Measurement report: Sources, sinks and lifetime of NO_X in a sub-urban temperate forest at night

Simone T. Andersen¹, Max R. McGillen², Chaoyang Xue², Tobias Seubert¹, Patrick Dewald¹, Gunther N. T. E. Türk¹, Jan Schuladen¹, Cyrielle Denjean³, Jean-Claude Etienne⁵, Olivier Garrouste⁵, Marina Jamar⁴, Sergio Harb⁵, Manuela Cirtog⁵, Vincent Michoud⁶, Mathieu Cazaunau⁵, Antonin Bergé⁵, Christopher Cantrell⁵, Sebastien Dusanter⁴, Bénédicte Picquet-Varrault⁵, Alexandre Kukui⁷, Abdelwahid Mellouki²,8, Lucy J. Carpenter⁹, Jos Lelieveld¹, John N. Crowley¹

¹Atmospheric Chemistry Department, Max-Planck-Institute for Chemistry, 55128-Mainz, Germany
²Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, CEDEX 2, 45071 Orleans, France
³CNRM, Universite de Toulouse, Meteo-France, CNRS, Toulouse, France
⁴IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Center for Energy and Environment, 59000 Lille, France
⁵Univ Paris Est Creteil and Université de Paris Cité, CNRS, LISA, F-94010 Créteil, France
⁶Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
⁷Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS Orleans, France
⁸University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
⁹Wolfson Atmospheric Chemistry Laboratory, Department of Chemistry, University of York, York, UK

Correspondence to: Simone T. Andersen (simone.andersen@mpic.de) and John N. Crowley (john.crowley@mpic.de)
1 Abstract

Through observations of NO, NO2, NOY and O3 in the Rambouillet forest near Paris, France, (as part of the ACROSS campaign, 2022) we have gained insight into nighttime processes controlling NOX in an anthropogenically impacted forest environment. O3 mixing ratios displayed a strong diel profile at the site, which was driven by a variable but generally rapid deposition to soil and foliar surfaces. The O3 diel profile was strongly influenced by relative humidity, which impacted the surface resistance to uptake, and temperature inversion, which influenced the rate of entrainment of O3 from above the canopy. Only when the O3 mixing ratio was sufficiently low (and thus the NO lifetime sufficiently long), were sustained NO peaks observed above the instrumental detection limit, enabling derivation of average NO emission rates from the soil of \(-1.4\) ppbv h\(^{-1}\). Observations of the lack of increase in NO\(^2\) at night, despite a significant production rate from the reaction of NO with O3, enabled an effective lifetime of NO\(^2\) of \(-0.5\) to \(-3\) h to be derived. As the loss of NO\(^2\) was not compensated by the formation of gas- or particle-phase reactive nitrogen species it was presumably driven by deposition to soil and foliar surfaces, or any products formed were themselves short-lived with respect to deposition. By comparison, the daytime lifetime of NO\(^2\) with respect to loss by reaction with OH is about 1 day. We conclude that the nighttime deposition of NO\(^2\) is a major sink of boundary layer NOX in this temperate forest environment.

2 Introduction

Nitrogen oxides (NOX = NO + NO\(^2\)) are pollutant trace gases, which play a key role in the atmosphere by producing or destroying tropospheric ozone (O3), which can cause respiratory illness (Ciencewicki and Jaspers, 2007) and damage to plants (Emberson et al., 2018). Photolysis of nitrogen dioxide (NO\(^2\)) (R1) is the primary source of tropospheric ozone (O3), and the nitric oxide (NO) product is oxidized back to NO\(^2\) either by O3 (R2) or by organic peroxy radicals (RO\(^2\), under formation of alkoxy radicals (RO)) or hydroperoxyl radicals (HO\(^2\)) (R3, R4) (Lightfoot et al., 1992). The latter results in formation of the hydroxyl radical (OH) radical, and R3 and R4 thus represent routes to recycle the most important atmospheric radical initiator of oxidation (Hens et al., 2014). It is, therefore, essential to understand the sources and sinks of NOX in the atmosphere.

\[
\begin{align*}
\text{NO}_2 + h\nu (\rightarrow \text{O}_2) & \rightarrow \text{NO} + \text{O}_3 \\
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 \\
\text{NO} + \text{RO}_2 & \rightarrow \text{NO}_2 + \text{RO} \\
\text{NO} + \text{HO}_2 & \rightarrow \text{NO}_2 + \text{OH}
\end{align*}
\]

(R1)
(R2)
(R3)
(R4)

The dominant global sources of NOX are anthropogenic in the form of combustion of fossil fuels and to a lesser degree biomass burning and agricultural soils. The natural sources, which include lightning (Schumann and Huntrieser, 2007), wildfires (Val Martin et al., 2008), and unperturbed soil emissions from microbial activities (Davidson and Kingerlee, 1997), are important in regions remote from anthropogenic sources. NO\(^2\) and NO both react with peroxy radicals in the atmosphere
to produce organic nitrates (R5-R6), including peroxy nitrates (RO$_2$NO$_2$) and alkyl nitrates (RONO$_2$), which are important precursors for the formation of secondary organic aerosols (SOA) (Hallquist et al., 2009; Kanakidou et al., 2005; Kiendler-Scharr et al., 2016). NO$_2$ also reacts with OH radicals, O$_3$ and nitrate radicals (NO$_3$) to form nitric acid (HNO$_3$) (R7), NO$_3$ radicals (R8), and dinitrogen pentoxide (N$_2$O$_5$) (R9), respectively. N$_2$O$_5$ is in thermal equilibrium with NO$_2$ and NO$_3$ and can interact with aqueous aerosol or moist surfaces to form HNO$_3$ (R10) (Kane et al., 2001) or nitryl chloride (ClONO$_2$) (Phillips et al., 2013; Phillips et al., 2012). Organic nitrates, SOA, and HNO$_3$ are all removed from the boundary layer through dry and wet deposition which thereby removes NO$_X$ from the atmosphere.

\[
\begin{align*}
\text{NO}_2 + \text{RO}_2 + \text{M} & \rightarrow \text{RO}_2\text{NO}_2 + \text{M} \tag{R5} \\
\text{NO} + \text{RO}_2 + \text{M} & \rightarrow \text{RONO}_2 + \text{M} \tag{R6} \\
\text{NO}_2 + \text{OH} + \text{M} & \rightarrow \text{HNO}_3 + \text{M} \tag{R7} \\
\text{NO}_2 + \text{O}_3 & \rightarrow \text{NO}_3 + \text{O}_2 \tag{R8} \\
\text{NO}_2 + \text{NO}_3 + \text{M} & \rightleftharpoons \text{N}_2\text{O}_5 + \text{M} \tag{R9} \\
\text{N}_2\text{O}_5 + \text{H}_2\text{O (aq)} & \rightarrow 2 \text{HNO}_3 (\text{aq}) \tag{R10}
\end{align*}
\]

