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Abstract. While deep learning (DL) models are effective in rainfall-runoff modelling, their dependence on data and lack of 

physical mechanisms can limit their use in hydrology. As there is yet no consensus on the consideration of the fundamental 

water balance for DL models, this paper presents an in-depth investigation of the effects of water balance constraint on the 

long-short term memory (LSTM) network. Specifically, based on the Catchment Attributes and Meteorology for Large-sample 10 

Studies (CAMELS) dataset, the LSTM and its architecturally mass-conserving variant (MC-LSTM) are trained basin-wise to 

provide rainfall-runoff prediction and then the robustness of the LSTM and MC-LSTM against data sparsity, random 

parameters initialization and contrasting climate conditions are assessed across the contiguous United States. Through large-

sample tests, the results show that the water balance constraint evidently improves the robustness of the basin-wise trained 

LSTM. On the one hand, as the amount of training data increases from 1 year to 15 years, the incorporation of the water 15 

balance constraint into the LSTM network decreases the sensitivity from 95.0% to 32.7%. On the other hand, the water balance 

constraint contributes to the stability of the LSTM for 450 (85%) basins when there are 3 years’ training data. In the meantime, 

the water balance constraint improves the transferability of the LSTM from the driest years to the wettest years for 318 (67%) 

basins. Overall, the in-depth investigations of this paper facilitate insights into the use of DL models for rainfall-runoff 

modelling. 20 
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Short summary. The lack of physical mechanism is a critical issue for the use of popular deep learning models. This paper 

presents an in-depth investigation of the fundamental mass balance constraint for deep learning-based rainfall-runoff prediction. 

The robustness against data sparsity, random parameters initialization and contrasting climate conditions are detailed. The 

results highlight that the water balance constraint evidently improves the robustness in particular when there is limited training 25 

data. 
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1 Introduction 

Deep learning (DL) has been increasingly used for rainfall-runoff modelling (Kratzert et al., 2018; Lees et al., 2021; 

Nearing et al., 2021; Shen, 2018; Tsai et al., 2021). Without explicit descriptions of the underlying physical processes and 30 

related assumptions, DL models are set up to directly capture response patterns hidden in large datasets (Feng et al., 2020; 

LeCun et al., 2015). DL models have been shown to exhibit superiority in effectively simulating complex nonlinear systems 

across different fields owing to the rapid growth of available data and advances in computational capability (LeCun et al., 

2015; Reichstein et al., 2019; Wang et al., 2023). Effective in dealing with the complexity and nonlinearity of rainfall-runoff 

processes, DL models have become popular in hydrological applications (Frame et al., 2022; Gauch et al., 2021a; Nearing et 35 

al., 2021; Kratzert et al., 2018). There are extensive uses of the long short-term memory (LSTM) network (Kratzert et al., 

2018), the recurrent neural network (Nagesh Kumar et al., 2004), the gate recurrent unit (Zhang et al., 2021), the sequence-to-

sequence model (Xiang et al., 2020) and the encoder-decoder model (Kao et al., 2020). 

The LSTM network is one of the most important DL models (Feng et al., 2021; Jiang et al., 2022; Kao et al., 2020; Lees 

et al., 2022; Razavi, 2021). Due to the recurrent structure and unique gating mechanism (Hochreiter and Schmidhuber, 1997), 40 

the LSTM network can account for not only nonlinear relationships but also temporal dependencies among variables (Jiang et 

al., 2022; Read et al., 2019). These inherent capabilities make the LSTM network well suited for modelling hydrologic 

dynamics, especially multi-scale memory effects such as the persistence and release of water from soil moisture and snowpack 

(Pokharel et al., 2023; Wi and Steinschneider, 2022). To date, substantial efforts have been made to exploit the predictive 

capability of the LSTM network (Jiang et al., 2022). Compared to process-based hydrologic models, the LSTM network has 45 

been shown to be similarly effective or even better in rainfall-runoff prediction (Gauch et al., 2021a; Lees et al., 2021; Kratzert 

et al., 2018). There were thorough tests of Predictions in Ungauged Basins (PUB) (Kratzert et al., 2019a; Yin et al., 2021b), 

multistep predictions (Kao et al., 2020; Yin et al., 2021a; Xiang et al., 2020), predictions at multiple timescales (Gauch et al., 

2021a) and regional modelling (Kratzert et al., 2019b; Feng et al., 2020). 

