included contributions 

from ecosystem models and atmospheric inversion models. The land surface model simulations followed a protocol (Saunois 

et al., 2020), where the models were run with prescribed remote-sensing based year-to year varying wetland area and dynamics 

dataset WAD2M (Wetland Area Dynamics for Methane Modeling, Zhang et al., 2021) and common climate drivers. This 205 

ensemble, of which we used data from 12 models (ELM, DLEM, TEM_MDM, TRIPLEX-GHG, JSBACH, JULES, LPJ-MPI, 

LPJ-WSL, LPJ-GUESS, LPX-Bern, ORCHIDEE, VISIT), is hereafter referred as GCP-diag. We also used data from model 

runs where the models used their own approaches to simulate the wetland distributions. This ensemble mean of 8 models 

(ELM, JSBACH, JULES, LPJ-MPI, LPJ-WSL, LPX-Bern, ORCHIDEE, VISIT), is below referred as GCP-prog. The GCP 

effort included atmospheric inversion model simulations to provide a top-down view of emissions informed by atmospheric 210 

concentration observations. Here we used a mean of five inversion frameworks (TM5-4DVAR, NIES-TM, NICAM-TM 4D-

VAR, GELCA, CTE – CH4, set-ups described in Saunois et al., 2020) for comparing the seasonal cycle of process model 

wetland emissions to seasonality from inversions. Wetland methane fluxes were extracted from the flux totals by the 

participating research groups and the wetland proportion of the total flux thus depends on the individual approaches chosen, 

and on the priors used. The wetland priors for the inversions were obtained from different sources.  The WETCHIMP ensemble 215 

mean (Melton et al., 2013), or e.g. VISIT ecosystem model were used by the inversion models listed above.  In the GCP 

protocol the prior wetland emission information needed for the inversions was obtained from the climatological mean of 

models from a previous study by Poulter et al., (2017). The GCP-prior from the protocol was used in this work as a prior for 

Carbon Tracker Europe – CH4 inversions, as well as other priors from LPX-Bern and JSBACH-H (see sect. 1.1.9). 

 220 

2.7 Ecosystem model simulations 

The experimental set-ups to run the ecosystem models typically include spin-up by recycling the climate mean and variability 

from a decadal time period in the beginning of the 20th century, and transient carbon dioxide, climate and land-use runs over 

several decades until present day. The CRESCENDO models (JULES, CLM4.5, CLM5 and LPJ-GUESS) were run with 

climate from CRUNCEP version 7 (Viovy et al., 2018) from 1901-2014. For the GCP models and LPX-Bern the simulations 225 

covered the period from 1901 through the end of 2018 (GCP 2017), forced by CRU-JRA reconstructed climate fields (Harris, 

2019). JSBACH-H was run from 1999 to 2018 with climate from CRU-HARMONIE, and globally with CRU-JRA.   

Ecosystem process model results were provided on a 0.5 -degree grid (or 0.1 degree for JSBACH-H). The JSBACH-H, LPX-

Bern and GCP-prior results were remapped by bilinear interpolation onto 1x1 degree grid for use in CTE-CH4 atmospheric 
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inversions. Analyses of flux results including ecosystem process model results, atmospheric inversion results and up-scaled 230 

eddy fluxes was made on a 1x1 degree grid. 

2.8 CTE - CH4 

Carbon Tracker Europe – CH4 (CTE-CH4) is a data assimilation system that optimizes total global CH4 fluxes (Tsuruta et al., 

2017), developed from Carbon Tracker Europe for CO2 (Peters et al., 2005; van der Laan-Luijkx et al., 2017). The system is 

based on an ensemble Kalman filter with 500 ensemble members and a fixed lag assimilation window of 5 weeks. Atmospheric 235 

methane observation data, mostly surface in situ observations from the OBSPACK v2.0 compilation (Cooperative Global 

Atmospheric Data Integration Project, 2020), is assimilated into the system. In Northern Europe there were over 10 

atmospheric stations that continuously or semi-continuously observed methane between the years 2005 and 2018 (see Fig. 1 

and Suppl. Table S1). The TM5 atmospheric chemistry transport model (Krol et al., 2005) is applied to simulate the 

atmospheric transport of methane. The runs were forced by the ERA-Interim meteorological reanalysis (Dee et al., 2011). The 240 

prior natural surface fluxes which are optimized by CTE-CH4 come from ecosystem process models. Results from the two 

models introduced above (LPX-Bern and JSBACH-H), and the mean of the GCP models, were used as priors in the inversions.  