In the planetary boundary layer, NO$_2$ is also lost through dry deposition to surfaces such as soil and leaves. Deposition takes places both at nighttime and daytime, but is expected to be more efficient during daytime due to increased mixing through turbulence. When NO$_2$ deposits onto humid surfaces, it can lead to the production of nitrous acid (HONO), which can be released to the atmosphere (Meusel et al., 2016; Elshorbany et al., 2012). NO$_2$ uptake on leaves takes place through stomatal and non-stomatal processes, which have been reported to depend on multiple factors such as stomata aperture and relative humidity. Stomatal uptake primarily occurs at nighttime when the stomata are open, leading to increased NO$_2$ loss compared to nighttime, when the stomata are not fully open (Delaria et al., 2020; Delaria et al., 2018; Chaparro-Suarez et al., 2011). Non-stomatal uptake occurs through the cuticles, though the importance of cuticular uptake has been reported to be small compared to the stomatal uptake (Delaria and Cohen, 2020; Delaria et al., 2020). NO$_2$ uptake to leaves is reported to be enhanced in the presence of water films, which may exist when the relative humidity is >70% (Thoene et al., 1996; Weber and Rennenberg, 1996; Burkhardt and Eiden, 1994). There is, however, no consensus on this process, as other studies have not observed this effect (Gessler et al., 2000). Most recent work shows that the interactions with foliar surfaces is uni-directional, i.e. emissions are negligible (Delaria et al., 2020).

At nighttime, NO$_2$ photolysis ceases and as a consequence, in the absence of combustion sources, the main sources of NO are emissions from soils (Jaegle et al., 2005). Since NO is oxidised efficiently by O$_3$ at night, its concentration will be highest at the surface and will decrease with altitude. The vertical profile of O$_3$ is the opposite owing to its physical loss due to deposition near the surface and through chemical reaction with NO and/or alkenes combined with entrainment from the nocturnal residual layer. As NO$_2$ is produced from the reaction between NO and O$_3$, its
vertical gradient is expected to be weaker than those of NO and O$_3$ (Geyer and Stutz, 2004; Stutz et al., 2004).

In this study we use measurements from the ACROSS (Atmospheric ChemistRy Of The Suburban foreSt) campaign to investigate the nighttime sources and sinks of NO$_X$ in a temperate forest. O$_3$ measurements are used to explain the observed NO features and measurements of NO$_2$ and total gas-phase nitrogen species (NO$_Y$) and particulate nitrate are used to investigate the lifetime and fate of NO$_X$ in the forest environment.

3 The ACROSS Campaign

The ACROSS campaign (13th of June 2022 to 25th of July 2022) was conducted in multiple locations in and around Paris, France (Cantrell and Michoud, 2022). Here we present measurements from the Rambouillet forest supersite located approximately 50 km southwest of Paris (48.687, 1.704). The forest consists of approximately 70% oak, 20% pine, and small contributions from beech and chestnut. The top of the forest canopy around the supersite was around 20-25 m. Several instrumented containers were placed in a clearing (~697 m2) together with a 41 m measurement tower. Most of the instruments used in this study were located in two different containers (MPIC and Orléans). The sampling inlets of the two containers were approximately 17 m apart and the tower was approximately 9 m from the MPIC container and 16 m from the Orléans container. The soil measurements were carried out at the bottom of the tower, approximately 13 m from the MPIC container and approximately 17 m from the Orleans container. All the instruments used in this study are described briefly below.

3.1 Measurements

3.1.1 Ground

NO$_2$ was measured using two different cavity ringdown spectroscopy (CRDS) instruments with co-located inlets sampling from a high-volume-flow stainless steel tube (10 m3 min$^{-1}$; 15 cm diameter, 0.2 s residence time) taking air from a height of 5.4 m above ground. One of the instruments (5CH-CRDS) consists of 3 cavities operated at 408 nm to measure NO$_2$ and, via their thermal dissociation to NO$_2$, total peroxy nitrates (ΣPNs, 448 K) and total alkyl nitrates (ΣANs, 648 K). Two additional cavities, operated at 662 nm, measured NO$_3$ and (via thermal dissociation to NO$_3$, 373 K) N$_2$O$_5$ (Sobanski et al., 2016). During this campaign, the NO$_2$ cavity had a limit of detection (LOD) of 9.7 pptv for 1 min averaging (3σ). The second instrument (k-NO3) primarily measures the NO$_3$ reactivity, but also has a cavity operated at 405 nm for the measurement of NO$_2$ (Liebmann et al., 2018).

Another CRDS instrument was used to measure NO$_X$, NO$_Y$, and particulate nitrate (pNO$_3$) from co-located inlets near the high-volume-flow stainless steel tube. NO$_X$ was measured by adding O$_3$ to the ambient sample, thereby oxidizing NO to NO$_2$, which was measured with CRDS at 405 nm (Friedrich et al., 2020). A judicious choice of O$_3$ and reaction time ensured that minimal (>1%) of NO$_2$ was oxidized to NO$_3$. At times with low (or zero) NO, NO$_X$ concentrations were in close
agreement with both NO\textsubscript{2} measurements. NO\textsubscript{Y} was measured by passing ambient air through a quartz inlet at \textasciitilde 900 K which quantitatively converts reactive nitrogen trace-gases to NO or NO\textsubscript{2}. Exceptions are N\textsubscript{2}O, HCN and NH\textsubscript{3}, which are not detected. In this location, NO\textsubscript{Y} is expected to consist mainly of NO\textsubscript{X} + NO\textsubscript{3} + N\textsubscript{2}O\textsubscript{5} + HNO\textsubscript{3} + PNs + ANs + HONO + ClNO\textsubscript{2} + particulate nitrates (pNO\textsubscript{3}).

Particulate nitrates (both organic and inorganic) were separately measured (as NO\textsubscript{Y}) after denuding gas-phase reactive nitrogen species (Friedrich et al., 2020). To achieve this, problems involving the ineffective trapping of gas-phase NO\textsubscript{X} by the denuder was eliminated, as will be described in a forthcoming technical paper.

O\textsubscript{3} was measured from the high-volume-flow stainless-steel tube with a commercial instrument (2B Technologies model 205) using UV absorption at 254 nm. The LOD is 2 ppbv for 10 s averaging time. A spectral radiometer (metcon Gmbh) was installed near the co-located inlets on top of the MPIC container to measure actinic fluxes, which were used to calculate photolysis frequencies as described elsewhere (Meusel et al., 2016).

NO was measured from the Orléans container using a commercial chemiluminescence instrument (Ecophysic CLD 780 TR, henceforth CLD) with an LOD of 10 pptv for 1 min averaging time. The sampling height for NO measurements was about 0.6 and 3.2 m above the container top and the ground surface, respectively. The NO measurements required correction due to a change in the CLD sensitivity during the campaign caused by an interruption in the instrument’s oxygen supply. The corrections and the corrective procedure are described in the SI.