The lack of physical mechanism is a critical issue in the use of the LSTM network as it is a black box model (Read et al., 50 

2019; Reichstein et al., 2019; Xie et al., 2021; Zhao et al., 2019). One the one hand, without explicit physical mechanism such 

as the conservation of mass and energy, the LSTM network cannot guarantee causal relationships as physical models can 

(Wang et al., 2023; Xie et al., 2021), which may lead to spurious and inaccurate prediction that is potential to violate water 

balance, particularly when extrapolating beyond the range of training data (Bhasme et al., 2022; Reichstein et al., 2019). This 

property reduces the credibility of the outputs of the LSTM network and limits its application (Cai et al., 2022; Read et al., 55 

2019; Wang et al., 2023). On the other hand, the lack of physical mechanism leads to the heavy reliance of the LSTM network 

on available observations (Read et al., 2019; Xie et al., 2021). Usually, the LSTM network requires a large amount of training 

data to learn the dynamics of complex systems so as to achieve robust performance (Gauch et al., 2021b; Kratzert et al., 2019b; 

Tsai et al., 2021; Yang et al., 2020).  
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There is recently a growing attention to the water balance constraint for the LSTM network (Frame et al., 2023; Hoedt et 60 

al., 2021; Nearing et al., 2020; Pokharel et al., 2023; Wi and Steinschneider, 2022). It has been found that the water balance 

constraint can enhance the accuracy and extrapolation ability of the LSTM network (Cai et al., 2022; Wang et al., 2023). 

Meanwhile, using an architecturally mass-conserving variant of the LSTM (MC-LSTM) (Hoedt et al., 2021), it has recently 

been observed that the water balance constraint can impair the predictive performance under extreme events (Frame et al., 

2023, 2022). Therefore, there is yet no consensus on the effects of the water balance constraint on the use of the LSTM network. 65 

Aiming to bridge the gap, this paper focuses on how the water balance constraint in model architecture affects the robustness 

of the basin-wise trained LSTM network for rainfall-runoff prediction. The objectives are (1) to investigate the robustness of 

the LSTM and MC-LSTM against data sparsity, (2) to assess their stability across random parameters initialization and (3) to 

verify their transferability under contrasting climate conditions. To this end, large-sample tests for rainfall-runoff prediction 

are devised based on the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset across the 70 

contiguous United States. 

 

2 Methods 

2.1 LSTM 

The LSTM network takes a recurrent architecture, allowing information to be stored and passed over time steps through 75 

the cell state vector (𝑐𝑡) and the hidden state vector (ℎ𝑡) (Hochreiter and Schmidhuber, 1997; Jiang et al., 2022). At each time 

step 𝑡, the recurrent unit utilizes the current input (𝑋𝑡) and previous hidden state (ℎ𝑡−1) to calculate three gates, the input gate 

(𝑖𝑡), forget gate (𝑓𝑡) and output gate (𝑜𝑡), which control what new information to add in, what previous information to forget 

and what current information to output, respectively. Finally, the hidden state (ℎ𝑡) is passes through a head layer to derive the 

final prediction. The above process can be formulated as follows: 80 

{
  
 

  
 
𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑋

𝑡 +𝑊ℎ𝑓ℎ
𝑡−1 + 𝑏𝑓)

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑋
𝑡 +𝑊ℎ𝑐ℎ

𝑡−1 + 𝑏𝑐)

𝑖𝑡  = 𝜎(𝑊𝑥𝑖𝑋
𝑡 +𝑊ℎ𝑖ℎ

𝑡−1 + 𝑏𝑖)

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑖𝑡⊙ 𝑐�̃�

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑋
𝑡 +𝑊ℎ𝑜ℎ

𝑡−1 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡⊙ tanh(𝑐𝑡)

(1) 

where 𝑊 and 𝑏 respectively indicate learnable weights and bias to be calibrated during training period. Additionally, 𝜎, 𝑡𝑎𝑛ℎ 

and ⊙ represent the sigmoid function, the tanh function and the element-wise multiplication, respectively. 
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2.2 Water balance constraint 85 

The Theory-Guided Data Science (TGDS) (Faghmous et al., 2014; Faghmous and Kumar, 2014; Karpatne et al., 2017) 

has presented a new paradigm to incorporate physical constraints into DL models so that their predictions tend to be physically 

consistent (Jiang et al., 2020; Karniadakis et al., 2021; Read et al., 2019; Wang et al., 2023; Wi and Steinschneider, 2022). As 

one of the TGDS strategies, the mass-conserving LSTM (MC-LSTM) is an architecturally mass-conserving variant of the 

LSTM network (Hoedt et al., 2021). Specifically, the mass conservation constraint is incorporated into the architecture of the 90 

LSTM network in order to enforce water balance in rainfall-runoff prediction (Frame et al., 2023, 2022; Hoedt et al., 2021; 

Nearing et al., 2021). 

