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Abstract. We develop a method for computing Bayes factors of conceptual rainfall-runoff models based on thermodynamic
integration, gradient-based replica-exchange Markov Chain Monte Carlo algorithms and modern differentiable programming
languages. We apply our approach to the problem of choosing from a set of conceptual bucket-type models with increasing
dynamical complexity calibrated against both synthetically generated and real runoff data from Magela Creek, Australia. We
show that using the proposed methodology the Bayes factor can be used to select a parsimonious model and can be computed

robustly in a few hours on modern computing hardware.

1 Introduction

Hydrologists are often faced with assessing the performance of models that differ in their complexity and ability to reproduce
observed data. The Bayes factor (BF) is one method for selecting between models from an a priori chosen set (Berger and
Pericchi, 1996). The appeal of the BF lies in its ability to implicitly and automatically balance model complexity and goodness-
of-fit under few simplifying assumptions. The BF is also invariant to data and parameter transformations unlike information
theory-based criteria such as Akaike information criteria (AIC) and Bayesian information criterion (BIC) (O’Hagan, 1997).
For example, a logarithmic transformation of the discharge or the square root of a parameter such as the flow rate can accelerate
the convergence of the model, but it will not affect the computed BF.

However, the BF requires the computation of the marginal likelihood (the denominator in Bayes theorem) for each model,
which is a difficult and expensive integration problem. This expense and difficulty can be attributed to three main factors;
the necessity of many model runs at different points in the parametric space; the possibly multi-modal and highly correlated
nature of the posterior that can lead to isolated and/or slowly mixing chains; and finally the inherent difficulty of the marginal
likelihood integration problem.

Because of these difficulties, it is the case today that the BF is not widely used by practitioners, despite it being a crucial
component in Bayesian model comparison, selection and averaging (Hoge et al., 2019). This stands in contrast with the widely

studied and used Bayesian parameter estimation procedure (Gelman et al., 2020). Consequently, model uncertainty is often
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ignored, or assessed by either ad hoc techniques or information theoretic criteria (Birgé and Massart, 2007; Bai et al., 1999)
that explicitly (rather than implicitly) penalise model complexity based on some measure of the number of parameters and

under limiting assumptions, see e.g. (Berger et al., 2001) for a full discussion.
1.1 Background

Looking outside of hydrology, there are a number of notable works that have developed techniques for numerically estimating
the BF. A recent comprehensive review by Llorente et al. (2023) discusses the relative advantages of commonly used methods
for computing the marginal likelihood, and consequently, the BF, such as naive Monte Carlo methods, harmonic mean esti-
mator (Newton and Raftery, 1994), generalised harmonic mean estimator (Gelfand and Dey, 1994), importance sampling and
Chib’s method (Chib and Jeliazkov, 2001; Chib, 1995), bridge sampling (Meng and Wong, 1996; Gelman and Meng, 1998),
nested sampling (Skilling, 2004, 2006) and finally thermodynamic integration (Calderhead and Girolami, 2009; Lartillot and
Philippe, 2006; Ogata, 1989), the technique that we choose to use in this study. Thermodynamic integration is well suited for
high dimensional integrals (Ogata, 1989, 1990) involving physics-based models such as Ordinary differential equation (ODE)
systems. The naive Monte Carlo is unstable and usually not efficient, requiring a huge number of samples for convergence. The
importance sampling and harmonic estimators require a suitable choice of the importance and proposal distributions, respec-
tively. The performance of bridge sampling also depends on a good choice of proposal distribution, which in practice is not
straightforward to determine a priori. The main difficulty with nested sampling is generating samples from a truncated prior as
the threshold increases (Chopin and Robert, 2010; Henderson and Goggans, 2019). However, the efficiency of Chib’s method
depends on how close an arbitrary value is to the posterior mode (Dai and Liu, 2022). Hug et al. (2016) illustrated that Chib’s
method significantly underestimates the marginal likelihood of a bimodal Gaussian mixture model.

Turning our attention to works within hydrology that develop methods for computing Bayes factors, to the best of our
knowledge, the seminal work by Marshall et al. (2005) was the first to propose computing Bayes factors for hydrological
model selection. Marshall et al. (2005) used Chib’s method to estimate the marginal likelihood of conceptual models. More
recently various other authors (Liu et al., 2016; Brunetti et al., 2019, 2017; Volpi et al., 2017; Cao et al., 2019; Brunetti and
Linde, 2018; Marshall et al., 2005) have considered the computation of Bayes factors in a hydrological or hydrogeological
context.

Perhaps most closely related to our study are the recent works of Brunetti et al. (2019, 2017); Brunetti and Linde (2018) who
computed Bayes factors for conceptual hydrogeological models with thermodynamic integration techniques. Brunetti et al.
(2017) compared naive Monte Carlo, bridge sampling based on the proposal distribution developed by Volpi et al. (2017),
and the Laplace Metropolis method in terms of calculating the marginal likelihood of conceptual models. Like most studies,
the naive Monte Carlo approach performed poorly. Also, Brunetti and Linde (2018) computed the marginal likelihood using
methods based on a proposal distribution, notably bridge sampling. Several marginal likelihood estimation methods have been
compared within hydrological studies. For example, Liu et al. (2016) found that thermodynamic integration gives consistent

results compared to nested sampling and is less biased.
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Many studies in hydrology, e.g. Zhang et al. (2020); Brunetti et al. (2017); Zheng and Han (2016); Shafii et al. (2014); Laloy
and Vrugt (2012) and Kavetski and Clark (2011) have used the differential evolution adaptive Metropolis (DREAM) algorithm
(Vrugt, 2016) for posterior parameter inference. Volpi et al. (2017) introduced a method to construct the proposal distribution
for bridge sampling and integrated it with the DREAM algorithm. However, it still requires the user to choose the number
of Gaussian distributions for the Gaussian mixture proposal distribution. The DREAM algorithm has been developed with an
acceptance rate similar to the random walk Metropolis (RWM) algorithm, which has an optimal acceptance rate of 0.234 (Vrugt
et al., 2008; Gelman et al., 1996b; Roberts and Rosenthal, 2009). The acceptance rate or probability is the proportion of the
proposed samples accepted in the Metropolis-Hastings algorithm. In contrast, a gradient-based sampler such as Hamiltonian
Monte Carlo (HMC), which we use in this work, typically has a far higher optimal acceptance rate of around 0.65 (Radford
M. Neal, 2011; Beskos et al., 2013). In addition, gradient-based samplers show improved chain mixing properties in high
dimensions and on posteriors with strongly correlated parameters (Radford M. Neal, 2011). Gradient-based algorithms have
been used in hydrology for parameter estimation, but not model selection. For instance, Hanbing Xu and Guo (2023) found
that No-U-Turn sampler (NUTS) sampler (Hoffman and Gelman, 2014) performed well for calibrating a model of daily runoff
predictions of the Yellow River basin in China. Krapu and Borsuk (2022) employed HMC to calibrate the parameters of
rainfall-runoff models. The model selection studies by Liu et al. (2016) and Brunetti et al. (2017, 2019) that use the BF use
posterior samples from the DREAM algorithm, and consequently a lower acceptance rate than gradient-based samples e.g.
HMC. In addition, because gradient-based samplers incorporate information about the local geometry of the posterior, they
are usually easier to tune to achieve the optimal acceptance rate, particularly in the moderate or high-dimensional parameter

setting (num. parameters > 5).
1.2 Contribution

The overall contribution of this paper is to describe the development of a method, Replica exchange preconditioned Hamilto-
nian Monte Carlo (REpHMC), which, when used in conjunction with thermodynamic integration (TI), can be used to estimate
the BF of competing conceptual rainfall-runoff hydrological models. Our approach for estimating the marginal likelihood com-
bines TI for marginal likelihood estimation, Replica exchange Monte Carlo (REMC) for power posterior ensemble simulation
and preconditioned Hamiltonian Monte Carlo (pHMC) for high-efficient gradient-based sampling which in sum we call the
REpHMC + TI estimator. We demonstrate that REpHMC can sample from moderate-dimensional, strongly correlated and/or
multimodal distributions that frequently arise from hydrological models. In addition, REpHMC + TI can obtain posterior pa-
rameter estimates and the marginal likelihood simultaneously. We remark that Brunetti et al. (2019) also suggested, but did
not explore, the idea of using REMC (therein called parallel tempering Monte Carlo) to improve chain mixing in hydrological
models. Two other gradient-based samplers, Metropolis-adjusted Langevin algorithm (MALA) (Xifara et al., 2014) and NUTS
(Hoffman and Gelman, 2014) are used briefly in this paper as a point of comparison, but we do not include their detailed
derivation.

Another key contribution of our work compared with e.g. Brunetti et al. (2017, 2019) is the incorporation of recent ideas from

probabilistic programming for the automatic specification of the Bayesian inference problems (parameter and BF estimation).
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Utilising recent techniques from the literature on neural ordinary differential equations (ODEs) (Chen et al., 2018; Rackauckas
et al., 2020; Kelly et al., 2020), we formulate a set of Hydrologiska Byrans Vattenbalansavdelning (HBV)-like models with
extensible model complexity as a system of Ordinary differential equations (ODEs). Working in this framework allows us to
use efficient high-order timestepping schemes for the numerical solution of the ODE system and to automatically derive the
associated continuous adjoint ODE system. With this adjoint system we can efficiently calculate the derivative of the posterior
functional with respect to the model parameters, a necessary step for working with gradient-based samplers such as HMC.
We emphasise at this point that our approach is largely free of manual tuning parameters and straightforward to implement
in a differentiable programming framework (we use TensorFlow probability (TFP) with the JAX backend, but the ideas are
applicable in similar frameworks such as Stan or PyYMC3). We remark that a recent more theory-focused paper (Henderson
and Goggans, 2019) also proposed using TI with HMC via the Stan probabilistic programming language, but with results for
non-time series models and without using REMC, which is an important aspect of our approach.