HONO was measured by a commercial long-path absorption photometer (LOPAP-03, QUMA GmbH, Germany) with a sampling height of 2.0 m above the ground level. Details about the LOPAP instrument can be found elsewhere (Heland et al., 2001; Kleffmann et al., 2006). During the campaign, the LOPAP was calibrated by diluted nitrite when changing any supporting solutions. Zero calibration by measuring synthetic air was conducted 2-3 times per day. The detection limit is \(< 5\) pptv.

The sum of peroxy radicals, XO\textsubscript{2}=HO\textsubscript{2}+RO\textsubscript{2}, was measured by their conversion to H\textsubscript{2}SO\textsubscript{4} in presence of NO and SO\textsubscript{2} and detection of the generated H\textsubscript{2}SO\textsubscript{4} using NO\textsubscript{3} CIMS (Kukui et al., 2008). The calibration coefficient is determined using N\textsubscript{2}O actinometry and OH/RO\textsubscript{2} generation in a turbulent flow reactor by photolysis of N\textsubscript{2}O or H\textsubscript{2}O at 184.9 nm. The calibration of HO\textsubscript{2}, CH\textsubscript{3}O\textsubscript{2} and other RO\textsubscript{2} is performed by adding into the calibration reactor CO, CH\textsubscript{4} (or other RO\textsubscript{2} precursors) converting OH to RO\textsubscript{2}. The overall estimated calibration accuracy (2σ) for XO\textsubscript{2} is about 30\%, although the uncertainty of the XO\textsubscript{2} measurements is typically higher due to uncertainty in ambient air XO\textsubscript{2} composition. The lower limit of detection for XO\textsubscript{2} radicals at S/N=3 and a 4 minute integration time is \(2 \times 10^6\) molecule cm-3.

Time series of the most relevant measurements can be found in Figure S1-2. Due to missing total NO\textsubscript{X} and NO\textsubscript{Y} measurements prior to June 25th and NO after July 18th, the data analysis is focused on the time period in between these dates.
3.1.2 Tower

Measurements at 41 m were conducted with instruments located on the tower as well as through a manifold with an inlet at the top of the tower. The manifold was built from glass tubing (4.9 cm inner diameter, Borodrain) with a residence time in the manifold of 2.1 s. \(\text{NO}_2 \) was measured using a cavity attenuated phase shift (CAPS) instrument on the tower with an LOD of 40 pptv, which was zeroed every 1-2 hours. \(\text{NO} \) and \(\text{O}_3 \) were both measured from the manifold using a chemiluminescence instrument with a LOD of 30 pptv and a HORIBA (APOA370) with an LOD of 2.5 ppbv, respectively. The \(\text{NO} \) measurements were corrected for losses due to the reaction of \(\text{NO} \) with \(\text{O}_3 \) in the manifold and the sampling line (total 5.5 s), with corrections ranging from 1-28%.

Time series of all three measurements are plotted in Figure S3.

3.1.3 Meteorology and Soil

Ambient temperature was measured at four different heights on the tower; 5 m, 13 m, 21 m, and 41 m using temperature sensors from Atexis (PT1000) and Thermoest (PT100). Relative humidity was measured at 5 m using a Vaisala humidity sensor (HMP45A). Soil temperature and moisture were measured at 5 cm, 10 cm, and 30 cm below the surface using probes from Thermoest (PT100) and Delta T (Thetaprobe ML2X), respectively. Wind speed and direction were measured at 41 m using a wind monitor from Young Company. Time series of all the meteorological and soil measurements are shown in Figure S4-5.

3.2 HYSPLIT

To identify different air masses, 48-hour back trajectories were simulated every hour at a terminating height of 40 m using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT, version 4, 2019) (Draxler and Rolph, 2011). The back-trajectories were modelled using meteorological data from the Global Data Assimilation System (GDAS) at a resolution of 1 degree. This led to the separation of the data into two periods, 25th of June to 2nd of July and 3rd of July to 18th of July, which are plotted in Figure 1. The first phase is dominated by clean air from over the Atlantic Ocean (henceforth called “Atlantic”). Back trajectories indicated that the vast majority of air masses were transported within the boundary layer prior to reaching the site and thus may have reasonably fresh “marine influence”. The second phase is dominated by air that has passed over urban locations including Paris, Brussels and the Ruhr area within the last 48 hours (henceforth called “Continental”).

4 Results and Discussion

Two 24-hour periods of temperature (at 4 different heights), \(\text{NO} \), \(\text{O}_3 \), relative humidity (RH), \(\text{NO}_2 \), and \(\text{NO}_2 \) photolysis rate constant (\(J_{\text{NO}_2} \)) are plotted in Figure 2. The left panels show 24 hours with Atlantic air and the right panels 24 hours with continental air. Immediately apparent in these datasets (and in Fig S1) is the large diel cycle in \(\text{O}_3 \) mixing ratios, with net daytime production...
resulting in mid-afternoon mixing ratios between ~30 and 90 ppbv. In contrast, very low O₃ mixing ratios (often approaching zero) were observed at nighttime.

In the lowermost panels (JNO₂ measurements), the nighttime is shown in dark grey and the two light grey areas show the time before sunset (about 5 hours) and after sunrise (about 4.5 hours) when very little direct sunlight reaches the ground of the site due to shading by the trees. This leaves about 6.5 hours centred around midday when direct sunlight reaches the ground. The shading results in radiative cooling of the ground in the late afternoon and associated temperature inversions begin to form prior to sunset as can be observed in the right panels of Figure 2 and in more detail in Figure S6. The temperature inversions begin approximately at the same time as the ground temperature at 5 cm below the surface starts to decrease (see Figure S6). These conditions of insolation were relatively consistent throughout the campaign.

Clear temperature inversions were observed for both nights shown in Figure 2, the beginning and end of which are indicated by dashed lines. Vertical mixing can be reduced significantly during a temperature inversion, which is apparent from the O₃ and RH measurements in the right-hand panel. In both examples, O₃ decreases at the ground level (5.4 m) at the beginning of the temperature inversion and increases as the inversion breaks down in the morning. This behaviour is understood in terms of O₃ loss to soil surfaces and through stomatal and non-stomatal uptake on leaves (Zhou et al., 2017; Rannik et al., 2012; Altimir et al., 2006; Ganzeveld and Lelieveld, 1995) as well as through chemical reactions with e.g. NO, NO₂ and unsaturated (biogenic) organics (Kurpius and Goldstein, 2003). Reduced vertical mixing means that during the inversion, O₃ is only slowly replenished by downward mixing of air masses above the canopy where higher O₃ levels are observed. In contrast, the RH behaves in the opposite sense as the air above the inversion is drier than close to the ground, where evapotranspiration contributes to enhanced water vapour concentrations.

