

Rapid oxidation of phenolic compounds by O₃ and HO[•]: effects of air-water interface and mineral dust in tropospheric chemical processes

Yanru Huo^{a, b}, Mingxue Li^c, Xueyu Wang^d, Jianfei Sun^e, Yuxin Zhou^a,

Yuhui Ma^a, Maoxia He^{a,*}

^a Environment Research Institute, Shandong University, Qingdao 266237, P. R. China

^b Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

^c Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

^d College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China

^e School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, PR China

*Corresponding author: Prof. Maoxia He

Tel: 86-532-58631972 (o)

Fax: 86-532-5863 1986

E-mail address: hemaox@sdu.edu.cn

23 Abstract

24 Environmental media affect the atmospheric oxidation processes of
25 phenolic compounds (PhCs) released from biomass burning in the
26 troposphere. To address the gaps in experimental research, phenol (Ph), 4-
27 hydroxybenzaldehyde (4-HBA), and vanillin (VL) are chosen as model
28 compounds to investigate their reaction mechanism and kinetics at the air-
29 water (A-W) interface, on TiO_2 mineral aerosols, in the gas phase, and in
30 bulk water using a combination of molecular dynamics simulation and
31 quantum chemical calculations. Of them, Ph was the most reactive one.
32 The occurrence percentages of Ph, 4-HBA, and VL staying at the A-W
33 interface are $\sim 72\%$, $\sim 68\%$, and $\sim 73\%$, respectively. As the size of $(\text{TiO}_2)_n$
34 clusters increases, the adsorption capacity decreases until $n > 4$, and
35 beyond this, the capacity remains stable. A-W interface and TiO_2 clusters
36 facilitate Ph and VL reactions initiated by the O_3 and HO^\bullet , respectively.
37 However, oxidation reactions of 4-HBA are little affected by
38 environmental media because of its electron-withdrawing group. The O_3 -
39 and HO^\bullet -initiated reaction rate constant (k) values follow the order of A-
40 $\text{W}_{\text{Ph}} > \text{TiO}_2 \text{ VL} > \text{A-W}_{\text{VL}} > \text{A-W}_{\text{4-HBA}} > \text{TiO}_2 \text{ 4-HBA} > \text{TiO}_2 \text{ Ph}$ and $\text{TiO}_2 \text{ VL} >$
41 $\text{A-W}_{\text{Ph}} > \text{A-W}_{\text{VL}} > \text{TiO}_2 \text{ 4-HBA} > \text{TiO}_2 \text{ Ph} > \text{A-W}_{\text{4-HBA}}$, respectively. Some
42 byproducts are more harmful than their parent compounds, so should be
43 given special attention. This work provides key evidence for the rapid
44 oxidation observed in the $\text{O}_3/\text{HO}^\bullet + \text{PhCs}$ experiments at the A-W interface.

45 More importantly, differences in oxidation of PhCs by different
46 environmental media due to the impact of substituent groups were also
47 identified.

48 **Keywords:** Air-water interface; Titanium dioxide (TiO₂); Phenolic
49 Compounds; Adsorption mechanisms; Molecular dynamics (MD).

50 **1. Introduction**

51 Biomass burning, stemming from natural wildfires and human activity,
52 significantly contributes to atmospheric particulate matter (PM). Biomass
53 burning is a primary source of approximately 90% of the global primary
54 organic aerosols (POA) and releases a substantial quantity of organic
55 pollutants (Ito and Penner, 2005; Chen et al., 2017; Chen et al., 2023).

56 Biomass burning is to blame for about 62% of total annual emissions of
57 about 8.0 Tg of black carbon and 93% of total annual emission of about
58 33.9 Tg of organic carbon worldwide (Bond et al., 2004). Emissions from
59 biomass combustion are one of the primary sources of atmospheric and
60 particle pollutants that negatively affect human health, air quality, and
61 climate (Reid et al., 2005; Yao et al., 2016). One of the three main types of
62 biopolymers responsible for the formation of biomass is lignin (Sun et al.,
63 2011), also the polymeric organic molecule most abundant in plants (Lou
64 et al., 2010; Soongprasit et al., 2020). Pyrolysis of lignin releases phenolic
65 compounds (PhCs) into the air, including phenols, phenolic aldehydes, and
66 methoxyphenols. By mass, these PhCs make up between 21% and 45% of

67 the aerosol composition (Hawthorne et al., 1989; Diehl et al., 2013; Liao
68 et al., 2020; Soongprasit et al., 2020). Methoxyphenols are one of the
69 potential tracers that can be found in atmospheric wood smoke pollution,
70 with the emission rate ranging from 900 to 4200 mg kg⁻¹ fuel (Hawthorne
71 et al., 1989; Rogge et al., 1998; Simoneit, 2002; Chen et al., 2017).
72 Evidence shows that the oxidation processes of PhCs can result in the
73 formation of secondary organic aerosol (SOA) (Yee et al., 2013; Jiang et
74 al., 2023). Hence, it is imperative to explore the effects of PhCs when
75 exposed to atmospheric oxidants.

76 After being released into the atmosphere, PhCs will be oxidized by
77 ozone (O₃) and hydroxyl radicals (HO[•]). Both are significant contributors
78 to SOA (Arciva et al., 2022). The homogenous oxidation of PhCs has been
79 the emphasis of previous studies (Henry et al., 2008; Yee et al., 2013; Liu
80 et al., 2019; Arciva et al., 2022). Researchers investigated the kinetics and
81 reaction mechanisms of gas-phase interactions of PhCs with O₃ and HO[•] in
82 the past decade (Kroflič et al., 2018; Smith et al., 2016; Sun et al., 2021a;
83 Sun et al., 2021b; Liu et al., 2022). Furthermore, they investigated the
84 hydroxylation, ring opening, and oligomerization processes of PhCs in the
85 atmospheric liquid phase, with a focus on the potential environmental
86 toxicity and climatic effects of these events (Ma et al., 2021; Liu et al.,
87 2022; Arciva et al., 2022; Carena et al., 2023).

88 However, there is a dearth of specific data as well as explanations of

89 the mechanisms involved in the atmospheric oxidation of PhCs at the air-
90 water (A-W) interface. The atmosphere contains a high concentration of
91 aqueous aerosols and water microdroplets (Zhong et al., 2019; Guzman et
92 al., 2022). The oxidation of PhCs can rapidly occur at A-W interface (Rana
93 and Guzman, 2022c). The term "water surface catalysis" denotes the
94 phenomenon where chemical reactions happen at a faster rate at A-W
95 interface compared to the bulk phase (Lee et al., 2015a; Lee et al., 2015b;
96 Yan et al., 2016; Banerjee et al., 2017). In chemical engineering, titanium
97 dioxide (TiO_2) is an essential photoactive component found in atmospheric
98 mineral dust (Sakata et al., 2021; Wang et al., 2023). The interaction
99 between PhCs and TiO_2 is continuous (Grassian, 2009; Rubasinghege et
100 al., 2010; Shang et al., 2021), despite the relatively low prevalence of TiO_2
101 mineral particles (comprising 0.1% to 10% by mass). Therefore, it is
102 essential to investigate the disparity in the oxidation reaction mechanisms
103 and kinetics of PhCs at A-W interface and mineral dust particles.

104 Increasing the number of constituents on the aromatic ring would affect
105 the reactivity and lead to complex compounds after reaction addition
106 and/or open ring pathways. **Phenol (Ph), 4-hydroxybenzaldehyde (4-HBA),**
107 **and vanillin (VL) are typical lignin pyrolysis products (Jiang et al., 2010;**
108 **Kibet et al., 2012)** . Thus, we selected Ph, 4-HBA and VL as model
109 compounds to present comprehensive mechanistic information at A-W
110 interface, on TiO_2 clusters, in the gas phase, and in bulk water, using a

111 combination of molecular dynamics simulation and quantum chemical
112 calculations. Rate constants were calculated throughout a wide temperature
113 range in various EM. Additionally, computational toxicology was
114 employed to evaluate the ecotoxicological impact of PhCs and their
115 transformation products.

116 **2. Methods**

117 **2.1 Molecular dynamics simulation**

118 All of the molecular-dynamics simulations were carried out by utilizing
119 the GROMACS 2019 package, which included the AMBER force field.
120 Parametrization of the Ph, 4-HBA, and VL was accomplished by using the
121 GAFF force field in conjunction with RESP charge calculations performed
122 at the M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) level. The TIP3P
123 water model was utilized so that individual water molecules may be
124 represented (Jämbeck and Lyubartsev, 2014).

125 **2.1.1 Properties of Ph, 4-HBA, and VL at the A-W interface**

126 Considering the significance of the interfacial behavior of Ph, 4-HBA,
127 and VL at the A-W interface, the properties of these three substances were
128 initially examined by focusing on the A-W interface. **Fig. S1 (a)** depicts a
129 rectangular box that has dimensions of $4 \times 4 \times 9 \text{ nm}^3$ and has a Z-axis that
130 is perpendicular to the A-W contact. This box was used for all simulations.
131 A water box that is too small may cause the central PhCs molecules to be
132 too close to the interface region, leading to inaccurate results. Conversely,

133 opting for a water box that is too large can lead to unnecessary waste of
134 computational resources. To begin the process of constructing the initial
135 configurations, a water slab measuring $4 \times 4 \times 4 \text{ nm}^3$ was positioned at the
136 coordinates (2 nm, 2 nm, 4.5 nm) of the center of mass (COM). Because
137 the rest extension along the Z-axis of the box was sufficiently large (2.5
138 nm 3), it was possible to steer clear of the intersection of two A-W interface.

139 Prior to the formal simulation, six Ph molecules were **randomly selected**
140 **position** placed in a vacuum above the water box for 150 nanoseconds of
141 NVT molecular dynamics simulation. **The purpose of simulating 150 ns is**
142 **to capture the fundamental molecular dynamics that occur on this time**
143 **scale, such as bond formation, conformational changes, and interaction**
144 **events.** The results show that there are no significant π - π interactions or
145 formation of hydrogen bonds between the Ph molecules. To simplify the
146 model, this was followed by simulations of individual molecules. Ph, 4-
147 HBA, or VL were each placed in their own compartment at the coordinates
148 (2.0 nm, 2.0 nm, 7.75 nm) for each system in order to simulate the behavior
149 of these molecules in the A-W interface region of cloud/fog drops and
150 aerosol liquid water (ALW). To begin, the three different systems were
151 optimized to use the least amount of energy possible. After that, NVT
152 molecular-dynamics simulations were carried out for a total of 150
153 nanoseconds.

154 **2.1.2 Umbrella sampling simulations**

155 In **Fig. S1 (b)**, the molecule of Ph, 4-HBA, or VL was placed inside the
156 box (their COM is (2.00 nm, 2.00 nm, 6.00 nm)), which is located directly
157 2.00 nm away from the COM of the water slab. The distance between the
158 COM of Ph, 4-HBA, or VL and that of the water slab was used as the
159 definition for the reaction coordinate (**Fig. S1**). The weighted histogram
160 analysis approach, also known as WHAM, can be used to calculate the free
161 energy profiles of Ph, 4-HBA, or VL when they transition from the gas
162 phase into bulk water (Kumar et al., 1992; Hub et al., 2010) ; details about
163 WHAM are in the Supporting Information **Text S1**.

164 **2.1.3 Radial distribution function**

165 Estimating the strength of hydrogen bonds (HB) between specific
166 atoms can be done with the help of a tool known as the radial distribution
167 function (RDF). **Text S2** has an explanation of the peculiarities of the RDF
168 and the coordination number.

