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Abstract. We develop a method for computing Bayes factors of conceptual rainfall-runoff models based on thermodynamic

integration, gradient-based replica-exchange Markov Chain Monte Carlo algorithms and modern differentiable programming

languages. We apply our approach to the problem of choosing from a set of conceptual bucket-type models with increasing

dynamical complexity calibrated against both synthetically generated and real runoff data from Magela Creek, Australia. We

show that using the proposed methodology the Bayes factor can be used to select a parsimonious model and can be computed5

robustly in a few hours on modern computing hardware.

1 Introduction

Hydrologists are often faced with assessing the performance of models that differ in their complexity and ability to reproduce

observed data. The Bayes factor (BF) is one method for selecting between models from an a priori chosen set (Berger and

Pericchi, 1996). The appeal of the BF lies in its ability to implicitly and automatically balance model complexity and goodness-10

of-fit under few simplifying assumptions. The BF is also invariant to data and parameter transformations unlike information

theory-based criteria such as Akaike information criteria (AIC) and Bayesian information criterion (BIC) (O’Hagan, 1997).

For example, a logarithmic transformation of the discharge or the square root of a parameter such as the flow rate can accelerate

the convergence of the model, but it will not affect the computed BF.

However, the BF requires the computation of the marginal likelihood (the denominator in Bayes theorem) for each model,15

which is a difficult and expensive integration problem. This expense and difficulty can be attributed to three main factors;

the necessity of many model runs at different points in the parametric space; the possibly multi-modal and highly correlated

nature of the posterior that can lead to isolated and/or slowly mixing chains; and finally the inherent difficulty of the marginal

likelihood integration problem.

Because of these difficulties, it is the case today that the BF is not widely used by practitioners, despite it being a crucial20

component in Bayesian model comparison, selection and averaging (Höge et al., 2019). This stands in contrast with the widely

studied and used Bayesian parameter estimation procedure (Gelman et al., 2020). Consequently, model uncertainty is often

1



ignored, or assessed by either ad hoc techniques or information theoretic criteria (Birgé and Massart, 2007; Bai et al., 1999)

that explicitly (rather than implicitly) penalise model complexity based on some measure of the number of parameters and

under limiting assumptions, see e.g. (Berger et al., 2001) for a full discussion.25

1.1 Background

Looking outside of hydrology, there are a number of notable works that have developed techniques for numerically estimating

the BF. A recent comprehensive review by Llorente et al. (2023) discusses the relative advantages of commonly used methods

for computing the marginal likelihood, and consequently, the BF, such as naive Monte Carlo methods, harmonic mean esti-

mator (Newton and Raftery, 1994), generalised harmonic mean estimator (Gelfand and Dey, 1994), importance sampling and30

Chib’s method (Chib and Jeliazkov, 2001; Chib, 1995), bridge sampling (Meng and Wong, 1996; Gelman and Meng, 1998),

nested sampling (Skilling, 2004, 2006) and finally thermodynamic integration (Calderhead and Girolami, 2009; Lartillot and

Philippe, 2006; Ogata, 1989), the technique that we choose to use in this study. Thermodynamic integration is well suited for

high dimensional integrals (Ogata, 1989, 1990) involving physics-based models such as Ordinary differential equation (ODE)

systems. The naive Monte Carlo is unstable and usually not efficient, requiring a huge number of samples for convergence. The35

importance sampling and harmonic estimators require a suitable choice of the importance and proposal distributions, respec-

tively. The performance of bridge sampling also depends on a good choice of proposal distribution, which in practice is not

straightforward to determine a priori. The main difficulty with nested sampling is generating samples from a truncated prior as

the threshold increases (Chopin and Robert, 2010; Henderson and Goggans, 2019). However, the efficiency of Chib’s method

depends on how close an arbitrary value is to the posterior mode (Dai and Liu, 2022). Hug et al. (2016) illustrated that Chib’s40

method significantly underestimates the marginal likelihood of a bimodal Gaussian mixture model.

Turning our attention to works within hydrology that develop methods for computing Bayes factors, to the best of our

knowledge, the seminal work by Marshall et al. (2005) was the first to propose computing Bayes factors for hydrological

model selection. Marshall et al. (2005) used Chib’s method to estimate the marginal likelihood of conceptual models. More

recently various other authors (Liu et al., 2016; Brunetti et al., 2019, 2017; Volpi et al., 2017; Cao et al., 2019; Brunetti and45

Linde, 2018; Marshall et al., 2005) have considered the computation of Bayes factors in a hydrological or hydrogeological

context.

Perhaps most closely related to our study are the recent works of Brunetti et al. (2019, 2017); Brunetti and Linde (2018) who

computed Bayes factors for conceptual hydrogeological models with thermodynamic integration techniques. Brunetti et al.

(2017) compared naive Monte Carlo, bridge sampling based on the proposal distribution developed by Volpi et al. (2017),50

and the Laplace Metropolis method in terms of calculating the marginal likelihood of conceptual models. Like most studies,

the naive Monte Carlo approach performed poorly. Also, Brunetti and Linde (2018) computed the marginal likelihood using

methods based on a proposal distribution, notably bridge sampling. Several marginal likelihood estimation methods have been

compared within hydrological studies. For example, Liu et al. (2016) found that thermodynamic integration gives consistent

results compared to nested sampling and is less biased.55
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Many studies in hydrology, e.g. Zhang et al. (2020); Brunetti et al. (2017); Zheng and Han (2016); Shafii et al. (2014); Laloy

and Vrugt (2012) and Kavetski and Clark (2011) have used the differential evolution adaptive Metropolis (DREAM) algorithm

(Vrugt, 2016) for posterior parameter inference. Volpi et al. (2017) introduced a method to construct the proposal distribution

for bridge sampling and integrated it with the DREAM algorithm. However, it still requires the user to choose the number

of Gaussian distributions for the Gaussian mixture proposal distribution. The DREAM algorithm has been developed with an60

acceptance rate similar to the random walk Metropolis (RWM) algorithm, which has an optimal acceptance rate of 0.234 (Vrugt

et al., 2008; Gelman et al., 1996b; Roberts and Rosenthal, 2009). The acceptance rate or probability is the proportion of the

proposed samples accepted in the Metropolis-Hastings algorithm. In contrast, a gradient-based sampler such as Hamiltonian

Monte Carlo (HMC), which we use in this work, typically has a far higher optimal acceptance rate of around 0.65 (Radford

M. Neal, 2011; Beskos et al., 2013). In addition, gradient-based samplers show improved chain mixing properties in high65

dimensions and on posteriors with strongly correlated parameters (Radford M. Neal, 2011). Gradient-based algorithms have

been used in hydrology for parameter estimation, but not model selection. For instance, Hanbing Xu and Guo (2023) found

that No-U-Turn sampler (NUTS) sampler (Hoffman and Gelman, 2014) performed well for calibrating a model of daily runoff

predictions of the Yellow River basin in China. Krapu and Borsuk (2022) employed HMC to calibrate the parameters of

rainfall-runoff models. The model selection studies by Liu et al. (2016) and Brunetti et al. (2017, 2019) that use the BF use70

posterior samples from the DREAM algorithm, and consequently a lower acceptance rate than gradient-based samples e.g.

HMC. In addition, because gradient-based samplers incorporate information about the local geometry of the posterior, they

are usually easier to tune to achieve the optimal acceptance rate, particularly in the moderate or high-dimensional parameter

setting (num. parameters > 5).

1.2 Contribution75

The overall contribution of this paper is to describe the development of a method, Replica exchange preconditioned Hamilto-

nian Monte Carlo (REpHMC), which, when used in conjunction with thermodynamic integration (TI), can be used to estimate

the BF of competing conceptual rainfall-runoff hydrological models. Our approach for estimating the marginal likelihood com-

bines TI for marginal likelihood estimation, Replica exchange Monte Carlo (REMC) for power posterior ensemble simulation

and preconditioned Hamiltonian Monte Carlo (pHMC) for high-efficient gradient-based sampling which in sum we call the80

REpHMC + TI estimator. We demonstrate that REpHMC can sample from moderate-dimensional, strongly correlated and/or

multimodal distributions that frequently arise from hydrological models. In addition, REpHMC + TI can obtain posterior pa-

rameter estimates and the marginal likelihood simultaneously. We remark that Brunetti et al. (2019) also suggested, but did

not explore, the idea of using REMC (therein called parallel tempering Monte Carlo) to improve chain mixing in hydrological

models. Two other gradient-based samplers, Metropolis-adjusted Langevin algorithm (MALA) (Xifara et al., 2014) and NUTS85

(Hoffman and Gelman, 2014) are used briefly in this paper as a point of comparison, but we do not include their detailed

derivation.

Another key contribution of our work compared with e.g. Brunetti et al. (2017, 2019) is the incorporation of recent ideas from

probabilistic programming for the automatic specification of the Bayesian inference problems (parameter and BF estimation).
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Utilising recent techniques from the literature on neural ordinary differential equations (ODEs) (Chen et al., 2018; Rackauckas90

et al., 2020; Kelly et al., 2020), we formulate a set of Hydrologiska Byråns Vattenbalansavdelning (HBV)-like models with

extensible model complexity as a system of Ordinary differential equations (ODEs). Working in this framework allows us to

use efficient high-order timestepping schemes for the numerical solution of the ODE system and to automatically derive the

associated continuous adjoint ODE system. With this adjoint system we can efficiently calculate the derivative of the posterior

functional with respect to the model parameters, a necessary step for working with gradient-based samplers such as HMC.95

We emphasise at this point that our approach is largely free of manual tuning parameters and straightforward to implement

in a differentiable programming framework (we use TensorFlow probability (TFP) with the JAX backend, but the ideas are

applicable in similar frameworks such as Stan or PyMC3). We remark that a recent more theory-focused paper (Henderson

and Goggans, 2019) also proposed using TI with HMC via the Stan probabilistic programming language, but with results for

non-time series models and without using REMC, which is an important aspect of our approach.100

After model selection via the BF, it is essential to check if the chosen model can generate the observed data. Hydrographs

show the time series of stream flow. However, formal goodness-of-fit testing is necessary since it is challenging to see a

mismatch in hydrographs for dense data. We therefore use the prior calibrated posterior predictive p-value (PCPPP), which

simultaneously tests for prior data conflict and discrepancies in the model for further improvements.