If the only source of NO was the photolysis of NO₂, NO mixing ratios would be expected to follow the NO₂ photolysis rate during the day and tend to zero at night as NO is oxidized on a time scale of minutes (for O₃ > 10 ppb) to NO₂ by O₃. This was not always the case during ACROSS. A pronounced NO peak (up to ~2 ppbv) was observed at ground level between 00:00 and 06:00 UTC (02:00 and 08:00 local time) during the phase dominated by Atlantic air, shown in Figure 2, which is absent in the phase dominated by continental air. The peak occurs prior to sunrise and is only observed by the ground-level measurements suggesting a non-photolytic source of NO close to the ground, which is discussed further below. Very low (0.5 ppbv) O₃ mixing ratios coincide with the sustained nighttime NO peak observed, which is never reached in the example from the continental phase, although in both cases clear temperature inversions were seen. Additional examples of sustained NO peaks (i.e. lasting several hours at level between 1 and 2 ppbv) at night during the first phase are shown in Figure S7. Examples of additional nights with temperature inversions during phase 2, where NO mixing ratios remained close to zero, are shown in Figure S8.
4.1 Nighttime Ozone Loss

For each night between June 17th and July 22nd the net O₃ loss rate constant, \(k_l(O_3) \) was derived by fitting exponential expressions to the data for periods of 4.5 to 8 hours. \(k_l(O_3) \) was highly variable, with values between \(1.8 \times 10^{-5} \text{ s}^{-1} \) and \(3.0 \times 10^{-4} \text{ s}^{-1} \), depending on the strength of the temperature inversion and the relative humidity (see discussion below). These values of \(k_l(O_3) \) correspond to lifetimes of 1-15 hours for O₃ at nighttime. Chemical losses of O₃ occur through reactions with NO, NO₂, and unsaturated BVOCs (Zhou et al., 2017). Rate coefficients of reactions of O₃ with NO (1.9 \(\times \) \(10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K), NO₂ (3.5 \(\times \) \(10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K), limonene (a reactive terpene, 2.2 \(\times \) \(10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K), \(\beta \)-caryophyllene (sesquiterpene, 1.2 \(\times \) \(10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K) are low such that mixing ratios in excess of 1 ppbv for NO and \(\beta \)-caryophyllene would be required to explain the O₃ loss rate constant (IUPAC, 2023). Required mixing ratios of terpenes or NO₂ would be even larger (60-300 ppbv).

As such high mixing ratios of NO and NO₂ were not observed continuously and such levels of BVOCs are unlikely, we assume that chemical losses of O₃ are insignificant compared to deposition as previously observed (Zhou et al., 2017). Ignoring entrainment from other heights, we can then equate \(k_l(O_3) \) to \((2V_d/h) \), where \(V_d \) is the deposition velocity and \(h \) is the boundary layer height; the factor 2 is used to account for a positive vertical gradient (Shepson et al., 1992). Using a boundary layer height of 20 m (arbitrarily set equal to the top of the canopy) gives net deposition velocities varying between 0.018 and 0.3 cm s⁻¹. These values for \(V_d \) are in broad agreement with other studies in temperate forests, where deposition velocities for O₃ at nighttime have been reported to be around 0.07-0.3 cm s⁻¹ (Padro, 1996, 1993; Finkelstein et al., 2000; Wu et al., 2016).

In Figure 3 the O₃ production rate (JNO₂ \(\times \) [NO₂]), RH, temperature at 4 different heights and O₃ mixing ratio have been plotted for two nights with high average RH to illustrate the impact of temperature inversions on the net O₃ loss-rate constants. The production rate of O₃ is used to identify periods in which production is negligible. In the left panel a night without a temperature inversion is plotted, where the average RH for the period used to fit the exponential decay is 93 ± 3 % and the night depicted in the right panel has the same average RH (92 ± 3 %) and a very clear temperature inversion, which gives a net O₃ loss-rate constant of \(3.0 \times 10^{-4} \text{ s}^{-1} \). This gives a factor of 5 between these two net O₃ loss-rate constants depending on whether a temperature inversion is observed or not. This can be understood in terms of the O₃ being replenished from above when there is no (or a weak) inversion, which is not the case when there is an inversion. Bearing this in mind, the use of \(k_l(O_3) \) (a net O₃ loss constant) must result in a lower limit to \(V_d \) unless strong temperature inversions (preventing O₃ entrainment from above) are present. The O₃ loss rate will also be enhanced under conditions of strong inversion if trace-gases that are reactive towards O₃ are released into a very shallow boundary layer. However, as indicated above, chemical losses are not expected to compete with physical losses.

To investigate the impact of RH on the net O₃ loss-rate constants, two nights with temperature inversions are plotted in Figure S9; one with high RH (92 ± 3 %) and one with a lower RH (63 ± 6 %). Here we see a large decrease in \(k_l(O_3) \) from \(3.0 \times 10^{-4} \text{ s}^{-1} \) to \(4.5 \times 10^{-5} \text{ s}^{-1} \), when going from high to lower RH. The individually determined O₃ loss-rate constants are plotted as a function of RH in Figure 4 and coloured depending on whether a temperature inversion is observed or not.
during the time period which was used for the exponential decay fit. A clear increase in O$_3$ loss-rate constants can be observed when RH increases above 70-80% when a temperature inversion was observed. A small increase at RH higher than 70-80% was also observed when temperature inversions were absent. The observed dependence of k_3(O$_3$) on relative humidity is consistent with previous studies in forested regions, which have reported an increase in O$_3$ loss above 60-70% RH (Altimir et al., 2006; Rannik et al., 2012; Zhou et al., 2017). Altimir et al. (2006) suggested an enhancement factor which is humidity dependent above 70% RH; 1 at 70% RH, 2 at 85% RH and a sharp increase to over 5 when moving towards 100% RH. In a boreal forest these observations have been explained by the formation of a “wet skin” on leaves which enhances surface O$_3$ losses by modifying (reducing) the surface-resistance to uptake (Zhou et al., 2017). This is in broad agreement with our observations during nights with a temperature inversion (see Figure 4), and the discrepancies between the studies could be explained e.g. by different tree types, the height of the boundary layer, strength of the inversion and temperature.

The faster net rate of O$_3$ loss on nights with high relative humidity and well-defined temperature inversions explain the differences observed in the O$_3$ mixing ratios at night during the Atlantic and continental phases. The average nighttime (20:00-04:00 UTC) RH for the Atlantic phase was 87.4 ± 7.6 (1σ) % compared to 68.4 ± 12.7 (1σ) % for the continental phase, indicating that on nights with temperature inversions higher loss-rate constants would be expected for the Atlantic phase. The high RH combined with the significantly lower average peak O$_3$ mixing ratio in the Atlantic phase (34.5 ± 6.0 (1σ) ppbv between 14:00-15:00 UTC) compared to the continental phase (52.7 ± 13.6 (1σ) ppbv between 14:00-15:00 UTC) explains why on nights with temperature inversions during the Atlantic phase the O$_3$ was essentially completely depleted as shown in Figure 2 and S7.