The MC-LSTM employs normalized activation functions and subtracts the output mass from the storage mass to enforce 

conservation laws in the architecture of the LSTM network. According to whether directly related to the mass, input variables 

are distinguished between mass inputs (𝑥𝑡) and auxiliary inputs (𝑎𝑡). The normalized activation functions are used in the input 95 

gate (𝑖𝑡) and the forget gate (𝑅𝑡) to guarantee that mass is conserved from the mass inputs (𝑥𝑡) and the previous cell states 

(𝑐𝑡−1). Furthermore, the output mass (ℎ𝑡) is subtracted from the total mass (𝑚𝑡) through the output gate (𝑜𝑡) to keep mass 

conserved between the cell states (𝑐𝑡) and the output mass. Mathematically, the MC-LSTM is described as follows: 

𝑖𝑡 = �̃� (𝑊𝑖𝑎
𝑡 + 𝑈𝑖

𝑐𝑡−1

‖𝑐𝑡−1‖1
+ 𝑉𝑖𝑥

𝑡 + 𝑏𝑖) (2) 

𝑜𝑡 =  𝜎 (𝑊𝑜𝑎
𝑡 + 𝑈𝑜

𝑐𝑡−1

‖𝑐𝑡−1‖1
+ 𝑉𝑜𝑥

𝑡 + 𝑏o) (3) 100 

𝑅𝑡 = 𝑅𝑒𝐿�̃� (𝑊𝑟𝑎
𝑡 + 𝑈𝑟

𝑐𝑡−1

‖𝑐𝑡−1‖1
+ 𝑉𝑟𝑥

𝑡 + 𝑏𝑟) (4) 

𝑚𝑡 = 𝑅𝑡𝑐𝑡−1 + 𝑖𝑡𝑥𝑡 (5) 

𝑐𝑡 = (1 − 𝑜𝑡) ⨀ 𝑚𝑡 (6) 

ℎ𝑡 = 𝑜𝑡  ⨀ 𝑚𝑡 (7) 

𝑦𝑡 =∑ℎ𝑖
𝑡

𝑛

𝑖=2

(8) 105 

where 𝑊, 𝑈 and 𝑉 represent learnable weights; 𝑏 denotes the learnable bias; �̃� and 𝑅𝑒𝐿�̃� indicate the normalized sigmoid 

function and the normalized ReLU function as Eq. (9) and Eq. (10), respectively. 

�̃�(𝑖𝑘) =
𝜎(𝑖𝑘)

∑ 𝜎(𝑖𝑘)𝑘

(9) 

𝑅𝑒𝐿�̃�(𝑠𝑘) =
𝑚𝑎𝑥(𝑠𝑘 , 0)

∑ 𝑚𝑎𝑥(𝑠𝑘 , 0)𝑘

(10) 
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For unobserved mass sinks, e.g., evapotranspiration, the MC-LSTM takes a subset of the output mass vector to accumulate 110 

the output water that does not convert to runoff. Given that, the runoff (𝑦𝑡) is the sum of the output mass vector, excluding that 

subset representing the unobserved mass sinks, shown in equation (8). Accordingly, the internal calculations of the MC-LSTM 

ensure strictly mass-conservation (here water balance) at any timesteps, between inputs (here precipitation), outputs (here 

runoff and other sinks) and cell states (here water storage) (Frame et al., 2023). 

 115 

2.3 EXP-HYDRO 

The EXP-HYDRO model is employed to benchmark the performances of the LSTM and MC-LSTM. The EXP-HYDRO 

model is a daily conceptual hydrological model that strictly adheres to mass conservation (Patil and Stieglitz, 2014). It has 2 

state variables referred to as a snow accumulation bucket (𝑆0) and a catchment bucket (𝑆1) with the water balance equation 

expressed as: 120 

{

𝑑𝑆0
𝑑𝑡

= 𝑃𝑠 −𝑀                    

𝑑𝑆1
𝑑𝑡

= 𝑃𝑟 +𝑀 − 𝐸𝑇 − 𝑄

(11) 

where 𝑀 , 𝐸𝑇 , 𝑄 , 𝑃𝑠  and 𝑃𝑟  are 5 flux variables, representing the snowmelt (mm/day), evapotranspiration (mm/day), 

streamflow (mm/day), daily snowfall (mm/day) and rainfall (mm/day), respectively, calculated by 3 input variables (the daily 

precipitation (𝑃, mm/day), temperature (𝑇, ℃) and day length (𝐿𝑑𝑎𝑦 , hour)).  