After model selection via the BF, it is essential to check if the chosen model can generate the observed data. Hydrographs
show the time series of stream flow. However, formal goodness-of-fit testing is necessary since it is challenging to see a
mismatch in hydrographs for dense data. We therefore use the prior calibrated posterior predictive p-value (PCPPP), which
simultaneously tests for prior data conflict and discrepancies in the model for further improvements.

In summary, this paper is the first to propose the REpHMC + TI method in a probabilistic programming framework for the
estimation of marginal likelihoods related to hydrological systems in view of model selection. We demonstrate the performance
of our method by showing a) a validation of the methodology using an analytically tractable model, b) its improved efficiency
with respect to classical methods using artificially generated data, and c) an application of a Bayes factor based model selection
on real rainfall/runoff data collected from the Magela Creek catchment in Australia.

Our overall perspective is that these techniques have the potential to bring robust model comparison techniques based on BF
closer to everyday hydrological modelling practice. Aside from the algorithmic developments in this paper, a necessary techno-
logical requirement would be the (re-)implementation of hydrological models in a differentiable programming language, e.g.
JAX, PyTorch or TensorFlow, rather than in a traditional language such as C, Fortran or Python. While using modern differ-
entiable programming techniques is commonplace for model developers working with machine-learning type approaches, e.g.
neural networks, it is less commonly used, but no less applicable, for more traditional hydrological modelling approaches like
the ODE-based HBV-like system we consider here. We hope our results encourage more hydrologists to consider differentiable
programming tools for conceptual model implementation given the advantages that derivative-based sampling and optimisation
algorithms bring to the table in terms of computational efficiency and improved insight, e.g. model selection.

The rest of the paper is organized as follows. Section 2 is about conceptual hydrological models and Bayesian methodology,
which includes model formulation, prior and likelihood construction, posterior predictive checks, numerical methods, and
algorithms. Section 3 contains the results and discussions, while the conclusions are provided in Section 4. There is also a list

of acronyms at the end.
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2 Methodology

This section describes the model formulation, likelihood construction, algorithms used, and implementation in differentiable

software. We leave other modelling aspects, like the type of priors used, for the next section, where we present experiments.
2.1 Conceptual models

We develop a set of rainfall-runoff conceptual hydrological models in the framework of continuous dynamical systems that can
be written as a system of ODEs of the following form
‘/t:f(ta‘/ve) VtE(OaT]v

i (D
V(t=0)=V,

where V' are the n system states, V; := %/ is the derivative of the state with respect to the time variable ¢, T is the final time,

V € R" are the initial conditions, f are known functions, and 6 € RP? is a vector containing the p model parameters.

P K,

Vi
Q1 =kW

k1,2V1

QQ = k2v2

Q= Z?:l kiVi

Figure 1. Schematic representation of HB V-like ODE model with n-buckets according to the notations in the text. The blue boxes represent
the buckets with given state V7 to V;,. The solid arrows represent mass flows between buckets, into the system or out of the system. The

dashed arrow represents the collective mass flow between multiple buckets.

For the purpose of the results in this paper, we derive a set of HBV-like models under the principle of conversation of

mass. The algorithms developed in this study can be applied to other bucket-type models, e.g. Parajka et al. (2007); Jansen
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et al. (2021) or those described in the comprehensive MARRMOT rainfall-runoff models toolbox (Trotter et al., 2022). In
comparison with the ‘standard” HBV model (Bergstrom, 1976), our model lacks snow and a routing routine and we choose
to replace the traditional soil moisture routine with a linear reservoir. A schematic representation of mass flow between the
buckets system is given in Fig. 1. The system states {V;,...,V,,} [L?], where L is a generic length unit, represent the volume

of water in the i-th bucket and n is the total number of buckets. The system of ODEs for general n > 1 can be written

(Vl)t:P—Ea—klvl, n:]., (221)
(Vi) =P —E,—kiVi — ki1 2V, n>2, (2b)
Vi)t = k(im1y, ) Vi1 — kiVi — k@), i) Vi, i=2,...,n—1, n>3, (20)
Vi)t = kn-1),(n) Va1 — kn Vi, n>2, (2d)
V(it=0)=V, (2e)
E
E,= WV, 2
‘/III'(IX ! ( f)
Q=> kiVi. 2g)
i=1
The parameters k(;_1),(;) [T~1],i=2,...,n, are the interbucket recession coefficients, where 7T is a generic time unit. The
parameters k(;) [T!],i=1,...,n, are the outflow recession coefficients. The total outflow Q [L3T~!] specified in Eq. (2g) is

the noiseless quantity y used in the upcoming calibration and model selection procedures. The precipitation P [L3T 1] is an
a priori known function of time. Potential evaporation £, [L>T~!] is a known function of time, whereas actual evaporation
E, [L3T~ ' is a function of E,, and Viax [L?] through Eq. (2f), where V;,ax is the maximum amount of water the soil can
store. We remark that the term E), /Vinax in Eq. (2f) has units [L3>7~!] and can therefore be thought of as a dynamic recession
coefficient with the dynamic behaviour controlled by the known time-varying potential evapotranspiration function .

The parameter vector § € RP associated with the model is then

0:= {Vmaxa kla .. '7kn7 k1,27' . '7k(n71),(n)a ‘/177Vn} (3)
\1,_/ —_—— ——
n n—1 n

The number of buckets can be varied by adjusting n € N, leading to a set of models {Mq,..., M, } each with n states and
p = 3n parameters. Note that for 7 > j a more complex model M; contains a superset of the components of a simpler model
M;. Consequently after calibration of both models on a dataset produced by M;, M; should be able to reproduce the data as
well as M, but at the cost of higher model complexity. This construction will be used in the results to show that the BF does

penalise the complex model M;, leading to the selection of M}, the expected result.
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2.2 Bayesian methodology

We briefly restate the Bayes theorem in order to set our notation. If y is the data and 6 the parameter vector associated with a
model M, then Bayes theorem in Eq. (4) defines the posterior probability of 6 as

likelihood prior

f(yl0, M) 7 (6| M) S(ylo, M)m(6|M)

_ Y\, T . Yo, s

L= =000, T e M@ @
posterior N——

marginal (averaged) likelihood

The prior is a probability distribution of a parameter before data is considered. It can incorporate expert knowledge, historical
results or any belief about the model parameters. The likelihood tells us how likely various parameter values could have
generated the observed data. The denominator in Bayes theorem

likelihood prior

—N—
p(y|M) = / F(ul0. M) 7 (60 a6, )

is called the marginal likelihood. The marginal likelihood tells us how likely the model supports the data. The distribution of
the parameters given the data is known as the posterior and is proportional to the product of the likelihood and the prior. In the

Bayesian paradigm, all inference is based on the posterior.
2.2.1 Likelihood construction

In this section, we drop the explicit index on the model for notational convenience. We define a solution operator Gy :
R3™ — X that maps a parameter vector 6; to the total outflow function (). Concretely, this solution operator is calculated by
numerically solving Egs. (2a) to (2g). We then define the observation operator Gops : X — R? which evaluates the solution
@ € X ataset of ¢ points in time {¢1,...,t4}.

We assume the following standard Gaussian white noise model for the observed data: y = GopbsGsol(0) + 1 where 7 ~
MVN(0,021,) with MVN a multivariate normal distribution with mean 0 € R? and covariance 021, € R79, with 02 € R
the variance of the measurement noise and I, the usual g-dimensional identity matrix. Let G := GobsGisol : R3" — RY. By
standard arguments it can be shown that y|0 ~ MVN(G(6),021,) resulting in the likelihood f(y|6, M) in Eq. (4) being fully
defined. For brevity, we leave precise prior specifications to the results in Section 3.

We remark that according to (Cheng et al., 2014) our choice of a likelihood function with Gaussian white noise is equivalent
to using the well-known Nash Sutcliffe efficiency (NSE) as a metric. However, other popular metrics such as Kling Gupta
efficiency (KGE) cannot be linked explicitly with a likelihood function, and consequently cannot be used within a formal
Bayesian analysis. A recent work (Liu et al., 2022) proposes an adaptation of the KGE idea using a Gamma distribution which
can be used as an informal likelihood function within a Bayesian analysis, but we do not explore this option further here. An
alternative option which bypasses the need for an explicit likelihood function is approximate Bayesian computation (ABC)
could be an appropriate alternative when an appropriate explicit metric or likelihood function are unavailable see e.g. (Nott

et al., 2012; Liu et al., 2023).
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2.2.2 Model comparison

The marginal likelihood is also called the normalizing constant (Chen et al., 2000; Gelman and Meng, 1998), prior predictive
density, evidence (MacKay, 2003) or integrated likelihood (Lenk and DeSarbo, 2000; Gneiting and Raftery, 2007). This quan-
tity is essential to the definition of the Bayes factor. Indeed, the Bayes factor for two competing models, M; and M; with i # j
is the ratio of their marginal likelihoods
_pIMs) [ f (10, Mi)m(6:]M;)db;
Y p(yIMy) [ f(yl6;, My)m(8;]M;)d6;

Since BF is a ratio, a value greater than one means that M; should be preferred to M, and vice-versa for a value smaller than

BF (6)

one. Kass and Raftery (1995) proposed a measure of the strength of evidence (Table 1) that we will use throughout this paper
to interpret the Bayes factors.