In summary, this paper is the first to propose the REpHMC + TI method in a probabilistic programming framework for the105

estimation of marginal likelihoods related to hydrological systems in view of model selection. We demonstrate the performance

of our method by showing a) a validation of the methodology using an analytically tractable model, b) its improved efficiency

with respect to classical methods using artificially generated data, and c) an application of a Bayes factor based model selection

on real rainfall/runoff data collected from the Magela Creek catchment in Australia.

Our overall perspective is that these techniques have the potential to bring robust model comparison techniques based on BF110

closer to everyday hydrological modelling practice. Aside from the algorithmic developments in this paper, a necessary techno-

logical requirement would be the (re-)implementation of hydrological models in a differentiable programming language, e.g.

JAX, PyTorch or TensorFlow, rather than in a traditional language such as C, Fortran or Python. While using modern differ-

entiable programming techniques is commonplace for model developers working with machine-learning type approaches, e.g.

neural networks, it is less commonly used, but no less applicable, for more traditional hydrological modelling approaches like115

the ODE-based HBV-like system we consider here. We hope our results encourage more hydrologists to consider differentiable

programming tools for conceptual model implementation given the advantages that derivative-based sampling and optimisation

algorithms bring to the table in terms of computational efficiency and improved insight, e.g. model selection.

The rest of the paper is organized as follows. Section 2 is about conceptual hydrological models and Bayesian methodology,

which includes model formulation, prior and likelihood construction, posterior predictive checks, numerical methods, and120

algorithms. Section 3 contains the results and discussions, while the conclusions are provided in Section 4. There is also a list

of acronyms at the end.
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2 Methodology

This section describes the model formulation, likelihood construction, algorithms used, and implementation in differentiable

software. We leave other modelling aspects, like the type of priors used, for the next section, where we present experiments.125

2.1 Conceptual models

We develop a set of rainfall-runoff conceptual hydrological models in the framework of continuous dynamical systems that can

be written as a system of ODEs of the following form

Vt = f(t,V,θ) ∀t ∈ (0, T̄ ],

V (t= 0) = V̂,
(1)

where V are the n system states, Vt :=
dV
dt is the derivative of the state with respect to the time variable t, T̄ is the final time,130

V̂ ∈ Rn are the initial conditions, f are known functions, and θ ∈ Rp is a vector containing the p model parameters.

V1

Q1 = k1V1

P Ea

V2

Q2 = k2V2

Vn

k1,2V1

k(n−1),(n)Vn

Qn = knVn

Q =
∑n

i=1 kiVi

Figure 1. Schematic representation of HBV-like ODE model with n-buckets according to the notations in the text. The blue boxes represent

the buckets with given state V1 to Vn. The solid arrows represent mass flows between buckets, into the system or out of the system. The

dashed arrow represents the collective mass flow between multiple buckets.

For the purpose of the results in this paper, we derive a set of HBV-like models under the principle of conversation of

mass. The algorithms developed in this study can be applied to other bucket-type models, e.g. Parajka et al. (2007); Jansen
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et al. (2021) or those described in the comprehensive MARRMoT rainfall-runoff models toolbox (Trotter et al., 2022). In

comparison with the ‘standard’ HBV model (Bergström, 1976), our model lacks snow and a routing routine and we choose135

to replace the traditional soil moisture routine with a linear reservoir. A schematic representation of mass flow between the

buckets system is given in Fig. 1. The system states {V1, . . . ,Vn} [L3], where L is a generic length unit, represent the volume

of water in the i-th bucket and n is the total number of buckets. The system of ODEs for general n≥ 1 can be written

(V1)t = P −Ea − k1V1, n= 1, (2a)

(V1)t = P −Ea − k1V1 − k1,2V1, n≥ 2, (2b)140

(Vi)t = k(i−1),(i)Vi−1 − kiVi − k(i),(i+1)Vi, i= 2, . . . , n− 1, n≥ 3, (2c)

(Vn)t = k(n−1),(n)Vn−1 − knVn, n≥ 2, (2d)

V (t= 0) = V̂, (2e)

Ea =
Ep

Vmax
V1, (2f)

Q=

n∑

i=1

kiVi. (2g)145

The parameters k(i−1),(i) [T
−1], i= 2, . . . ,n, are the interbucket recession coefficients, where T is a generic time unit. The

parameters k(i) [T−1], i= 1, . . . ,n, are the outflow recession coefficients. The total outflow Q [L3T−1] specified in Eq. (2g) is

the noiseless quantity y used in the upcoming calibration and model selection procedures. The precipitation P [L3T−1] is an

a priori known function of time. Potential evaporation Ep [L
3T−1] is a known function of time, whereas actual evaporation

Ea [L
3T−1] is a function of Ep, and Vmax [L

3] through Eq. (2f), where Vmax is the maximum amount of water the soil can150

store. We remark that the term Ep/Vmax in Eq. (2f) has units [L3T−1] and can therefore be thought of as a dynamic recession

coefficient with the dynamic behaviour controlled by the known time-varying potential evapotranspiration function Ep.

The parameter vector θ ∈ Rp associated with the model is then

θ := {Vmax︸ ︷︷ ︸
1

, k1, . . . ,kn︸ ︷︷ ︸
n

, k1,2, . . . ,k(n−1),(n)︸ ︷︷ ︸
n−1

, V̂1, . . . , V̂n︸ ︷︷ ︸
n

} (3)

The number of buckets can be varied by adjusting n ∈ N+, leading to a set of models {M1, . . . ,Mn} each with n states and155

p= 3n parameters. Note that for i > j a more complex model Mi contains a superset of the components of a simpler model

Mj . Consequently after calibration of both models on a dataset produced by Mj , Mi should be able to reproduce the data as

well as Mj , but at the cost of higher model complexity. This construction will be used in the results to show that the BF does

penalise the complex model Mi, leading to the selection of Mj , the expected result.
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2.2 Bayesian methodology160

We briefly restate the Bayes theorem in order to set our notation. If y is the data and θ the parameter vector associated with a

model M , then Bayes theorem in Eq. (4) defines the posterior probability of θ as

π(θ|y,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f(y|θ,M)

prior︷ ︸︸ ︷
π(θ|M)

p(y|M)︸ ︷︷ ︸
marginal (averaged) likelihood

=
f(y|θ,M)π(θ|M)∫
f(y|θ,M)π(θ|M)dθ

. (4)

The prior is a probability distribution of a parameter before data is considered. It can incorporate expert knowledge, historical

results or any belief about the model parameters. The likelihood tells us how likely various parameter values could have165

generated the observed data. The denominator in Bayes theorem

p(y|M) =

∫ likelihood︷ ︸︸ ︷
f(y|θ,M)

prior︷ ︸︸ ︷
π(θ|M) dθ, (5)

is called the marginal likelihood. The marginal likelihood tells us how likely the model supports the data. The distribution of

the parameters given the data is known as the posterior and is proportional to the product of the likelihood and the prior. In the

Bayesian paradigm, all inference is based on the posterior.170

2.2.1 Likelihood construction

In this section, we drop the explicit index on the model for notational convenience. We define a solution operator Gsol :

R3n →X that maps a parameter vector θj to the total outflow function Q. Concretely, this solution operator is calculated by

numerically solving Eqs. (2a) to (2g). We then define the observation operator Gobs :X → Rq which evaluates the solution

Q ∈X at a set of q points in time {t1, . . . , tq}.175

We assume the following standard Gaussian white noise model for the observed data: y =GobsGsol(θ)+ η where η ∼
MVN(0,σ2Iq) with MVN a multivariate normal distribution with mean 0 ∈ Rq and covariance σ2Iq ∈ Rq×q , with σ2 ∈ R

the variance of the measurement noise and Iq the usual q-dimensional identity matrix. Let G :=GobsGsol : R3n → Rq . By

standard arguments it can be shown that y|θ ∼MVN(G(θ),σ2Iq) resulting in the likelihood f(y|θ,M) in Eq. (4) being fully

defined. For brevity, we leave precise prior specifications to the results in Section 3.180

We remark that according to (Cheng et al., 2014) our choice of a likelihood function with Gaussian white noise is equivalent

to using the well-known Nash Sutcliffe efficiency (NSE) as a metric. However, other popular metrics such as Kling Gupta

efficiency (KGE) cannot be linked explicitly with a likelihood function, and consequently cannot be used within a formal

Bayesian analysis. A recent work (Liu et al., 2022) proposes an adaptation of the KGE idea using a Gamma distribution which

can be used as an informal likelihood function within a Bayesian analysis, but we do not explore this option further here. An185

alternative option which bypasses the need for an explicit likelihood function is approximate Bayesian computation (ABC)

could be an appropriate alternative when an appropriate explicit metric or likelihood function are unavailable see e.g. (Nott

et al., 2012; Liu et al., 2023).
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2.2.2 Model comparison

The marginal likelihood is also called the normalizing constant (Chen et al., 2000; Gelman and Meng, 1998), prior predictive190

density, evidence (MacKay, 2003) or integrated likelihood (Lenk and DeSarbo, 2000; Gneiting and Raftery, 2007). This quan-

tity is essential to the definition of the Bayes factor. Indeed, the Bayes factor for two competing models, Mi and Mj with i ̸= j

is the ratio of their marginal likelihoods

BFij =
p(y|Mi)

p(y|Mj)
=

∫
f(y|θi,Mi)π(θi|Mi)dθi∫
f(y|θj ,Mj)π(θj |Mj)dθj

. (6)

Since BF is a ratio, a value greater than one means that Mi should be preferred to Mj , and vice-versa for a value smaller than195

one. Kass and Raftery (1995) proposed a measure of the strength of evidence (Table 1) that we will use throughout this paper

to interpret the Bayes factors.