The fluxes are optimized on a 1x1 degree resolution in Europe, but here we studied the sum of emissions from a region in 

Northern Europe (Fennoscandia), as the posterior fluxes from the inversions were better constrained over that larger region 

than 1x1 degree, i.e. the flux uncertainty becomes very large in pixel resolution given the limited number of surface stations. 245 

For anthropogenic emissions (optimised separately) we used estimates from EDGAR v5.0 (Crippa et al., 2020), for fire GFED 

v4.1s (Giglio et al., 2013), and for termites VISIT (Ito et al., 2012), and for oceanic sources we used estimates based on 

ECMWF data (Tsuruta et al., 2017). The atmospheric sink was calculated using prescribed data obtained from the TM5 

chemistry model (e.g. OH fields). The set-up of CTE-CH4 is described in more detail in Tenkanen et al. (2021).  

2.9 Up-scaled flux observations 250 

The gridded wetland flux product was based on up-scaling of observed (eddy covariance) methane fluxes (Peltola et al., 2019).  

Fluxes from 25 northern (>45°N) sites were used in constructing random forest models, which consist of a large number of 

regression trees. Random forest is a machine-learning algorithm that can be used for classification or regression analyses 

(Breiman, 2001). The random forest model had originally 15 explanatory input variables, e.g. temperature, precipitation, 

satellite data of greenness index etc. The up-scaled product was prepared for three wetland maps (LPX-Bern DYPTOP, Stocker 255 

et al., 2014, GLWD, Lehner and Döll, 2004, and PEATMAP, Xu et al., 2018). The comparisons were made against the grid-

wise mean of the three emission maps available for years 2013 and 2014. 

2.10 Climate 

Meteorological data for studying temperature and precipitation responses was obtained from CRU-JRA. CRU gridded datasets 

are found to be suitable for vegetation analyses and well comparable to e.g. MERRA-2 and ERA5-Land reanalysis datasets, 260 
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performing well even in remote areas with few observations (Zandler et al., 2020). The CRU-JRA dataset is constructed by 

re-gridding reanalysis data (JRA, produced by the Japanese Meteorological Agency, Kobayashi et al., 2015), aligned with the 

CRU TS 4.04 data (Harris 2019, 2020). The CRU-JRA dataset includes (0.5° x 0.5°) gridded 2-m temperature and total 

precipitation, which are used in this work.  

 265 

To test the effect of alternative temperature and precipitation data in addition to CRU-JRA, we studied the coupled model runs 

from the CMIP6 archive, where JULES was coupled with UK-ESM and CLM5 with NOR-ESM2 and thus subject to and 

interacting with the climate from the coupled model. The results did not change much in terms of placing the highest methane 

emissions in the temperature-precipitation space. Air temperature explained 76% of the flux variation in JULES and 71% in 

the coupled model run and 48% in CLM5 and 37% in the coupled model run. Precipitation explained less than 10% of the flux 270 

variation in all model runs (Suppl. Figure S1). To further test the impact of two different bias-corrected data sets, we plotted  

CRU-HARMONIE and CRU-JRA against JSBACH-H results (Suppl. Figure S2), showing only small differences regarding 

the response of methane emissions to temperature (temperature explained 82% of the flux variation in both cases) and 

precipitation (< 5.5%). It was therefore deemed appropriate to use the bias-corrected CRU-JRA data set in our analysis. 

 275 

The summer months from May to October were examined, as their mean temperatures were always above zero in Fennoscandia 

(Fig. 2). In May, the soil may still be in freezing or meltwater/inundation state in the northernmost parts of Fennoscandia, but 

as some of the models above already produce high emissions in that month, we decided to include May in the calculation. The 

summer months, or length of the thermal growing season varies considerably when moving from south to north in the study 

region. In the southernmost parts it is on average >220 days long while in the northernmost parts it is <100 days long (Aalto 280 

et al., 2022). Monthly average temperatures were calculated for May to October over the time period from 2000 to 2018. 

Average precipitation was calculated using precipitation data from the current month and one month before, to include the 

delay effect in soil water content and thereby correlate better with methane emissions (see e.g. Poulter et al., 2017).  