An appealing feature of the BF is its consistency in the limit of a high number of observations. Proofs of consistency for
non-nested models are in Casella et al. (2009). For other cases, including nonparametric models, a review and detailed study
of consistency can be found in Chib and Kuffner (2016). Also, information theoretic model selection approaches usually
require an explicit penalty for the number of model parameters (model complexity). In contrast, the BF implicitly penalises the
complexity of the model. That is we do not need to assign a penalty for model complexity since it is already accounted for in

the marginal likelihood and hence the BF.

Table 1. Interpretation of the Bayes factor (Kass and Raftery, 1995)

log,, BF;; BF;; Evidence in favour of model 1
Oto1/2 1t03.2 Not worth more than a bare mention
172to 1 32t0 10 Substantial

1to2 10 to 100 Strong

>2 >100 Decisive

2.2.3 Posterior predictive checks

Model selection does not reveal discrepancies between the predictions from the chosen model and observed data. Hence
posterior predictive checks (PPCs) are also necessary to see if the selected model can replicate the observed data (Gelman
et al., 1996a). PPCs can be graphical or formal. Graphical PPCs consist in making plots of predictions from the chosen model
and the observed data to reveal discrepancies. Formal PPC entails calculating a posterior predictive p-value (PPP). The concept
of posterior predictive checking was introduced by Rubin (1984) and later generalised by Gelman et al. (1996a) under the
name PPP where a discrepancy measure can depend on the model parameters. PPCs are the Bayesian equivalent of frequentist

goodness-of-fit tests, with the difference that the PPP can be based on any discrepancy measure, not just a statistic.
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To compute the PPP, the chosen discrepancy measure, D, is calculated based on replicated data y*°P, drawn from the pre-
dictive distribution 7 (y"?|yons) = [ f(y"P|0)7(6|yobs)db, and compared with that based on observed data. In mathematical

terms, we wish to approximate the theoretical probability

ppp(yObs) = Pr [D(y(rep)"9> 2 D(yob579)|yobs] : @)

This quantity can be estimated as

pPpPpP yobs =

an

rep ,0i) > D(yobsyai)] 3)

where I[A] stands for the indicator function which takes the value 1 if A occurs and 0 otherwise, yops is the observed dataset,
y;" is areplicated dataset from the posterior predictive distribution, B is the number of replicated datasets, while 6; is a single
draw from the posterior distribution.

Unlike the frequentist p-value, the interpretation of the PPP is not straightforward since it does not follow a uniform dis-
tribution but is concentrated around 0.5 (Meng, 1994). When the p-value has a uniform distribution, the type I error can be
controlled. For the frequentist p-value, the probability of falsely rejecting a null hypothesis, which is referred to as a type I error
rate, can be set to a fixed value. Typically, this value is prespecified at 0.05 or 0.01. On the contrary, it is difficult to fix the type
I error rate for the PPP. Hence, we might fail to reject poor models for a given PPP at a chosen type one error (Gelman, 2013;
Hjort et al., 2006). For this reason, we computed the prior calibrated posterior predictive p-value (PCPPP) introduced by Hjort
et al. (2006) that has a uniform distribution and the same interpretation as a classical p-value. For more on the Type I error
and the distribution of the p-value, refer to Hung et al. (1997) and for Bayesian p-values, see Zhang (2014). To calculate the
PCPPP, a PPP based on data from the prior predictive distribution 7 (yprior) = [ f(y"P|0)7(0)d6 is computed and compared
with a PPP based on replicated data from the posterior predictive distribution

1B
PePPP(Yobs) = 35 D I [PPP(Upticr, ) < PPP(Yobs)]

i=1
where ppp(yops) is obtained by Eq. (8) and ppp(y;fmv) can be in a similar way. From this equation, it becomes visible that the
PCPPP can also reveal prior data conflicts. A PCPPP greater than a prespecified type I error, say 0.05, means that the prior

distribution and model support the data at the level 0.05. The PPP can as well be calibrated based on posterior samples (Hjort
et al., 2006; Wang and Xu, 2021).

2.3 Numerical methods

In this section we discuss the proposed new numerical method Replica exchange Hamiltonian Monte Carlo (REHMC) + TI
that we employ to simultaneously draw posterior samples and estimate the marginal likelihood. We recommend the reader refer

to Fig. 2 and its caption for a high-level overview of the approach before continuing to the detailed descriptions below.
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log f(y|0,B;) Vjel,...,N.

TI log p(y| M)

Chain swaps

Figure 2. Overall schematic of the REpHMC+TI algorithm for estimating the marginal likelihood for a given model M. Working from
left to right, N pHMC samplers are run at different values of the inverse temperature parameter {531, 32,...,88} with 0 < 8; < 1,5 =
1,..., N, to simulate from the power posterior log f (y;0:, 5;). The REMC algorithm is responsible for swapping the state between adjacent
chains according to the Metropolis-Hastings criteria. Finally, the TI methodology is used to calculate an estimate of the marginal likelihood
log p(y|M). Note that in terms of setup, information flows from right to left, i.e. the discretisation of the TI integral is responsible for setting

the number N and values of inverse temperatures (1, ..., 8n.

2.3.1 Thermodynamic integration

Thermodynamic integration (TT) has its origins in theoretical physics, where it is used to calculate free energy differences
between systems (Torrie and Valleau, 1977) before appearing in the statistical literature as path sampling (Gelman and Meng,
1998), a method for calculating marginal likelihoods. TT converts a high-dimensional integral into a one-dimensional integra-

tion problem over a unit interval.

10
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To derive the TI estimate of the marginal likelihood p(y), we first raise the likelihood to the power 0 < 8 < 1 to form the
power posterior (Friel and Pettitt, 2008)

 [fw1e)]) = (6)
71'power(e‘ya/g) = p(y|5) 5 (9)
with
p(y18) = / [7(416)](6) ds. (10)

When 5 = 0, the power posterior is the same as the prior distribution. When 5 = 1, we have the standard posterior distribution.
This makes a continuous path between the prior and the posterior distributions.

Taking the logarithm on both sides of Eq. (10) and using the chain rule, a differentiation with respect to 3 yields

55 1ER0IE) =~ aal)

- s

- e essiomo) i

[ wle] )
= [ i)

= Epoyy.p llog f(y]0)], (11

where 9|, 3) is the expectation with respect to the power posterior. Integrating both sides of equation (11) with respect to 3

gives the log of the marginal likelihood of interest p(y) in terms of an integral on 3

O\H

This manipulation allows us to find a way to approximate the value of p(y). Computationally, posterior samples are drawn for
each value of 5. The values are then evaluated in the log-likelihood, and the mean for each value of 3 is obtained. The integral

(12) on 8 can be estimated using the trapezoidal rule as follows:

5
logp(y Z (B =Biz1) [Epo1y,5,) 108 f(yl0) + Epopy,5,_1)log f(yl0)] .

j=1

The Monte Carlo estimate of the expectations can then be obtained by

N
Bi — Bi-1
logp(y) ~ Z(Jfﬂ Zlogf yl0:, ;) + Zlogf yl0:, 8i-1) |, (13)
j=1
where j =1,..., N is the index for the 5 values and S is the number of posterior samples for each S value. The accuracy

of the TI estimate depends on the integration rule on f3, i.e. the number of S values and the spacing of the values, and the

11
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convergence of the Markov Chain Monte Carlo (MCMC). The most commonly employed path is a geometric path (Calderhead
and Girolami, 2009)

@:(;V) . j=1,...,N. (14)

The number of 3; values can be adaptively chosen as a tradeoff between model convergence and computational efficiency, for

instance, see Vousden et al. (2016). The complete TI algorithm is presented in Algorithm 1.

Algorithm 1 Thermodynamic integration (TI)

Input: 3 {8 ={1,...,0} : schedule of inverse temperatures based on trapezoidal rule of size N, S is the number of samples per replica. }
Output: Log marginal likelihood (logp(y)).

1: REpHMC(S) {Run the a single step of the REpHMC algorithm S times, see section 2.3.2.}

2: Estimate logp(y) by the definition of the quadrature rule, e.g. trapezoidal rule

N

B~ 15 N
logp(y) & Y == | 5 D log f(l0: i) + 5 > _log f(yl6i, B5-1) | -
i=1 i=1

j=1

2.3.2 Replica exchange Monte Carlo

The REMC algorithm was introduced by Swendsen and Wang (1986). Geyer (1991) presented a similar formulation to the
statistical community under the name Metropolis-coupled MCMC. REMC is a generic algorithm in that it can be combined with
other algorithms. Miasojedow et al. (2013) combined REMC with random walk Metropolis (RWM). RWM is a gradient-free
algorithm in that it generates posterior samples from the target distribution by randomly sampling from a proposal distribution.
We combine REMC with HMC, which gives the new algorithm REHMC explained in the rest of this section. When REMC is
combined with pHMC, we get the REpHMC. The REpHMC gives a higher effective sample size than REHMC. The effective
sample size is the number of independent samples with the same amount of information as correlated samples. Each sample
in a Markov chain is correlated to the preceding sample, so the samples have less information than independent samples. The
effective sample size takes into account this autocorrelation. The main idea of REMC is that an ensemble of power posterior
chains known as replicas run in parallel. The likelihood of these chains is raised to values from zero to one. These values are
called inverse temperatures. Each replica performs a Metropolis update to get the next value at each iteration. The replica pairs
are randomly selected, and an attempt is made to swap the current values of the replica pairs. A swap is accepted or rejected
according to the Metropolis-Hastings algorithm. The swapping accelerates convergence to the target distribution, avoids chains
becoming trapped in topologically isolated areas of the parameter space, and improves the mixing of the chains. REMC is also
known as parallel tempering (Hansmann, 1997; Earl and Deem, 2005). When the method has an iterated importance sampling
step, it is known as population Monte Carlo (PMC) (Iba, 2000; Cappé et al., 2004). However, the term PMC has also been
used for methods without an importance sampling step (Calderhead and Girolami, 2009; Friel and Pettitt, 2008; Mingas and
Bouganis, 2016).
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The REpHMC is summarised in Algorithm 2. We emphasise that the samples of the replica with 8 = 1 are used to estimate

the posterior parameters, while the entire ensemble is used as input within TI to calculate the marginal likelihood.