169 **2.2 DFT calculations**

170 In this work, all structural optimization and energy calculation were
171 accomplished by utilizing the Gaussian16 program (Frisch et al., 2016).
172 **Calculated** at the CCSD(T)/cc-pVDZ, CBS-QB3, B3LYP/6-311+G(d,p),
173 MP2/6-311+G(d,p) and M06-2X/6-311+G(d,p) levels, Cao et al. (Cao et
174 al., 2021) found that M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) is
175 reliable for PhCs at gas phase. **After analyzing the stability of the**
176 **wavefunction, the method we used is reliable.** Therefore, all calculations

177 for gas-phase reactions are performed at this level. **Text S3** contains a
178 description of the additional calculated details. **The frequency correction**
179 **factor (0.967) has been taken into account.** Multiwfn (Lu and Chen, 2012)
180 was used to construct the electron density map. This program integrates
181 Visual Molecular Dynamics (version 1.9.3) (Humphrey et al., 1996) in
182 order to conduct an analysis of the electrostatic potential (ESP) and the
183 average local ionization energy (ALIE).

184 **2.3 IRI analysis**

185 Interaction Region Indicator (IRI) (Lu and Chen, 2021) was used to
186 determine the chemical bonds and weak interactions of Ph/4-HBA/VL
187 adsorbed to TiO₂ clusters (the details are in **Text S4**).

188 **2.4 Kinetic calculations**

189 **Text S5** contains an explanation of the kinetic calculation methods.

190 **3. Result and discussion**

191 **3.1 Enrichment of Ph, 4-HBA, and VL at the A-W interface**

192 **3.1.1 The uptake of gaseous PhCs at the A-W interface**

193 **Fig. S1** and **Fig. S2** illustrate the relative distributions of water, O₃, and
194 PhCs molecules (Ph, 4-HBA, and VL) in the A-W interface system along
195 the z-axis. HO[·] are primarily situated at the A-W interface contact, with the
196 potential to diffuse through the water slab interior (Roeselová et al., 2004).

197 **Fig. 1(a)** displays the variation in water density along the Z-coordinate
198 distance from 0 to 9 nm, categorizing three zones: A-W interface (2.25 to

2.79 nm and 6.21 to 6.75 nm), air (0 to 2.25 nm and 6.75 to 9 nm), and bulk water (2.79 to 6.21 nm). This method accurately determines the interfacial range (Zhang et al., 2019; Shi et al., 2020). According to location definitions, O₃ percentage distribution was as follows: 26% at the A-W interface; 72% in the air; and 2% in bulk water (**Fig. 1(b)**). **Fig. 1(c)** depicts MD trajectories of Ph diffusion through the water slab from the air region over a 150 ns period. Ph is distributed in the air (8%) and bulk water (20%), with the majority at the A-W interface (72%) (**Fig. 1 (d)**). The majority of 4-HBA and VL molecules are located at the A-W interface, constituting 68% and 73% of the total locations as presented in **Fig. S2**.

In **Fig. 2(a)**, we observe the three key processes involving PhCs (Ph, 4-HBA, or VL) diffusing into the water slab from the air region. (I) The mutual attraction of gaseous Ph, 4-HBA, or VL; (II) The uptake of PhCs (Ph, 4-HBA, or VL) at the A-W interface; (III) The hydration reaction of PhCs (Ph, 4-HBA, or VL) in the bulk water. **Fig. 2(b)** displays the free energy profile of the trajectories as Ph/4-HBA/VL transitions from the air into the bulk water (see **Text 6** for calculations details). The $\Delta G_{\text{gas} \rightarrow \text{interface}}$ values are $-0.22 \text{ kcal mol}^{-1}$ for the Ph-A-W (Phenol-Air-Water) system, $-0.45 \text{ kcal mol}^{-1}$ for the A-W_{4-HBA} (4-hydroxybenzaldehyde at Air-Water) system, and -0.20 mol^{-1} for the A-W_{VL} (Vanillin-Air-Water) system. This finding is consistent with previous studies about Per-and poly-fluoroalkyl substances (PFAS) at A-W interface (Yuan et al., 2023). These values

suggest that it is thermodynamically favorable for PhCs to approach the interfacial water molecules. **Fig. S3** illustrates typical snapshots from the trajectories of PhCs (Ph, 4-HBA, or VL). Initially, one molecule of Ph, 4-HBA, or VL was placed in the center of the water box, with an equivalent COM distance of 2 nm between the PhCs and the air phase. Subsequently, the PhCs moved closer to the interface, leading to adsorption at the A-W interface. During the adsorption process, the H atom of the phenolic hydroxyl group binds to the oxygen atom of the H₂O molecules at the A-W interface, forming H bonds and preventing its return to the bulk water. This property allowed the phenolic hydroxyl groups on PhCs can effectively adhere to the A-W interface, consistent with the experimental observations using steady-state interfacial vibrational spectra (Kusaka et al., 2021) and Fourier transform infrared (FTIR) imaging microscopy (Guzman et al., 2022) . Based on these findings, compared to the number of PhCs molecules distributed in the gas phase and in bulk water, the location where air and water meet exhibits an increased the number of PhCs molecules.

238 3.1.2 *Interface properties of PhCs*

239 Introducing more hydrophilic functional groups increases the
240 characteristic angle α and β of PhCs at the interface, allowing for more
241 secure adsorption at the water-air interface. The interaction between H_{PhCs}
242 and O_{H₂O} is the primary factor influencing the stability of PhCs at the

243 interface. The coordination number (N) of $\text{H}_{\text{Ph-OH}}-\text{O}_{\text{H}_2\text{O}}$, $\text{H}_{\text{4-HBA-OH}}-\text{O}_{\text{H}_2\text{O}}$,
244 and $\text{H}_{\text{VL-OH}}-\text{O}_{\text{H}_2\text{O}}$ are 2.68, 2.51, and 2.09 respectively. The number of
245 functional groups attached to the benzene ring affects the N value; more
246 functional groups lead to a lower N value. The reason is that aldehyde and
247 methoxy are strong electron-withdrawing groups, which will reduce the
248 conjugation effect between the benzene ring and the hydroxyl group,
249 making the hydrogen atom on the hydroxyl group partially positively
250 charged, thus weakening the hydrogen bonding ability with water
251 molecules. See **Text S7** for interface properties of PhCs.

252 **3.2 Adsorption of Ph, 4-HBA, and VL by TiO_2 Clusters**

253 The placement of PhCs on TiO_2 clusters significantly impacts
254 adsorption energies (Bai et al., 2020). The adsorption capacity of pollutants
255 on cluster surfaces is a key factor influencing degradation efficiency (Qu
256 and Kroes, 2006). The primary mechanism of C atoms adsorption to
257 $(\text{TiO}_2)_n$ ($n = 1-4$) clusters occurs at a range of 2.57 to 2.61 Å and involves
258 interaction between the H-OH atom and the O_{TiO_2} atom, as seen in **Fig. 3(a)**.
259 Hydrogen bonds can be formed between the H-OH atom and the O_{TiO_2} atom
260 (1.80–2.61 Å), improving the adsorption capacity. In contrast, Ph
261 adsorption to $(\text{TiO}_2)_n$ ($n = 5-6$) clusters, ranging from 2.08 to 2.09 Å, is
262 primarily due to interaction between Ti atom and O-OH atom. For a detailed
263 description see **Text S8**.

264 Adsorption energy a metric of adsorption capacity, is illustrated in **Fig.**
265 **3(b)–(d)** for Ph, 4-HBA, and VL on $(\text{TiO}_2)_n$ ($n = 1\text{--}6$). TiO_2 exhibits the
266 highest adsorption capacity for Ph. ($\Delta G_{\text{ad}} = -72.35 \text{ kcal mol}^{-1}$) (**Fig. 3(b)**).
267 The adsorption energy values of TiO_2 and $(\text{TiO}_2)_3$ for 4-HBA and VL are
268 -45.32 (**Fig. 3(c)**) and $-102.46 \text{ kcal mol}^{-1}$ (**Fig. 3(d)**), respectively.
269 **Physisorption** energy range from -1.20 to $9.56 \text{ kcal mol}^{-1}$ (Nollet et al.,
270 2003), thus this adsorption process in this study is spontaneous chemical
271 adsorption. However, the capacity of TiO_2 to adsorb VL is significantly
272 higher than that to adsorb Ph and 4-HBA. **Fig. 3(b)–(d)** show that the
273 adsorption capacity falls as the size of TiO_2 clusters increases when $n \leq 4$.
274 In contrast, the adsorption capacity remains constant when $n > 4$. IRI
275 measurements of Ph on the $(\text{TiO}_2)_n$ surface (**Fig. 3(e)**) reveal Ph- TiO_2
276 hydrogen bonds ($\text{H}_{\text{Ph}}-\text{O}_{\text{TiO}_2}$ bonds) and their electrostatic and dispersion
277 effects. Benzene C atom of Ph exhibits sp^2 hybridization, meaning it forms
278 one σ -bond and one π -bond. The sp^2 hybridization of benzene for Ph
279 explains its limited interaction with TiO_2 clusters and accounts for the
280 substantial adsorption energy. Similar interactions occur with 4-HBA and
281 VL (**Fig. S7**). Hydrogen bonds form between the $\text{H}_{\text{-CHO}}$ atom of 4-HBA or
282 VL and the O_{TiO_2} atom, despite the presence of the H_{Ph} atom.

283 **3.3 Continuous oxidation mechanisms**

284 **3.3.1 O_3 - and HO^\bullet -initiated reactions**

285 PhCs, once released into the atmosphere, undergo several processes,
286 including adsorption on mineral aerosol surfaces, accumulation at the A-
287 W interface, dispersion in bulk water within liquid droplets, and oxidation
288 reactions initiated by atmospheric oxidants (Lin et al., 2017) . **Reactions**
289 **inside the aqueous particle have also been a hot topic of interest in recent**
290 **years (Tilgner et al., 2021; Mabato et al., 2023; Zhang et al., 2024; Rana et**
291 **al., 2024) , so we also focused on the process by which phenolic**
292 **compounds enter the interior of the droplet.** This section delves into the
293 detailed mechanisms and characteristics of these reactions. At the M06-
294 2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) level, the structures with the
295 minimum free energy for the Ph/4-HBA/VL has been determined (**Fig.**
296 **S10**). In the case of VL, a significant reduction in molecular energy is
297 observed due to the formation of a powerful intramolecular hydrogen bond
298 with a length of 2.09 Å between the H and O atoms near the methyl group.
299 Moreover, the lone pair electrons of oxygen atoms can form additionally
300 p- π conjugations with the π electrons of the phenyl ring, further reducing
301 the overall energy of VL in gas phase. The statistical charts of calculated
302 $\Delta_r G$ and ΔG^\ddagger values for O_3^- - and HO^\cdot -initiated reactions are displayed in
303 **Fig. 4 and S8** and detailed data are available in **Tables 1–4**.

304 O_3 is a major oxidant in the atmosphere, with high concentrations in
305 the troposphere **of** 9.85×10^{11} molecules cm^{-3} (Tomas et al., 2003; Pillar-
306 Little et al., 2014). Investigating the fate of PhCs in the presence of O_3 is

307 essential (Pillar-Little et al., 2014; Rana and Guzman, 2020) . The
308 ozonolysis of PhCs involves the synthesis of primary ozonide, the
309 formation of active Criegee intermediate (CI), and the disintegration of CI
310 (Rynjah et al., 2024) . The O₃-initiated reactions of Ph/4-HBA/VL involve
311 radical adduct formation (RAF) channels on their benzene ring (R_{O₃-RAF}1–
312 6), highlighted in red in **Fig. S10**. **Fig. 4(a)–(d)** depict that the ozonolysis
313 pathways R_{O₃-RAF} are exergonic, indicating their spontaneity. The average
314 ΔG^\ddagger values for the ozonolysis of Ph/4-HBA/VL are ranked as Ph > VL >
315 4-HBA. The following is a list of the average values for the ozonolysis of
316 Ph/4-HBA/VL, as illustrated in **Fig. 4(e)–5(h)**, Ph is superior to VL and 4-
317 HBA, with the exception on TiO₂ clusters. **Fig. 4(e)** illustrates that the
318 average value of ΔG^\ddagger for O₃ + Ph reactions at the A-W interface is 15.38
319 kcal mol⁻¹, the lowest value out of the three PhCs. The average ΔG^\ddagger values
320 for the ozonolysis of Ph/4-HBA/VL are as follows: VL (13.95 kcal mol⁻¹)
321 < Ph (24.70 kcal mol⁻¹) < 4-HBA (25.16 kcal mol⁻¹) on TiO₂ clusters (**Fig.**
322 **4(f)**). The average ΔG^\ddagger values for O₃ + VL reactions in gas phase are the
323 highest among the four different EM (23.28 kcal mol⁻¹) shown in **Fig.**
324 **4(g)**). Comparing the phenolic oxidation in each of these four EM (bulk
325 water, interface, TiO₂ clusters, and gas phase) reveals that A-W interface
326 are more conducive to the ozonolysis of Ph, whereas TiO₂ clusters are more
327 conducive to the ozonolysis of VL. The effect of solvation on ΔG^\ddagger is
328 predominantly caused by the hydration of the phenolic OH group, as this

329 is the part of the molecule being solvated. However, the presence of water
330 molecules in the region around the phenyl group has been shown to have a
331 considerable influence on the ΔG^\ddagger values.