In this paper, the EXP-HYDRO model is wrapped with the DL architecture. That is, the non-analytically solvable ordinary 125 

differential equations (ODEs) of the EXP-HYDRO model are incorporated into the DL model (Jiang et al., 2020). Therefore, 

the model parameters are learnable during training period like a DL model while the internal calculations follow the ODEs of 

the EXP-HYDRO model. Comparing to the MC-LSTM, the EXP-HYDRO model has more specific physical processes to 

distribute water. 

 130 

3 Large-sample tests 

3.1 The CAMELS dataset 

Large-sample tests are devised based on the CAMELS dataset that comprises daily streamflow observations, catchment 

attributes and three basin-averaged daily meteorological forcing inputs for 671 basins across the contiguous United States over 

the period from1980 to 2010 (Addor et al., 2017; Newman et al., 2015). The CAMELS dataset has been used to support 135 

benchmark studies, generalization and application to other scenarios for its sufficiently long hydrometeorological time series 

and a large number of diverse basins (Feng et al., 2020; Frame et al., 2022; Kratzert et al., 2021, 2019b; Yin et al., 2021a). 
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The three meteorological forcing data in the CAMELS dataset are derived from three different gridded data products, i.e., 

Daymet, Maurer and North American Land Data Assimilation System (NLDAS). The Daymet (Thornton et al., 1997) is chosen 

as the forcing inputs here because of its high spatial resolution (1 km × 1km) and better forcing quality (Feng et al., 2022; 140 

Newman et al., 2015). For a direct comparison with the previous studies mentioned above, 531 basins are used, while other 

basins with an area greater than 2000 km2 or showing large discrepancies in their areas when calculated using different 

strategies are removed. In the LSTM, MC-LSTM and EXP-HYDRO modelling, the runoff is taken as the target variable and 

the precipitation, temperature, vapor pressure, solar radiation and day length as forcing variables. 

 145 

3.2 Experimental design 

Four experiments are set up to assess the effects of the water balance constraint on the robustness of the basin-wise trained 

LSTM for rainfall-runoff prediction in different aspects (Fig.1). For each experiment, three types of models with different 

degrees of physical constraints, a standard LSTM, a MC-LSTM and a DL wrapped EXP-HYDRO, are trained independently 

for each catchment. Experiment 1 tests the basic performances of the LSTM, MC-LSTM and EXP-HYDRO models in rainfall-150 

runoff prediction for 531 basins. Experiment 2 aims to determine how the water balance constraint affects the sensitivity of 

the LSTM network to data sparsity. Based on the predictions from Experiment 1 and Experiment 2, Experiment 3 quantifies 

the impact of the water balance constraint on the stability of the LSTM network against random parameters initialization. 

Experiment 4 is designed to assess the transferability of the three models under contrasting climate conditions and verify 

whether the water balance constraint enhances the transferability of the LSTM network. According to the results of Experiment 155 

2, the training period length of Experiment 4 is set to be 6 years, which is considered to be sufficient to ensure transferability 

yet provide robust training. 
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Figure 1. Schematic of (a) the split-sample for different sparse training datasets at each catchment and (b) (c) the modified DSST at 160 

catchment 01022500 (USGS code) based on annual precipitation for hydrological year (1 October to 30 September). 

 

Experiment 1: Performances of LSTM, MC-LSTM and EXP-HYDRO 

In order to test the predictive performances of the LSTM, MC-LSTM and EXP-HYDRO in modelling rainfall-runoff 

processes, these models are trained separately for each of the 531 basins. The performances of the LSTM and MC-LSTM are 165 

compared to quantify the general impact of the water balance constraint in model architecture to the LSTM network, while the 

EXP-HYDRO model serves as a benchmark. For each catchment, the training period covers 15 water years (from 1 October 

1980 to 30 September 1995) and the testing period also covers 15 water years (from 1 October 1995 to 30 September 2010). 

Given the uncertainty caused by the random initialization of model parameters, the training and testing of each model are 

https://doi.org/10.5194/egusphere-2023-2841
Preprint. Discussion started: 5 January 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

repeated for 10 times with different random seeds. In total, Experiment 1 yields 15,930 models, 30 models for each of the 531 170 

catchments. 

Experiment 2: Sensitivity to data sparsity 

To determine how the water balance constraint affects the sensitivity of the LSTM network to data sparsity, the LSTM, 

MC-LSTM and EXP-HYDRO models are trained on various sparse training datasets and then evaluated on the same testing 

datasets. For each catchment, the training period and testing period in Experiment 1 are considered as the complete training 175 

period and the testing period, respectively. Sparse training datasets are constructed for each basin by continually removing the 

data of entire water years from the earlier years of the whole training period instead of randomly removing, which can avoid 

excessive destruction of time dependency between data and simulate real scenarios that lack historical data (Read et al., 2019). 