Algorithm 2 Single step of Replica Exchange preconditioned Hamiltonian Monte Carlo (REpHMC)

Input: L, ¢, 6°, 8 {L: number of leapfrog steps, e: leapfrog stepsize, 0% = {6%,...,0%}: initial values for each 3, 8 ={B1,...,8n}:
schedule of N inverse temperatures }
Output: (01T ... 04") {Posterior samples for each 3}.
1: fori=1to N do
2. O« pHMC(L,¢,0) {Run single step of pHMC algorithm on each replica}
3: end for
4: fori=1to N —1do

5. j <1+ 1 {Select adjacent chain}
mi (05 )m; (071)

6: a(—min(l,m(oﬁl)ﬂ_j(e;ﬂ)

) {where e.g. 7;(-) is the power posterior associated with temperature 3; }.
7. u~U(0,1)

8: if u <« then

9: O, 001 (054,00t
10: else

. t+1 t+1 t+1 t+1
11: 0,7, 0; )« (6; L0770
12: end if

13: end for

Like any sampling method, the REpHMC’s convergence should be assessed. We used both trace plots and formal diagnostic
tests to check for convergence of the Markov chain since there is no universal robust test for convergence (Cowles and Carlin,
1996). The most widely used method to assess the convergence of Markov chains is the potential scale reduction factor R,
developed by Gelman and Rubin (1992) and extended by Brooks and Gelman (1998). Recently, an improved factor R was
proposed by Vehtari et al. (2021). For R to be a valid statistic, the chains must be independent of each other. In REHMC, the
chains are not independent due to swapping. Therefore, we used methods that require one chain or replica per temperature,
namely the Geweke diagnostic (Geweke, 1992) and the integrated autocorrelation time (IAT) (Geyer, 1992; Kendall et al.,

2005). For the sake of brevity, we do not explain these concepts here but instead refer the reader to the respective papers.
2.3.3 Hamiltonian Monte Carlo

HMC is a gradient-based technique used to sample from a continuous probability density (Duane et al., 1987). HMC scales
better in high dimensions than gradient-free samplers, such as nested sampling, due to the inclusion of derivative information
(Ashton et al., 2022). Therefore, many applications combine HMC and gradient-free samplers. For example, Elsheikh et al.
(2014) has combined HMC and nested sampling. HMC is based on the Hamiltonian, which describes a particle’s position and

momentum at any time. New positions are known by solving Hamilton’s equations of motion for position and momentum. In
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Bayesian inference, the Hamiltonian H (6, p) in Eq. (15) describes the evolution of a d dimensional vector () of parameters

and a corresponding d dimensional vector of auxiliary momentum (p) variables at any time, .

1
H{(0,p) = —logf(y|0)m(6) + 5p" Mp
5)
=U(0) + K(p)
In Eq. (15), M is the positive definite mass matrix. U () is the desired posterior known as potential energy, and K (p) is the
kinetic energy that is a function of momentum. To sample from the Hamiltonian, we take the partial derivatives, which give

Hamilton’s equations of motion

dd O0H 0K
dp  OH _ oU 16b)

at 90 90

We now have a system of ODEs (Egs. (16a) to (16b)). The leapfrog method (Duane et al., 1987; Radford M. Neal, 2011) is
used to solve the Eqgs. (16a) to (16b) and propose new values for the parameters. The accuracy of the leapfrog method depends
on the discretisation step e.

Each HMC iteration consists of two steps (Radford M. Neal, 2011). In the first step, the momentum values for each parameter
are sampled from a Gaussian distribution independent of the current 6 values, p* ~ MV N (0, M).Then using the current
parameter and momentum values, (6%, p?), the Hamiltonian is simulated using an appropriate time stepping method such as
the leapfrog method (Betancourt, 2017). At the end of Hamiltonian dynamics, the momentum values are negated, and the new

parameter values (6%, p*) are accepted or rejected using the Metropolis-Hastings criterion with acceptance probability o where

a=min [1,exp (-U(0*)+U(0") — K(p*) + K(p"))] . (17)

The HMC is summarised in Algorithm 3. The mixing of the HMC chain depends on the number of leapfrog steps L and
the step size €. L and € can be automatically tuned during the warm-up phase of the algorithm (Hoffman and Gelman, 2014).
The warm-up phase is the period during which posterior samples are discarded and is also called burn-in. In this work, € was
automatically tuned by the dual averaging algorithm while L was manually tuned. Dual averaging automatically adjusts e
during the warm-up of the HMC algorithm until a specific acceptance rate is achieved. We used an acceptance rate of 0.75,
which is higher than the optimal acceptance rate of RWM based algorithms. This is the mean of various reported values and
the default in TensorFlow probability. To increase the sampling efficiency of HMC, we have to reduce the correlation of the
parameters, especially for ODE models. This is achieved by introducing a preconditioned matrix, M and hence the name
pHMC. This leads to even faster convergence and higher effective sample sizes for each parameter (Girolami and Calderhead,
2011). In practice, the preconditioned matrix is the inverse of the covariance matrix of the target posterior. In contrast to HMC,

where the momentum is sampled from a normal distribution, for pHMC, the momentum values are sampled from a multivariate
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Gaussian distribution with a covariance matrix as the preconditioned matrix, p ~ MVN(0, M ). The covariance matrix controls

the correlation of the parameters. The rest of the algorithm for pHMC works as for HMC.

Algorithm 3 Single step of preconditioned Hamiltonian Monte Carlo (pHMC), Notation following Radford M. Neal (2011)

Input: L,e,0" { L: number of leapfrog steps, e: leapfrog step size, 6°: initial value.}
Output: §'*!
I: p* ~ MV N(0,M) {Sample momentum values, M is the mass matrix }
D0 0
: fori=1to L do
(6°, p°) < Leapfrog(0, p,€)

Lot e —pt
: a<+min (1exp (-U(6*)+U(0") — K(p*) + K(p")))
cu~U(0,1)

: if u < « then

10 9t —p*

2
3
4
5. end for
6
7
8
9

11: else

122 6Tt ¢t

13: end if

14:

15: function Leapfrog(0, p, €) {Solves the equations to propose new values}
16: p€/2<—p—§%(9)

17: 0° < 0+ M~ pe/?

18: p6<—p6/2—§%—g(96)
19: return (6¢, p°)

340 2.4 Implementation aspects

In this section, we outline some of the more non-standard aspects of implementing the proposed methodology in the proba-

bilistic programming language (PPL) TFP. Probabilistic programming (PP) is a methodology for performing computational

statistical modelling in which all elements of the Bayesian joint posterior 7(6|y, M) are specified in a PPL. Popular PPLs

include Stan (Carpenter et al., 2017), PyMC3 (Salvatier et al., 2016) and TFP (Dillon et al., 2017). Once specified in a PPL,

345 the subsequent Bayesian parameter inference problem can then be handled semi-automatically. We refer the reader to the Code

and Data availability statement for the full implementation and simply remark that the joint posterior for our problem can be
defined in around 70 lines of TFP/JAX code.

We choose to use TFP in this study. From our experience, TFP is the most flexible and extensible PPL in terms of allowing

advanced model specification and the ability to break out of the high-level interface and perform low-level operations. However,
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this flexibility comes at the cost of a steeper learning curve, particularly TFP’s complex batch and event shape semantics (Dillon
etal., 2017). We note that despite TensorFlow in the name, TFP is backend-agnostic and can run on top of various differentiable
programming languages. We choose to run TFP on top of JAX, instead of the default choice of TensorFlow. Anecdotally, our
experience is that TFP on JAX has better runtime performance and is more robust than TFP on TensorFlow, particularly when
working with ODE-based models. We use JAX with the CPU backend and double precision floating point representation,
although in principle the GPU backend could also be used. TFP already includes an implementation of the HMC and REMC
algorithms, the output of which can be used with TI for computing the marginal likelihood.

JAX can automatically perform arbitrarily composable forward and backward mode automatic differentiation of nearly
arbitrary computer programs. This is used to automatically differentiate the TFP specification of the negative log posterior
U (0) with respect to the model parameters 6 for use within the HMC algorithm. As this approach is now standard, we refer the
reader to Margossian (2019) for a detailed review.