4.2 Nitrogen Oxide Soil Emissions

Figure 2 (left panel) and S7 show nighttime periods in which NO was observed when O$_3$ was depleted during the Atlantic phase. The several hours duration of the period when NO was above the LOD excludes very local combustion as the source, leaving soil emissions resulting from microbial activity (Davidson and Kingerlee, 1997) as the most likely source of NO. At 293 K and 2 ppbv of O$_3$, the lifetime of NO towards reaction with O$_3$ is around 20 minutes. It is therefore reasonable to assume that NO is close to steady-state when there is 2 ppbv or more of O$_3$ available. The NO emission rate (E_{NO}) can therefore be equated to the loss rate of NO as described in equation (1) assuming all peroxy radicals (XO$_2$) react with the same rate coefficient as HO$_2$:

$$E_{NO} = k_{NO+O3}[NO][O_3] + k_{NO+HO2}[XO_2][NO]$$ (1)

where k_{NO+O3} and k_{NO+HO2} are the temperature-dependent rate constants for the reaction between NO and O$_3$ and HO$_2$, respectively, (IUPAC, 2023) and [NO], [O$_3$] and [XO$_2$] are the measured concentrations of NO, O$_3$ and XO$_2$, respectively. In Figure 5, NO and E_{NO} (when O$_3$ > 2 ppbv) at nighttime (JNO$_2$ < 10$^{-5}$ s$^{-1}$) are separated by air masses and plotted against O$_3$, where the outliers are defined as being outside 1.5 × interquartile range (IQR). While the nighttime NO mixing ratio increased rapidly when O$_3$ tended towards 0 ppbv during the Atlantic phase, O$_3$ was never depleted to less than 5 ppbv during the Continental phase and therefore no sustained periods of enhanced
NO were observed at nighttime. In contrast, no significant trend is found when plotting E_{NO} against
O_3 for either of the phases, which shows that the calculated soil emission of NO is not dependent
on O_3. This indicates that while the soil is an important but variable source of NO, sustained
nighttime NO peaks are only observed above the instrument LOD when O_3 is almost totally
depleted so that the lifetime of NO is long enough to allow its concentration to build-up
sufficiently.

Water content and temperature have previously been shown to impact the emission rate of NO
from soil (Pilegaard, 2013; Rosenkranz et al., 2006). Rosenkranz et al. (2006) found a positive
correlation between soil moisture and NO emission up to 40% water-filled pore space (WFPS) and
an optimum between 12.5 and 15 °C soil temperature in a sessile oak forest in Hungary. In Figure
6, NO and E_{NO} are plotted against the soil temperature and moisture at 5 cm below the surface.
The measured NO mixing ratios peak towards the highest soil moisture and lowest soil temperature
measured during this campaign, however, as with O_3, there is no significant trend in the NO
emission rates with soil moisture. At the low (11.5-12.5 °C) and high (19.5-20.5 °C) nighttime soil
temperatures very few measurements were made (around 2 hours combined) compared to the rest
of the temperature intervals. Across the remaining temperature intervals, no significant trend was
observed in the estimated NO emission.

The average NO emission rate derived for the two phases is identical with values of
1.45 ± 1.61 ppbv h$^{-1}$ (1σ, median = 1.27 ppbv h$^{-1}$) and 1.42 ± 5.68 ppbv h$^{-1}$ (1σ, median = 0.71
ppbv h$^{-1}$) for the Atlantic and Continental phases, respectively, when using data where $O_3 > 2$
ppbv. The Continental phase show much higher variability resulting from more spikes in the data
during that period. When O_3 is completely depleted during the Atlantic phase, the increase in NO
per hour results in NO emission rates of 0.3-1.8 ppbv h$^{-1}$, which is in reasonable agreement with
the averages across each of the two phases when there is still O_3 present. By assuming a mixed
nocturnal boundary layer (NBL) with a height of 20 m (top of the canopy), the average emission
rates can be converted to NO emission fluxes of 16.6 ± 18.5 (1σ) and 16.2 ± 65.0 (1σ) µg N m$^{-2}$ h$^{-1}$
respectively. These values are within the range of previous measurements in different European
forests with similar tree types to those found in the Rambouillet forest (see Table 1). The
measurements by Pilegaard et al. (2006) and Rosenkranz et al. (2006) were all performed using
the chamber technique, whereas Schindlbacher et al. (2004) measured the emission from soil
samples collected in the field and exposed to different temperatures and humidity in the laboratory.
The chamber-derived emission rates are all either lower or, within combined uncertainties, equal
to the values determined in this study, while emission rates from the soil samples were higher than
(or, within combined uncertainties, equal to) the values derived in the present study. Davidson and
Kingerlee (1997) modelled the global NO emission inventory from soil depending on the biome
(e.g. temperate forest, agriculture, and savanna), and split the temperate forest category into
regions affected by nitrogen deposition or not. For temperate forests not affected by nitrogen
deposition, those authors estimated a flux of 0.0-0.2 kg N ha$^{-1}$ yr$^{-1}$ (0.0-2.3 µg N m$^{-2}$ h$^{-1}$), which is
in good agreement with the lower measurements by Pilegaard et al. (2006). In contrast, the
temperate forests impacted by nitrogen deposition had estimated fluxes of 1.1-5.0 kg N ha$^{-1}$ yr$^{-1}$
(12.6-57.1 µg N m$^{-2}$ h$^{-1}$), which is in good agreement with our measurements at Rambouillet where
nitrogen deposition is enhanced by pollution arriving from Paris and other surrounding urbanized
/ industrialized areas. While noting that our fluxes are broadly consistent with previous
measurements, we recognise that the calculations are based on the assumptions of a well-mixed
boundary layer of fixed height arbitrarily set at 20 m and should not be over-interpreted.

4.3 Nitrogen Dioxide Losses

At nighttime, in the absence of its photolysis, NO₂ may be expected to increase in concentration
(via R2) when a constant NO source exists (e.g. from soil, as observed here) and when O₃ is
present. For both the Atlantic and the Continental phases an average diel profile between 20.00
and 04.00 UTC of NO₂ (black) is plotted in Figure 7. No obvious increase in NO₂ can be observed
in the Atlantic phase and an average increase of around 1 ppbv can be observed in the Continental
phase. The expected NO₂ resulting from the NO + O₁ reaction if there were no loss mechanisms
of NO₂ is plotted in red. This is determined using the NO₂ measured at 20.00 UTC and
incrementing this value by the NO₂ that would have been produced through NO oxidation by O₃
and peroxy radicals in each time step. In both phases, the simple assumption of nighttime NO₂
production through NO + O₁ and NO + XO₂ and no NO₂ loss results in significant generation of
NO₂ with an overestimation of 10-12 ppbv of NO₂ at the end of the night compared to the measured
NO₂. A loss mechanism of around 1.4 ppbv h⁻¹ of NO₂ is therefore necessary to explain the
observed (lack of increase in) NO₂.