Therefore, the sparse training datasets are set to 7%, 20%, 40%, 60% and 80% of the whole training data with the training 

period lengths ranging from 1 year to 12 years, as shown in Fig. 1a. Trained and tested repeatedly 10 times with different 180 

random seeds over the 531 basins, a total of 79,650 (10 × 3 × 5 × 531) models are obtained. 

Experiment 3: Stability against random parameters initialization 

Owing to the stochastic nature of the training process, the LSTM network can be disturbed by the initialization of model 

parameters (Kratzert et al., 2018). Accordingly, it is helpful to independently repeat the training and testing procedures for 

several times with different random seeds in order to eliminate the uncertainty caused by random initialization of model 185 

parameters (Feng et al., 2020; Kratzert et al., 2019a). While the average performance of the ensemble models is then considered 

as the stable performance, the differences among the performances of models with different random seeds reflect the stability 

of the specific model against random parameters initialization. Experiment 3 calculates the standard deviation of the 

performances from the 10-member ensemble models in Experiment 1 and Experiment 2 as the stability of the model. 

Experiment 4: Transferability under contrasting climate conditions 190 

The transferability is examined through a modified version (Broderick et al., 2016) of differential split sample testing 

(DSST) (KLEMEŠ, 1986). There are three datasets, the training, the control (independent but similar to the training data) and 

the testing data (independent and opposite to the training and the control data). Models are trained based on the training data, 

and the differences in performances between the control (in-bound test) and the testing data (out-of-band test) are indicative 

of transferability (Broderick et al., 2016). For each catchment, two scenarios are conducted to examine the transferability 195 

between the wettest and the driest hydrological years that identified from the total precipitation of hydrological years, while 

W/D (D/W) represents the scenario of training on the wettest (driest) years and then testing on the driest (wettest) years. In the 

W/D scenario, each model is trained using the first, third, fifth, sixth, eighth and tenth ranked wettest years, while model 

performance on the second, fourth, seventh and ninth ranked wettest years provides a benchmark to assess the transferability 

of the model tested on the contrasting second, fourth, seventh and ninth ranked driest years (as an example of the basin 200 

01022500 shown in Fig. 1b). In the D/W scenario, the transferability assessment is conducted using the opposite driest and 
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wettest years (as an example shown in Fig. 1c). Removing catchments without complete data from 1981 to 2010, 475 basins 

remain here, thus a total of 28,500 (10 × 3 × 2 × 475) models are trained and tested.  

 

3.3 Model training and evaluation 205 

All input variables of the LSTM are normalized by removing the mean and scaling by the standard deviation. For the 

MC-LSTM, the auxiliary inputs (input variables excluding precipitation) are normalized while the mass input (precipitation) 

not. The MC-LSTM is architecturally constrained to the water balance so that they do not utilize dropout strategy. In order to 

compromise between maximumly reducing the uncertainty caused by different numbers of model parameters and achieving 

potentially more powerful predictions, the hidden sizes of the LSTM and MC-LSTM networks are set to 50 and 20, respectively, 210 

so that their numbers of parameters differ by less than 0.1%. As the EXP-HYDRO model is a process-based model, there is 

no need for the DL wrapped EXP-HYDRO model to normalize their input variables and to set the hidden size or dropout rate. 

Excluding these settings above, the LSTM, MC-LSTM and EXP-HYDRO models in the four experiments have the same 

hyperparameters (shown in Table 1) and the same loss function: 

𝐹𝑉𝑈 =
∑ (𝑦𝑛 − �̂�𝑛)

2𝑁
𝑛=1

∑ (𝑦𝑛 − �̅�)
2𝑁

𝑛=1

(12) 215 

where N is the number of samples; �̂� and 𝑦𝑛 represent the simulated runoff and its corresponding observation, respectively; �̅� 

is the averaged value of observed runoff. 

 

Table 1. Hyperparameters of the LSTM, MC-LSTM and EXP-HYDRO models 

Hyperparameter LSTM MC-LSTM EXP-HYDRO 

Batch size 256 256 256 

Initial learning rate 0.01 0.01 0.01 

Learning rate decay 0.3 0.3 0.3 

Input time step (day) 365 365 365 

Lead time (day) 1 1 1 

Hidden size 50 20 - 

Dropout rate 0.4 - - 

Epoch Early stop Early stop Early stop 

Optimizer Adam Adam Adam 

 220 
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The Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) is used to quantify the performances of the rainfall-runoff 

predictions here. As shown below, KGE summarizes model performance in three key aspects: correlation, bias and variance. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (13) 

𝛽 =
𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

(14) 

𝛾 =
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

(15) 225 

where 𝑟 is the correlation coefficient between simulations and observations; 𝛽 represents the ratio between mean simulations 

and mean observations; 𝛾 measures the relative variability in the simulations and observations; 𝜇 and 𝜎 represent the mean 

and standard deviation of the runoff series, respectively (Gupta et al., 2009).The value of KGE varies from negative infinity to 

1, with a value closer to 1 suggesting superior model performance. 