For the automatic differentiation of the ODE model, we use the continuous adjoint approach. This approach is also called
continuous backpropogation in the Neural ODE literature, see e.g. Kelly et al. (2020) and Hoge et al. (2022) for an application
in hydrology. We follow the presentation in (Kidger, 2021) where a new set of adjoint ODEs is from the original continuous
ODE system. This adjoint system is then discretised (backwards in time) using the same ODE solver as for Eq. (1), an explicit
adaptive Dormund-Prince ODE integrator that is already included in JAX. It is worth remarking that while the continuous
adjoint system is still derived automatically within JAX, the result is distinctly different to backwards differentiation through
the steps of the forward ODE solver at the programmatic level. For more details, we refer the reader to Kidger (2021) for a
discussion of the different methods for automatically differentiating ODE systems and their relative tradeoffs.

Let V be the solution to Eq. (1). In the simplest case let J = J(V (T")) be some scalar function of the terminal solution value
V/(T) (the approach extends straightforwardly to other functionals). Setting 42 = ay (t) and 37 = ag(0) where ay : [0,T] —

R™ and ayp : [0,7] — RP are the solutions to the following adjoint ODE system

3] dJ
(@)= —av (O GHOV0, ar(T) = . (180
(ag)t = —av(t)T%(t,VﬁL ag(T') = 0. (18b)

Note that the adjoint system requires the forward solution to have already been computed and that the adjoint system runs back-
wards in time, i.e. evolving from known states ay (T") and ag(T") at terminal time ¢ = 7" to the starting time ¢ = 0. Once ay(0)
has been computed, the required gradient of the functional % = ap(0) can be computed straightforwardly. This continuous
adjoint ODE approach can be arbitrarily composed with JAX’s programme level automatic differentiation capabilities, mean-
ing that it is possible to add non-ODE based components (smoothers etc.) to the model and use our framework for computing

marginal likelihoods.
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3 Results and discussion

The purpose of this section is to test the accuracy of REpHMC in calculating the BF by employing it to solve benchmark
problems with complex distributions but well known log marginal likelihoods and thus the BF. We illustrate that the BF can
distinguish between models with an equally good fit by calculating the BF of synthetic discharge data for three different models,
among which is the data generating model. We repeat the experiment using another data generating model. Finally, the BF is

applied to the real-world discharge data.
3.1 Gaussian shells example

This section aims to show that the the proposed methodology accurately estimates the marginal likelihood of a synthetic
example. In addition, it illustrates the effectiveness of REpHMC in sampling multimodal distributions. The benchmark example
is the Gaussian shells (Feroz et al., 2009; Allanach and Lester, 2008). This example has two wholly separated Gaussian shells,
making it difficult to sample from. This example has been used to test various techniques for calculating the marginal likelihood

(Thijssen et al., 2016; Henderson and Goggans, 2019). The Gaussian shell likelihood is given as

1 (1161 —01||—7”1)2] { (1102 — ca|| —72)?
0(0) = exp| — exp| — . 19
©) V2mw? P 2w} 2mw3 2w3 )

The unknown parameters are 6 = (61, 62), while the marginalised fixed parameters are 1,2, w1, w2, ¢y and co. The first shell
has a radius of r; and the second shell r5. The first shell is centred at ¢; while the second is centred at co. The variance
(width) of the first shell is wy, and that of shell two is ws. We assign uniform priors to #; and 65 in the range -6 to 6 and
the marginalised parameters are set to w; = wy =0.1,71 =79 =2,¢1 = 3.5,¢c9 = —3.5. We used 26 temperature schedules,
since this is a difficult sampling problem to obtain fast mixing due to the two regions of probability mass. Convergence of the
number of temperatures was checked after the convergence of the posterior samples. The log marginal likelihood is stable after
using 22 temperatures. From this point, there is very little variation in the log marginal likelihood, as shown in Fig. 3. The
plot shows that the log marginal likelihood is constant from 10 to 11 temperatures. Although 10 temperatures are commonly
used, this would have underestimated the actual value. To assess convergence, diagnostic plots were made by running the same
temperature schedules twice in parallel with two different random initial parameter values, and the results are displayed in
Fig. 3 where the horizontal red line is the true value. The swap acceptance rate ranges from 0.389 for 10 temperature schedules
to 0.479 for more than 50 temperatures.

A plot of the samples for the parameters using various samplers is shown in Fig. 4. The plot demonstrates that due to the
addition of Replica Exchange the REpHMC method can sample across the the shells, compared to algorithms such as NUTS
(Hoffman and Gelman, 2014), MALA (Xifara et al., 2014) or plain HMC (not shown) which are purely local. The results of
the marginal likelihood up to 30 dimensions are shown in Table 2 with agreement with the marginal likelihood values reported

in the literature (Feroz et al., 2009).
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Figure 3. Convergence diagnostic plots of the log marginal likelihood for the Gaussian shell in two dimensions. The temperature schedules

is run twice in parallel with random initial parameter values. Convergence occurs when the curves plateau.

Table 2. Log marginal likelihood (log p(y)) of the Gaussian shell example. The true values are shown, and the estimates are based on

thermodynamic integration with samples from REpHMC. The results are shown for up to 30 dimensions.

Dimensions  “Reference log p(y)  Estimated log p(y)

2 -1.75 -1.75 £ 0.003

-5.67 -5.68 £ 0.006
10 -14.59 -14.60 £ 0.006
20 -36.09 -36.12 £ 0.014
30 -60.13 -60.19 £ 0.025

* As reported in Feroz et al. (2009)

3.2 Synthetic examples

In this section we generate synthetic discharge data by using the observed precipitation and observed potential evapotranspira-
tion as inputs to our models. The following two examples aim to verify the correct implementation and study the behaviour of
the methodology to calculate the marginal likelihood. In the first experiment, data ¥y, is generated from the simplest model,
M. In the second experiment, M3 (three buckets model) is the data generating model. For each experiment, the log-marginal
likelihood log p(y|M;) for i = 2,3,4 and the respective Bayes factors are calculated. The deviance information criterion (DIC)
and widely applicable information criterion (WAIC) are also calculated for experiments in Section 3.2.1, Section 3.2.2 and for

real-world discharge data in Section 3.3.
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Figure 4. Posterior samples for the Gaussian shells example obtained by different algorithms alongside the target distribution. Top left (a) is
NUTS, top right (b) is REpHMC, bottom left (c) is MALA and bottom right (d) is the target distribution. Because of the addition of Replica
Exchange, REpHMC can sample across the entire distribution space. This is in contrast to the NUTS, MALA and HMC (not shown) samplers

which cannot transition across the gap between the two shells.

3.2.1 Experiment one with data generated from the two-buckets model M,

In the first experiment, synthetic discharge data y,}s is generated from the simplest model, M5 (two buckets model) to see if
the BF will select M5. We set up the priors as in Table 3. The synthetic discharge is generated to have similar dynamics as
the observed discharge shown in Fig. 5. First, we obtain the daily precipitation and evapotranspiration for the Magela Creek
catchment in Australia for 1980. The initial time ¢ = 0 corresponds to midnight on January 1, 1980, and the final time 7" = 366
days to midnight on December 31, 1980 (1980 was a leap year). It is assumed that the total precipitation and evapotranspiration
on a given day is uniformly distributed over the 24 hours from midnight to midnight. This is an acceptable assumption when

modelling the dynamics of a catchment on a multiday time scale.
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Table 3. Description of the parameters and priors. Note that here we have used units more common in the hydrological literature. LN is the
lognormal distribution and IG is the inverse Gamma distribution. The IG was chosen because it is easier to sample than other distributions

for the prior noise parameter, which must be positive.

Parameter Unit Description Prior

k1 d—t Outflow recession coefficient for bucket 1 LN(1.0,0.25)
ko d™! Outflow recession coefficient for bucket 2 LN(0.6,0.25)
ks dt Outflow recession coefficient for bucket 3 LN(0.3,0.25)
k4 dt Outflow recession coefficient for bucket 4 LN(0.1,0.25)
k12 dt Interbucket recession coefficient 1 to 2 LN(0.8,0.25)
kos dt Interbucket recession coefficient 2 to 3 LN(0.4,0.25)
k3a d! Interbucket recession coefficient 3 to 4 LN(0.1,0.25)
Vi mm Initial condition on V} LN(0.0,1.0)
Va mm Initial condition on V> LN(0.0,1.0)
Vs mm Initial condition on V3 LN(0.0,1.0)
Va mm Initial condition on V} LN(0.0,1.0)

Vinax mm Maximum amount of water the soil can store ~ LN(1.0,0.25)
o? mm?d~? Variance of the Gaussian noise model 1G(5.0,0.1)

Our analysis focuses on a three-month period in 1980 running from 1st January 1980 to 31st March 1980 when the precipi-
tation frequency is highest, and there are no missing data.

We set up the priors according to the following reasoning:

— The top bucket associated with state V; typically represents the fast dynamics of the catchment system, such as surface
430 runoff into rivers. The parameters k; and k; o are the recession coefficients of the top bucket. They represent the flow
rates from the top bucket. Since the parameters have to be positive, we use lognormal priors, the most commonly used

distribution for dynamic models.

— The lower bucket states V; represent processes with progressively slower dynamics such as groundwater storage, and are

associated with parameters k;, k(;_1), ;) and k(;) i41) for i = 2,...,n— 1. The bottom bucket state V;, is associated with

435 parameters k,, and £, _1),(n)-

— The system starts with a nonzero initial condition that mimics the standard procedure of “bootstrapping” the ODE system
for a period T’z < 0. For real-world data, the initial conditions are not known and must be identified. The initial condition

to be identified is V, where s =1,2,...,n.