An appealing feature of the BF is its consistency in the limit of a high number of observations. Proofs of consistency for

non-nested models are in Casella et al. (2009). For other cases, including nonparametric models, a review and detailed study

of consistency can be found in Chib and Kuffner (2016). Also, information theoretic model selection approaches usually200

require an explicit penalty for the number of model parameters (model complexity). In contrast, the BF implicitly penalises the

complexity of the model. That is we do not need to assign a penalty for model complexity since it is already accounted for in

the marginal likelihood and hence the BF.

Table 1. Interpretation of the Bayes factor (Kass and Raftery, 1995)

log10 BFij BFij Evidence in favour of model 1

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

2.2.3 Posterior predictive checks

Model selection does not reveal discrepancies between the predictions from the chosen model and observed data. Hence205

posterior predictive checks (PPCs) are also necessary to see if the selected model can replicate the observed data (Gelman

et al., 1996a). PPCs can be graphical or formal. Graphical PPCs consist in making plots of predictions from the chosen model

and the observed data to reveal discrepancies. Formal PPC entails calculating a posterior predictive p-value (PPP). The concept

of posterior predictive checking was introduced by Rubin (1984) and later generalised by Gelman et al. (1996a) under the

name PPP where a discrepancy measure can depend on the model parameters. PPCs are the Bayesian equivalent of frequentist210

goodness-of-fit tests, with the difference that the PPP can be based on any discrepancy measure, not just a statistic.
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To compute the PPP, the chosen discrepancy measure, D, is calculated based on replicated data yrep, drawn from the pre-

dictive distribution π(yrep|yobs) =
∫
f(yrep|θ)π(θ|yobs)dθ, and compared with that based on observed data. In mathematical

terms, we wish to approximate the theoretical probability

ppp(yobs) = Pr
[
D(y(rep),θ)≥D(yobs,θ)|yobs

]
. (7)215

This quantity can be estimated as

ppp(yobs) =
1

B

B∑

i=1

I
[
D(yrepi ,θi)≥D(yobs,θi)

]
(8)

where I[A] stands for the indicator function which takes the value 1 if A occurs and 0 otherwise, yobs is the observed dataset,

yrepi is a replicated dataset from the posterior predictive distribution, B is the number of replicated datasets, while θi is a single

draw from the posterior distribution.220

Unlike the frequentist p-value, the interpretation of the PPP is not straightforward since it does not follow a uniform dis-

tribution but is concentrated around 0.5 (Meng, 1994). When the p-value has a uniform distribution, the type I error can be

controlled. For the frequentist p-value, the probability of falsely rejecting a null hypothesis, which is referred to as a type I error

rate, can be set to a fixed value. Typically, this value is prespecified at 0.05 or 0.01. On the contrary, it is difficult to fix the type

I error rate for the PPP. Hence, we might fail to reject poor models for a given PPP at a chosen type one error (Gelman, 2013;225

Hjort et al., 2006). For this reason, we computed the prior calibrated posterior predictive p-value (PCPPP) introduced by Hjort

et al. (2006) that has a uniform distribution and the same interpretation as a classical p-value. For more on the Type I error

and the distribution of the p-value, refer to Hung et al. (1997) and for Bayesian p-values, see Zhang (2014). To calculate the

PCPPP, a PPP based on data from the prior predictive distribution π(yprior) =
∫
f(yrep|θ)π(θ)dθ is computed and compared

with a PPP based on replicated data from the posterior predictive distribution230

pcppp(yobs) =
1

B

B∑

i=1

I
[
ppp(yrep

priori
)≤ ppp(yobs)

]
,

where ppp(yobs) is obtained by Eq. (8) and ppp(yrep
priori

) can be in a similar way. From this equation, it becomes visible that the

PCPPP can also reveal prior data conflicts. A PCPPP greater than a prespecified type I error, say 0.05, means that the prior

distribution and model support the data at the level 0.05. The PPP can as well be calibrated based on posterior samples (Hjort

et al., 2006; Wang and Xu, 2021).235

2.3 Numerical methods

In this section we discuss the proposed new numerical method Replica exchange Hamiltonian Monte Carlo (REHMC) + TI

that we employ to simultaneously draw posterior samples and estimate the marginal likelihood. We recommend the reader refer

to Fig. 2 and its caption for a high-level overview of the approach before continuing to the detailed descriptions below.
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pHMC
β2

pHMC
β3

pHMC

β4
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βN

C
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REMC TI log p(y|M)

log f(y|θ, βj) ∀j ∈ 1, . . . , N.

Figure 2. Overall schematic of the REpHMC+TI algorithm for estimating the marginal likelihood for a given model M . Working from

left to right, N pHMC samplers are run at different values of the inverse temperature parameter {β1,β2, . . . ,βN} with 0≤ βj ≤ 1, j =

1, . . . ,N, to simulate from the power posterior logf(y;θi,βj). The REMC algorithm is responsible for swapping the state between adjacent

chains according to the Metropolis-Hastings criteria. Finally, the TI methodology is used to calculate an estimate of the marginal likelihood

logp(y|M). Note that in terms of setup, information flows from right to left, i.e. the discretisation of the TI integral is responsible for setting

the number N and values of inverse temperatures β1, . . . ,βN .

2.3.1 Thermodynamic integration240

Thermodynamic integration (TI) has its origins in theoretical physics, where it is used to calculate free energy differences

between systems (Torrie and Valleau, 1977) before appearing in the statistical literature as path sampling (Gelman and Meng,

1998), a method for calculating marginal likelihoods. TI converts a high-dimensional integral into a one-dimensional integra-

tion problem over a unit interval.
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To derive the TI estimate of the marginal likelihood p(y), we first raise the likelihood to the power 0≤ β ≤ 1 to form the245

power posterior (Friel and Pettitt, 2008)

πpower(θ|y,β) =
[
f(y|θ)

]β
π(θ)

p(y|β) , (9)

with

p(y|β) =
∫ [

f(y|θ)
]β
π(θ) dθ. (10)

When β = 0, the power posterior is the same as the prior distribution. When β = 1, we have the standard posterior distribution.250

This makes a continuous path between the prior and the posterior distributions.

Taking the logarithm on both sides of Eq. (10) and using the chain rule, a differentiation with respect to β yields

∂

∂β
logp(y|β) =

1

p(y|β)
∂

∂β
p(y|β)

=
1

p(y|β)

∫
∂

∂β

[
f(y|θ)

]β
π(θ) dθ

=
1

p(y|β)

∫ [
f(y|θ)

]β
logf(y|θ)π(θ) dθ255

=

∫ [
f(y|θ)

]β
π(θ)

p(y|β) logf(y|θ) dθ

= Ep(θ|y,β)[logf(y|θ)], (11)

where Ep(θ|y,β) is the expectation with respect to the power posterior. Integrating both sides of equation (11) with respect to β

gives the log of the marginal likelihood of interest p(y) in terms of an integral on β

logp(y) =

1∫

0

Ep(θ|y,β)[logf(y|θ)] dβ, (12)260

This manipulation allows us to find a way to approximate the value of p(y). Computationally, posterior samples are drawn for

each value of β. The values are then evaluated in the log-likelihood, and the mean for each value of β is obtained. The integral

(12) on β can be estimated using the trapezoidal rule as follows:

logp(y) =

N∑

j=1

(βj −βj−1)

2

[
Ep(θ|y,βj) logf(y|θ)+Ep(θ|y,βj−1) logf(y|θ)

]
.

The Monte Carlo estimate of the expectations can then be obtained by265

logp(y)≈
N∑

j=1

(βj −βj−1)

2

[
1

S

S∑

i=1

logf(y|θi,βj)+
1

S

S∑

i=1

logf(y|θi,βj−1)

]
, (13)

where j = 1, . . . ,N is the index for the β values and S is the number of posterior samples for each β value. The accuracy

of the TI estimate depends on the integration rule on β, i.e. the number of β values and the spacing of the values, and the
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convergence of the Markov Chain Monte Carlo (MCMC). The most commonly employed path is a geometric path (Calderhead

and Girolami, 2009)270

βj =

(
j

N

)5

, j = 1, . . . ,N. (14)

The number of βj values can be adaptively chosen as a tradeoff between model convergence and computational efficiency, for

instance, see Vousden et al. (2016). The complete TI algorithm is presented in Algorithm 1.

Algorithm 1 Thermodynamic integration (TI)

Input: β {β = {1, . . . ,0} : schedule of inverse temperatures based on trapezoidal rule of size N , S is the number of samples per replica.}

Output: Log marginal likelihood (logp(y)).

1: REpHMC(β) {Run the a single step of the REpHMC algorithm S times, see section 2.3.2.}

2: Estimate logp(y) by the definition of the quadrature rule, e.g. trapezoidal rule

logp(y)≈
N∑

j=1

(βj −βj−1)

2

[
1

S

S∑
i=1

logf(y|θi,βj)+
1

S

S∑
i=1

logf(y|θi,βj−1)

]
.

2.3.2 Replica exchange Monte Carlo

The REMC algorithm was introduced by Swendsen and Wang (1986). Geyer (1991) presented a similar formulation to the275

statistical community under the name Metropolis-coupled MCMC. REMC is a generic algorithm in that it can be combined with

other algorithms. Miasojedow et al. (2013) combined REMC with random walk Metropolis (RWM). RWM is a gradient-free

algorithm in that it generates posterior samples from the target distribution by randomly sampling from a proposal distribution.