The model performance comprises two essential aspects: accuracy and robustness. The accuracy is calculated as the mean 230 

KGE of the 10-member ensembles. The robustness is composed of three aspects: (a) the sensitivity to data sparsity, (b) the 

stability against random parameters initialization and (c) the transferability under contrasting climate conditions. In experiment 

2, the sensitivity of a model at a catchment is estimated from the variation range in the KGE under varying sparse training data 

sets. A larger variation range suggests the high sensitivity of a model to data sparsity. In experiment 3, the stability of a model 

is calculated as the standard deviation of KGE values from 10-member ensembles, while a higher standard deviation of KGE 235 

values indicates the worse stability of a model across random parameters initialization. In experiment 4, the transferability is 

estimated as the KGE difference between the control data and the corresponding testing data. The transferability of a model is 

better with a lower KGE difference under contrasting climate conditions. 

 

4 Results 240 

4.1 Performances of LSTM, MC-LSTM and EXP-HYDRO 

The predictive performances of the LSTM, MC-LSTM and EXP-HYDRO models across the 531 catchments are 

examined by the KGE in Fig. 2. Specifically, the left panel illustrates the boxplot of the KGE values and the right panel displays 

the empirical cumulative distributions. It can be observed that there is marginal difference in the performances of the LSTM 

and MC-LSTM as the median KGE is respectively 0.676 and 0.679 (shown in the penultimate column in Table 2). In particular, 245 

the distributions of mean KGE for the LSTM and MC-LSTM are similar, which is illustrated by their cumulative distribution 

curves that are close to overlapping in Fig. 2. These results indicate that the water balance constraint has little impact on the 

general accuracy of the LSTM network when it is trained with data of 15 years for a single basin, which is consistent with 
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previous studies (Hoedt et al., 2021; Nearing et al., 2020). In the meantime, the LSTM and MC-LSTM generally outperform 

the EXP-HYDRO model, which is visually shown by the rightward shifts of the empirical cumulative distributions for the 250 

LSTM and MC-LSTM compared to the EXP-HYDRO models in Fig. 2. 

 

 

Figure 2. Empirical cumulative distributions and boxplot of the evaluation performances for the LSTM, MC-LSTM and EXP-HYDRO 

models across the 531 catchments. The performance of each model for each basin is summarized by the mean value of KGE across different 255 

random seeds. 

 

4.2 Sensitivity to data sparsity 

In the testing period, the hydrographs of two basins where different models are trained with different amounts of training 

data are shown in Fig. 3. Not surprisingly, the LSTM network exhibits the largest variability of KGE values when the training 260 

period length is 3 years. As the length of training data is increased from 3 years to 15 years, the variability of ensemble KGE 

values for the LSTM decreases, while there are less changes of the variability of the ensemble KGE values for the MC-LSTM 

and EXP-HYDRO models. In the basin 01439500, the MC-LSTM and EXP-HYDRO models outperform the LSTM with 

better goodness of fit and more narrow ranges of predictions. With the length of training data increased from 3 years to 15 

years, the LSTM becomes more accurate, and its prediction ranges narrow. In the basin 11532500, the LSTM, MC-LSTM and 265 

EXP-HYDRO models fit well with both 3- and 15-year training data. The LSTM network becomes more accurate with more 

training data. 

 

https://doi.org/10.5194/egusphere-2023-2841
Preprint. Discussion started: 5 January 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

 

Figure 3. Hydrograph comparisons between different models with two different training period lengths. The bands of runoff represent the 270 

prediction ranges of 10-member ensembles with different random seeds. 

 

Figure 4 presents an illustration of the KGE values across the 531 catchments under different data sparsity. It can be 

observed that the accuracy of the three models is affected by data sparsity and that the extent of the impacts varies. Specifically, 

as the amount of training data increases from 1 year to 15 years, the LSTM network benefits the most with median KGE 275 

increased by 95.0% (shown in Table 2). By contrast, the MC-LSTM network is less affected and the median KGE is increased 

by 32.7%. Additionally, the accuracy of the LSTM rapidly increases by 0.459 (from 0.034 to 0.493) with the training data 

length increased from 1 to 3 years, while less than 0.123 (median KGE from 0.457 to 0.580) for the MC-LSTM. These results 

suggest that the incorporation of the water balance constraint reduces the sensitivity of the LSTM network to data sparsity, 
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which is consistent with conclusions of the previous study that physical constraints reduce the data volume dependency of the 280 

LSTM (Read et al., 2019; Wang et al., 2023). 