The meaning of the parameters and the priors are shown in Table 3. We follow a Bayesian workflow and do a prior predictive

440 check. This helps to verify if the priors are reasonable. For the prior predictive check, 50 samples were drawn from the prior
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Figure 5. Plot of observed discharge, synthetic discharge, and precipitation from 01-01-1980 to 31-12-1980. The observed discharge has
missing values, represented by the broken blue line, mostly in the seventh month. Synthetic discharge data generated via the joint posterior

(before calibration) shows similar overall trends to the observed discharge.

and then evaluated in the likelihood. This gave 50 different datasets for the synthetic discharge. The mean synthetic discharge
is then obtained, and the 95 % pointwise credible intervals are obtained and shown in Fig. 6. The marginal likelihoods for
My, M3 and M, were calculated and the corresponding Bayes factors were calculated. For each model, fifteen different runs of
the marginal likelihood were calculated using REpHMC + TI. This enabled us to get the estimate’s standard deviation, which
is different from the Monte Carlo standard error.

We perform REpHMC with 10 replicas where the likelihood of a replica is raised to an inverse temperature value according
to the schedule in Eq. (14). Each replica was run until IAT < .S/50, where S is the number of posterior samples. The IAT is the
number of samples required to obtain an independent sample and a smaller value is preferable. We found that 4000 posterior
samples per replica were enough to rule out non-stationarity. We also did a full run with 20000 posterior samples per chain, and
we saw no significant change in the results. The p-value for Geweke diagnostics was not significant at 5 % for all parameters
and models (p-value > 0.90), indicating there is a high probability that the parameters have converged. The IAT and Geweke
diagnostics were performed using the Python package, pymcmestat (Miles, 2019). The posterior parameter estimates and 95
% credible interval (CI) are in table Table 4. For M5, the true model, the posterior parameters are very close to the true values
and are within the 95 % CI. Moreover, the parameters k1, Vl, Vg, Vinax and o2 are very close to the true values. However, the

error term o2 is the same for all three models, as all models fit the data well. Therefore, a model selection criterion is needed
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Figure 6. Plot of observed discharge, synthetic discharge, and precipitation from 01-01-1980 to 29-05-1980. This period has no missing
values and has the highest precipitation frequency and discharge of the year 1980. The synthetic discharge has a similar trend to the observed

discharge. The synthetic discharge here is generated using a different set of parameters compared to that in Fig 5.

to discriminate between models. Fifteen marginal likelihoods are calculated in parallel for each model. The mean log marginal
likelihood is presented in Table 4. We can calculate the log BF of any model compared to another by taking the difference in
their log marginal likelihoods. Based on the interpretation of BF in Table 1, there is decisive evidence in favour of the data
generating model M,. The distributions of the log marginal likelihood for each model are shown in box plots (Fig. 7). In
addition, the DIC and WAIC are shown along with those of the marginal likelihood and they also select the data generating
model. The DIC is a Bayesian generalisation of information-theoretic based criterion AIC for model selection introduced by
Spiegelhalter et al. (2002). The WAIC is based on pointwise out-of-sample predictive accuracy (Vehtari et al., 2017; Watanabe
and Opper, 2010) and for large samples equivalent to the leave out one cross-validation (Watanabe and Opper, 2010). For these
information-based theoretic methods, a difference of 10 is usually required for a decisive preference of one model over the
other (Burnham and Anderson, 2002b, p. 70). A difference of up to 7 is considered less support to prefer one model over the
other (Spiegelhalter et al., 2002). Model M5 has the largest median log marginal likelihood, while model M, has the lowest.
The prior and posterior distributions for model Ms are in Fig. 8. The prior distribution is in blue, while the posterior is in

red. The prior range is wide compared to the posterior such that the posterior contours are too small. The posterior marginal
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densities are also more contracted compared to the prior densities, as seen on the diagonal of the plots. The prior contours show

470 no significant correlation between the parameters. The posterior distributions for this model are shown in Fig. 9. The marginal
posterior distributions are on the diagonal. The red dots represent the true parameters. There is also a high correlation between
pairs (k1,k2), (k1, Vinax), (1,2, k2), (K12, Vinax), (k2, Vinax) and (V1, Vz).

Table 4. True value, posterior mean with 95 % credible intervals of the parameters, and log marginal likelihood of the models for experiment

one. Model M> has the highest log marginal likelihood and is the true model. The DIC and WAIC are also shown.

parameter  True value Ms (95 % CI) M3 (95 % CI) My (95 % CI)
k1 1.454 1.454 (1.445,1.462) 1.438(1.434,1.457) 1.089 (1.081, 1.095)
ko 0.248 0.248 (0.248, 0.248)  0.241 (0.241, 0.250)  0.160 (0.129, 0.174)
k3 0.000 - 0.248 (0.247,0.248)  0.241 (0.196, 0.265)
ka 0.000 - - 0.208 (0.207, 0.208)
k1,2 3.232 3.234 (3.205,3.263)  3.157 (3.145,3.256)  1.628 (1.552, 1.670)
k2,3 0.000 - 1.619 (0.993, 1.683)  1.102 (0.921, 1.400)
k3,4 0.000 - - 1.861 (1.105, 2.749)
1% 1.081 1.067 (1.039, 1.095)  1.067 (1.038, 1.071)  1.246 (1.181, 1.282)
Vs 0.813 0.894 (0.787,0.990)  0.490 (0.483, 0.593)  0.599 (0.474, 0.761)
Vs 0.000 - 0.520 (0.453,0.525)  0.731 (0.459, 0.827)
Vi 0.000 - - 0.576 (0.433, 0.954)
Vinax 2.520 2.520(2.502,2.542) 2.573 (2.507,2.581) 3.106 (2.999, 3.149)
o2 0.014 0.014 (0.011, 0.016)  0.015(0.015,0.016)  0.023 (0.022, 0.027)
logp(y| M) - 217.968 203.383 154.768
log BF23 - 14.585 - -
log BF24 - 63.200 - -
DIC - -521.235 -448.980 -449.000
WAIC - -514.354 -501.686 -445.233

-: The parameter is not included in the model.
0'2: error term.
log p(y| M ): log marginal likelihood.

log BF; ;: Bayes factor of model ¢ compared to model j.

We also performed graphical posterior predictive checks. Discharge data was generated from the posterior predictive distri-
bution of each model and plotted. There is no noticeable visual difference in discharge (Fig. 10) for all the models since the
475 posterior error estimate is too small for all models. We also calculated PPP for the selected model using autocorrelation as a

discrepancy measure. Hence, Eq. (8) becomes

n

1
ppp(yobs) = ﬁ ZI[(pEepaoi) > (pobs;ai)] (20)

=1
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Figure 7. Distribution of the log marginal likelihood, DIC and WAIC for 15 different runs each. Distribution of the log marginal likelihood for
15 different runs. The boxplot of the data generating model, Mo, is the highest while M4 is the lowest. Hence, M5 has the highest marginal
likelihood. M3 has the shortest interquartile range and, therefore, variability (a). DIC (b) and WAIC (c). For the log marginal likelihood,
higher values are preferred, while for the deviance information criterion (DIC) and widely applicable information criterion (WAIC), smaller

values are preferred. All techniques select the data-generating model.
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Figure 10. Plot of the mean discharge data generated from the posterior predictive distribution of each model for experiment one. It is difficult
to choose one model by inspection as they all fit the data well. However, the BF implicitly penalises the unnecessarily complex models M3

and M4 and correctly selects M.

Posterior predictive plots might not tell us if the chosen model fits the data well, especially for dense datasets. Therefore,
formal posterior predictive tests based on the discrepancy measure are needed. Like most statistical tests, the results will depend
on the type of discrepancy measure or the test statistics. Carefully choosing such discrepancy measures is crucial. For example,
we may test whether the model can predict peak discharge values, which would require a different discrepancy measure than if
the aim of our analysis was to predict the mean values. Hence, we suggest using formal posterior predictive tests and graphical
posterior predictive checks as in this study.

The PPP is 0.51, which means that the model has good predictive performance. This is expected for synthetic data. Values
further from 0.50 indicate a model mismatch with the data. Values closer to zero indicate that the model predictions are lower
than the observed data. In contrast, values closer to one point that predictions are higher than observed data. A plot of the
autocorrelations of predicted versus synthetic observed data is shown in Fig. 11. The proportion of values above the 45° line
is the PPP. We also calculated PCPPP for the selected model and got a value of 0.64 > 0.05, which implies the model can
generate the data. The PCPPP is calibrated based on the prior predictive distribution and is uniformly distributed. Thus, it has

the same interpretation as a classical p-value.
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Figure 11. Autocorrelation of the replicated versus observed synthetic discharge data. The posterior predictive p-value is the proportion of
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3.2.2 Experiment two with data generated from the three-buckets model M3

For the second experiment, the data model is M3. The model M3 has three more parameters than M and three fewer parameters
than the model My. The priors for model Ms and M3 are shown in Table 3. The data in this experiment was also generated
to follow the same trend as the observed data. All models were fitted to the data, and inference is based on 20,000 posterior
samples with a burn-in of 5,000. As explained above, convergence was checked using IAT and Geweke diagnostics. The
posterior estimates are in Table 5. Although the error term is small for all models, M5 has a higher value than the other two
models, suggesting that it may not have the right complexity. Fifteen marginal likelihoods were also calculated for each model
in parallel. The mean log marginal likelihood is presented in Table 5. The results are also shown in box plots in Fig. 12. The
box plots reveal that M3 has the highest median log marginal likelihood, and M5 the lowest. There is decisive evidence in
favour of model M3, the expected result.