332 HO[•], known as "atmospheric detergents", is another significant
333 atmospheric oxidant (Atkinson, 1986; Zhang et al., 2020). The worldwide
334 mean tropospheric concentration of HO[•] is roughly 11.3×10^5 molecules
335 cm⁻³ (Lelieveld et al., 2016). For this reason, elucidating the reaction
336 mechanism underlying HO[•] + PhCs reactions in the troposphere is of the
337 utmost importance. HO[•]-initiated reaction pathways of Ph/4-HBA/VL
338 include RAF, hydrogen atom abstraction (HAA) channels from the
339 benzene ring (R_{HAAben1–6}) and the substituent group (R_{HAAsub7–9}).
340 Previous research (Gao et al., 2019) has shown that the process of single
341 electron transfer (SET) does not significantly contribute to the HO[•]-
342 initiated reactions examined. Once the hydroxyl adducts or H₂O are formed,
343 significant heats (4.21–30.28 kcal mol⁻¹) are released (**Fig. 4(i)–(l), S8**
344 **(a)–(d) and (i)–(l)**; the detail data in **Table S3**), indicating high
345 thermodynamic feasibility. The average ΔG^\ddagger values for HO[•]-initiated
346 reactions (**Fig. 4(m)–(p), S8 (e)–(h)** and **(m)–(p)**) are lower than those for
347 O₃-initiated reactions. Routs R_{HAAben} make a minimal contribution to HO[•]-
348 initiated reactions. At the A-W interface, VL (3.52 kcal mol⁻¹) < Ph (4.52
349 kcal mol⁻¹) < 4-HBA (9.50 kcal mol⁻¹), and the ΔG^\ddagger value of Ph is the
350 lowest (-0.97 kcal mol⁻¹), the case for pathways R_{RAF-HO[•]} (**Fig.4(m)**).

351 Among the three aromatic compounds, the R_{RAF-HO^\bullet} routes of VL on TiO_2
352 clusters **are most likely to take place (Fig. 4(n))**. When compared to HO^\bullet -
353 initiated reactions of aromatic compounds in the gas phase (Fig. S9(e)) or
354 bulk water (Fig. S9(f)), the process of $Ph + HO^\bullet$ reactions at the A-W
355 interface is accelerated, whereas the process of $VL + HO^\bullet$ reactions is
356 accelerated by TiO_2 clusters. These findings are in agreement with the
357 ozonolysis findings. The same guidelines can be used to routes R_{HAAsub}
358 (Fig. 4(o), (p), S8 (g) and (h)) and R_{HAAben} (Fig. S8(m)–(p)). The
359 following is a ranking of the average ΔG^\ddagger values for routes R_{RAF-HO^\bullet} in the
360 gas phase or bulk water: $Ph < 4\text{-HBA} < VL$. As a result of having the lowest
361 ΔG^\ddagger values among all HO^\bullet -initiated reaction mechanisms, routes R_{RAF} are
362 the most advantageous of all the possible reaction mechanisms. In light of
363 this, each and every route R_{RAF-HO^\bullet} and R_{HAAsub} will be dissected in detail.

364 **Fig. 5** shows the $\Delta_r G$ and ΔG^\ddagger values of O_3 - and HO^\bullet -initiated reactions
365 at various reaction locations. These reactions are almost entirely
366 exothermic, with a close correlation between $\Delta_r G$ values and ΔG^\ddagger values.
367 The ΔG^\ddagger values for the $Phe + O_3$ reactions shown in **Fig. 5(a)** are the lowest
368 among the three compounds, ranging from -0.97 to 7.86 $kcal\ mol^{-1}$.
369 Exergonic and spontaneous addition reactions took place at the C1–C2 and
370 C3–C4 locations of Ph and VL, respectively. Because of their low ΔG^\ddagger
371 values, the C1–C2 and C2–C3 sites of O_3 -initiated reactions for 4-HBA are
372 advantageous. Their values are 21.76 and 22.03 $kcal\ mol^{-1}$, respectively.

373 The C1–C2 location of 4-HBA is activated to a greater extent at the A-W
374 interface in comparison to the gas phase and bulk water. However, the ΔG^\ddagger
375 values of $O_3 + Ph$ reactions on TiO_2 clusters are significantly greater than
376 those of the A-W interface (12.86–18.10 kcal mol⁻¹) than 24.30–25.34
377 kcal mol⁻¹. The VL + O_3 reactions on TiO_2 clusters are favorable at the
378 C2–C3 and C4–C5 locations (the ΔG^\ddagger values are 11.42 and 11.14 kcal mol
379 ⁻¹, respectively, **Fig. 5(b)**). This can be explained by the fact that the
380 electron cloud has a greater propensity to congregate in the places C2–C3
381 and C4–C5, respectively. In addition, the p orbitals of the methoxy and
382 hydroxy groups are conjugated to the benzene ring, which offers a
383 powerful electron-donating conjugation effect (Aracri et al., 2013).
384 Because of this, the oxidation of aromatic molecules is thermodynamically
385 more favorable than the oxidation of the aldehyde group. This is consistent
386 with previous studies that electron density influences the oxidative activity
387 of PhCs (Rana and Guzman, 2022a). Clearly, the ΔG^\ddagger values of HO^\cdot -
388 initiated reactions (−0.97~13.46 kcal mol⁻¹) in **Fig. 5(c)–(f)** are lower than
389 those of O_3 -initiated processes (11.14~27.83 kcal mol⁻¹) at different points
390 in A-W interface and TiO_2 clusters. This can be seen by comparing the
391 values to each other. At the A-W interface, the most advantageous position
392 for the phenol hydroxyl group to be in for $Ph/4\text{-HBA}/VL + HO^\cdot$ reactions
393 are the ortho position (**Fig. 5(c)**). OESI-MS, which stands for online
394 electrospray ionization mass spectrometry, was also able to identify the

395 hydroxylation product known as 3,4-dihydroxybenzaldehyde (Rana and
396 Guzman, 2020). In **Fig. 5(d)**, the ortho- and meta-sites of phenol hydroxyl
397 are, respectively, the most favorable positions for Ph/4-HBA + HO[·]
398 reactions on the TiO₂ clusters. On the other hand, all of the VL sites on the
399 TiO₂ clusters are advantageous. At the A-W interface and on the TiO₂
400 clusters, the abstraction of hydrogen atoms follows the order of H-CHO atom >
401 H-OCH₃ atom > H-OH atom in **Fig. 5(e) and (f)**. This can also be explained
402 by the ALIE values of these atoms listed in the same order of H-CHO atom
403 (11.67–11.74 eV) > H-OCH₃ atom (14.06 eV) > H-OH atom (15.46 eV), as
404 shown in **Fig. S8**.

405 **3.3.2 Generation and degradation of key products**

406 For the purposes of this discussion, the primary atmospheric fate of the
407 selected aromatics was considered to be their reactions with O₂ (typically
408 mediated by reactive intermediates or catalytic processes) and O₃. **Fig. 6**
409 and **S10** illustrate the subsequent reaction mechanisms of IMs, respectively.
410 IM₁₋₂ was produced using the pathway that offered the best conditions for
411 the HO[·]-initiated reaction of Ph. As can be seen in **Fig. 6(a)**, the addition
412 of O₂ to the C3 sites of the C₆H₅O radicals results in the formation of
413 C₆H₅O-OO radicals with no barriers in either the gas phase or the bulk
414 water. This is a desirable outcome. For the transformation of the C₆H₅O₂-
415 OO radicals that were created, the ring closure reaction to form C₆H₅O₂-
416 OO-d is attractive option. However, it must overcome an energy barrier of

18.83 kcal mol ⁻¹ in the gas phase or 13.67 kcal mol ⁻¹ in bulk water. The C₆H₅O₂-OO-d₁ radical, which was produced by the C₆H₅O₂-OO-d reaction, interacts once more with O₂. In the atmosphere, these Criegee intermediates also may undergo bimolecular reactions with NO_x (Sun et al., 2020). Malealdehyde (P1) is what should mostly result from the reaction of the C₆H₅O₂-OO-d₁ radical with NO. However, during this process, it still needs to overcome an energy barrier of 49.5 (in the gas phase) or 50.83 kcal mol ⁻¹ (in the bulk water) to generate C₆H₅O₂-OO-d₃ radical; as a result, the further transformation of the formed C₆H₅O₂-OO-d₂ should continue very slowly. Pyrocatechol (P2) is the primary product generated in the gas phase and bulk water when the H atom of the C₆H₅O₂-OO radical is displaced. P2 generates o-semiquinone radicals via pathways R_{HAA} by HO[•] or O₃, which in turn generate oligomers (Guzman et al., 2022). This results in the formation of brown organic carbon in atmospheric aerosols. At the A-W interface, a sequence of hydroxylation products, including pyrocatechol (P2), benzene-1,2,3-triol (P3), and benzene-1,2,3,4,5-pentaol (P4), are generated through hydroxylation processes rather than by a single SET ($\Delta G^\ddagger = 111.79$ kcal mol ⁻¹). It is difficult for P4 to form benzene-1,2,3,4,5,6-hexaol because hydrogen transfer reactions are difficult to occur ($\Delta G^\ddagger = 34.32$ kcal mol ⁻¹). These hydroxylation products have been detected by experimental means (Pillar-Little et al., 2014; Pillar-Little and Guzman, 2017; Rana and Guzman, 2020). The HO[•]

439 abstracts a hydrogen atom from the hydroxyl group of catechol, forming
440 C₆H₅O₂ radical and a water molecule. Due to the widespread presence of
441 NO₂ in the environment, it adds to the C₆H₅O₂ radical at the ortho position
442 of the extracted hydrogen atom through an addition reaction. Subsequently,
443 a hydrogen transfer reaction occurs, resulting in the formation of 4-
444 nitrobenzene-1,2-diol (P_{2-a}). This computational result validates the
445 previous experimental hypothesis by Finewax et al (Finewax et al., 2018).
446 The P_{2-a} subsequently transform into benzoquinone, maleic acid, fumaric
447 acid, acetic anhydride, acetic acid, and formic acid, or are directly
448 mineralized into carbon dioxide and water (Chen et al., 2015). In order to
449 gain a more comprehensive understanding of the reaction mechanism at
450 the A-W interface, the major product (the C₇H₅O₂ radical) for pathways
451 R_{HAA} of 4-HBA was also taken into consideration. According to **Fig. S11**
452 **(a)**, the addition of HO[•] to the C7 sites of the C₇H₅O₂ radical can occur
453 without any obstructions. The overpowering of the 18 kcal mol⁻¹ barrier
454 resulted in the formation of the hydroxylation products (4-hydroxybenzoic
455 acid (P5), 3,4-dihydroxybenzoic acid (P6), 2,3,4-trihydroxybenzoic acid
456 (P7), and 2,3,4,5,6-pentahydroxybenzoic acid (P8)). There was found to be
457 one transition route for the continued ozonolysis of the hydroxylation
458 products that were produced in P6. The C2-C3 site of P6 to create P6-5O₃
459 ($\Delta G^\ddagger = 16.59$ kcal mol⁻¹) has the lowest activation energy of all the
460 available paths for the relevant reactions (**Fig. S11(b)**). This corresponds