 

 

Figure 4. Ranges of the mean values of KGE for the LSTM, MC-LSTM and EXP-HYDRO models with different data sparsity across the 

531 catchments. The markers, deep-colour bars and light-colour bars respectively represent the median, [25%, 75%] and [10%, 90%] inter-285 

quantile ranges over the 531 catchments. 

 

Table 2. Median values of mean KGE for the LSTM, MC-LSTM and EXP-HYDRO models with different data sparsity across the 531 

catchments. 

Training period 

 (year) 
1 3 6 9 12 15 Max ∆ (%) 

LSTM 0.034 0.493 0.606 0.649 0.663 0.676 95.0% 

MC-LSTM 0.457 0.580 0.633 0.660 0.669 0.679 32.7% 

EXP-HYDRO 0.530 0.605 0.626 0.624 0.629 0.631 16.0% 

Note: Max ∆ denotes the percentage change of median performance with training period length increased from 1 year to 15 years when the 290 

performances of the models trained with data of 15 years is considered as the complete performance. 
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4.3 Stability against random parameters initialization 

Across the 531 basins, the stability of the LSTM, MC-LSTM and EXP-HYDRO models with different extents of data 

sparsity is summarized in Fig. 5 and Table 3. Overall, the MC-LSTM has lower standard deviation values of KGE than the 295 

LSTM for all sparsity levels of training data. This result suggests that adding the water balance constraint enhances the stability 

of the LSTM network against random parameters initialization. Specifically, the MC-LSTM, compared to the LSTM, 

experiences a reduction ranging from 69.5% to 24.0% in the median of the standard deviation of KGE, as shown in Table 3. 

In addition, the standard deviation values of KGE for the LSTM and MC-LSTM reduce with the training data increased, while 

the degree of reduction varies for each of the three models. The LSTM exhibits the largest magnitude of reduction in the 300 

standard deviation of KGE with the length of training data increased from 1 year to 15 years, while the MC-LSTM and EXP-

HYDRO models exhibit slighter reductions. These results also indicate that adding the water balance constraint reduces the 

sensitivity of the LSTM network to data sparsity. 

 

 305 

Figure 5. Ranges of the standard deviation values of KGE for the LSTM, MC-LSTM and EXP-HYDRO models across the 531 catchments 

under different data sparsity. The markers, deep-colour bars and light-colour bars respectively represent the median, [25%, 75%] and [10%, 

90%] inter-quantile ranges over the 531 catchments. 

 

Table 3. Median values of standard deviation of KGE for the LSTM, MC-LSTM and EXP-HYDRO models with different data sparsity 310 

across the 531 catchments. 
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Training period 

 (year) 
1 3 6 9 12 15 Max ∆ (%) 

LSTM 0.146  0.073  0.044  0.038  0.038  0.037  -74.5% 

MC-LSTM 0.044  0.036  0.030  0.029  0.028  0.028  -36.6% 

EXP-HYDRO 0.044  0.026  0.020  0.020  0.019  0.020  -55.3% 

MC ∆ (%) -69.5% -51.0% -31.8% -25.4% -25.1% -24.0% - 

Note: MC ∆denotes the percentage difference in the median of the standard deviation of KGE between the MC-LSTM and LSTM. Max 

∆denotes the percentage change of the standard deviation of KGE with training period length increased from 1 year to 15 years. 

 315 

Figure 6 shows the change of the stability at individual basins for the LSTM and MC-LSTM. The MC-LSTM exhibits 

remarkably smaller standard deviation of KGE than the LSTM. Specifically, the MC-LSTM tends to be more stable at a total 

of 450 (85%), 386 (73%) and 366 (69%) basins when models are trained with data of 3 years, 9 years and 15 years, respectively. 

These results illustrate that the water balance constraint improves the stability of the LSTM network. In addition, the number 

of basins where the MC-LSTM is more stable than the LSTM has reduced with the training period length increased from 1 320 

year to 15 years, and the differences (as shown in Table 3) in the median of the KGE standard deviation values between the 

MC-LSTM and LSTM decrease from -69.5% to -24.0%. The implication is that increasing the training data can narrow the 

stability differences between the LSTM and MC-LSTM, compensating for the instability of the LSTM network caused by the 

lack of the water balance constraint. 