4.3.1 Chemical Losses

While during the daytime NO₂ is removed in a largely irreversible process through reaction with
OH radicals to form HNO₃, this is unlikely to represent a significant sink at nighttime. In the
absence of photochemical formation pathways, OH is generated at night in the ozonolysis of
olefins and in the reaction of HO₂ with NO₃ and NO.

\[\text{O}_1 + \rightarrow \rightarrow \rightarrow \text{OH} \quad \text{(R11)} \]
\[\text{NO}_3 + \text{HO}_2 \rightarrow \text{OH} + \text{NO}_2 + \text{O}_2 \quad \text{(R12)} \]
\[\text{NO} + \text{HO}_2 \rightarrow \text{OH} + \text{NO}_2 \quad \text{(R4)} \]

In the forested environment in summer, the emissions of biogenic volatile organic compounds
(BVOC) (e.g. olefinic terpenoids) will favour R11 and simultaneously disfavour R12 as NO₂ will
be reduced in concentration through its reactions with BVOCs. During the ACROSS campaign
ground NO₃ levels were generally below instrument detection limits of 2 pptv and we can
reasonably ignore R12. Measurements of OH in forested environments are sparse, though they
indicate that nocturnal OH levels are low, with concentrations generally lower than \(1 \times 10^5\)
molecule cm⁻³. Combining the rate coefficient for reaction of OH with NO₂ of \(~1 \times 10^{-11}\) cm³
molecule⁻¹ s⁻¹ (IUPAC, 2023) at ambient pressure and ≈ 300 K with an upper limit (confirmed by
measurements) to the OH concentration of \(1 \times 10^6\) molecule cm⁻³ results in a NO₂ loss constant of
\(1 \times 10^{-5}\) s⁻¹, or (at the average nighttime NO₂ = 1650 pptv) a loss rate of \(~60\) ppt h⁻¹, clearly
insufficient to explain the observations.
NO$_2$ is also lost via its reaction with O$_3$ to form the NO$_3$ radical (R8). In an upcoming paper, we will show that the majority of NO$_3$ formed in the forest will react with BVOCs rather than with NO (to re-form NO$_2$) and, to a good approximation, R8 represents an irreversible loss of NO$_2$ as the alkyl nitrates will not release nitrogen in the form of NO$_2$ at nighttime. However, the rate coefficient for this process (3.5 x 10$^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$ at 298 K, (IUPAC, 2023)) is very small and with average nighttime O$_3$ levels reduced by deposition (see above) to 23 ppbv, the lifetime of NO$_2$ with respect to this reaction is 14 hours and the loss-rate (at the average nighttime NO$_2$ = 1650 pptv) is ~120 pptv h$^{-1}$, again too slow to contribute significantly to the apparent loss rate of NO$_2$.

The chemical loss of NO$_2$ via reaction with OH or via formation of NO$_3$ and its further reactions with BVOC to form alkyl nitrates is expected to result in the conversion of NO$_X$ to NOY. As described in section 3.1.1, during the ACROSS campaign we operated a NO$_Y$ instrument to measure NO$_Y$ both in the gas- and particle-phases. Figure 8 displays the average diel profiles of NO$_Z$ (NO$_Y$-NO$_X$) and pNO$_3$ during the Atlantic and Continental phases. For both NO$_Z$ and pNO$_3$ the diel profiles show either a decrease or stable mixing ratio across the period in which losses of 10-12 ppbv of NO$_2$ are required to explain the observations. Clearly, the loss of NO$_2$ at nighttime is not balanced by the formation of other forms of reactive nitrogen that were long lived enough to be detected. Trace gases such as HNO$_3$ or alkyl nitrates may be lost via deposition to surfaces, especially at high relative humidity and lifetimes for biogenic alkyl nitrates of a few hours have been reported (Liebmann et al., 2019; Farmer and Cohen, 2008; Browne et al., 2013; Romer Present et al., 2019). However, as shown above, the limiting step in the formation of organic nitrates is the slow reaction of NO$_2$ with O$_3$, which will not convert sufficient NO$_2$ to NO$_2$ to explain our observations. Formation of organic nitrates that do not require the intermediacy of NO$_3$ (i.e. peroxy nitrates formed from RO$_2$ + NO$_2$) would also have been detected by the NO$_Y$ instrument and can thus also be ruled out as major reservoirs of NO$_X$.

NO$_2$ deposited to humid surfaces can be converted to HONO and released to the atmosphere (Elshorbany et al., 2012; Meusel et al., 2016). A time series of HONO can be found in Figure S2 which reveals increases in HONO at nighttime. However, the HONO mixing ratios can account for only a small fraction of the NO$_2$ loss described above. This may reflect the fact that, if formed at a moist surface, (soluble) HONO is unlikely to desorb quantitatively into the gas-phase. The low HONO mixing ratios measured during the Atlantic phase compared to the Continental phase, could potentially be explained by the difference in soil humidity, however, the factors influencing the formation and release of HONO are complex. The HONO observations will be analysed in detail in a seperate publication from the ACROSS campaign.

In the absence of other known gas-phase mechanisms for the removal of NO$_2$ at night and the fact that very little other reactive nitrogen trace-gases or nitrate particles are formed during the night, we conclude that physical removal of NO$_2$ (i.e. deposition) is responsible for its lack of build-up at night during ACROSS and that any transformation of NO$_2$ at the surface does not lead to quantitative release into the gas-phase.
4.3.2 Physical Losses

NO₂ is known to be lost through dry deposition to surfaces such as soil and leaves, the latter depending on whether the stomata are open (daytime) or not fully open (nighttime) (Delaria et al., 2020; Delaria et al., 2018; Chaparro-Suárez et al., 2011). As for O₃, dry deposition of NO₂ to surfaces can be described by an exponential decay with a first-order decay rate constant, \(k_l(\text{NO}_2) = (V_d/h) \), where \(V_d \) is the deposition velocity and \(h \) is the boundary layer height. This expression applies when gradients within the boundary layer are weak, as expected for NO₂ (see above) even though vertical mixing is very slow at night. The net production (or loss) of NO₂ is given by Eq. (2) where the first term on the right-hand side is the NO₂ production rate from the reaction of NO with O₃ or XO₂ (which is identical to the NO soil emission rate) and the second term is the loss rate assuming only depositional losses (see above) and ignoring entrainment of NO₂ from other heights. This will give an upper limit of the NO₂ deposition rate as a small fraction (<10%) of NO₂ is lost through chemical reactions with O₃ and OH (see above).