We combine REMC with HMC, which gives the new algorithm REHMC explained in the rest of this section. When REMC is

combined with pHMC, we get the REpHMC. The REpHMC gives a higher effective sample size than REHMC. The effective280

sample size is the number of independent samples with the same amount of information as correlated samples. Each sample

in a Markov chain is correlated to the preceding sample, so the samples have less information than independent samples. The

effective sample size takes into account this autocorrelation. The main idea of REMC is that an ensemble of power posterior

chains known as replicas run in parallel. The likelihood of these chains is raised to values from zero to one. These values are

called inverse temperatures. Each replica performs a Metropolis update to get the next value at each iteration. The replica pairs285

are randomly selected, and an attempt is made to swap the current values of the replica pairs. A swap is accepted or rejected

according to the Metropolis-Hastings algorithm. The swapping accelerates convergence to the target distribution, avoids chains

becoming trapped in topologically isolated areas of the parameter space, and improves the mixing of the chains. REMC is also

known as parallel tempering (Hansmann, 1997; Earl and Deem, 2005). When the method has an iterated importance sampling

step, it is known as population Monte Carlo (PMC) (Iba, 2000; Cappé et al., 2004). However, the term PMC has also been290

used for methods without an importance sampling step (Calderhead and Girolami, 2009; Friel and Pettitt, 2008; Mingas and

Bouganis, 2016).
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The REpHMC is summarised in Algorithm 2. We emphasise that the samples of the replica with β = 1 are used to estimate

the posterior parameters, while the entire ensemble is used as input within TI to calculate the marginal likelihood.

Algorithm 2 Single step of Replica Exchange preconditioned Hamiltonian Monte Carlo (REpHMC)

Input: L, ϵ, θt, β {L: number of leapfrog steps, ϵ: leapfrog stepsize, θt = {θt1, . . . ,θtN}: initial values for each β, β = {β1, . . . ,βN}:

schedule of N inverse temperatures}

Output: (θt+1
1 , . . . ,θt+1

N ) {Posterior samples for each β}.

1: for i= 1 to N do

2: θt+1
i ← pHMC(L,ϵ,θti) {Run single step of pHMC algorithm on each replica}

3: end for

4: for i= 1 to N − 1 do

5: j← i+1 {Select adjacent chain}

6: α←min

(
1,

πi(θ
t+1
j )πj(θ

t+1
i )

πi(θ
t+1
i )πj(θ

t+1
j )

)
{where e.g. πi(·) is the power posterior associated with temperature βi}.

7: u∼ U(0,1)

8: if u≤ α then

9: (θt+1
i ,θt+1

j )← (θt+1
j ,θt+1

i )

10: else

11: (θt+1
i ,θt+1

j )← (θt+1
i , θt+1

j )

12: end if

13: end for

Like any sampling method, the REpHMC’s convergence should be assessed. We used both trace plots and formal diagnostic295

tests to check for convergence of the Markov chain since there is no universal robust test for convergence (Cowles and Carlin,

1996). The most widely used method to assess the convergence of Markov chains is the potential scale reduction factor R̂,

developed by Gelman and Rubin (1992) and extended by Brooks and Gelman (1998). Recently, an improved factor R̂ was

proposed by Vehtari et al. (2021). For R̂ to be a valid statistic, the chains must be independent of each other. In REHMC, the

chains are not independent due to swapping. Therefore, we used methods that require one chain or replica per temperature,300

namely the Geweke diagnostic (Geweke, 1992) and the integrated autocorrelation time (IAT) (Geyer, 1992; Kendall et al.,

2005). For the sake of brevity, we do not explain these concepts here but instead refer the reader to the respective papers.

2.3.3 Hamiltonian Monte Carlo

HMC is a gradient-based technique used to sample from a continuous probability density (Duane et al., 1987). HMC scales

better in high dimensions than gradient-free samplers, such as nested sampling, due to the inclusion of derivative information305

(Ashton et al., 2022). Therefore, many applications combine HMC and gradient-free samplers. For example, Elsheikh et al.

(2014) has combined HMC and nested sampling. HMC is based on the Hamiltonian, which describes a particle’s position and

momentum at any time. New positions are known by solving Hamilton’s equations of motion for position and momentum. In
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Bayesian inference, the Hamiltonian H(θ,ρ) in Eq. (15) describes the evolution of a d dimensional vector (θ) of parameters

and a corresponding d dimensional vector of auxiliary momentum (ρ) variables at any time, t.310

H(θ,ρ) =−logf(y|θ)π(θ)+ 1

2
ρTMρ

= U(θ)+K(ρ)

(15)

In Eq. (15), M is the positive definite mass matrix. U(θ) is the desired posterior known as potential energy, and K(ρ) is the

kinetic energy that is a function of momentum. To sample from the Hamiltonian, we take the partial derivatives, which give

Hamilton’s equations of motion

dθ

dt
=

∂H

∂ρ
=

∂K

∂ρ
(16a)315

dρ

dt
=−∂H

∂θ
=−∂U

∂θ
(16b)

We now have a system of ODEs (Eqs. (16a) to (16b)). The leapfrog method (Duane et al., 1987; Radford M. Neal, 2011) is

used to solve the Eqs. (16a) to (16b) and propose new values for the parameters. The accuracy of the leapfrog method depends

on the discretisation step ϵ.

Each HMC iteration consists of two steps (Radford M. Neal, 2011). In the first step, the momentum values for each parameter320

are sampled from a Gaussian distribution independent of the current θ values, ρ∗ ∼MVN(0,M).Then using the current

parameter and momentum values, (θt,ρt), the Hamiltonian is simulated using an appropriate time stepping method such as

the leapfrog method (Betancourt, 2017). At the end of Hamiltonian dynamics, the momentum values are negated, and the new

parameter values (θ∗,ρ∗) are accepted or rejected using the Metropolis-Hastings criterion with acceptance probability α where

325

α=min
[
1,exp

(
−U(θ∗)+U(θt)−K(ρ∗)+K(ρt)

)]
. (17)

The HMC is summarised in Algorithm 3. The mixing of the HMC chain depends on the number of leapfrog steps L and

the step size ϵ. L and ϵ can be automatically tuned during the warm-up phase of the algorithm (Hoffman and Gelman, 2014).

The warm-up phase is the period during which posterior samples are discarded and is also called burn-in. In this work, ϵ was

automatically tuned by the dual averaging algorithm while L was manually tuned. Dual averaging automatically adjusts ϵ330

during the warm-up of the HMC algorithm until a specific acceptance rate is achieved. We used an acceptance rate of 0.75,

which is higher than the optimal acceptance rate of RWM based algorithms. This is the mean of various reported values and

the default in TensorFlow probability. To increase the sampling efficiency of HMC, we have to reduce the correlation of the

parameters, especially for ODE models. This is achieved by introducing a preconditioned matrix, M and hence the name

pHMC. This leads to even faster convergence and higher effective sample sizes for each parameter (Girolami and Calderhead,335

2011). In practice, the preconditioned matrix is the inverse of the covariance matrix of the target posterior. In contrast to HMC,

where the momentum is sampled from a normal distribution, for pHMC, the momentum values are sampled from a multivariate
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Gaussian distribution with a covariance matrix as the preconditioned matrix, ρ∼ MVN(0,M). The covariance matrix controls

the correlation of the parameters. The rest of the algorithm for pHMC works as for HMC.

Algorithm 3 Single step of preconditioned Hamiltonian Monte Carlo (pHMC), Notation following Radford M. Neal (2011)

Input: L,ϵ,θt {L: number of leapfrog steps, ϵ: leapfrog step size, θt: initial value.}

Output: θt+1

1: ρ∗ ∼MVN(0,M) {Sample momentum values, M is the mass matrix}

2: θ∗← θt

3: for i= 1 to L do

4: (θϵ,ρϵ)← Leapfrog(θ,ρ,ϵ)

5: end for

6: ρ∗←−ρ∗

7: α←min
(
1,exp

(
−U(θ∗)+U(θt)−K(ρ∗)+K(ρt)

))
8: u∼ U(0,1)

9: if u≤ α then

10: θt+1← θ∗

11: else

12: θt+1← θt

13: end if

14:

15: function Leapfrog(θ,ρ,ϵ) {Solves the equations to propose new values}

16: ρϵ/2← ρ− ϵ
2

∂U
∂θ

(θ)

17: θϵ← θ+ ϵM−1ρϵ/2

18: ρϵ← ρϵ/2− ϵ
2

∂U
∂θ

(θϵ)

19: return (θϵ,ρϵ)

2.4 Implementation aspects340

In this section, we outline some of the more non-standard aspects of implementing the proposed methodology in the proba-

bilistic programming language (PPL) TFP. Probabilistic programming (PP) is a methodology for performing computational

statistical modelling in which all elements of the Bayesian joint posterior π(θ|y,M) are specified in a PPL. Popular PPLs

include Stan (Carpenter et al., 2017), PyMC3 (Salvatier et al., 2016) and TFP (Dillon et al., 2017). Once specified in a PPL,

the subsequent Bayesian parameter inference problem can then be handled semi-automatically. We refer the reader to the Code345

and Data availability statement for the full implementation and simply remark that the joint posterior for our problem can be

defined in around 70 lines of TFP/JAX code.

We choose to use TFP in this study. From our experience, TFP is the most flexible and extensible PPL in terms of allowing

advanced model specification and the ability to break out of the high-level interface and perform low-level operations. However,
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this flexibility comes at the cost of a steeper learning curve, particularly TFP’s complex batch and event shape semantics (Dillon350

et al., 2017). We note that despite TensorFlow in the name, TFP is backend-agnostic and can run on top of various differentiable

programming languages. We choose to run TFP on top of JAX, instead of the default choice of TensorFlow. Anecdotally, our

experience is that TFP on JAX has better runtime performance and is more robust than TFP on TensorFlow, particularly when

working with ODE-based models. We use JAX with the CPU backend and double precision floating point representation,

although in principle the GPU backend could also be used. TFP already includes an implementation of the HMC and REMC355

algorithms, the output of which can be used with TI for computing the marginal likelihood.