 

Flux correlations with precipitation and temperature were calculated using the Matlab® statistical package. The proportion of 285 

CH4 emission variance explained by temperature (T) and precipitation (P) and both together (TP) were solved using the regress 

function in the statistical package, performing a least squares fit of flux results on a linear model with temperature and 

precipitation as predictors (see also Chatterjee et al., 1986).  

 

3. Results 290 

Natural wetland fluxes, including those from peatlands and wet and dry mineral lands as well as inundated lands are studied 

below for their growing season temperature and precipitation responses in Fennoscandia. Six process models and the mean 

CH4 emissions from the GCP models are included, as well as results from CTE-CH4 inversions. The results are analysed in 
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order to examine how the inversions propose to change the prior CH4 emissions and how the correlations with temperature 

and precipitation, as well as the seasonal cycle of emissions change in the posterior.  295 

3.1 Temperature and precipitation responses 

The responses of the monthly CH4 emissions to temperature and precipitation varied among the models in Fennoscandia. 

According to JULES, LPJ-GUESS, JSBACH-H and CLM5, the highest emissions coincided with high temperature (see Fig. 

3), while in CLM4.5 the highest emissions resided in the mid-temperature - low precipitation range. In LPX-Bern the highest 

emissions coincided with high precipitation (see Fig. 3). GCP-diag and GCP-prog had the highest emissions more evenly 300 

distributed in the high temperature – high precipitation regime, as could be expected from a mean of several models.  

 

The regressions in Fig. 3 show the correlation of LPJ-GUESS, JSBACH-H and JULES emissions with temperature, indicating 

that the variance explained was significant as R2 values for temperature were between 0.76 and 0.89 and P-values were < 0.01. 

Correlations with precipitation were generally weaker, but still dominated over temperature in LPX-Bern (R2
Precip = 0.50), and 305 

CLM4.5 (R2
Precip = 0.47). According to a linear statistical model (Chatterjee et al., 1986) with both temperature and 

precipitation as predictors, air temperature and precipitation could together explain at maximum 91% of the flux variation 

(JSBACH-H), but sometimes only 51% (CLM4.5). P-values for the full model were always < 0.01.  Of the ecosystem models 

examined, temperature could explain most (R2
 Temp = 0.84) of the JSBACH flux variance and precipitation a large part (R2

 Precip 

= 0.50) of the LPX-Bern flux variance. Because of these contrasting features, these two models were chosen as priors in an 310 

inversion modelling experiment. The GCP-prior (R2
Temp = 0.45, R2

Precip = 0.35, see Fig. 4) was applied as a third prior for 

reference. 

 

LPX-Bern, JSBACH-H and GCP-prior were used as prior fluxes in the CTE-CH4 inversions for Fennoscandia. In total, 

inversions increased the emissions from LPX-Bern priors by 33% and decreased from JSBACH-H priors by 21%, thus bringing 315 

the flux estimates closer together. The inversion increased emissions from the GCP prior in the northern parts of Fennoscandia 

where peatlands are mostly located, and reduced emissions in the southern parts, in total decreasing by 6%. The inversions 

also increased emissions from the LPX-Bern prior especially in northern Fennoscandia, while there were both decreases and 

increases from the JSBACH-H prior, with decreases being stronger on average (Suppl Fig S3).  

 320 

For LPX-Bern the largest posterior increases, i.e. posterior/prior multipliers, were suggested for the high temperature months 

(Fig. 4). The highest increases from the prior (posterior/prior > 2.0, i.e. above 92 % percentile of all values) occurred above 

mean monthly temperature of 12.3 °C (64 % percentile of all temperature values, see Fig 4). The highest increase was proposed 

for July 2014 with second highest mean temperature of 16.7 °C. However, the July 2018 record high heatwave with mean 

temperature of 17.2 °C was not among the highest posterior increases. The precipitation was record low, only 43 mm in July, 325 

which may explain the result, if the prior did not fully capture the possible drought effect and therefore the increase in the 
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posterior was modest. Some of the highest precipitation months like August 2008, 2016 and July-September 2007 with 

precipitation exceeding 100 mm, were already above average in the prior emissions but still experienced a large increase in 

the posterior. This could be because the inversion proposed an increase in the high temperature regime from the prior, and 

temperatures during these months were above 62% percentile of all values.  330 

 

For JSBACH-H the largest increases were mostly proposed at the high precipitation regime. The highest increases from the 

prior (above unity, i.e. above 88% percentile of all values) occurred above 72 mm of precipitation (51% percentile, see Fig. 