461 to a value of 16.59 kcal mol ⁻¹. When the ΔG^\ddagger values of the breakage of
462 five-membered rings created by ozonolysis pathways are compared, one
463 can get the conclusion that the formation of IM_{P6-5O_3-a} is the most favored
464 pathway. All of the hydrogen abstraction processes involving H_2O and
465 IM_{P6-5O_3-a} have rather high energy barriers (32.93 kcal mol ⁻¹). On the
466 other hand, in **Fig. S10(a)**, the very low ΔG^\ddagger values (19.74 ~ 22.89 kcal
467 mol ⁻¹) of the -NO-O abstraction make it a desirable choice. Following a
468 chain of ozonolysis reactions, the following products were obtained
469 (**Fig. S11(c)**) : ((2E,4Z)-2-formyl-4,5-dihydroxy-6-oxohexa-2,4-dienoic
470 acid (P9); 2,3-dihydroxymalealdehyde (P10); and 2,3-dioxopropanoic acid
471 (P11). Therefore, the product that was created, P10, may also be the
472 product that was discovered through experimentation (mass to charge
473 ratios (m/z) = 115) (Rana and Guzman, 2020). The VL subsequent reaction
474 mechanism is demonstrated in **Fig. S11(d)**. The final oxidation products of
475 VL are P12 ((2E,4E)-4-formyl-2-methoxy-6-oxohexa-2,4-dienoic acid),
476 P13 (ethene-1,1,2-tricarbaldehyde), P14 (2-methoxy-2-oxoacetic acid),
477 P15 (oxalaldehyde) and P16 ((E)-2-methoxy-4,5-dioxopent-2-enoic acid).
478 The formation of these products could explain the biomass burning
479 material for the formation of SOA (Rana and Guzman, 2022b).

480 **3.4 Comparison with available experimental results**

481 The rate constants (k) of the overall reaction under the temperature
482 range of 278–318 K were computed based on acquired potential energy

surfaces for the O_3 -initiated and HO^\cdot -initiated reactions of selected compounds. The results of these calculations are listed in **Table S5** and **S6**, respectively. The temperature dependences of the various k values for Ph, 4-HBA, and VL at the A-W interface and in bulk water are depicted in **Fig. 7**. At low values of k , there is a positive dependence on temperature. When the k values are raised to a certain degree, the temperature dependency seems to lose any significance it may have had before. The following is an order of the k values for O_3 -initiated reactions: $A-W_{Ph} > TiO_2_{VL} > A-W_{VL} > A-W_{4-HBA} > TiO_2_{4-HBA} > TiO_2_{Ph}$ (**Fig. 7(a)**). According to **Fig. 7(b)**, the k values of HO^\cdot -initiated reactions go as follows: $TiO_2_{VL} > A-W_{Ph} > A-W_{VL} > TiO_2_{4-HBA} > TiO_2_{Ph} > A-W_{4-HBA}$. In **Fig. 7(a)** and **Fig. 7(b)**, the k values of HO^\cdot -initiated reactions are one hundred times greater than those of O_3 -initiated reactions. **Table 1** is a listing of the experimental and estimated k values that are available for O_3 -initiated and HO^\cdot -initiated reactions at 298 K. According to the findings, the ozonolysis of Ph was promoted by the water-gas interface as well as by TiO_2 clusters, and the HO^\cdot initiated reactions of VL were promoted by TiO_2 clusters. However, the $O_3/HO^\cdot + 4-HBA$ reactions have the lowest k values among the three molecules when tested in a variety of environmental environments. The estimated k_{O_3+Ph} values at the A-W interface are 11 orders of magnitude greater than those of catechol under dry conditions in gas phase (Zein et al., 2015), when compared with the experimental data. Because it has a higher k_{O_3} value,

catechol, which is one of the main products of Ph's oxidation in the atmosphere, has a higher degree of reactivity than its parent compound (**Table 1**). The estimated value of VL is lower than the experimentally determined value of k_{O_3} for guaiacol under dry conditions, which is $(0.40 \pm 0.31) \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ in the gas phase (Zein et al., 2015). The difference between the predicted value of $k_{HO^\bullet+VL}$ is $1.14 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and the average experimental value of k_{HO^\bullet} for methoxyphenols is just an order of magnitude. As a consequence, the findings of our calculations are reliable. Previous studies measured the second order rate constants of guaiacylacetone + HO^\bullet reaction to be $(14-25) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ at pH 5 and 6 at aqueous secondary organic aerosol, which is lower than our results (Arciva et al., 2022). This is because galactose reduces the steady-state concentration of HO^\bullet . The reaction rate constants of PhCs increase with increasing pH and we calculated the rate constants at pH 7 in bulk water (Ma et al., 2021). This study summarizes the O_3 - and HO^\bullet -initiated reaction sequences of three PhCs in different environmental media. The reaction sequences for O_3 - and HO^\bullet -initiated reactions of Ph and 4-HBA are identical in different environmental media, while VL shows slight variations. For O_3 -initiated reactions, the reaction sequences are as follows: Ph: A-W interface > Bulk water > Gas phase > TiO_2 clusters; 4-HBA: Bulk water > A-W interface > TiO_2 clusters > Gas phase; VL: Bulk water > TiO_2 clusters > A-W interface > Gas phase. For HO^\bullet -initiated

527 reactions, the sequences are: Ph: A-W interface \approx Bulk water > Gas phase >
528 TiO₂ clusters; 4-HBA: Bulk water > A-W interface > TiO₂ clusters > Gas
529 phase; VL: TiO₂ clusters > Bulk water > A-W interface > Gas phase.
530 According to the atmospheric concentration of O₃, the atmospheric lifetime
531 of Ph is the shortest (< 1s) of the three PhCs at the gas-water interface or
532 bulk water, whereas 4-HBA and VL were oxidized more slowly than Ph
533 (Smith et al., 2016). See **Fig. S12** and **Text S9** for ecotoxicity assessment.

534 **4. Conclusions**

535 Combining molecular dynamic simulations (with the AMBER force
536 field) and quantum chemical calculations (at the M06-2X/6-
537 311++G(3df,2p)//M06-2X/6-31+G(d,p) level) methods has provided
538 comprehensive insights into the surface properties of Ph, 4-HBA, and VL,
539 as well as their reactions induced by O₃ and HO[•], both in homogeneous and
540 heterogeneous environments. Here are some key findings from this
541 research:

542 (1) Free energy well of Ph, 4-HBA, and VL favor the A-W interface as
543 their preferred location, with the occurrence percentages of approximately
544 ~72%, ~68%, and ~73% respectively. Ph and 4-HBA show a preference for
545 the A-W interface over the air, with energy difference of around 0.22 and
546 0.45 kcal mol⁻¹. The VL adsorbed on the TiO₂ clusters has a higher
547 likelihood of remaining compared to VL adsorbed at the A-W interface. (2)
548 The adsorption capacity of TiO₂ clusters decreases with increasing cluster

size until $n > 4$. After that point, the adsorption capacity remains constant.

Strong electrostatic attractive interactions and attractive dispersion effects occur between the benzene of the Ph and Ti atoms. Hydrogen bonds form between the atom of O_{TiO_2} and the H-CHO group of 4-HBA or VL. (3) The O_3 - and HO^\bullet -initiated reactions for Ph and VL are facilitated by the A-W interface and TiO_2 clusters, respectively, For O_3 -initiated reactions at the A-W interface, the C1-C2 position on the benzene ring is most favorable.

In both the A-W interface and on TiO_2 clusters, the total branching ratio for routes R_{RAF} and R_{HAASub} is 72.68% ~ 100%. For route R_{HAASub} , the order is H-CHO atom > H- OCH_3 atom > H-OH atom. (4) The k values (in $molecules \cdot cm^{-3} s^{-1}$, at 298K and 1 atm) of O_3 -initiated reactions follow the order of $A-W_{Ph}$ (5.98×10^{-7}) > TiO_2 VL (3.30×10^{-15}) > A-W_{VL} (1.27×10^{-17}) > A-W_{4-HBA} (6.79×10^{-23}) > TiO_2 4-HBA (5.32×10^{-24}) > TiO_2 Ph (1.84×10^{-24}). The k values of HO^\bullet -initiated reactions follow the order of TiO_2 VL (6.70×10^{-6}) > A-W_{Ph} (2.69×10^{-6}) > A-W_{VL} (1.73×10^{-7}) > TiO_2 4-HBA (3.16×10^{-9}) > TiO_2 Ph (3.17×10^{-10}) > A-W_{4-HBA} (9.49×10^{-11}). (5) Toxicity risk assessment on aquatic species reveal that most of the reaction products are significantly less harmful than the parent compounds. However, products P1, P2, P3, P10, and P11 are more hazardous, and further investigation of their atmospheric fate is recommended.

Ph undergoes transformation to malealdehyde and catechol when exposed to O_3 or HO^\bullet in the troposphere (Xu and Wang, 2013). When

571 Ph/VL is at the droplet aerosol interface, rapid oxidation to
572 polyhydroxylated compounds occurs (Ma et al., 2021). VL eventually
573 creates tiny molecule aldehydes and acids. This is consistent with
574 experimental observations (Rana and Guzman, 2020). This oxidation
575 process is accelerated when VL is encased in a mineral aerosol represented
576 by TiO₂ clusters. Li et al. found that seasonal average concentrations of
577 total nitrophenol compounds in particulate matter were comparable to
578 those measured in the gas phase (Li et al., 2022) . However, the reactivity
579 order of nitrophenols in the atmospheric compartments is water droplets >
580 gas phase > particles (Vione et al., 2009). The formation of some low
581 molecular weight acids and aldehydes (2,3-dihydroxymalealdehyde, 2,3-
582 dioxpropanoic acid, etc.) confirms their association with the formation of
583 SOA. It is recommended that enterprises producing lignin, such as those in
584 the pulp and paper industry, or factories that employ lignin in the
585 manufacturing of adhesives, rust inhibitors, color dispersants, diluents, or
586 other similar products, be constructed in regions with low relative humidity.
587 It is recommended that treatment facilities that collect lignin pyrolysis
588 products and recycle the byproducts be located in the surrounding area.

589 **Author contributions**

590 Yanru Huo contributed to the manuscript conceptualization, methodology,
591 software, formal analysis, investigation, and writing of the original
592 manuscript. Mingxue Li provided insight into the writing ideas throughout

593 the article. Xueyu Wang offered some guidance on the method section of
594 the manuscript. Jianfei Sun, Yuxin Zhou, and Ma Yuhui reviewed the
595 original manuscript. Maoxia He: Conceptualization, Resources, Writing –
596 review & editing, Supervision, Funding acquisition.

597 **Competing interests**

598 The contact author has declared that none of the authors has any competing
599 interests.

600 **Acknowledgements**

601 This work was financially supported by the National Natural Science
602 Foundation of China (NSFC No. 22276109, 21777087, and 21876099).

603 **Reference**

604 Aracri, E., Tzanov, T., and Vidal, T.: Use of Cyclic Voltammetry as an
605 Effective Tool for Selecting Efficient Enhancers for Oxidative
606 Bioprocesses: Importance of pH, Ind Eng Chem Res, 52, 1455-1463,
607 <https://doi.org/10.1021/ie3027586>, 2013.

608 Arciva, S., Niedek, C., Mavis, C., Yoon, M., Sanchez, M. E., Zhang, Q.,
609 and Anastasio, C.: Aqueous ·OH Oxidation of Highly Substituted
610 Phenols as a Source of Secondary Organic Aerosol, Environ. Sci.
611 Technol., 56, 9959-9967, <https://doi.org/10.1021/acs.est.2c02225>,
612 2022.