JAX can automatically perform arbitrarily composable forward and backward mode automatic differentiation of nearly

arbitrary computer programs. This is used to automatically differentiate the TFP specification of the negative log posterior

U(θ) with respect to the model parameters θ for use within the HMC algorithm. As this approach is now standard, we refer the

reader to Margossian (2019) for a detailed review.360

For the automatic differentiation of the ODE model, we use the continuous adjoint approach. This approach is also called

continuous backpropogation in the Neural ODE literature, see e.g. Kelly et al. (2020) and Höge et al. (2022) for an application

in hydrology. We follow the presentation in (Kidger, 2021) where a new set of adjoint ODEs is from the original continuous

ODE system. This adjoint system is then discretised (backwards in time) using the same ODE solver as for Eq. (1), an explicit

adaptive Dormund-Prince ODE integrator that is already included in JAX. It is worth remarking that while the continuous365

adjoint system is still derived automatically within JAX, the result is distinctly different to backwards differentiation through

the steps of the forward ODE solver at the programmatic level. For more details, we refer the reader to Kidger (2021) for a

discussion of the different methods for automatically differentiating ODE systems and their relative tradeoffs.

Let V be the solution to Eq. (1). In the simplest case let J = J(V (T )) be some scalar function of the terminal solution value

V (T ) (the approach extends straightforwardly to other functionals). Setting dJ
dV = aV (t) and dJ

dθ = aθ(0) where aV : [0,T ]→370

Rn and aθ : [0,T ]→ Rp are the solutions to the following adjoint ODE system

(aV )t =−aV (t)
T ∂f

∂V
(t,V,θ), aV (T ) =

dJ

dV (T )
, (18a)

(aθ)t =−aV (t)
T ∂f

∂θ
(t,V,θ), aθ(T ) = 0. (18b)

Note that the adjoint system requires the forward solution to have already been computed and that the adjoint system runs back-

wards in time, i.e. evolving from known states aV (T ) and aθ(T ) at terminal time t= T to the starting time t= 0. Once aθ(0)375

has been computed, the required gradient of the functional dJ
dθ = aθ(0) can be computed straightforwardly. This continuous

adjoint ODE approach can be arbitrarily composed with JAX’s programme level automatic differentiation capabilities, mean-

ing that it is possible to add non-ODE based components (smoothers etc.) to the model and use our framework for computing

marginal likelihoods.
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3 Results and discussion380

The purpose of this section is to test the accuracy of REpHMC in calculating the BF by employing it to solve benchmark

problems with complex distributions but well known log marginal likelihoods and thus the BF. We illustrate that the BF can

distinguish between models with an equally good fit by calculating the BF of synthetic discharge data for three different models,

among which is the data generating model. We repeat the experiment using another data generating model. Finally, the BF is

applied to the real-world discharge data.385

3.1 Gaussian shells example

This section aims to show that the the proposed methodology accurately estimates the marginal likelihood of a synthetic

example. In addition, it illustrates the effectiveness of REpHMC in sampling multimodal distributions. The benchmark example

is the Gaussian shells (Feroz et al., 2009; Allanach and Lester, 2008). This example has two wholly separated Gaussian shells,

making it difficult to sample from. This example has been used to test various techniques for calculating the marginal likelihood390

(Thijssen et al., 2016; Henderson and Goggans, 2019). The Gaussian shell likelihood is given as

ℓ(θ) =
1√
2πw2

1

exp

[
− (||θ1 − c1|| − r1)

2

2w2
1

]
+

1√
2πw2

2

exp

[
− (||θ2 − c2|| − r2)

2

2w2
2

]
. (19)

The unknown parameters are θ = (θ1, θ2), while the marginalised fixed parameters are r1, r2,w1,w2, c1 and c2. The first shell

has a radius of r1 and the second shell r2. The first shell is centred at c1 while the second is centred at c2. The variance

(width) of the first shell is w1, and that of shell two is w2. We assign uniform priors to θ1 and θ2 in the range -6 to 6 and395

the marginalised parameters are set to w1 = w2 = 0.1, r1 = r2 = 2, c1 = 3.5, c2 =−3.5. We used 26 temperature schedules,

since this is a difficult sampling problem to obtain fast mixing due to the two regions of probability mass. Convergence of the

number of temperatures was checked after the convergence of the posterior samples. The log marginal likelihood is stable after

using 22 temperatures. From this point, there is very little variation in the log marginal likelihood, as shown in Fig. 3. The

plot shows that the log marginal likelihood is constant from 10 to 11 temperatures. Although 10 temperatures are commonly400

used, this would have underestimated the actual value. To assess convergence, diagnostic plots were made by running the same

temperature schedules twice in parallel with two different random initial parameter values, and the results are displayed in

Fig. 3 where the horizontal red line is the true value. The swap acceptance rate ranges from 0.389 for 10 temperature schedules

to 0.479 for more than 50 temperatures.

A plot of the samples for the parameters using various samplers is shown in Fig. 4. The plot demonstrates that due to the405

addition of Replica Exchange the REpHMC method can sample across the the shells, compared to algorithms such as NUTS

(Hoffman and Gelman, 2014), MALA (Xifara et al., 2014) or plain HMC (not shown) which are purely local. The results of

the marginal likelihood up to 30 dimensions are shown in Table 2 with agreement with the marginal likelihood values reported

in the literature (Feroz et al., 2009).
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Figure 3. Convergence diagnostic plots of the log marginal likelihood for the Gaussian shell in two dimensions. The temperature schedules

is run twice in parallel with random initial parameter values. Convergence occurs when the curves plateau.

Table 2. Log marginal likelihood (log p(y)) of the Gaussian shell example. The true values are shown, and the estimates are based on

thermodynamic integration with samples from REpHMC. The results are shown for up to 30 dimensions.

Dimensions ∗Reference log p(y) Estimated log p(y)

2 -1.75 -1.75 ± 0.003

5 -5.67 -5.68 ± 0.006

10 -14.59 -14.60 ± 0.006

20 -36.09 -36.12 ± 0.014

30 -60.13 -60.19 ± 0.025

∗ As reported in Feroz et al. (2009)

3.2 Synthetic examples410

In this section we generate synthetic discharge data by using the observed precipitation and observed potential evapotranspira-

tion as inputs to our models. The following two examples aim to verify the correct implementation and study the behaviour of

the methodology to calculate the marginal likelihood. In the first experiment, data yobs is generated from the simplest model,

M2. In the second experiment, M3 (three buckets model) is the data generating model. For each experiment, the log-marginal

likelihood logp(y|Mi) for i= 2,3,4 and the respective Bayes factors are calculated. The deviance information criterion (DIC)415

and widely applicable information criterion (WAIC) are also calculated for experiments in Section 3.2.1, Section 3.2.2 and for

real-world discharge data in Section 3.3.
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Figure 4. Posterior samples for the Gaussian shells example obtained by different algorithms alongside the target distribution. Top left (a) is

NUTS, top right (b) is REpHMC, bottom left (c) is MALA and bottom right (d) is the target distribution. Because of the addition of Replica

Exchange, REpHMC can sample across the entire distribution space. This is in contrast to the NUTS, MALA and HMC (not shown) samplers

which cannot transition across the gap between the two shells.

3.2.1 Experiment one with data generated from the two-buckets model M2

In the first experiment, synthetic discharge data yobs is generated from the simplest model, M2 (two buckets model) to see if

the BF will select M2. We set up the priors as in Table 3. The synthetic discharge is generated to have similar dynamics as420

the observed discharge shown in Fig. 5. First, we obtain the daily precipitation and evapotranspiration for the Magela Creek

catchment in Australia for 1980. The initial time t = 0 corresponds to midnight on January 1, 1980, and the final time T = 366

days to midnight on December 31, 1980 (1980 was a leap year). It is assumed that the total precipitation and evapotranspiration

on a given day is uniformly distributed over the 24 hours from midnight to midnight. This is an acceptable assumption when

modelling the dynamics of a catchment on a multiday time scale.425
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Table 3. Description of the parameters and priors. Note that here we have used units more common in the hydrological literature. LN is the

lognormal distribution and IG is the inverse Gamma distribution. The IG was chosen because it is easier to sample than other distributions

for the prior noise parameter, which must be positive.

Parameter Unit Description Prior

k1 d−1 Outflow recession coefficient for bucket 1 LN(1.0,0.25)

k2 d−1 Outflow recession coefficient for bucket 2 LN(0.6,0.25)

k3 d−1 Outflow recession coefficient for bucket 3 LN(0.3,0.25)

k4 d−1 Outflow recession coefficient for bucket 4 LN(0.1,0.25)

k12 d−1 Interbucket recession coefficient 1 to 2 LN(0.8,0.25)

k23 d−1 Interbucket recession coefficient 2 to 3 LN(0.4,0.25)

k34 d−1 Interbucket recession coefficient 3 to 4 LN(0.1,0.25)

V̂1 mm Initial condition on V1 LN(0.0,1.0)

V̂2 mm Initial condition on V2 LN(0.0,1.0)

V̂3 mm Initial condition on V3 LN(0.0,1.0)

V̂4 mm Initial condition on V4 LN(0.0,1.0)

Vmax mm Maximum amount of water the soil can store LN(1.0,0.25)

σ2 mm2d−2 Variance of the Gaussian noise model IG(5.0,0.1)

Our analysis focuses on a three-month period in 1980 running from 1st January 1980 to 31st March 1980 when the precipi-

tation frequency is highest, and there are no missing data.

We set up the priors according to the following reasoning:

– The top bucket associated with state V1 typically represents the fast dynamics of the catchment system, such as surface

runoff into rivers. The parameters k1 and k1,2 are the recession coefficients of the top bucket. They represent the flow430

rates from the top bucket. Since the parameters have to be positive, we use lognormal priors, the most commonly used

distribution for dynamic models.

– The lower bucket states Vi represent processes with progressively slower dynamics such as groundwater storage, and are

associated with parameters ki, k(i−1),(i) and k(i),(i+1) for i= 2, . . . ,n−1. The bottom bucket state Vn is associated with

parameters kn and k(n−1),(n).435

– The system starts with a nonzero initial condition that mimics the standard procedure of “bootstrapping" the ODE system

for a period TB < 0. For real-world data, the initial conditions are not known and must be identified. The initial condition

to be identified is V̂i where i= 1,2, . . . ,n.