4). Anomalous high precipitation periods such as those in August 2008 and 2016 and July-September 2007 were significantly 

increased (> 89% percentile) in the posterior emissions similarly to LPX-Bern. JSBACH-H predicted the largest prior 335 

emissions during the warmest months, July 2018 being the highest, followed by July 2014, 2010, 2005 and 2006. In the 

posterior the fluxes were decreased, but still the emissions stayed above 62% percentile of all values except for 2018, which 

was close to average.  A decrease in soil water table may play a role, as July 2018 suffered from lack of precipitation. The 

same was true for July 2014 and July 2006, but these months were not clearly distinguishable from precipitation-abundant 

months July 2005 and July 2010 based on posterior emissions. 340 

 

In simulations with the GCP-prior the largest increases were appointed to months with highest prior fluxes. The increases were 

rather scattered over the temperature-precipitation space. In addition, July 2018 did not show high posterior fluxes, aligning 

with the JSBACH-H results. The highest precipitation months were high also in the posterior. The overall posterior emission 

pattern followed that of the prior. There was no bias towards high temperature or precipitation regimes, which suggests a 345 

balanced prior. The temperature and precipitation correlations of the posterior fluxes were generally weaker than those of the 

prior for all models (Suppl. Table S2). However, the correlations of the flux multiplier indicated a stronger temperature 

response in LPX-Bern and a stronger precipitation response in JSBACH-H than in the prior. For the GCP-prior the flux 

multiplier correlations were weak. 

 350 

3.2 Model components and seasonal cycle 

In order to find the reasons behind the specific temperature and precipitation responses, we studied the mean seasonal cycles 

of the emissions and also the model components which had different seasonal cycles. The total wetland fluxes were summed 

up from peatland emissions, wet and dry mineral land fluxes as well as emissions from inundated lands. These components 

cover most of the land area in the study region. However, if we consider wetland area as land area which is wet enough to emit 355 

methane, only a fraction of land area is included in the wetland area. Wet mineral land area, inundated land area and peatland 

area with water table level close to the soil surface all contribute to the total wetland area, and total wetland emissions (see 

Suppl. Fig. S5-S8). 
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The peak of the total emissions varied from May (CLM4.5) to September (LPX-Bern), see Fig. 5. The GCP inversion results 360 

(mean of five inversion models) peaked during August similarly to the prior. Each model presented differences in seasonal 

cycle and peak month as they differed in wetland area and model process descriptions. On the contrary, the use of different 

climate-forcing data products or results from coupled climate simulations as drivers showed minor differences in methane 

emission responses (Suppl. Fig. S1 and S2). We also studied the seasonal cycle of the up-scaled eddy covariance flux 

observations (Fig. 5, see also Suppl. Fig. S9). The up-scaled eddy covariance flux observations (estimated from Peltola et al. 365 

2019 results using mean of the three flux maps) had a broader maximum in July-August, however the temporal extent of the 

data was quite limited, only two years. Inspection of the model fluxes for the same time period, however, did not reveal 

significant differences.  

 

JSBACH-H and LPX-Bern were studied more closely because of their contrasting temperature and precipitation dependencies 370 

(see 3.1) and differences in seasonal cycles. The LPX-Bern components for peatland fluxes and wet mineral land emissions 

were largest in magnitude, and comparable to each other in Fennoscandia, but their seasonal cycles were somewhat different 

(Fig. 6).  The soil moisture and consequently the wet mineral land area peaked in autumn (Suppl. Fig. S8) contrary to JSBACH-

H (Suppl. Fig. S6), and thus the wet mineral land emissions were at maximum in October in contrast to peatland emissions, 

which were at maximum in August. When all components were summed up, an annual cycle was created with maximum 375 

wetland emissions in September and October.  JSBACH-H wetland emissions were strongly dominated by the peatland 

component, which had a maximum in July. Wet mineral land component had a broad maximum from August to October, and 

the dry mineral land sink had a maximum during the warmest summer months (July and August, see Fig 2). All components 

added together suggested highest emissions in July.  

 380 

The CTE-CH4 inversions moved the monthly flux maximum from July to August when JSBACH-H was used as prior in the 

inversion and from September-October to August-September when LPX-Bern was used as prior (Fig 7). The flux maximum 

of the GCP-prior was in August and did not change in the posterior. Comparing the change maps for northern Fennoscandia, 

the inversion with the JSBACH-H and LPX-Bern priors positioned the fluxes to a higher level in August, while in July the 

fluxes were placed at a lower level with respect to the seasonal mean adjustment (Suppl Fig S4). This indicates similar changes 385 

in the posterior regardless of the prior, i.e. the highest emissions were placed to August. The changes mostly took place in 

northern peatland areas with high methane emissions.  