613 Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the
614 hydroxyl radical with organic compounds under atmospheric

615 conditions, Chem. Rev, 86, 69-201,
616 <https://doi.org/10.1021/cr00071a004>, 1986.

617 Bai, F.-Y., Ni, S., Ren, Y., Tang, Y.-Z., Zhao, Z., and Pan, X.-M.: DFT
618 analysis on the removal of dimethylbenzoquinones in atmosphere and
619 water environments: ·OH-initiated oxidation and captured by (TiO₂)_n
620 clusters (n=1–6), J Haz Mat, 386, 121636,
621 <https://doi.org/10.1016/j.jhazmat.2019.121636>, 2020.

622 Banerjee, S., Gnanamani, E., Yan, X., and Zare, R. N.: Can all bulk-phase
623 reactions be accelerated in microdroplets?, Analyst, 142, 1399-1402,
624 <https://doi.org/10.1039/C6AN02225A>, 2017.

625 Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
626 Klimont, Z.: A technology-based global inventory of black and organic
627 carbon emissions from combustion, J Geophys Res-Atoms, 109,
628 <https://doi.org/10.1029/2003JD003697>, 2004.

629 Cao, H., Wang, K., Yang, Z., Wu, S., and Han, D.: Quantum chemical study
630 on the ozonolysis mechanism of guaiacol and the structure-reactivity
631 relationship of phenols with hydroxyl, methoxy, and methyl
632 substituents, Chem. Eng. J., 420, 127629,
633 <https://doi.org/10.1016/j.cej.2020.127629>, 2021.

634 Carena, L., Zoppi, B., Sordello, F., Fabbri, D., Minella, M., and Minero, C.:
635 Phototransformation of Vanillin in Artificial Snow by Direct Photolysis
636 and Mediated by Nitrite, Environ. Sci. Technol.,

637 <https://doi.org/10.1021/acs.est.3c01931>, 2023.

638 Chen, C., Chen, H., Yu, J., Han, C., Yan, G., and Guo, S.: p-Nitrophenol
639 Removal by Bauxite Ore Assisted Ozonation and its Catalytic Potential,
640 CLEAN – Soil, Air, Water, 43, 1010-1017,
641 <https://doi.org/10.1002/ clen.201400330>, 2015.

642 Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S.,
643 Hao, J., Zhang, H., and He, C.: A review of biomass burning: Emissions
644 and impacts on air quality, health and climate in China, Sci Total
645 Environ, <https://doi.org/10.1016/j.scitotenv.2016.11.025>, 2017.

646 Chen, P., Li, Y., Zhang, Y., Xue, C., Hopke, P. K., and Li, X.: Dynamic
647 Changes of Composition of Particulate Matter Emissions during
648 Residential Biomass Combustion, Environ. Sci. Technol., 57, 15193-
649 15202, <https://doi.org/10.1021/acs.est.3c05412>, 2023.

650 Diehl, B. G., Brown, N. R., Frantz, C. W., Lumadue, M. R., and Cannon,
651 F.: Effects of pyrolysis temperature on the chemical composition of
652 refined softwood and hardwood lignins, Carbon, 60, 531-537,
653 <https://doi.org/10.1016/j.carbon.2013.04.087>, 2013.

654 Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and
655 Quantification of 4-Nitrocatechol Formed from OH and NO₃ Radical-
656 Initiated Reactions of Catechol in Air in the Presence of NO_x:
657 Implications for Secondary Organic Aerosol Formation from Biomass
658 Burning, Environ. Sci. Technol., 52, 1981-1989,

659 <https://doi.org/10.1021/acs.est.7b05864>, 2018.

660 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,
661 Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji,
662 H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G.,
663 Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A.
664 F., Sonnenberg, J. L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings,
665 J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski,
666 V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M.,
667 Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda,
668 Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.
669 A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E.
670 N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R.,
671 Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar,
672 S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C.,
673 Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O.,
674 Foresman, J. B., and Fox, D. J.: Gaussian 16 Rev. C.01 [code], 2016.

675 Gao, Y., Li, G., Qin, Y., Ji, Y., Mai, B., and An, T.: New theoretical insight
676 into indirect photochemical transformation of fragrance nitro-musks:
677 Mechanisms, eco-toxicity and health effects, Environ Int, 129, 68-75,
678 <https://doi.org/10.1016/j.envint.2019.05.020>, 2019.

679 Grassian, V. H.: New Directions: Nanodust – A source of metals in the
680 atmospheric environment?, Atmos Environ, 43, 4666-4667,

681 <https://doi.org/10.1016/j.atmosenv.2009.06.032>, 2009.

682 Guzman, M. I., Pillar-Little, E. A., and Eugene, A. J.: Interfacial Oxidative
683 Oligomerization of Catechol, ACS Omega, 7, 36009-36016,
684 <https://doi.org/10.1021/acsomega.2c05290>, 2022.

685 Hawthorne, S. B., Krieger, M. S., Miller, D. J., and Mathiason, M. B.:
686 Collection and quantitation of methoxylated phenol tracers for
687 atmospheric pollution from residential wood stoves, Environ. Sci.
688 Technol., 23, 470-475, <https://doi.org/10.1021/es00181a013>, 1989.

689 Henry, F., Coeur-Tourneur, C., Ledoux, F., Tomas, A., and Menu, D.:
690 Secondary organic aerosol formation from the gas phase reaction of
691 hydroxyl radicals with m-, o- and p-cresol, Atmos Environ, 42, 3035-
692 3045, <https://doi.org/10.1016/j.atmosenv.2007.12.043>, 2008.

693 Hub, J. S., de Groot, B. L., and van der Spoel, D.: g_wham—A Free
694 Weighted Histogram Analysis Implementation Including Robust Error
695 and Autocorrelation Estimates, J. Chem. Theory Comput., 6, 3713-
696 3720, <https://doi.org/10.1021/ct100494z>, 2010.

697 Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular
698 dynamics, J Mol Graph Model, 14, 33-38,
699 [https://doi.org/10.1016/0263-7855\(96\)00018-5](https://doi.org/10.1016/0263-7855(96)00018-5), 1996.

700 Ito, A. and Penner, J. E.: Historical emissions of carbonaceous aerosols
701 from biomass and fossil fuel burning for the period 1870–2000, Global
702 Biogeochem Cy, 19, <https://doi.org/10.1029/2004GB002374>, 2005.

703 Jämbeck, J. P. and Lyubartsev, A. P.: Update to the general amber force
704 field for small solutes with an emphasis on free energies of hydration,
705 J Phys Chem B, 118, 3793-3804, <https://doi.org/10.1021/jp4111234>,
706 2014.

707 Jiang, G., Nowakowski, D. J., and Bridgwater, A. V.: Effect of the
708 Temperature on the Composition of Lignin Pyrolysis Products, Energ
709 Fuel, 24, 4470-4475, <https://doi.org/10.1021/ef100363c>, 2010.

710 Jiang, W., Niedek, C., Anastasio, C., and Zhang, Q.: Photoaging of
711 phenolic secondary organic aerosol in the aqueous phase: evolution of
712 chemical and optical properties and effects of oxidants, Atmos. Chem.
713 Phys., 23, 7103-7120, <https://doi.org/10.5194/acp-23-7103-2023>, 2023.

714 Kibet, J., Khachatryan, L., and Dellinger, B.: Molecular Products and
715 Radicals from Pyrolysis of Lignin, Environ. Sci. Technol., 46, 12994-
716 13001, <https://doi.org/10.1021/es302942c>, 2012.

717 Kroflič, A., Huš, M., Grilc, M., and Grgić, I.: Underappreciated and
718 Complex Role of Nitrous Acid in Aromatic Nitration under Mild
719 Environmental Conditions: The Case of Activated Methoxyphenols,
720 Environ. Sci. Technol., 52, 13756-13765,
721 <https://doi.org/10.1021/acs.est.8b01903>, 2018.

722 Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., and Kollman,
723 P. A.: THE weighted histogram analysis method for free-energy
724 calculations on biomolecules. I. The method, J Comput Chem, 13,

725 1011-1021, <https://doi.org/10.1002/jcc.540130812>, 1992.

726 Kusaka, R., Nihonyanagi, S., and Tahara, T.: The photochemical reaction
727 of phenol becomes ultrafast at the air–water interface, Nat Chem, 13,
728 306-311, <https://doi.org/10.1038/s41557-020-00619-5>, 2021.

729 Lee, J. K., Banerjee, S., Nam, H. G., and Zare, R. N.: Acceleration of
730 reaction in charged microdroplets, Q. Rev. Biophys., 48, 437-444,
731 <https://doi.org/10.1017/S0033583515000086>, 2015a.

732 Lee, J. K., Kim, S., Nam, H. G., and Zare, R. N.: Microdroplet fusion mass
733 spectrometry for fast reaction kinetics, PANS, 112, 3898-3903,
734 <https://doi.org/10.1073/pnas.1503689112>, 2015b.

735 Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global
736 tropospheric hydroxyl distribution, budget and reactivity, Atmos.
737 Chem. Phys., 16, 12477-12493, <https://doi.org/10.5194/acp-16-12477-2016>, 2016.

739 Li, M., Wang, X., Zhao, Y., Du, P., Li, H., Li, J., Shen, H., Liu, Z., Jiang,
740 Y., Chen, J., Bi, Y., Zhao, Y., Xue, L., Wang, Y., Chen, J., and Wang,
741 W.: Atmospheric Nitrated Phenolic Compounds in Particle, Gaseous,
742 and Aqueous Phases During Cloud Events at a Mountain Site in North
743 China: Distribution Characteristics and Aqueous-Phase Formation, J
744 Geophys Res-Atoms, 127, e2022JD037130,
745 <https://doi.org/10.1029/2022JD037130>, 2022.

746 Liao, Y., Koelewijn, S.-F., Van den Bossche, G., Van Aelst, J., Van den

747 Bosch, S., Renders, T., Navare, K., Nicolaï, T., Van Aelst, K., Maesen,
748 Matsushima, H., Thevelein, J. M., Van Acker, K., Lagrain, B.,
749 Verboekend, D., and Sels, B. F.: A Sustainable Wood Biorefinery for
750 Low-Carbon Footprint Chemicals Production, *Science*, 367, 1385-
751 1390, <https://doi.org/10.1126/science.aau1567>, 2020.

752 Lin, P.-C., Wu, Z.-H., Chen, M.-S., Li, Y.-L., Chen, W.-R., Huang, T.-P.,
753 Lee, Y.-Y., and Wang, C. C.: Interfacial Solvation and Surface pH of
754 Phenol and Dihydroxybenzene Aqueous Nanoaerosols Unveiled by
755 Aerosol VUV Photoelectron Spectroscopy, *J Phys Chem B*, 121, 1054-
756 1067, <https://doi.org/10.1021/acs.jpcb.6b10201>, 2017.

757 Liu, C., Chen, D., and Chen, X. e.: Atmospheric Reactivity of
758 Methoxyphenols: A Review, *Environ. Sci. Technol.*, 56, 2897-2916,
759 <https://doi.org/10.1021/acs.est.1c06535>, 2022.

760 Liu, C., Liu, J., Liu, Y., Chen, T., and He, H. J. A. e.: Secondary organic
761 aerosol formation from the OH-initiated oxidation of guaiacol under
762 different experimental conditions, *Atmos Environ*, 207, 30-37,
763 <https://doi.org/10.1016/j.atmosenv.2019.03.021>, 2019.

764 Lou, R., Wu, S.-b., and Lv, G.-j.: Effect of conditions on fast pyrolysis of
765 bamboo lignin, *J Anal Appl Pyrol*, 89, 191-196,
766 <https://doi.org/10.1016/j.jaap.2010.08.007>, 2010.