\[
\frac{d[\text{NO}_2]}{dt} = E_{\text{NO}} - k_l(\text{NO}_2)[\text{NO}_2]_0 \tag{2}
\]

[NO₂]₀ is the NO₂ mixing ratio at 20.00 UTC. The NO₂ concentration at any subsequent time can then be calculated as described in Eq. (3) with variation of \(k_l(\text{NO}_2) \) in order to match the observed NO₂ mixing ratio.

\[
[\text{NO}_2]_t = \int_0^t \frac{d[\text{NO}_2]}{dt} + [\text{NO}_2]_0 \tag{3}
\]

In Figure 7 the grey lines symbolize the calculated NO₂ mixing ratios at nighttime using values of \(k_l(\text{NO}_2) \) between \(1.0 \times 10^{-4} \) and \(4.0 \times 10^{-4} \) s⁻¹. As expected, no single value of \(k_l(\text{NO}_2) \) can explain all the measurements as the height of the BL will not be invariant during the whole night. However, for the Continental and Atlantic phases the observed NO₂ can be explained with \(k_l(\text{NO}_2) = (2.0 \pm 1.0) \times 10^{-4} \) s⁻¹ and \(k_l(\text{NO}_2) = (2.75 \pm 1.25) \times 10^{-4} \) s⁻¹, respectively, which results in lifetimes of ~1-3 h and ~40-110 min for NO₂ at nighttime. As deposition of NO₂ in this environment represents a permanent loss of NOₓ from the gas phase, this lifetime can be compared to e.g. the lifetime of NOₓ with respect to its conversion to HNO₃ via reaction of NO₂ with OH which is ~1 day (assuming average [OH] = 1 \times 10^6 molecule cm⁻³). Clearly, nighttime depositional losses of NO₂ in a forested environment contribute substantially to its lifetime and to the NOₓ budget.

If we continue to assume the nocturnal boundary layer at the forest site is at the top of the canopy (20 m), then the NO₂ loss-rate constants we determined can be converted to a deposition velocity of \(0.4 \pm 0.2 \) cm s⁻¹ and \(0.55 \pm 0.25 \) cm s⁻¹ for the Continental and Atlantic phase, respectively. These are comparable to previous measurements of NO₂ deposition velocities of 0.15 cm s⁻¹ (Breuninger et al., 2013), 0.2-0.5 cm s⁻¹ (Horii et al., 2004), 0.02-0.64 cm s⁻¹ (Puxbaum and Gregori, 1998), for a mountain observatory surrounded by coniferous trees, boreal coniferous forests, a temperate coniferous forest, a temperate mixed deciduous forest, and a temperate oak forest, respectively, where a combination of soil and foliage deposition is measured. Horii et al. (2004) saw an increase in deposition velocity with increasing NO₂ mixing ratio; from 0.2 cm s⁻¹ at 1 ppbv to 0.5 cm s⁻¹ at 30 ppbv. Puxbaum and Gregori (1998) reported monthly averages of 0.02-0.64 cm s⁻¹, however, their
nighttime deposition velocities averaged below 0.05 cm s\(^{-1}\). The deposition velocities determined
here are a factor of 5-40 higher than what has been measured for nighttime foliage deposition
velocities to the leaves of different trees native to California (Delaria et al., 2020; Delaria et al.,
2018), but in good agreement with measurements for daytime. It is, however, important to note
that the deposition velocities estimated here are upper limits as the estimation of the NO emission
rate is an upper limit and chemical loss of NO\(_2\) is not taken into account. Using an average
nighttime NO\(_2\) mixing ratio of 1650 and 1450 pptv for the Continental and Atlantic phase,
respectively, results in NO\(_2\) deposition rates of 13.6 \pm 6.8 \mu g \text{ N m}^{-2} \text{ h}^{-1} \text{ and } 18.7 \pm 8.5 \mu g \text{ N m}^{-2} \text{ h}^{-1},
which are in reasonable agreement with that measured for soil NO\(_2\) deposition in a sessile oak
forest of 9.67 \pm 1.92 \mu g \text{ N m}^{-2} \text{ h}^{-1} during the summer (Rosenkranz et al., 2006). The estimated NO
soil emission rate and NO\(_2\) deposition rate are, within the uncertainties, identical, which means the
Rambouillet forest is not a significant direct source or sink of NO\(_X\).

5 Summary:
Measurements of NO, NO\(_2\), NO\(_Y\), and O\(_3\) during the ACROSS campaign (June-July 2022) in the
Rambouillet forest southwest of Paris, France, have been used to gain insight into nighttime
processes controlling NO\(_X\) in an anthropogenically impacted forest environment. Based on
HYSPLIT back trajectories, two phases of the campaign were identified; one dominated by air
originating over the Atlantic Ocean ("Atlantic"), which on average had high relative humidity and
low O\(_3\) mixing ratios, and one dominated by continental air masses from different
urban/industrialized regions ("Continental"), which on average had a lower relative humidity than
the Atlantic phase and higher O\(_3\) mixing ratios. Strong diel profiles were observed in the O\(_3\)
measurements across the campaign with daytime peak mixing ratios varying from \(~30\) to \(90\) ppbv
and nighttime tending towards \(0-10\) ppbv. The daily variation was driven by a variable but
generally rapid O\(_3\) deposition to soil and foliar surfaces, with a strong influence of relative
humidity (influencing the surface resistance to uptake) and inversion (influencing the rate of
entrainment of O\(_3\) from above the canopy).

During the Atlantic phase, periods of sustained NO above the instrumental detection limit was
observed at nighttime when O\(_3\) was sufficiently low (i.e. the NO lifetime sufficiently long). This
enabled the derivation of an average NO emission rate from the soil (E\(_{\text{NO}}\)) of \(~1.4\) ppbv h\(^{-1}\), which
was confirmed by the approximately linear increase in NO observed in the absence of O\(_3\) in the
Atlantic phase. The estimated E\(_{\text{NO}}\) is in broad agreement with previous measurements in other
European temperate forests with tree types as found in the Rambouillet forest.

An increase in NO\(_2\) at night would be expected when having a constant NO emission rate of
\(~1.4\) ppbv h\(^{-1}\) in the presence of O\(_3\) as observed in this study, however, this was not the case. The
lack of increase in NO\(_2\) was used to estimate first-order decay constants of \((2.0 \pm 1.0) \times 10^{-4} \text{ s}^{-1}\)
and \((2.75 \pm 1.25) \times 10^{-4} \text{ s}^{-1}\) resulting in an effective lifetime of NO\(_2\) of \(~0.5-3\) h. The loss of NO\(_2\)
at nighttime is presumably driven by deposition to soil and foliar surfaces since the lifetime of
NO\(_2\) towards its reactions with OH and O\(_3\) at night is \(>28\) and \(14\) h, respectively. By comparison,
the daytime lifetime of NO\(_2\) with respect to loss by reaction with OH is about 1 day. We conclude
that the nighttime deposition of NO$_2$ is a major sink of boundary layer NO$_X$ in this forested environment.