 

4. Discussion 

According to process models, air temperature and precipitation explain a large proportion of the variation in wetland methane 390 

emissions from Fennoscandia, which is not surprising given that they comprise major seasonal forcing of the models. Some 

models (JSBACH-H, LPJ-GUESS and JULES) were clearly more constrained by temperature. The reason behind this 
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behaviour is linked to strong temperature dependencies in the process descriptions (production, oxidation, transport). 

According to models and observations, precipitation has a dual role: it presumably increases the wetland area by wetting dry 

upland soils and raises the water table in the permanent wetlands. In models, weak precipitation constraint could arise from 395 

using a constant value or completely neglecting the wet mineral soil emissions or from maintaining static proportions of wet 

and dry mineral land area over the growing season. For JSBACH-H the reason could possibly be in the temperature dependency 

of the peatland processes or too small wet mineral land area as opposed to dry land, and in LPJ-GUESS only peatland emissions 

were included and they had consistently high water table levels. LPX-Bern emissions were strongly constrained by 

precipitation. In LPX-Bern the wet mineral lands had a large contribution to the emissions, the dynamic wet mineral land area 400 

being at largest after prolonged precipitation and generally in autumn (September - October) when the modelled 

evapotranspiration had already decreased from high growing season levels. According to observations at a boreal site in 

Hyytiälä, Finland, however, mineral lands were wet and emitting more methane during early season (May- July) than in August 

– October (Vainio et al., 2021). This suggests that the model should have drier soils in the autumn and the modelled wet 

mineral soil emissions should have an earlier maximum. In total, the Hyytiälä site always acted as a sink of methane with 405 

confined emission patches. The representativity of the finding may be limited since the observations covered only two years, 

but similar findings have been published earlier (e.g. Kaiser et al., 2018, Warner et al., 2019).  

 

A modeling study by Poulter et al. (2017) concluded that in boreal regions CH4 emissions were best correlated with wetland 

area, followed by temperature and precipitation (as applied with one-month delay).  However, according to Poulter et al. (2017) 410 

methane emissions were highly correlated with temperature in some models (e.g. JULES, similarly to our study) which had a 

high temperature sensitivity. In general, the increased high latitude emissions were consistent with the increase in boreal air 

temperatures. Sensitivity of the boreal methane emissions to air temperature was confirmed by Koffi et al. (2020), noting that 

the co-limitation of temperature and precipitation would emerge for the more southern climate zones, whereas in our study co-

limitation was found to be present also in boreal zone. According to Figure 2 in Koffi et al. (2020), LPX-Bern was slightly 415 

less temperature sensitive in the boreal zone than the other models, in agreement with the results in our study. Flux observation 

- based global and northern latitude studies by Knox et al. (2019, 2021) and Peltola et al. (2019) also emphasized the importance 

of temperature in controlling the wetland emissions, though water table level might become important at sites where water 

table level is below surface for a significant part of the year.  

 420 

The summer months with the highest mean temperatures were not always anomalous in CTE-CH4 posterior fluxes. JSBACH-

H predicted the largest prior emissions during the warmest months. In the posterior and especially in July 2018 the fluxes were 

decreased, possibly because of the decrease in soil water table level as June and July 2018 suffered from a lack of precipitation 

(see e.g. Peters et al., 2020). Rinne et al. (2020) also noted that methane emissions in four out of five Fennoscandian wetland 

sites were decreased in 2018 due to a decrease in water table levels. This suggests that many wetlands suffered from drought, 425 

which could have affected the regional results. The summer months with high precipitation often resulted in high posterior 
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emissions. August was the month of the average seasonal precipitation maximum, while the average temperature maximum 

was in July. Large increases in the posterior were assigned to high precipitation periods in e.g. August 2008, 2016 and late 

summer 2007, however the year 2011 with observed high methane emissions from upland soil in northern Fennoscandia 

(Lohila et al., 2016) did not stand out in posterior emissions. It is possible that the signal observed by Lohila et al., (2016) was 430 

not seen in the larger region of this study, but only in northern Fennoscandia. 