767 Lu, T. and Chen, F.: Multiwfn: A multifunctional wavefunction analyzer, *J*
768 *Comput Chem*, 33, 580-592, <https://doi.org/10.1002/jcc.22885>, 2012.

769 Lu, T. and Chen, Q.: Interaction Region Indicator: A Simple Real Space
770 Function Clearly Revealing Both Chemical Bonds and Weak
771 Interactions**, *Chemistry—Methods*, 1, 231-239,
772 <https://doi.org/10.1002/cmtd.202100007>, 2021.

773 Ma, L., Guzman, C., Niedek, C., Tran, T., Zhang, Q., and Anastasio, C.:
774 Kinetics and Mass Yields of Aqueous Secondary Organic Aerosol from
775 Highly Substituted Phenols Reacting with a Triplet Excited State,
776 *Environ. Sci. Technol.*, 55, 5772-5781,
777 <https://doi.org/10.1021/acs.est.1c00575>, 2021.

778 Nollet, H., Roels, M., Lutgen, P., Van der Meer, P., and Verstraete, W.:
779 Removal of PCBs from wastewater using fly ash, *Chemosphere*, 53,
780 655-665, [https://doi.org/10.1016/S0045-6535\(03\)00517-4](https://doi.org/10.1016/S0045-6535(03)00517-4), 2003.

781 Pillar-Little, E. A. and Guzman, M. I.: Oxidation of Substituted Catechols
782 at the Air–Water Interface: Production of Carboxylic Acids, Quinones,
783 and Polyphenols, *Environ. Sci. Technol.*, 51, 4951-4959,
784 <https://doi.org/10.1021/acs.est.7b00232>, 2017.

785 Pillar-Little, E. A., Camm, R. C., and Guzman, M. I.: Catechol Oxidation
786 by Ozone and Hydroxyl Radicals at the Air–Water Interface, *Environ.*
787 *Sci. Technol.*, 48, 14352-14360, <https://doi.org/10.1021/es504094x>,
788 2014.

789 Qu, Z.-w. and Kroes, G.-J.: Theoretical Study of the Electronic Structure
790 and Stability of Titanium Dioxide Clusters (TiO_2) n with $n = 1-9$, *J Phys*

791 Chem B, 110, 8998-9007, <https://doi.org/10.1021/jp056607p>, 2006.

792 Rana, M. S. and Guzman, M. I.: Oxidation of Phenolic Aldehydes by
793 Ozone and Hydroxyl Radicals at the Air–Water Interface, J Phys Chem
794 A, 124, 8822-8833, <https://doi.org/10.1021/acs.jpca.0c05944>, 2020.

795 Rana, M. S. and Guzman, M. I.: Oxidation of Phenolic Aldehydes by
796 Ozone and Hydroxyl Radicals at the Air–Solid Interface, Acs Earth
797 Space Chem, 6, 2900-2909,
798 <https://doi.org/10.1021/acsearthspacechem.2c00206>, 2022a.

799 Rana, M. S. and Guzman, M. I.: Surface Oxidation of Phenolic Aldehydes:
800 Fragmentation, Functionalization, and Coupling Reactions, J Phys
801 Chem A, 126, 6502-6516, <https://doi.org/10.1021/acs.jpca.2c04963>,
802 2022b.

803 Rana, M. S. and Guzman, M. I.: Oxidation of Catechols at the Air–Water
804 Interface by Nitrate Radicals, Environ. Sci. Technol., 56, 15437-15448,
805 <https://doi.org/10.1021/acs.est.2c05640>, 2022c.

806 Reid, J. S., Eck, T. F., Christopher, S. A., Koppman, R., Dubovik, O.,
807 Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of
808 biomass burning emissions part III: Intensive optical properties of
809 biomass burning particles, Atmos. Chem. Phys., 5, 827-849,
810 <https://doi.org/10.5194/acp-5-827-2005>, 2005.

811 Roeselová, M., Vieceli, J., Dang, L. X., Garrett, B. C., and Tobias, D. J.:
812 Hydroxyl Radical at the Air–Water Interface, J. Am. Chem. Soc., 126,

813 16308-16309, <https://doi.org/10.1021/ja045552m>, 2004.

814 Rogge, W. F., Hildemann, L. M., Mazurek, M. A., and Cass, G. R.: Sources
815 of Fine Organic Aerosol. 9. Pine, Oak, and Synthetic Log Combustion
816 in Residential Fireplaces, Environ. Sci. Technol., 32, 13-22,
817 <https://doi.org/10.1021/es960930b>, 1998.

818 Rubasinghege, G., Elzey, S., Baltrusaitis, J., Jayaweera, P. M., and
819 Grassian, V. H.: Reactions on Atmospheric Dust Particles: Surface
820 Photochemistry and Size-Dependent Nanoscale Redox Chemistry, J.
821 Phys. Chem. Lett., 1, 1729-1737, <https://doi.org/10.1021/jz100371d>,
822 2010.

823 Rynjah, S., Baro, B., and Sarkar, B.: Oxepin Derivatives Formation from
824 Gas-Phase Catechol Ozonolysis, J Phys Chem A, 128, 251-260,
825 <https://doi.org/10.1021/acs.jpca.3c04582>, 2024.

826 Sakata, K., Takahashi, Y., Takano, S., Matsuki, A., Sakaguchi, A., and
827 Tanimoto, H.: First X-ray Spectroscopic Observations of Atmospheric
828 Titanium Species: Size Dependence and the Emission Source, Environ.
829 Sci. Technol., 55, 10975-10986,
830 <https://doi.org/10.1021/acs.est.1c02000>, 2021.

831 Shang, H., Wang, X., Li, H., Li, M., Mao, C., Xing, P., Zhao, S., Chen, Z.,
832 Sun, J., Ai, Z., and Zhang, L.: Oxygen vacancies promote sulfur species
833 accumulation on TiO₂ mineral particles, Appl. Catal. B Environ., 290,
834 120024, <https://doi.org/10.1016/j.apcatb.2021.120024>, 2021.

835 Shi, Q., Zhang, W., Ji, Y., Wang, J., Qin, D., Chen, J., Gao, Y., Li, G., and
836 An, T.: Enhanced uptake of glyoxal at the acidic nanoparticle interface:
837 implications for secondary organic aerosol formation, Environ Sci-
838 Nano, 7, 1126-1135, <https://doi.org/10.1039/D0EN00016G>, 2020.

839 Simoneit, B. R. T.: Biomass burning — a review of organic tracers for
840 smoke from incomplete combustion, Appl Geochem, 17, 129-162,
841 [https://doi.org/10.1016/S0883-2927\(01\)00061-0](https://doi.org/10.1016/S0883-2927(01)00061-0), 2002.

842 Smith, J. D., Kinney, H., and Anastasio, C.: Phenolic carbonyls undergo
843 rapid aqueous photodegradation to form low-volatility, light-absorbing
844 products, Atmos Environ, 126, 36-44,
845 <https://doi.org/10.1016/j.atmosenv.2015.11.035>, 2016.

846 Soongprasit, K., Sricharoenchaikul, V., and Atong, D.: Phenol-derived
847 products from fast pyrolysis of organosolv lignin, Energy Rep, 6, 151-
848 167, <https://doi.org/10.1016/j.egyr.2020.08.040>, 2020.

849 Sun, J., Han, D., Shallcross, D. E., Cao, H., Wei, B., Mei, Q., Xie, J., Zhan,
850 J., and He, M.: Theoretical studies on the heterogeneous ozonolysis of
851 syringol on graphene: Mechanism, kinetics and ecotoxicity assessment,
852 Chem. Eng.J., 404, 126484, <https://doi.org/10.1016/j.cej.2020.126484>,
853 2021a.

854 Sun, N., Rodríguez, H., Rahman, M., and Rogers, R. D.: Where are ionic
855 liquid strategies most suited in the pursuit of chemicals and energy
856 from lignocellulosic biomass?, Chem. Commun., 47, 1405-1421,

857 <https://doi.org/10.1039/C0CC03990J>, 2011.

858 Sun, Y., Chen, X., Xu, F., and Wang, X.: Quantum chemical calculations
859 on the mechanism and kinetics of ozone-initiated removal of p-
860 coumaryl alcohol in the atmosphere, *Chemosphere*, 253, 126744,
861 <https://doi.org/10.1016/j.chemosphere.2020.126744>, 2020.

862 Sun, Y., Chen, X., Liu, L., Xu, F., and Zhang, X.: Mechanisms and kinetics
863 studies of the atmospheric oxidation of eugenol by hydroxyl radicals
864 and ozone molecules, *Sci Total Environ*, 770, 145203,
865 <https://doi.org/10.1016/j.scitotenv.2021.145203>, 2021b.

866 Tomas, A., Olariu, R. I., Barnes, I., and Becker, K. H. J. I. J. o. C. K.:
867 Kinetics of the reaction of O₃ with selected benzenediols, 35, 223-230,
868 <https://doi.org/10.1002/kin.10121>, 2003.

869 Vione, D., Maurino, V., Minero, C., Duncianu, M., Olariu, R.-I., Arsene,
870 C., Sarakha, M., and Mailhot, G.: Assessing the transformation kinetics
871 of 2- and 4-nitrophenol in the atmospheric aqueous phase. Implications
872 for the distribution of both nitroisomers in the atmosphere, *Atmos*
873 *Environ*, 43, 2321-2327,
874 <https://doi.org/10.1016/j.atmosenv.2009.01.025>, 2009.

875 Wang, R., Li, K., Li, J., Tsона, N. T., Wang, W., and Du, L.: Interaction of
876 Acrylic Acid and SO₂ on the Surface of Mineral Dust Aerosol, *Ac_s*
877 *Earth Space Chem*, 7, 548-558,
878 <https://doi.org/10.1021/acsearthspacechem.2c00323>, 2023.

879 Xu, C. and Wang, L.: Atmospheric Oxidation Mechanism of Phenol
880 Initiated by OH Radical, *J Phys Chem A*, 117, 2358-2364,
881 <https://doi.org/10.1021/jp308856b>, 2013.

882 Yan, X., Bain, R. M., and Cooks, R. G.: Organic Reactions in
883 Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry,
884 *Angew. Chem. Int. Ed.*, 55, 12960-12972,
885 <https://doi.org/10.1002/anie.201602270>, 2016.

886 Yao, L., Yang, L., Chen, J., Wang, X., Xue, L., Li, W., Sui, X., Wen, L.,
887 Chi, J., Zhu, Y., Zhang, J., Xu, C., Zhu, T., and Wang, W.:
888 Characteristics of carbonaceous aerosols: Impact of biomass burning
889 and secondary formation in summertime in a rural area of the North
890 China Plain, *Sci Total Environ*, 557-558, 520-530,
891 <https://doi.org/10.1016/j.scitotenv.2016.03.111>, 2016.

892 Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M.,
893 Chhabra, P. S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J.
894 D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary
895 organic aerosol formation from biomass burning intermediates: Phenol
896 and methoxyphenols, *Atmos. Chem. Phys.*, 13, 8019-8043,
897 <https://doi.org/10.5194/acp-13-8019-2013>, 2013.

898 Yuan, S., Wang, X., Jiang, Z., Zhang, H., and Yuan, S.: Contribution of air-
899 water interface in removing PFAS from drinking water: Adsorption,
900 stability, interaction and machine learning studies, *Water Res*, 236,

901 119947, <https://doi.org/10.1016/j.watres.2023.119947>, 2023.

902 Zein, A. E., Coeur, C., Obeid, E., Lauraguais, A., and Fagniez, T.: Reaction

903 Kinetics of Catechol (1,2-Benzenediol) and Guaiacol (2-

904 Methoxyphenol) with Ozone, *J Phys Chem A*, 119, 6759-6765,

905 <https://doi.org/10.1021/acs.jpca.5b00174>, 2015.