Following the recommendations in (Burnham and Anderson, 2002a) for interpreting information theoretic criteria, a differ-
ence of 4 to 7 suggests a weak preference for a model and a difference of at least 10 suggests strong preference for a model.
Consequently, the DIC and the WAIC do not suggest a strong preference for the true model (M3) over the richer model Mj.
The WAIC shows possible weak evidence in favour of M3 over My, but we note that the error bar in Fig. 12 for WAIC M,
indicates substantial uncertainty in the estimate. In this case then the BF decisively selects the data generating model M3 where
the information theoretic criteria fail to do so. This example alone is clearly not proof that the BF is always superior to WAIC
or DIC, but it suggests that there are cases in which BF succeeds and information theoretic criteria can fail. The success of the
BF of course comes with a significantly higher computational cost.

As in the experiment one, a hydrograph from the posterior predictive distribution is shown in Fig. 13. From the hydrograph,
we cannot determine the best model through visual inspection since all the models fit the data equally well. Therefore, we

require a formal model selection technique such as the BF.
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Table 5. True value, posterior mean with 95 % credible intervals of parameters and log marginal likelihood of models for experiment two.

M3 the true model has the highest log marginal likelihood. The DIC and WAIC are also included.

parameter  true value M3 (95 % CI) M3 (95 % CI) My (95 % CI)
k1 1.091 1.109 (1.104, 1.113)  1.090 (1.084, 1.097)  1.089 (1.081, 1.095)
ko 0.188 0.207 (0.206, 0.207)  0.172 (0.160, 0.190)  0.160 (0.129, 0.174)
ks 0.208 - 0.208 (0.207, 0.208)  0.241 (0.196, 0.265)
ks 0.000 - - 0.208 (0.207, 0.208)
k1,2 1.675 1.772 (1.759, 1.786)  1.648(1.613,1.693)  1.628 (1.552, 1.670)
k2,3 1.050 - 1.520 (1.070, 1.781) ~ 1.102 (0.921, 1.400)
kaa 0.000 - - 1.861 (1.105, 2.749)
Vi 1.317 1.263 (1.224,1.325) 1.302 (1.242, 1.346)  1.246 (1.181, 1.282)
Va 0.936 1.758 (1.622,1.914)  0.977 (0.733, 1.167)  0.599 (0.474, 0.761)
Vs 0910 - 0.856 (0.696, 1.103)  0.731 (0.459, 0.827)
Vi 0.000 - - 0.576 (0.433, 0.954)
Vinax 3.048 2.929 (2.910,2.948)  3.081 (3.026, 3.127)  3.106 (2.999, 3.149)
o2 0.024 0.027 (0.024, 0.030)  0.023 (0.020, 0.027)  0.023 (0.022, 0.027)
logp(y|M) - 161.586 173.845 148.060
log BF32 - - 12.259 -
log BF34 - - 25.785 -
DIC - -401.612 -427.913 -426.127
WAIC - -394.247 -420.380 -417.174

-: The parameter is not included in the model.

0'22 error term.

log p(y| M ): log marginal likelihood.

log BF;;: Bayes factor of model 7 compared to model j.
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Figure 13. Plot of the mean discharge data generated from the posterior predictive distribution of each model for experiment two. It is
difficult to choose one model by inspection as they all fit the data equally. The BF implicitly penalises the unnecessarily complex model My

and correctly selects M.
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3.3 Real data experiment

This section uses real-world discharge data for Magela Creek in Australia. For each model, 10 chains of the REpHMC were run
as in the previous examples. We obtained 4000 posterior samples per chain, discarding the first 1000 as burn-in. The trace plots
showed no indication of non-stationarity of the Markov chain, and both Geweke diagnostics and IAT supported convergence.
The Z-statistic, p-value, and IAT are shown in Table 7. All p-values are greater than 0.05, indicating no significant difference
in the means of earlier and later posterior samples and no evidence against convergence. The null hypothesis states that the
mean of the earlier and later posterior samples are equal. Furthermore, the IAT is less than S/50 for all parameters, indicating
well-mixed and stationary chains, where S represents the number of posterior samples. Smaller values of IAT indicate that
fewer samples are needed to obtain an independent sample in the Markov chain.

Since we do not use an objective Bayesian approach, we used two sets of priors, where the second set is a sensitivity
analysis. The first set of priors has higher variances for some parameters and is less informative than the second set (Table 6). It
is common practice to try different priors and to check if the parameter estimates change with different priors. This is known as
prior-sensitivity analysis. The models converge faster with the second set of priors. The first set of priors (Table 3) is the same
as in the previous sections. For the second set of priors, we used lognormal priors with lower variances for some parameters
compared to the first set of priors. The mean values used for the priors are also different from those of the first set of priors.

The prior to the error term remains unchanged.

Table 6. Second set of priors. LN is the lognormal distribution and IG is the inverse Gamma distribution

Parameter Prior distribution
k1 LN(0.8, 0.25)
ka, k3, ka LN(0.2, 0.25)
k12, ka3, k3a LN(0.6, 0.25)
Vi, Vo, Vs, Vi, Vinax~ LN(0.0,0.25)
o’ 1G(5.0,0.1)

We checked the precision of our chosen model by comparing predicted and observed discharges using a posterior predictive
check based on a second set of priors. The hydrograhs for all three models are in Fig. 16. The plots of the predicted and
observed autocorrelations with PPP are in Fig. 17. The PPP is 0.444 which is not too close to 0.5 and the PCPPP is 0.639.
Hence, one can conclude that the model fits the data based on autocorrelation. Instead of autocorrelation, another metric could
be used for the posterior predictive check depending on the objective of the model. The NSE for the chosen model is 0.526 and
the KGE is 0.705. This means that the model performs better than using the mean observed discharge. Knoben et al. (2019)
found that the KGE is < -0.41 when the model performs poorer than the mean observed discharge. The marginal posterior
distributions for the model M, are shown in Fig. 14. We have also presented the posterior distributions of the parameters in

model M3 in Fig. 15. There is no noticeable correlation between parameters when real-world discharge data is used. However,
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Vmax plays a major role in the dynamics of the model. A more realistic prior for Vi,,x based on the soil physics of Magela
Creek Australia will reduce the model error.

The results of the second set of priors are in Table 8. The selected model did not change when we used diffuse priors. The
error in the second set of models is lower than in the first set. The model M5 is always preferred while M, is always the least
supported by the data. The error term, its precision, effective sample size (ESS), and the number of parameters influence the
marginal likelihood.

We also applied two fully Bayesian information criteria, DIC and WAIC. Unlike the BF, there is no clear model choice for
the information criteria. The difference in DIC or WAIC between M5 and M3 is less than 1 which means we do not have reason
to choose one model over the other.

The RWM, NUTS and MALA were also applied to all the three models with real world data. Even the other gradient-based
algorithms NUTS and MALA could not sample the parameter space. Attempts to improve algorithms by trying various values
for the initial step size in the case of NUTS and the step size for MALA did not make any difference. This further confirms the

fact that combining replica exchange with an algorithm improves mixing and convergence.
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Figure 14. Posterior distributions of the 13 parameters for model M4 using the second set of priors. There is no obvious correlation between

the parameters. The marginal posterior distributions are on the diagonal.
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Table 7. Convergence diagnostics for real-world data. Z-statistic, p-value and IAT. The null hypothesis is that the mean of earlier posterior
samples is the same as that of later posterior samples in a Markov chain. All p-values are above 0.05, indicating no significant difference in

the mean of earlier and later posterior samples and no evidence against convergence. The IAT is the number of samples required to obtain an

independent sample in the Markov chain and smaller values are preferred.
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Model
M, M3 My
parameter  Z-statistic (p-value) IAT Z-statistic (p-value) IAT Z-statistic (p-value) IAT
k1 0.029 (0.977) 8.489 -0.169 (0.866) 5.561 -0.001 (0.999) 4.811
ko 0.631 (0.528) 3.254 0.520 (0.603) 15.302 0.221 (0.825) 16.99
ks - - -0.432 (0.666) 14.723 0.137 (0.891) 9.892
ka - - - -0.371 (0.710) 8.542
k1,2 0.136 (0.892) 21.421 0.423 (0.672) 22.547 0.358 (0.720) 12.855
k2,3 - - 0.399 (0.690) 20.578 -0.253 (0.800) 21.233
k3,4 - - - - 0.291 (0.771) 9.495
Vi -0.801 (0.423) 29.976 0.084 (0.933) 7.650 0.037 (0.970) 11.571
Va -0.809 (0.419) 40.986 -0.015 (0.988) 8.317 0.045 (0.964) 20.099,
Vs - - -0.226 (0.821) 15.710 0.264 (0.792) 8.548
Vi - - - - -0.402 (0.688) 12.131
Vinax -0.146 (0.884) 15.897 -0.184 (0.854) 5.786 0.032 (0.975) 3.953
o? <-0.0001(1.000) 9.092 0.018 (0.985) 1.761 0.001 (1. 000) 2.167
3.3.1 Hydrograph of model M

Based on the hydrograph Fig. 16, most of the model predictions are very close to the observed discharge and within 50
% pointwise credible intervals. However, two peaks are not captured in the model. The first peak discharge period was from
04-02-1980 to 05-02-1980. The observed precipitation during this period is 41.4 mmd~! to 122 mmd ! on 04-02-1980 and 05-
02-1980 respectively. The observed discharge on these days is 62.09 mmd ' and 21.82 mmd " respectively. It is illogical that
the discharge is reduced with similar weather conditions. The second peak event occurred on 19-02-1980 with a precipitation
15.70 mmd~" and discharge of 40.00 mmd .