 

The CTE-CH4 inversions quite unanimously attempted to move the seasonal maximum of the emissions towards August. This 

is supported by the GCP inversion ensemble and the observation-based up-scaled eddy covariance fluxes, mapped over 

Fennoscandia. Warwick et al. (2016) also found that seasonal cycles of methane mixing ratios at northern high latitudes above 435 

50° N were improved when the seasonal maximum in northern high-latitude wetland emissions predicted by process models 

was delayed by one month from July to August. In our work, many models had their seasonal maxima in July or August, 

notable exceptions being CLM4.5 and CLM5 (bias towards spring) and LPX-Bern (bias towards autumn). The dominance of 

mineral land over peatland emissions (such as in LPX-Bern) may delay the month of the maximum emissions, as well as using 

a large wetland extent in late summer. Placing more peatlands in the southern parts of the region (like in GCP-diag) or having 440 

a weak temperature response may possibly result in a longer seasonal emission maximum. A pronounced inundation period 

after snow melt could induce large methane emissions in spring (like in CLM4.5 and CLM 5). Phenology may also play a role, 

however modelled start of the growing season was usually delayed from satellite observations in northern latitudes (Peano et 

al., 2021), which means that the early methane emission maximum is not caused by too early start in model photosynthesis. 

According to flux measurements at boreal peatlands, the month of highest emissions was July or August depending on the year 445 

(e.g. Rinne et al., 2020). Lake emissions are often not present in process models but are seen by inversions. They might delay 

the emission maximum in dry years when wetland emissions diminish towards end of the summer due to decreasing soil water 

table level but lake emissions continue. The CTE-CH4 posterior fluxes, the GCP model ensembles and the observation-based 

up-scaled eddy covariance fluxes all indicate an emission maximum in August. This provides a coherent view of the seasonality 

in contrast to the large variation in ecosystem model results. 450 

 

5. Conclusions 

The ecosystem models showed variable responses of methane emissions to temperature and precipitation for the Fennoscandia 

region. However, multi-model means, inversions and up-scaled eddy covariance flux observations agreed on the month of 

maximum emissions and had rather balanced temperature and precipitation responses (i.e. both temperature and precipitation 455 

explain the variance of fluxes) which were not significantly changed from prior to posterior in inversions. When two models 

with contrasting response patterns were used as priors to inversion, the inversion attempted to move emissions of both in 

posterior towards co-limitation of temperature and precipitation, i.e. to be sensitive to changes in both environmental variables.  
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The set-up of different emission components (peatland emissions, mineral land fluxes) is important in building up the response 460 

patterns, as they contribute to the total flux seen by inversions. Peatland emissions determine the month of maximum emissions 

in the models that are more sensitive to temperature, while wet mineral soil emissions determine the timing of the maximum 

in the case of strong precipitation sensitivity. This applies to average response patterns when data from several years is used 

to determine the responses, noting that the models are sensitive to precipitation in the cases of severe seasonal droughts leading 

to water table drawdown in peatlands, which in turn leads to reductions in methane emissions. Depending on the model, wet 465 

mineral soil and inundated land emissions can modify the seasonality of methane emissions together with peatland emissions. 

Peatland emissions are considered to be the main component of methane emissions and wet mineral lands are often not 

considered to be as important. However, despite the smaller emission per unit area the wet regions emitting methane can be 

very large, and thus they can change the seasonality of the regional emissions. Furthermore, the wet mineral lands are 

implemented in different ways in the models and thus may produce different outcomes for the total flux. Therefore, it is 470 

essential to pay more attention to the role of the individual emission components, their magnitude, annual cycle and spatial 

extent in different regions, and in general consider how the fluxes should be scaled up from site to region (see also Bansal et 

al., 2023, Knox et al., 2020, Treat et al., 2018, Tuovinen et al., 2019).   To perform well in the Fennoscandia region, it is 

expected that a model will need to consider peatland and mineral land source and sink components of methane emissions and 

use up-to-date land cover description. If the peatland extent is simulated by the model, it needs to be validated against land 475 

cover data from bottom-up inventories.  Similarly, for soil wetness or inundation, the model should be validated against satellite 

data wherever possible. The models should use process-based descriptions for both mineral and peat soil fluxes to simulate the 

flux responses to climate drivers. Furthermore, it is important to study the overall responses of the total emissions to air 

temperature and precipitation, as it defines the response of wetland emissions to climate change. 