906 Zhang, W., Ji, Y., Li, G., Shi, Q., and An, T.: The heterogeneous reaction

907 of dimethylamine/ammonia with sulfuric acid to promote the growth

908 of atmospheric nanoparticles, *Environ Sci-Nano*, 6, 2767-2776,

909 <https://doi.org/10.1039/C9EN00619B>, 2019.

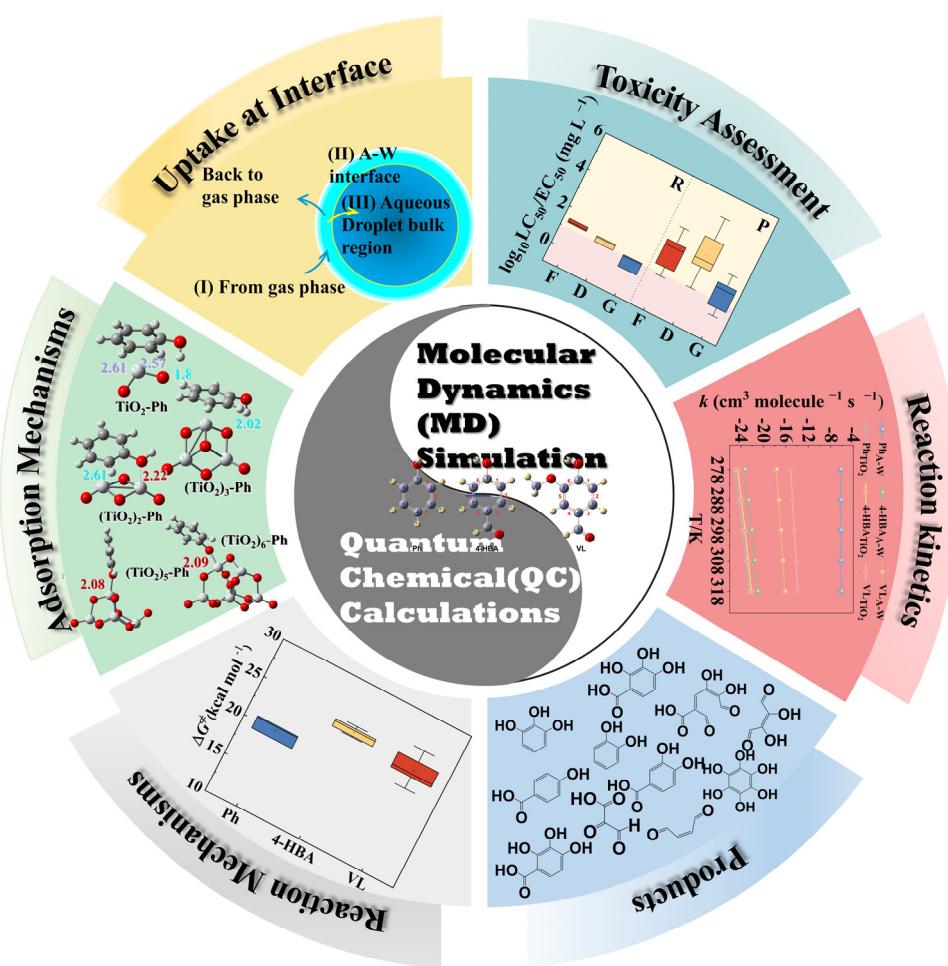
910 Zhang, W., Tong, S., Jia, C., Wang, L., Liu, B., Tang, G., Ji, D., Hu, B., Liu,

911 Z., Li, W., Wang, Z., Liu, Y., Wang, Y., and Ge, M.: Different HONO

912 Sources for Three Layers at the Urban Area of Beijing, *Environ. Sci.*

913 *Technol.*, 54, 12870-12880, <https://doi.org/10.1021/acs.est.0c02146>,

914 2020.


915 Zhong, J., Kumar, M., Anglada, J. M., Martins-Costa, M. T. C., Ruiz-Lopez,

916 M. F., Zeng, X. C., and Francisco, J. S.: Atmospheric Spectroscopy and

917 Photochemistry at Environmental Water Interfaces, *Annu Rev Phys*

918 *Chem*, 70, 45-69, <https://doi.org/10.1146/annurev-physchem-042018-052311>, 2019.

920

921

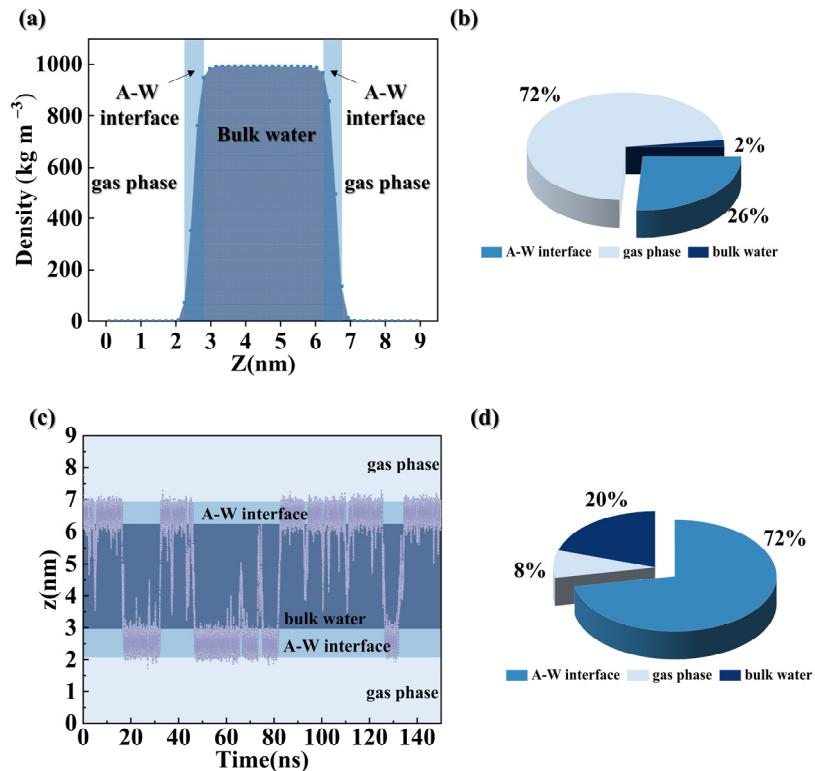
922

Graphical Abstract

923

924

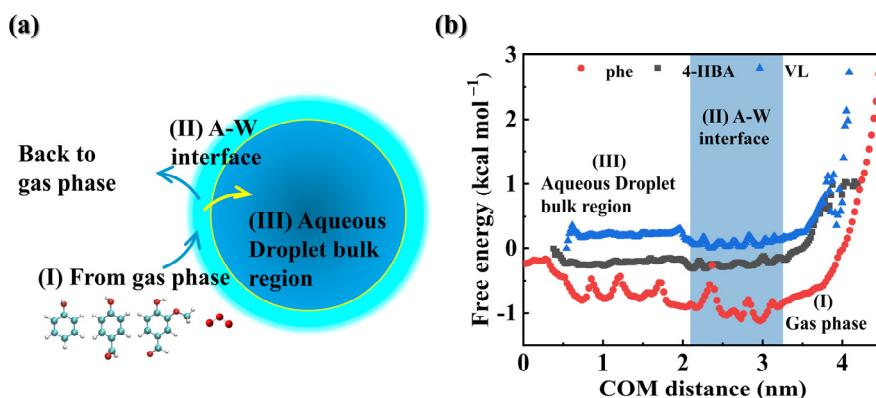
925


926

027

820

5/5/5


931

932

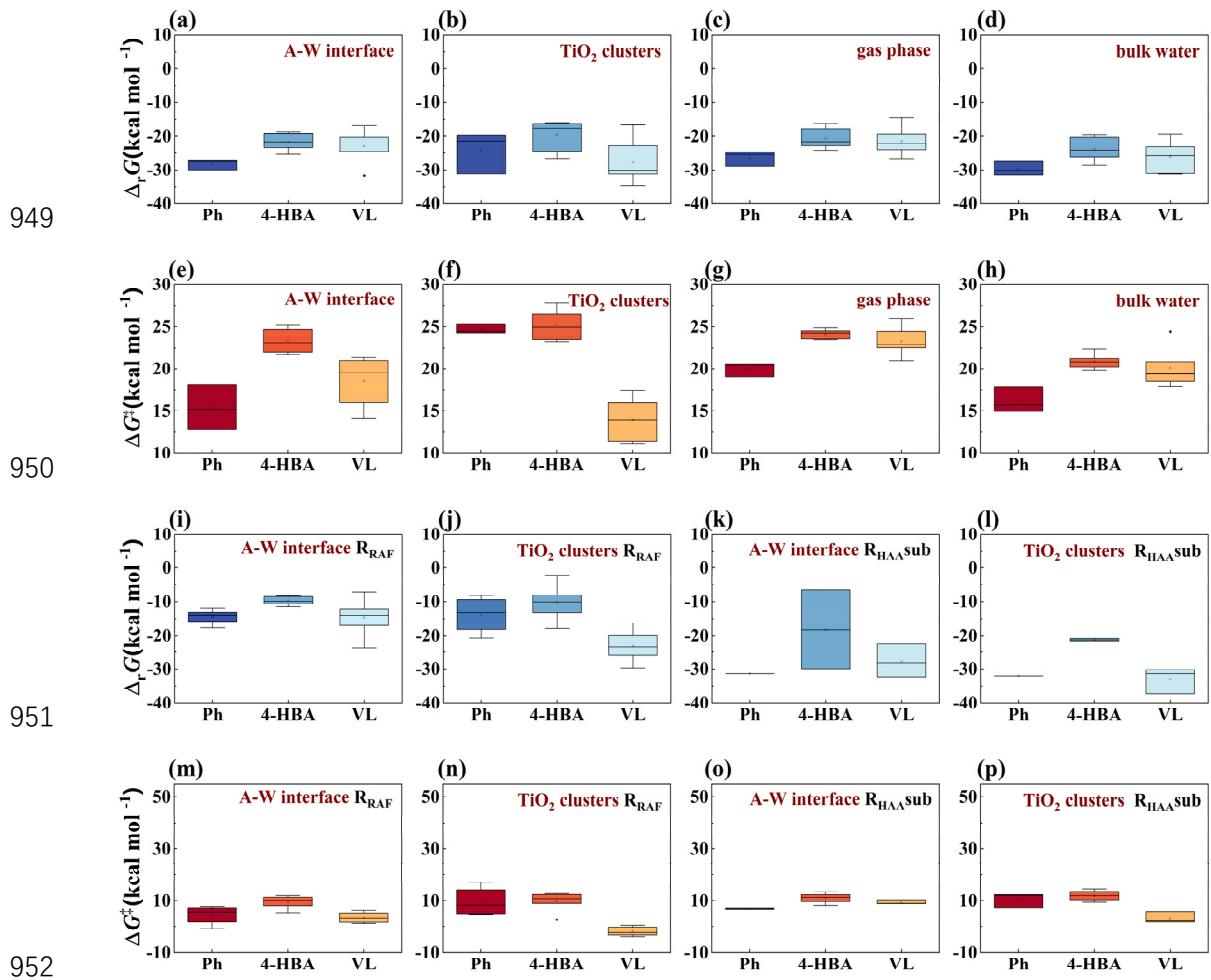
933

934 **Fig.1** (a) Relative concentration distributions in the A-W system along the z-axis; (b) probability of
 935 O_3 at the A-W interface, in gas phase, and in bulk water; (c) MD trajectories of Ph diffusion through
 936 the water slab over a 150 ns period; (d) probability of Ph at the A-W interface, in gas phase, and in
 937 bulk water.