6 Data Availability:
All data can be found on https://across.aeris-data.fr/catalogue/.

7 Author contribution:
All authors contributed with measurements. Data analysis was conducted by STA with contributions from JNC and PD. CC and VM organized the field campaign with contributions from the individual group leads. STA and JNC developed the manuscript with contributions from all authors.

8 Competing Interests:
At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.

9 Acknowledgements:
STA is thankful to the Alexander von Humboldt foundation for funding her stay at MPIC. PD gratefully acknowledges the Deutsche Forschungsgemeinschaft (project “MONOTONS”, project number: 522970430).
The ACROSS project has received funding from the French National Research Agency (ANR) under the investment program integrated into France 2030, with the reference ANR-17-MPGA-0002, and it was supported by the French National program LEFE (Les Enveloppes Fluides et l'Environnement) of the CNRS/INSU (Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers). Data from the ACROSS campaign are hosted by the French national center for Atmospheric data and services AERIS.
IMT Nord Europe acknowledges financial support from the CaPPA project, which is funded by the French National Research Agency (ANR) through the PIA (Programme d’Investissement d’Avenir) under contract ANR-11-LABX-0005-01, the Regional Council “Hauts-de-France” and the European Regional Development Fund (ERDF).

10 References:

Ciencewicki, J. and Jaspers, I.: Air Pollution and Respiratory Viral Infection, Inhalation Toxicology, 19, 1135-1146, 10.1080/089583701665434, 2007.

Dewald, P., et al.: Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements, Atmos. Chem. Phys., 22, 7051-7069, 10.5194/acp-22-7051-2022, 2022.

Farmer, D. K. and Cohen, R. C.: Observations of HNO$_3$, ΣAN, ΣPN and NO$_2$ fluxes: evidence for rapid HO$_x$ chemistry within a pine forest canopy, Atmos. Chem. Phys., 8, 3899-3917, 10.5194/acp-8-3899-2008, 2008.

Meusel, H., et al.: Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO, Atmos. Chem. Phys., 16, 14475-14493, 10.5194/acp-16-14475-2016, 2016.

Rannik, Ü., et al.: Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables, Atmos. Chem. Phys., 12, 12165-12182, 10.5194/acp-12-12165-2012, 2012.

Weber, P. and Rennenberg, H.: Dependency of nitrogen dioxide (NO2) fluxes to wheat (Triticum aestivum L.) leaves from NO2 concentration, light intensity, temperature and relative humidity determined from controlled dynamic chamber experiments, Atmos. Env., 30, 3001-3009, https://doi.org/10.1016/1352-2310(96)00008-8, 1996.

11 Figures:

Figure 1: 48-hour back trajectories from the Rambouillet forest supersite using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT, version 4, 2019).
Figure 2: Measurements of temperature, NO, O₃, RH, NO₂, and JNO₂ for two different nights during the campaign; one during the Atlantic phase (left panels) and one during the continental phase (right panels). The different colours symbolize four different heights; red = 3-6 m, grey = 13 m, orange = 21 m, and black = 41 m, and the blue shows the RH at 5 m. The grey shaded areas in the JNO₂ plots shows the time the MPIC container was in shade during the afternoon and morning (light grey) and nighttime (dark grey). The vertical black dashed lines indicate the beginning and end of the observed temperature inversions in the top panels.
Figure 3: The production of O$_3$ (JNO$_2$ × [NO$_2$]), temperature, RH, and O$_3$ plotted for two nights with high average RH; one without a temperature inversion (left panels) and one with a temperature inversion (right panels). The different colours symbolize four different heights; red = 5-5.4 m, grey = 13 m, orange = 21 m, and black = 41 m, and the blue shows the RH at 5 m. The net nighttime O$_3$ loss is fitted with an exponential decay curve (solid black line) in the bottom plots. The grey shaded areas represent the nighttime.
Figure 4: Net O₃ loss-rate constants at 5.4 m plotted against the average relative humidity measured during the time used to fit the exponential decay of O₃. The error bars represent ±1σ on the average RH. The dashed line symbolizes the observations made by Altimir et al. (2006).
Figure 5: NO (top) and NO emission (bottom) plotted against O$_3$ in a box-and-whiskers plot, where the outliers are defined as being outside $1.5 \times$ IQR. The colours represent the two different air masses.
Figure 6: NO (top panels) and NO emission (bottom panels) plotted against soil moisture (left panels) and temperature (right panels) at 5 cm below the surface in a box-and-whiskers plot, where the outliers are defined as being outside $1.5 \times$ IQR. The colours represent the two different air masses.
Figure 7: Average nighttime profiles of NO$_2$ at 5.4 m for each of the two phases (black) plotted together with the expected NO$_2$ with (grey) and without (red) NO$_2$ loss.
Figure 8: Average diel profiles of NO, NO$_2$, total gas-phase NO$_z$, and particulate nitrate (pNO$_3$) at 3-6 m above ground for the Atlantic (left panels) and Continental (right panels) phases. The grey shaded areas symbolize nighttime.
Table 1: Measured NO soil emission in European forests with the same tree types as in the Rambouillet forest.

<table>
<thead>
<tr>
<th>Dominant tree type</th>
<th>Location</th>
<th>NO emission (μg N m$^{-2}$ h$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oak</td>
<td>Matra Mountains, Hungary</td>
<td>2.1</td>
<td>(Pilegaard et al., 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0 ± 3.3 (summer)</td>
<td>(Rosenkranz et al., 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.4 ± 2.4 (autumn)</td>
<td>(Rosenkranz et al., 2006)</td>
</tr>
<tr>
<td>Pine</td>
<td>San Rossore, Italy</td>
<td>5.4</td>
<td>(Pilegaard et al., 2006)</td>
</tr>
<tr>
<td>Beech</td>
<td>Schottenwald, Austria</td>
<td>25.5 ± 7.5</td>
<td>(Schindlbacher et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>(Pilegaard et al., 2006)</td>
</tr>
<tr>
<td>Beech</td>
<td>Klausen-Leopoldsdorf, Austria</td>
<td>10.2 ± 3.4</td>
<td>(Schindlbacher et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>(Pilegaard et al., 2006)</td>
</tr>
<tr>
<td>Spruce-Fir-Beech</td>
<td>Achenkirch, Austria</td>
<td>2.8 ± 1.4</td>
<td>(Schindlbacher et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>(Pilegaard et al., 2006)</td>
</tr>
<tr>
<td>Mixed deciduous</td>
<td>Ticino Park, Italy</td>
<td>18.5 ± 5.8</td>
<td>(Schindlbacher et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Below LOD</td>
<td>(Pilegaard et al., 2006)</td>
</tr>
</tbody>
</table>