The meaning of the parameters and the priors are shown in Table 3. We follow a Bayesian workflow and do a prior predictive

check. This helps to verify if the priors are reasonable. For the prior predictive check, 50 samples were drawn from the prior440
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Figure 5. Plot of observed discharge, synthetic discharge, and precipitation from 01-01-1980 to 31-12-1980. The observed discharge has

missing values, represented by the broken blue line, mostly in the seventh month. Synthetic discharge data generated via the joint posterior

(before calibration) shows similar overall trends to the observed discharge.

and then evaluated in the likelihood. This gave 50 different datasets for the synthetic discharge. The mean synthetic discharge

is then obtained, and the 95 % pointwise credible intervals are obtained and shown in Fig. 6. The marginal likelihoods for

M2,M3 and M4 were calculated and the corresponding Bayes factors were calculated. For each model, fifteen different runs of

the marginal likelihood were calculated using REpHMC + TI. This enabled us to get the estimate’s standard deviation, which

is different from the Monte Carlo standard error.445

We perform REpHMC with 10 replicas where the likelihood of a replica is raised to an inverse temperature value according

to the schedule in Eq. (14). Each replica was run until IAT < S/50, where S is the number of posterior samples. The IAT is the

number of samples required to obtain an independent sample and a smaller value is preferable. We found that 4000 posterior

samples per replica were enough to rule out non-stationarity. We also did a full run with 20000 posterior samples per chain, and

we saw no significant change in the results. The p-value for Geweke diagnostics was not significant at 5 % for all parameters450

and models (p-value > 0.90), indicating there is a high probability that the parameters have converged. The IAT and Geweke

diagnostics were performed using the Python package, pymcmcstat (Miles, 2019). The posterior parameter estimates and 95

% credible interval (CI) are in table Table 4. For M2, the true model, the posterior parameters are very close to the true values

and are within the 95 % CI. Moreover, the parameters k1, V̂1, V̂2, Vmax and σ2 are very close to the true values. However, the

error term σ2 is the same for all three models, as all models fit the data well. Therefore, a model selection criterion is needed455
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Figure 6. Plot of observed discharge, synthetic discharge, and precipitation from 01-01-1980 to 29-05-1980. This period has no missing

values and has the highest precipitation frequency and discharge of the year 1980. The synthetic discharge has a similar trend to the observed

discharge. The synthetic discharge here is generated using a different set of parameters compared to that in Fig 5.

to discriminate between models. Fifteen marginal likelihoods are calculated in parallel for each model. The mean log marginal

likelihood is presented in Table 4. We can calculate the log BF of any model compared to another by taking the difference in

their log marginal likelihoods. Based on the interpretation of BF in Table 1, there is decisive evidence in favour of the data

generating model M2. The distributions of the log marginal likelihood for each model are shown in box plots (Fig. 7). In

addition, the DIC and WAIC are shown along with those of the marginal likelihood and they also select the data generating460

model. The DIC is a Bayesian generalisation of information-theoretic based criterion AIC for model selection introduced by

Spiegelhalter et al. (2002). The WAIC is based on pointwise out-of-sample predictive accuracy (Vehtari et al., 2017; Watanabe

and Opper, 2010) and for large samples equivalent to the leave out one cross-validation (Watanabe and Opper, 2010). For these

information-based theoretic methods, a difference of 10 is usually required for a decisive preference of one model over the

other (Burnham and Anderson, 2002b, p. 70). A difference of up to 7 is considered less support to prefer one model over the465

other (Spiegelhalter et al., 2002). Model M2 has the largest median log marginal likelihood, while model M4 has the lowest.

The prior and posterior distributions for model M2 are in Fig. 8. The prior distribution is in blue, while the posterior is in

red. The prior range is wide compared to the posterior such that the posterior contours are too small. The posterior marginal
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densities are also more contracted compared to the prior densities, as seen on the diagonal of the plots. The prior contours show

no significant correlation between the parameters. The posterior distributions for this model are shown in Fig. 9. The marginal470

posterior distributions are on the diagonal. The red dots represent the true parameters. There is also a high correlation between

pairs (k1,k2),(k1,Vmax),(k1,2,k2),(k12,Vmax),(k2,Vmax) and (V̂1, V̂2).

Table 4. True value, posterior mean with 95 % credible intervals of the parameters, and log marginal likelihood of the models for experiment

one. Model M2 has the highest log marginal likelihood and is the true model. The DIC and WAIC are also shown.

parameter True value M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.454 1.454 (1.445, 1.462) 1.438 (1.434, 1.457) 1.089 (1.081, 1.095)

k2 0.248 0.248 (0.248, 0.248) 0.241 (0.241, 0.250) 0.160 (0.129, 0.174)

k3 0.000 - 0.248 (0.247, 0.248) 0.241 (0.196, 0.265)

k4 0.000 - - 0.208 (0.207, 0.208)

k1,2 3.232 3.234 (3.205, 3.263) 3.157 (3.145, 3.256) 1.628 (1.552, 1.670)

k2,3 0.000 - 1.619 (0.993, 1.683) 1.102 (0.921, 1.400)

k3,4 0.000 - - 1.861 (1.105, 2.749)

V̂1 1.081 1.067 (1.039, 1.095) 1.067 (1.038, 1.071) 1.246 (1.181, 1.282)

V̂2 0.813 0.894 (0.787, 0.990) 0.490 (0.483, 0.593) 0.599 (0.474, 0.761)

V̂3 0.000 - 0.520 (0.453, 0.525) 0.731 (0.459, 0.827)

V̂4 0.000 - - 0.576 (0.433, 0.954)

Vmax 2.520 2.520 (2.502, 2.542) 2.573 (2.507, 2.581) 3.106 (2.999, 3.149)

σ2 0.014 0.014 (0.011, 0.016) 0.015 (0.015, 0.016) 0.023 (0.022, 0.027)

logp(y|M) - 217.968 203.383 154.768

log BF23 - 14.585 - -

log BF24 - 63.200 - -

DIC - -521.235 -448.980 -449.000

WAIC - -514.354 -501.686 -445.233

-: The parameter is not included in the model.

σ2: error term.

logp(y|M): log marginal likelihood.

log BFij : Bayes factor of model i compared to model j.

We also performed graphical posterior predictive checks. Discharge data was generated from the posterior predictive distri-

bution of each model and plotted. There is no noticeable visual difference in discharge (Fig. 10) for all the models since the

posterior error estimate is too small for all models. We also calculated PPP for the selected model using autocorrelation as a475

discrepancy measure. Hence, Eq. (8) becomes

ppp(yobs) =
1

n

n∑

i=1

I
[
(ρrepi ,θi)≥ (ρobs,θi)

]
(20)
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Figure 7. Distribution of the log marginal likelihood, DIC and WAIC for 15 different runs each. Distribution of the log marginal likelihood for

15 different runs. The boxplot of the data generating model, M2, is the highest while M4 is the lowest. Hence, M2 has the highest marginal

likelihood. M3 has the shortest interquartile range and, therefore, variability (a). DIC (b) and WAIC (c). For the log marginal likelihood,

higher values are preferred, while for the deviance information criterion (DIC) and widely applicable information criterion (WAIC), smaller

values are preferred. All techniques select the data-generating model.
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Figure 10. Plot of the mean discharge data generated from the posterior predictive distribution of each model for experiment one. It is difficult

to choose one model by inspection as they all fit the data well. However, the BF implicitly penalises the unnecessarily complex models M3

and M4 and correctly selects M2.

Posterior predictive plots might not tell us if the chosen model fits the data well, especially for dense datasets. Therefore,

formal posterior predictive tests based on the discrepancy measure are needed. Like most statistical tests, the results will depend

on the type of discrepancy measure or the test statistics. Carefully choosing such discrepancy measures is crucial. For example,480

we may test whether the model can predict peak discharge values, which would require a different discrepancy measure than if

the aim of our analysis was to predict the mean values. Hence, we suggest using formal posterior predictive tests and graphical

posterior predictive checks as in this study.

The PPP is 0.51, which means that the model has good predictive performance. This is expected for synthetic data. Values

further from 0.50 indicate a model mismatch with the data. Values closer to zero indicate that the model predictions are lower485

than the observed data. In contrast, values closer to one point that predictions are higher than observed data. A plot of the

autocorrelations of predicted versus synthetic observed data is shown in Fig. 11. The proportion of values above the 45o line

is the PPP. We also calculated PCPPP for the selected model and got a value of 0.64 > 0.05, which implies the model can

generate the data. The PCPPP is calibrated based on the prior predictive distribution and is uniformly distributed. Thus, it has

the same interpretation as a classical p-value.490
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Figure 11. Autocorrelation of the replicated versus observed synthetic discharge data. The posterior predictive p-value is the proportion of

observations above the 45o line. The autocorrelation of the first point is 1, which isolates it from the other observations.
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3.2.2 Experiment two with data generated from the three-buckets model M3

For the second experiment, the data model is M3. The model M3 has three more parameters than M2 and three fewer parameters

than the model M4. The priors for model M2 and M3 are shown in Table 3. The data in this experiment was also generated

to follow the same trend as the observed data. All models were fitted to the data, and inference is based on 20,000 posterior

samples with a burn-in of 5,000. As explained above, convergence was checked using IAT and Geweke diagnostics. The495

posterior estimates are in Table 5. Although the error term is small for all models, M2 has a higher value than the other two

models, suggesting that it may not have the right complexity. Fifteen marginal likelihoods were also calculated for each model

in parallel. The mean log marginal likelihood is presented in Table 5. The results are also shown in box plots in Fig. 12. The

box plots reveal that M3 has the highest median log marginal likelihood, and M2 the lowest. There is decisive evidence in

favour of model M3, the expected result.500

Following the recommendations in (Burnham and Anderson, 2002a) for interpreting information theoretic criteria, a differ-

ence of 4 to 7 suggests a weak preference for a model and a difference of at least 10 suggests strong preference for a model.

Consequently, the DIC and the WAIC do not suggest a strong preference for the true model (M3) over the richer model M4.