938

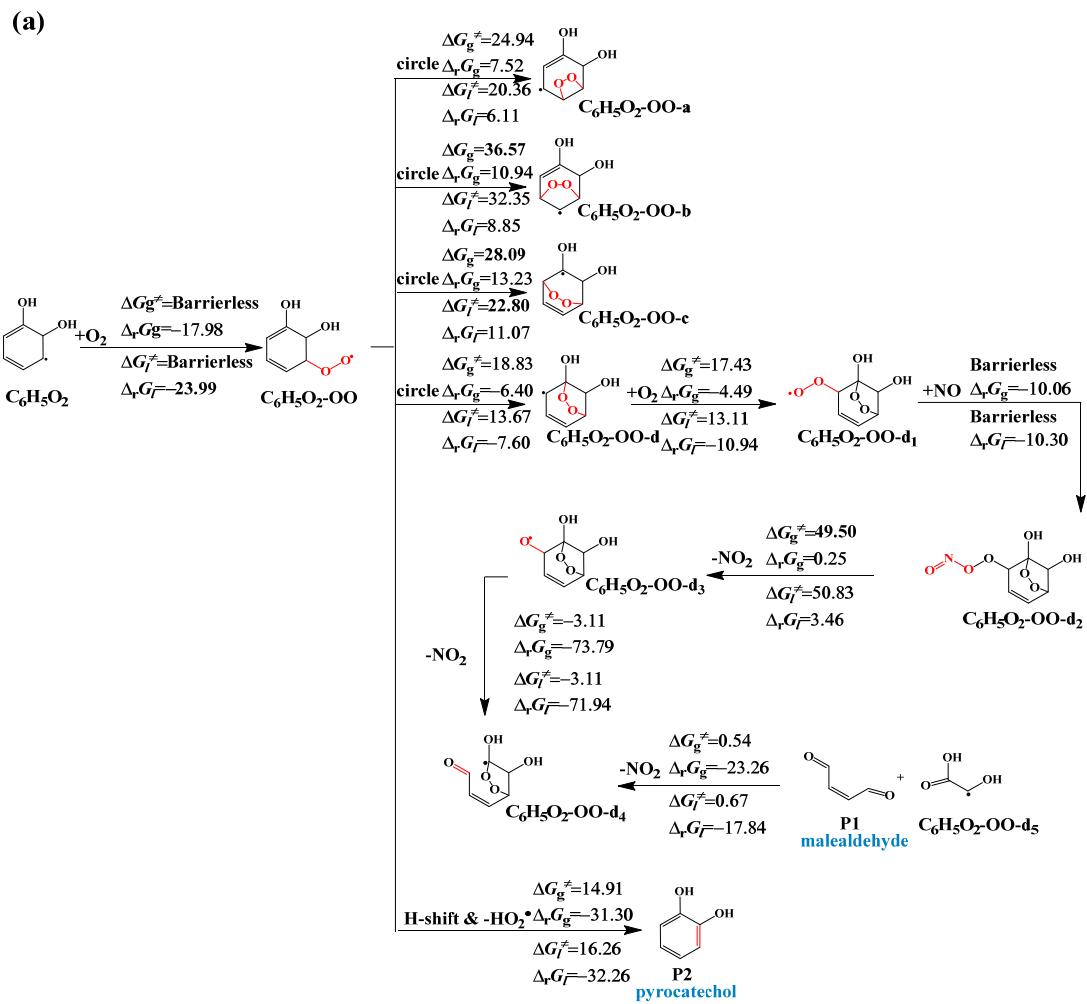
939 **Fig.2** (a) Three key processes for the reaction of gaseous PhCs (Ph, 4-HBA, or VL) with the water
 940 drops; (b) free energy change profile of gaseous PhCs (Ph, 4-HBA, or VL) approaching the bulk
 941 water.

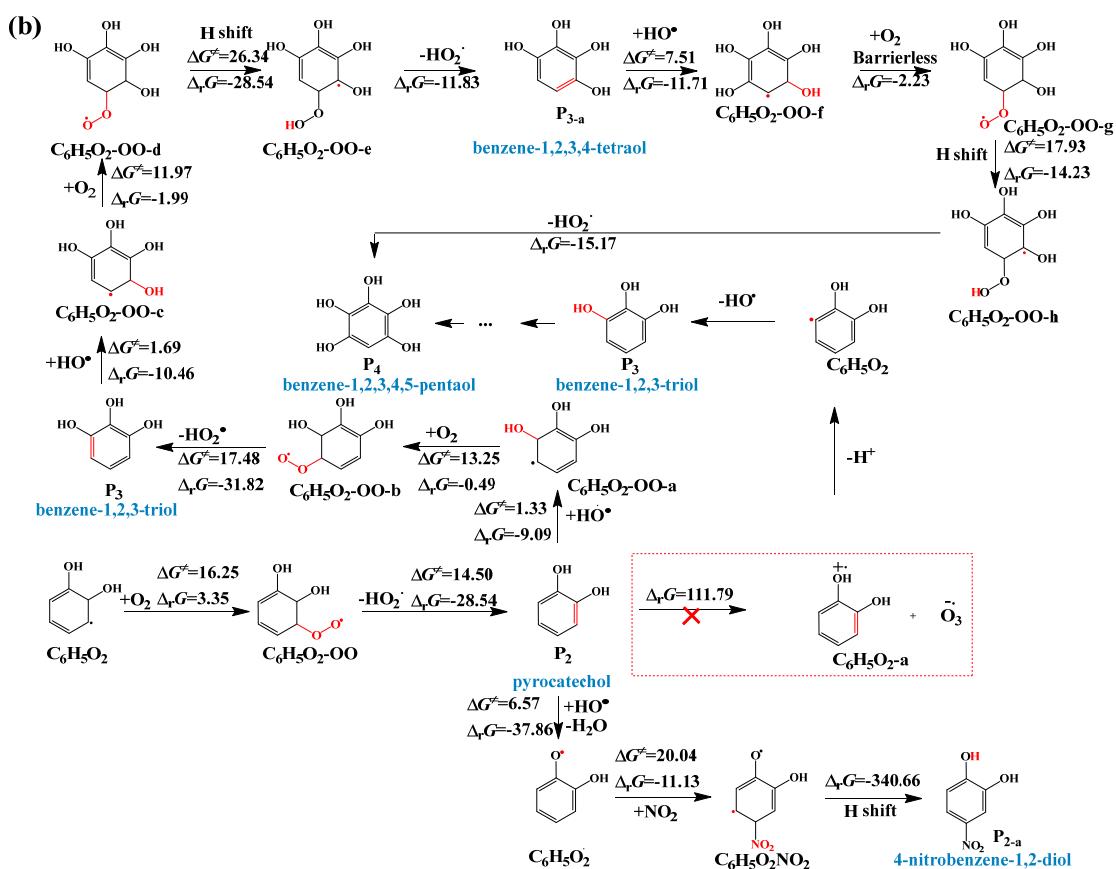
942


943

944

945

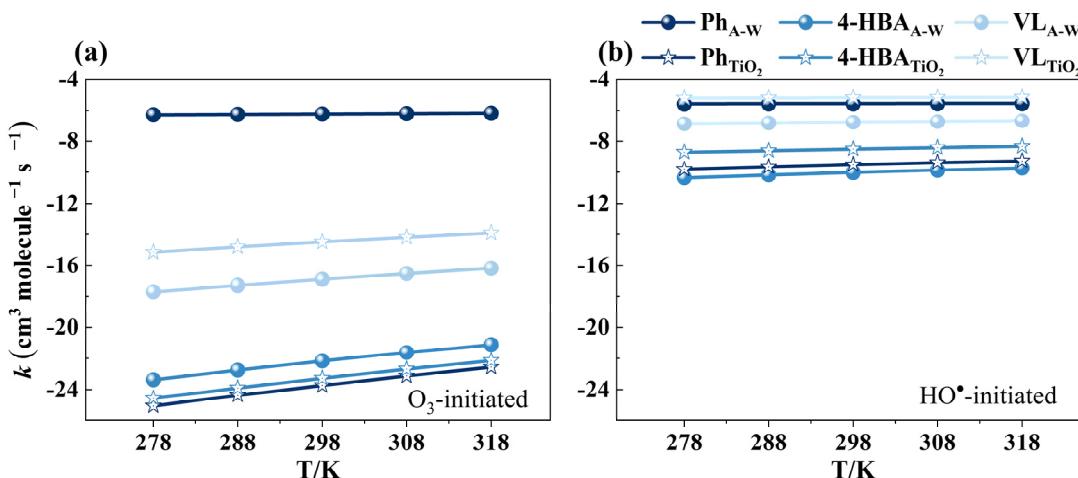

946 **Fig. 3** Adsorption details of PhCs on $(\text{TiO}_2)_n$ ($n = 1–6$) clusters; (a) structure of Ph adsorption on
947 $(\text{TiO}_2)_n$ ($n = 1–6$) surface; adsorption energy of (b) Ph, (c) 4-HBA, and (d) VL on $(\text{TiO}_2)_n$ ($n = 1–6$,
948 unit: kcal mol⁻¹); (e) Interaction region indicator (IRI) analyses of Ph on $(\text{TiO}_2)_n$ ($n = 1–6$) surface.


949 **Fig. 4** Statistical charts of calculated (a)–(d) $\Delta_r G$ and (e)–(h) ΔG^\ddagger values for O_3 -initiated reactions;
950 (i)–(l) $\Delta_r G$ and (m)–(p) ΔG^\ddagger values for HO^\bullet -initiated reactions.
951
952

955 **Fig.5** Δ_rG and ΔG^\ddagger values of (a)–(b) O_3 -initiated reactions and (c)–(f) HO^\bullet -initiated reactions at
956 different reaction positions.

959 **Fig.6** Subsequent reaction mechanisms of important intermediates (IMs) (unit: kcal mol⁻¹) in (a)
 960 gas phase (g) / bulk water (l) and at (b) A-W interface (Continue on the next page).
 961

962


963 **Fig.6** (Continue) Subsequent reaction mechanisms of important intermediates (IMs) (unit: kcal mol964 $^{-1}$) in **(a)** gas phase (g) / bulk water (l) and at **(b)** A-W interface.

965

966

967

968

Fig. 7 Calculated rate constants for the initial reactions of Ph, 4-HBA, and VL with O_3 and HO^\bullet at different temperatures (278–318 K) and 1 atm.

986 **Table 1** The available experimental and calculated reaction rate constants (k) values of O_3 - and
 987 HO^\bullet -initiated reactions at 298 K. Unit: cm^3 molecule $^{-1}$ s $^{-1}$.

Compounds	$k_{tot-A-W,cal}^a$	$k_{tot-TiO_2,cal}^b$	$k_{tot-gas,cal}^c$	$k_{tot-wat,cal}^d$	k_{exp}	Ref.
Ph	5.98×10^{-7}	1.84×10^{-24}	5.27×10^{-20}	4.02×10^{12}	$(13.5 \pm 1.1) \times 10^{-18},^e$	Zein et al. (2015)
	2.69×10^{-6}	3.17×10^{-10}	2.34×10^{-9}	4.46×10^{13}	—	
4-HBA	6.79×10^{-23}	5.32×10^{-24}	4.93×10^{-24}	1.97×10^{12}	—	Rana et al. (2020)
	9.49×10^{-11}	3.16×10^{-9}	7.90×10^{-11}	2.52×10^{13}	—	
VL	1.27×10^{-17}	3.30×10^{-15}	1.35×10^{-22}	2.20×10^{12}	$(0.40 \pm 0.31) \times 10^{-18},^f$	Zein et al. (2015)
	1.73×10^{-7}	6.70×10^{-6}	1.14×10^{-10}	3.15×10^{13}	$6.00 \times 10^{-11},^g$	

988 ^a: calculated values of phenolic compounds at A-W interface;

989 ^b: calculated values of phenolic compounds on TiO_2 clusters;

990 ^c: calculated values of phenolic compounds in the gas phase;

991 ^d: calculated values of phenolic compounds in the bulk water.

992 ^e: experimental values of catechol in the gas phase;

993 ^f: experimental values of guaiacol in the gas phase;

994 ^g: experimental average k_{HO^\bullet} values of methoxyphenols in the gas phase.