The precipitation on the previous day 18-02-1980 was 39.30 mmd~! with potential evapotranspiration similar to other
days and a lower discharge of 9.46 mmd~". This observed discharge is irrational as there is a higher discharge with lower
precipitation. Also, on 19-03-1980 the precipitation was 39.50 mm d~! with a discharge of 9.44 mm d—!. In contrast, on
20-03-1980, the precipitation decreased to 28.30 mm d—!, accompanied by an even lower discharge of 8.43 mm d~'. This

indicates a pattern of higher discharge with higher precipitation common on most days for similar weather conditions. An
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alternative explanation for the mismatch in peak discharge could be that the field capacity of the soil changed during these

periods and is not captured in our models.
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Figure 15. Posterior distributions of the 10 parameters of model M3 based the second set of priors. There is no pronounced correlation
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Table 8. Posterior summary statistics and log marginal likelihood for models with the second set of priors. Model M5 is the preferred over
M3 based on the log marginal likelihood. The difference in value between model M> and M3 is less than 1 for both the DIC and the WAIC,
so there is no preference between the two models according to these criteria. For information-theoretic-based approaches, a difference of 7

is necessary for a strong preference for one model. Model My is the least preferred model based on any approach.

565

3.4 Convergence

Mo (95 % CI)

M3 (95 % CI)

My (95 % CI)

k1 0.724 (0.517,0.940)  0.794 (0.0.574, 1.046)  1.169 (0.774, 1.520 )
ko 0.125 (0.081,0.174)  0.242 (0.155,0.344)  1.991 (1.192, 2.801)
k3 - 0.157 (0.096, 0.221)  1.352 (0.720, 1.964)
ks - - 1.067 (0.598, 1.546)
k1o 1.195 (0.838, 1.637)  1.923 (1.105,2.889)  2.292 (1.367, 3.417)
kos - 0.511 (0.380, 0.648)  0.728 (0.463, 0.983)
k3,4 - - 0.826 (0.497, 1.136)
i 1.030 (0.548, 1.530)  1.029 (0.566, 1.457)  1.140 (0.032, 2.893)
Vs 1.017 (0.593, 1.549)  0.999 (0.582, 1.477)  0.861 (0.048, 2.239)
Vs - 0.997 (0.569, 1.523)  0.940 (0.041, 2.325)
Vi - - 1.082 (0.060, 2.768)
Vinax 1.139 (0.808, 1.474)  0.912 (0.657, 1.201)  0.796 (0.549, 1.057)
o2 5.289 (4.694,5.830)  5.273(4.739,5.828)  5.847 (5.212, 6.499)
log p(y| M) -506.259 -529.483 -608.181
log BFa3 23.224 - -
log BF24 101.922 - -
DIC 940.352 940.397 969.722
WAIC 946.536 946.512 979.932

-: The parameter is not included in the model.

o2 error term.

log p(y| M ): log marginal likelihood.

log BF;;: Bayes factor of model 4 compared to model j.

3.4.1 Model convergence time

In terms of the theoretical complexity, if IV is the number of posterior chains, S the number of samples per chain and L the
number of leapfrog steps per sample, then there are on the order of N SL likelihood and likelihood gradient evaluations for the
algorithm to complete.

In terms of actual performance, all models converge by 3000 samples, even for real-world data. A single replica set runs on

570 single CPU core within a high-performance computer. The model runtime of Gaussian shell examples ranges from 6 seconds

39



575

580

585

for 2 dimensions to 24 seconds for 30 dimensions. Synthetic examples converge in 2 to 4 hours, depending on the parameter’s
dimension. On the contrary, with real data, the models converge in 6 to 20 hours, depending on the parameter space and number
of temperatures. Models can converge faster with proper tuning of the number of leapfrog steps. The posterior summary
statistics like mean of the parameters does not change much with the number of temperatures. The number of temperatures
mainly affects the estimate of the log marginal likelihood. With large datasets, REpHMC can be combined with subsampling
without replacement to accelerate convergence. The REpHMC converges in minutes if we are interested only in parameter

estimation.
3.4.2 Convergence of marginal likelihood

As proposed by Calderhead and Girolami (2009), most studies use ten temperatures. However, it is important to check for
convergence of the log marginal likelihood after convergence of the posteriors. We suggest starting from eight temperatures
until the marginal likelihood is stable. That is stop when there is very little variation in the the marginal likelihood. This can be
visualised by a graph of the marginal likelihood against the number of temperatures. The number of temperatures at which the
log marginal likelihood starts to plateau or flatten is the temperature at which it converges. Also, a horizontal line can be drawn
at any point to see where most of the values lie or are close to the line, which helps to check for convergence. As observed
with the Gaussian shells example, the marginal likelihood is constant from 10 to 12 temperatures. Thus, running beyond 12
temperatures is recommended. The diagnostic plot of the log marginal likelihood for the real-world example shows that it is
constant from 10 to 12 temperatures too Fig. 18. For the real-world data, we used 45 temperature schedules for each model.

Also, The swap acceptance rate ranges from 0.169 for 10 temperature schedules to 0.379 for more than 44 temperatures.
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Figure 18. Convergence diagnostic of the log marginal likelihood for the two buckets model. The optimal temperature is from 48 when there

is very little variation, and the curve begins to flatten. The values almost follow the red line from 45 temperatures.
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4 Conclusions

We have introduced a methodology for simultaneous Bayesian parameter estimation and model selection. The methodology
includes formal model diagnostics, which check for goodness-of-fit and prior data conflict. The method uses a new gradient-
based algorithm REpHMC to draw posterior samples, TI for the calculation of marginal likelihood and PCPPP for model
diagnostics. The REpHMC and TI were validated on the Gaussian shells example, which is a difficult sampling benchmark
problem since it has isolated modes. The REpHMC is effective in sampling the entire parameter space for models with isolated
modes. This sets it apart from other gradient-based algorithms such as HMC, NUTS and MALA. Also, we have shown that
BF selects the data generating model in two experiments, while DIC and WAIC correctly select the true model in one of two
experiments. Also, none of the other mentioned gradient-based algorithms worked when real-world data was used with our
developed model. In addition, formal posterior predictive checks have been introduced to determine if a model can accurately
predict observed or desired values, such as the minimum or peak discharge. The method was employed to discharge data from
Magela Creek in Australia. We also calculated NSE and KGE for the chosen model with real-world data. The framework
has been implemented in open-source software TFP which supports most algorithms. The REpHMC can be applied to any
hydrological model. Our developed model performed better than using the mean as a predictor for real discharge data. However,
the model does not capture peak discharge values. Therefore, some improvements in that regard need to be made.

By combining a gradient-based algorithm HMC and REMC, we obtain a powerful algorithm that can sample complex
posteriors thanks to the exchange of information between parallel running chains. We have also illustrated that the BF is a
reliable Bayesian tool for model selection in contrast to two common Bayesian-based information criteria for model selection.

Future work could combine REMC with the NUTS algorithm (Hoffman and Gelman, 2014) which requires less numerical
parameter tuning than HMC. Also, introducing subsampling in the case of big data or models with millions of parameters will
reduce the inference time. Another direction would be to focus on improving the model goodness-of-fit, as the KGE indicates.
Furthermore, one could develop a discrepancy measure for the posterior predictive check to test whether the selected model
can capture peak discharge values. On the practical side, this study could be extended to the multi-catchment setting. Also,

different types of conceptual hydrological models could be compared using this approach.

Code and data availability. The source code, data, and instructions are available on Zenodo (Mingo and Hale, 2024) and GitHub at https:
//github.com/DamingoNdiwa/hydrological-model-selection-bayes.
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AIC Akaike information criteria. 1, 22
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BIC Bayesian information criterion. 1

630 CI credible interval. 21

DIC deviance information criterion. 18, 22, 23, 29, 30, 31, 33, 39, 41
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IAT integrated autocorrelation time. 13, 21, 29, 32, 35

KGE Kling Gupta efficiency. 7, 32, 41

MALA Metropolis-adjusted Langevin algorithm. 3, 17, 19, 33, 41

MCMC Markov Chain Monte Carlo. 12
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NUTS No-U-Turn sampler. 3, 17, 19, 33, 41
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ODE Ordinary differential equation. 2, 4, 14, 16

ODEs Ordinary differential equations. 4, 5, 6, 14

PCPPP prior calibrated posterior predictive p-value. 4, 9, 27, 32, 41
645 pHMC preconditioned Hamiltonian Monte Carlo. 3, 10, 12, 14, 15

PMC population Monte Carlo. 12

PP probabilistic programming. 15

PPC posterior predictive check. 8

PPL probabilistic programming language. 15

650 PPP posterior predictive p-value. 8, 9, 23, 27, 32

REHMC Replica exchange Hamiltonian Monte Carlo. 9, 12, 13
REMC Replica exchange Monte Carlo. 3, 4, 10, 12, 16, 41
REpHMC Replica exchange preconditioned Hamiltonian Monte Carlo. 3, 4, 10, 12, 13, 17, 18, 19, 21, 32, 40, 41

RWM random walk Metropolis. 3, 12, 14, 33

655 TFP TensorFlow probability. 4, 15, 16, 41

TI thermodynamic integration. 3, 4, 9, 10, 11, 12, 13, 16, 21, 41
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