The WAIC shows possible weak evidence in favour of M3 over M4, but we note that the error bar in Fig. 12 for WAIC M4

indicates substantial uncertainty in the estimate. In this case then the BF decisively selects the data generating model M3 where505

the information theoretic criteria fail to do so. This example alone is clearly not proof that the BF is always superior to WAIC

or DIC, but it suggests that there are cases in which BF succeeds and information theoretic criteria can fail. The success of the

BF of course comes with a significantly higher computational cost.

As in the experiment one, a hydrograph from the posterior predictive distribution is shown in Fig. 13. From the hydrograph,

we cannot determine the best model through visual inspection since all the models fit the data equally well. Therefore, we510

require a formal model selection technique such as the BF.
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Table 5. True value, posterior mean with 95 % credible intervals of parameters and log marginal likelihood of models for experiment two.

M3 the true model has the highest log marginal likelihood. The DIC and WAIC are also included.

parameter true value M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.091 1.109 (1.104, 1.113) 1.090 (1.084, 1.097) 1.089 (1.081, 1.095)

k2 0.188 0.207 (0.206, 0.207) 0.172 (0.160, 0.190) 0.160 (0.129, 0.174)

k3 0.208 - 0.208 (0.207, 0.208) 0.241 (0.196, 0.265)

k4 0.000 - - 0.208 (0.207, 0.208)

k1,2 1.675 1.772 (1.759, 1.786) 1.648(1.613, 1.693) 1.628 (1.552, 1.670)

k2,3 1.050 - 1.520 (1.070, 1.781) 1.102 (0.921, 1.400)

k34 0.000 - - 1.861 (1.105, 2.749)

V̂1 1.317 1.263 (1.224, 1.325) 1.302 (1.242, 1.346) 1.246 (1.181, 1.282)

V̂2 0.936 1.758 (1.622, 1.914) 0.977 (0.733, 1.167) 0.599 (0.474, 0.761)

V̂3 0.910 - 0.856 (0.696, 1.103) 0.731 (0.459, 0.827)

V̂4 0.000 - - 0.576 (0.433, 0.954)

Vmax 3.048 2.929 (2.910, 2.948) 3.081 (3.026, 3.127) 3.106 (2.999, 3.149)

σ2 0.024 0.027 (0.024, 0.030) 0.023 (0.020, 0.027) 0.023 (0.022, 0.027)

logp(y|M) - 161.586 173.845 148.060

log BF32 - - 12.259 -

log BF34 - - 25.785 -

DIC - -401.612 -427.913 -426.127

WAIC - -394.247 -420.380 -417.174

-: The parameter is not included in the model.

σ2: error term.

logp(y|M): log marginal likelihood.

log BFij : Bayes factor of model i compared to model j.
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Figure 12. Distribution of the log marginal likelihood, DIC and WAIC for 15 different runs each with different initial parameter values.

M3, the data generating model has the highest median log marginal likelihood (a), while M4 has the lowest. M4 has the highest number of

parameters, while M2 has the least. DIC (b) and WAIC (c). For the log marginal likelihood, higher values are preferred, while for the DIC

and WAIC, smaller values are preferred. The log marginal likelihood selects the data-generating model, while DIC and WAIC do not have

any preference for model M3 and M4.
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Figure 13. Plot of the mean discharge data generated from the posterior predictive distribution of each model for experiment two. It is

difficult to choose one model by inspection as they all fit the data equally. The BF implicitly penalises the unnecessarily complex model M4

and correctly selects M3.
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3.3 Real data experiment

This section uses real-world discharge data for Magela Creek in Australia. For each model, 10 chains of the REpHMC were run

as in the previous examples. We obtained 4000 posterior samples per chain, discarding the first 1000 as burn-in. The trace plots

showed no indication of non-stationarity of the Markov chain, and both Geweke diagnostics and IAT supported convergence.515

The Z-statistic, p-value, and IAT are shown in Table 7. All p-values are greater than 0.05, indicating no significant difference

in the means of earlier and later posterior samples and no evidence against convergence. The null hypothesis states that the

mean of the earlier and later posterior samples are equal. Furthermore, the IAT is less than S/50 for all parameters, indicating

well-mixed and stationary chains, where S represents the number of posterior samples. Smaller values of IAT indicate that

fewer samples are needed to obtain an independent sample in the Markov chain.520

Since we do not use an objective Bayesian approach, we used two sets of priors, where the second set is a sensitivity

analysis. The first set of priors has higher variances for some parameters and is less informative than the second set (Table 6). It

is common practice to try different priors and to check if the parameter estimates change with different priors. This is known as

prior-sensitivity analysis. The models converge faster with the second set of priors. The first set of priors (Table 3) is the same

as in the previous sections. For the second set of priors, we used lognormal priors with lower variances for some parameters525

compared to the first set of priors. The mean values used for the priors are also different from those of the first set of priors.

The prior to the error term remains unchanged.

Table 6. Second set of priors. LN is the lognormal distribution and IG is the inverse Gamma distribution

Parameter Prior distribution

k1 LN(0.8, 0.25)

k2, k3, k4 LN(0.2, 0.25)

k12, k23, k34 LN(0.6, 0.25)

V̂1, V̂2, V̂3 , V̂4, Vmax LN(0.0, 0.25)

σ2 IG(5.0, 0.1)

We checked the precision of our chosen model by comparing predicted and observed discharges using a posterior predictive

check based on a second set of priors. The hydrograhs for all three models are in Fig. 16. The plots of the predicted and

observed autocorrelations with PPP are in Fig. 17. The PPP is 0.444 which is not too close to 0.5 and the PCPPP is 0.639.530

Hence, one can conclude that the model fits the data based on autocorrelation. Instead of autocorrelation, another metric could

be used for the posterior predictive check depending on the objective of the model. The NSE for the chosen model is 0.526 and

the KGE is 0.705. This means that the model performs better than using the mean observed discharge. Knoben et al. (2019)

found that the KGE is < -0.41 when the model performs poorer than the mean observed discharge. The marginal posterior

distributions for the model M4 are shown in Fig. 14. We have also presented the posterior distributions of the parameters in535

model M3 in Fig. 15. There is no noticeable correlation between parameters when real-world discharge data is used. However,
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Vmax plays a major role in the dynamics of the model. A more realistic prior for Vmax based on the soil physics of Magela

Creek Australia will reduce the model error.

The results of the second set of priors are in Table 8. The selected model did not change when we used diffuse priors. The

error in the second set of models is lower than in the first set. The model M2 is always preferred while M4 is always the least540

supported by the data. The error term, its precision, effective sample size (ESS), and the number of parameters influence the

marginal likelihood.

We also applied two fully Bayesian information criteria, DIC and WAIC. Unlike the BF, there is no clear model choice for

the information criteria. The difference in DIC or WAIC between M2 and M3 is less than 1 which means we do not have reason

to choose one model over the other.545

The RWM, NUTS and MALA were also applied to all the three models with real world data. Even the other gradient-based

algorithms NUTS and MALA could not sample the parameter space. Attempts to improve algorithms by trying various values

for the initial step size in the case of NUTS and the step size for MALA did not make any difference. This further confirms the

fact that combining replica exchange with an algorithm improves mixing and convergence.
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Figure 14. Posterior distributions of the 13 parameters for model M4 using the second set of priors. There is no obvious correlation between

the parameters. The marginal posterior distributions are on the diagonal.
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Table 7. Convergence diagnostics for real-world data. Z-statistic, p-value and IAT. The null hypothesis is that the mean of earlier posterior

samples is the same as that of later posterior samples in a Markov chain. All p-values are above 0.05, indicating no significant difference in

the mean of earlier and later posterior samples and no evidence against convergence. The IAT is the number of samples required to obtain an

independent sample in the Markov chain and smaller values are preferred.

Model

M2 M3 M4

parameter Z-statistic (p-value) IAT Z-statistic (p-value) IAT Z-statistic (p-value) IAT

k1 0.029 (0.977) 8.489 -0.169 (0.866) 5.561 -0.001 (0.999) 4.811

k2 0.631 (0.528) 3.254 0.520 (0.603) 15.302 0.221 (0.825) 16.99

k3 - - -0.432 (0.666) 14.723 0.137 (0.891) 9.892

k4 - - - -0.371 (0.710) 8.542

k1,2 0.136 (0.892) 21.421 0.423 (0.672) 22.547 0.358 (0.720) 12.855

k2,3 - - 0.399 (0.690) 20.578 -0.253 (0.800) 21.233

k3,4 - - - - 0.291 (0.771) 9.495

V̂1 -0.801 (0.423) 29.976 0.084 (0.933) 7.650 0.037 (0.970) 11.571

V̂2 -0.809 (0.419) 40.986 -0.015 (0.988) 8.317 0.045 (0.964) 20.099,

V̂3 - - -0.226 (0.821) 15.710 0.264 (0.792) 8.548

V̂4 - - - - -0.402 (0.688) 12.131

Vmax -0.146 (0.884) 15.897 -0.184 (0.854) 5.786 0.032 (0.975) 3.953

σ2 < -0.0001(1.000) 9.092 0.018 (0.985) 1.761 0.001 (1. 000) 2.167

3.3.1 Hydrograph of model M2550

Based on the hydrograph Fig. 16, most of the model predictions are very close to the observed discharge and within 50

% pointwise credible intervals. However, two peaks are not captured in the model. The first peak discharge period was from

04-02-1980 to 05-02-1980. The observed precipitation during this period is 41.4 mmd−1 to 122 mmd−1 on 04-02-1980 and 05-

02-1980 respectively. The observed discharge on these days is 62.09 mmd−1 and 21.82 mmd−1 respectively. It is illogical that

the discharge is reduced with similar weather conditions. The second peak event occurred on 19-02-1980 with a precipitation555

15.70 mmd−1 and discharge of 40.00 mmd−1.