 480 
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Figure 1. Study region in Northern Europe.  
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Figure 2. Mean seasonal cycle of a) temperature and b) precipitation in Fennoscandia over the years 2000-2018 (CRU-JRA dataset). 

Shading refers to the highest and lowest monthly averages. 860 
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Figure 3. Temperature and precipitation responses of wetland methane emissions from six ecosystem models and mean of GCP 

diagnostic and prognostic models in Fennoscandia. Circles refer to monthly averages in May - October during years 2000-2018. R2: 865 

Proportion of CH4 emission variance explained by temperature (T) and precipitation (P) and both together (TP). The dashed line in 

the LPX-Bern figure shows the 75th percentile of precipitation values. The dashed line in the JSBACH-H figure shows the 75th 

percentile of temperature values. The black lines in the color scales show the 75th percentile of flux values. 
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Figure 4. Temperature and precipitation responses of prior, posterior and posterior/prior methane emissions in Fennoscandia. 

Circles refer to monthly averages in May - October during years 2000-2018. The line in LPX-Bern posterior/prior figure shows the 

64th percentile of temperature values and the highest flux increases from the prior (posterior/prior > 2.0). The line in JSBACH-H 875 

posterior/prior figure shows the 51th percentile of precipitation values and the highest flux increases from the prior (posterior/prior 

> 1.0) 
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Figure 5. Seasonal cycle of methane emissions in Fennoscandia according to ecosystem models, mean of GCP diagnostic, prognostic, 

prior, inversion ensemble models (Saunois et al., 2020) and up-scaled eddy covariance flux observations (Peltola et al., 2019). Shading 

refers to the largest and smallest members of the GCP diagnostic model ensemble. 
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b 895 

 

 

Figure 6. Seasonal cycle of CH4 emission components in Fennoscandia for a) JSBACH-H and b) LPX-Bern. Shading refers to 

maximum and minimum monthly emissions over years 2000 - 2018.  
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Figure 7. Seasonal cycle of the wetland CH4 emissions in Fennoscandia according to the CTE-CH4 inversion model with JSBACH-

H, LPX-Bern and GCP-prior as priors. Shading refers to maximum and minimum monthly emissions over years 2000 - 2018. 
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Tables 

 

 

Model Type Institution Time period Resolution Reference 

JSBACH-

HIMMELI 

Ecosystem 

process model 

FMI, Univ. 

Helsinki, 

MPI 

2000 - 2018 1.875° x 

1.875°, 

0.1° x 0.1° 

Kleinen et al. 

(2020), Raivonen 

et al. (2017) 
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LPX-Bern Ecosystem 

process model 

Univ. Bern 2000 - 2018 0.5° x 0.5° Lienert and Joos, 

(2018) 

LPJ-GUESS Ecosystem 

process model  

Lund Univ. 2000 - 2014 0.5° x 0.5° Smith et al. 

(2014) 

CLM4.5 Ecosystem 

process model 

NORCE 2000 - 2014 1.25° x 

0.9375° 

Oleson et al. 

(2013) 

CLM5 Ecosystem 

process model 

CMCC 2000 - 2014 0.5° x 0.5° Lawrence et al. 

(2019), Peano et 

al. (2021) 

JULES Ecosystem 

process model 

UKMO, 

Univ. 

Exeter 

2000 - 2014 0.5° x 0.5° Gedney et al. 

(2004), Comyn‐

Platt et al. (2018), 

Chadburn et al. 

(2020) 

Carbon Tracker 

Europe – CH4 

Atmospheric 

inverse model 

FMI 2000 - 2018 1.0° x 1.0° Tsuruta et al. 

(2017), Tenkanen 

et al. (2021) 

Global Carbon 

Project (GCP) 

models: 

- GCP-diag 

- GCP-prog  

- GCP-prior 

-GCP-inversions  

Means of  

- 12 diagnostic 

ecosystem 

models, 

- 8 prognostic 

ecosystem 

models, 

- climatological 

mean inversion 

prior 

- 5 atmospheric 

inverse models 

GCP 2000 - 2017 Fluxes 

processed to 

1.0° x 1.0°  

Saunois et al. 

(2020), Poulter et 

al. (2017) 
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Up-scaled fluxes Machine 

learning based 

random forest 

model 

FMI 2013 - 2014 1.0° x 1.0° Peltola et al. 

(2019).   
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Table 1: Models and set-ups 
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