The precipitation on the previous day 18-02-1980 was 39.30 mmd−1 with potential evapotranspiration similar to other

days and a lower discharge of 9.46 mmd−1. This observed discharge is irrational as there is a higher discharge with lower

precipitation. Also, on 19-03-1980 the precipitation was 39.50 mm d−1 with a discharge of 9.44 mm d−1. In contrast, on

20-03-1980, the precipitation decreased to 28.30 mm d−1, accompanied by an even lower discharge of 8.43 mm d−1. This560

indicates a pattern of higher discharge with higher precipitation common on most days for similar weather conditions. An
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alternative explanation for the mismatch in peak discharge could be that the field capacity of the soil changed during these

periods and is not captured in our models.
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Figure 15. Posterior distributions of the 10 parameters of model M3 based the second set of priors. There is no pronounced correlation

between the parameters. The marginal posterior distributions are on the diagonal.
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Figure 16. Hydrographs for all three models. Models M2 and M3 are not visually distinguishable. The results are better than the prior

predictive check shown in Fig. 6, where most predictions are further from the observed data.
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Figure 17. Autocorrelation of replicated versus observed data for model M2. The posterior predictive p-value is the proportion of observa-

tions above the 45o line.
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Table 8. Posterior summary statistics and log marginal likelihood for models with the second set of priors. Model M2 is the preferred over

M3 based on the log marginal likelihood. The difference in value between model M2 and M3 is less than 1 for both the DIC and the WAIC,

so there is no preference between the two models according to these criteria. For information-theoretic-based approaches, a difference of 7

is necessary for a strong preference for one model. Model M4 is the least preferred model based on any approach.

M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 0.724 (0.517, 0.940) 0.794 (0.0.574, 1.046) 1.169 (0.774, 1.520 )

k2 0.125 (0.081, 0.174) 0.242 (0.155, 0.344) 1.991 (1.192, 2.801)

k3 - 0.157 (0.096, 0.221) 1.352 (0.720, 1.964)

k4 - - 1.067 (0.598, 1.546)

k1,2 1.195 (0.838, 1.637) 1.923 (1.105, 2.889) 2.292 (1.367, 3.417)

k2,3 - 0.511 (0.380, 0.648) 0.728 (0.463, 0.983)

k3,4 - - 0.826 (0.497, 1.136)

V̂1 1.030 (0.548, 1.530) 1.029 (0.566, 1.457) 1.140 (0.032, 2.893)

V̂2 1.017 (0.593, 1.549) 0.999 (0.582, 1.477) 0.861 (0.048, 2.239)

V̂3 - 0.997 (0.569, 1.523) 0.940 (0.041, 2.325)

V̂4 - - 1.082 (0.060, 2.768)

Vmax 1.139 (0.808, 1.474) 0.912 (0.657, 1.201) 0.796 (0.549, 1.057)

σ2 5.289 (4.694, 5.830) 5.273 (4.739, 5.828) 5.847 (5.212, 6.499)

logp(y|M) -506.259 -529.483 -608.181

log BF23 23.224 - -

log BF24 101.922 - -

DIC 940.352 940.397 969.722

WAIC 946.536 946.512 979.932

-: The parameter is not included in the model.

σ2: error term.

logp(y|M): log marginal likelihood.

log BFij : Bayes factor of model i compared to model j.

3.4 Convergence

3.4.1 Model convergence time565

In terms of the theoretical complexity, if N is the number of posterior chains, S the number of samples per chain and L the

number of leapfrog steps per sample, then there are on the order of NSL likelihood and likelihood gradient evaluations for the

algorithm to complete.

In terms of actual performance, all models converge by 3000 samples, even for real-world data. A single replica set runs on

single CPU core within a high-performance computer. The model runtime of Gaussian shell examples ranges from 6 seconds570
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for 2 dimensions to 24 seconds for 30 dimensions. Synthetic examples converge in 2 to 4 hours, depending on the parameter’s

dimension. On the contrary, with real data, the models converge in 6 to 20 hours, depending on the parameter space and number

of temperatures. Models can converge faster with proper tuning of the number of leapfrog steps. The posterior summary

statistics like mean of the parameters does not change much with the number of temperatures. The number of temperatures

mainly affects the estimate of the log marginal likelihood. With large datasets, REpHMC can be combined with subsampling575

without replacement to accelerate convergence. The REpHMC converges in minutes if we are interested only in parameter

estimation.

3.4.2 Convergence of marginal likelihood

As proposed by Calderhead and Girolami (2009), most studies use ten temperatures. However, it is important to check for

convergence of the log marginal likelihood after convergence of the posteriors. We suggest starting from eight temperatures580

until the marginal likelihood is stable. That is stop when there is very little variation in the the marginal likelihood. This can be

visualised by a graph of the marginal likelihood against the number of temperatures. The number of temperatures at which the

log marginal likelihood starts to plateau or flatten is the temperature at which it converges. Also, a horizontal line can be drawn

at any point to see where most of the values lie or are close to the line, which helps to check for convergence. As observed

with the Gaussian shells example, the marginal likelihood is constant from 10 to 12 temperatures. Thus, running beyond 12585

temperatures is recommended. The diagnostic plot of the log marginal likelihood for the real-world example shows that it is

constant from 10 to 12 temperatures too Fig. 18. For the real-world data, we used 45 temperature schedules for each model.

Also, The swap acceptance rate ranges from 0.169 for 10 temperature schedules to 0.379 for more than 44 temperatures.
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Figure 18. Convergence diagnostic of the log marginal likelihood for the two buckets model. The optimal temperature is from 48 when there

is very little variation, and the curve begins to flatten. The values almost follow the red line from 45 temperatures.
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4 Conclusions

We have introduced a methodology for simultaneous Bayesian parameter estimation and model selection. The methodology590

includes formal model diagnostics, which check for goodness-of-fit and prior data conflict. The method uses a new gradient-

based algorithm REpHMC to draw posterior samples, TI for the calculation of marginal likelihood and PCPPP for model

diagnostics. The REpHMC and TI were validated on the Gaussian shells example, which is a difficult sampling benchmark

problem since it has isolated modes. The REpHMC is effective in sampling the entire parameter space for models with isolated

modes. This sets it apart from other gradient-based algorithms such as HMC, NUTS and MALA. Also, we have shown that595

BF selects the data generating model in two experiments, while DIC and WAIC correctly select the true model in one of two

experiments. Also, none of the other mentioned gradient-based algorithms worked when real-world data was used with our

developed model. In addition, formal posterior predictive checks have been introduced to determine if a model can accurately

predict observed or desired values, such as the minimum or peak discharge. The method was employed to discharge data from

Magela Creek in Australia. We also calculated NSE and KGE for the chosen model with real-world data. The framework600

has been implemented in open-source software TFP which supports most algorithms. The REpHMC can be applied to any

hydrological model. Our developed model performed better than using the mean as a predictor for real discharge data. However,

the model does not capture peak discharge values. Therefore, some improvements in that regard need to be made.

By combining a gradient-based algorithm HMC and REMC, we obtain a powerful algorithm that can sample complex

posteriors thanks to the exchange of information between parallel running chains. We have also illustrated that the BF is a605

reliable Bayesian tool for model selection in contrast to two common Bayesian-based information criteria for model selection.

Future work could combine REMC with the NUTS algorithm (Hoffman and Gelman, 2014) which requires less numerical

parameter tuning than HMC. Also, introducing subsampling in the case of big data or models with millions of parameters will

reduce the inference time. Another direction would be to focus on improving the model goodness-of-fit, as the KGE indicates.

Furthermore, one could develop a discrepancy measure for the posterior predictive check to test whether the selected model610

can capture peak discharge values. On the practical side, this study could be extended to the multi-catchment setting. Also,

different types of conceptual hydrological models could be compared using this approach.

Code and data availability. The source code, data, and instructions are available on Zenodo (Mingo and Hale, 2024) and GitHub at https:
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Glossary625

ABC approximate Bayesian computation. 7

AIC Akaike information criteria. 1, 22

BF Bayes factor. 1, 2, 3, 4, 6, 8, 17, 19, 22, 27, 29, 31, 33, 41

BIC Bayesian information criterion. 1

CI credible interval. 21630

DIC deviance information criterion. 18, 22, 23, 29, 30, 31, 33, 39, 41

DREAM differential evolution adaptive Metropolis. 3

ESS effective sample size. 33

HBV Hydrologiska Byråns Vattenbalansavdelning. 4, 5

HMC Hamiltonian Monte Carlo. 3, 4, 12, 13, 14, 15, 16, 17, 19, 41635

IAT integrated autocorrelation time. 13, 21, 29, 32, 35

KGE Kling Gupta efficiency. 7, 32, 41

MALA Metropolis-adjusted Langevin algorithm. 3, 17, 19, 33, 41

MCMC Markov Chain Monte Carlo. 12

NSE Nash Sutcliffe efficiency. 7, 32, 41640

NUTS No-U-Turn sampler. 3, 17, 19, 33, 41
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ODE Ordinary differential equation. 2, 4, 14, 16

ODEs Ordinary differential equations. 4, 5, 6, 14

PCPPP prior calibrated posterior predictive p-value. 4, 9, 27, 32, 41

pHMC preconditioned Hamiltonian Monte Carlo. 3, 10, 12, 14, 15645

PMC population Monte Carlo. 12

PP probabilistic programming. 15

PPC posterior predictive check. 8

PPL probabilistic programming language. 15

PPP posterior predictive p-value. 8, 9, 23, 27, 32650

REHMC Replica exchange Hamiltonian Monte Carlo. 9, 12, 13

REMC Replica exchange Monte Carlo. 3, 4, 10, 12, 16, 41

REpHMC Replica exchange preconditioned Hamiltonian Monte Carlo. 3, 4, 10, 12, 13, 17, 18, 19, 21, 32, 40, 41

RWM random walk Metropolis. 3, 12, 14, 33

TFP TensorFlow probability. 4, 15, 16, 41655

TI thermodynamic integration. 3, 4, 9, 10, 11, 12, 13, 16, 21, 41

WAIC widely applicable information criterion. 18, 22, 23, 29, 30, 31, 33, 39, 41
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