 325 
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Figure 6. Per-basin change of stability between the MC-LSTM and LSTM in the 531 basins. Red dots indicate basins where adding the 

water balance constraint improves the stability of the LSTM (darker indicates larger relative improvement), and blue dots indicate basins 

where there is a decrease in stability (darker indicates worse relative detriment). Note that a higher standard deviation (Std.) of KGE indicates 

the worse stability of a model across random parameters initialization. 330 

 

4.4 Transferability under contrasting climate conditions 

The KGE values for all models under the control and testing conditions across the 475 catchments are shown in Fig. 7 to 

examine the transferability between the wettest/driest years. In general, the MC-LSTM exhibits higher transferability than the 

LSTM. This result suggests that adding the water balance constraint advances the transferability of the LSTM under contrasting 335 

climate conditions. In both W/D and D/W scenarios, the LSTM, MC-LSTM and EXP-HYDRO models illustrate close 

accuracy on the control data with KGE range of [0.634, 0.664] and [0.598, 0.602], as demonstrated in Table 4. When 
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transferring to the testing data, the MC-LSTM outperforms the LSTM with median KGE of 0.576 in the W/D scenario and 

0.515 in the D/W scenario, compared to the median KGE of 0.538 and 0.446 for the LSTM, respectively. In terms of median 

KGE differences between the control and testing data, the MC-LSTM exhibits less degradation in performance than the LSTM 340 

with median KGE decreased by 13.3% in the W/D scenario and 15.4% in the D/W scenario, compared to the median KGE 

decreased by 17.4% and 25.4% for the LSTM, respectively.  

 

 

Figure 7. Ranges of KGE of the LSTM, MC-LSTM and EXP-HYDRO models across the 475 catchments for different DSST scenarios. 345 

Delta denotes the KGE difference between the testing data (Testing) and control data (Control). 

 

Table 4. Median KGE and median KGE differences (percent) between the control data and the testing data for different models in different 

DSST scenarios across the 475 basins. 

Model 
W/D D/W 

Control Testing ∆ (%) Control Testing ∆ (%) 

LSTM 0.651  0.538  -17.4  0.598  0.446  -25.4  

MC-LSTM 0.664  0.576  -13.3  0.609  0.515  -15.4  

EXP-HYDRO 0.634  0.489  -23.0  0.602  0.590  -2.2  

Note: ∆ denotes the median of the KGE differences between the control data and testing data. 350 

 

The per-basin accuracy comparisons between the LSTM and MC-LSTM in the testing conditions are plotted in Fig. 8. In 

the D/W scenario, the MC-LSTM exhibits higher KGE values compared to the LSTM across 318 basins (67%). But for the 
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W/D scenario, the number of basins with higher KGE for the MC-LSTM than the LSTM decreases to 262 (55%). The 

catchments where the MC-LSTM shows improved accuracy than the LSTM are mainly located in the central arid regions of 355 

the United States. In these areas, the runoff generation is dominated by the infiltration-excess overland flow, which is largely 

controlled by short-duration, high-intensity precipitation events (Berghuijs et al., 2016). These results suggest that the 

consideration of the water balance constraint improves the prediction of the LSTM transferred from the driest to the wettest 

years. For the prediction transferred from the wettest to the driest years, the LSTM itself demonstrates good accuracy and the 

improvement from enforcing the water balance constraint is not substantial. It is possibly due to the skewness and censoring 360 

characteristics of hydroclimatic variables (Huang et al., 2023), with lower runoff values occurring much more frequently than 

higher values. This property makes the training data of the wettest years more similar to the testing data of the driest years, 

thereby making it easier for the LSTM to transfer in the W/D scenario. 

 

 365 

Figure 8. Per-basin change of accuracy between the MC-LSTM and LSTM at the 475 basins. Note that higher accuracy indicates higher 

transferability in testing conditions. Red dots indicate basins where adding the water balance constraint improved the transferability over the 

LSTM (darker indicates larger relative improvement), and blue dots indicate basins where the transferability decreases (darker indicates 

worse relative detriment). 

 370 
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5 Discussion 

It has been highlighted that more training data contributes to the performance of the LSTM network (Gauch et al., 2021b; 

Read et al., 2019; Wang et al., 2023; Xie et al., 2021). In this paper, the role of the training data in the performance of the MC-

LSTM network is investigated through large-sample tests. The findings generally conform to previous findings that the LSTM 

trained to hundreds of basins allows for better streamflow predictions in a given basin compared to the LSTM only trained to 375 

that specific basin or a smaller subset of basins (Jiang et al., 2020; Kratzert et al., 2019b), even for out-of-sample predictions 

(Gauch et al., 2021b; Xie et al., 2021). These results suggest that DL models can gain extrapolation ability from big data 

compensating the lack of physical mechanisms (Feng et al., 2021; Kratzert et al., 2019b; Nearing et al., 2019). Through 

extensive training with large amounts of data, DL models can advance hydrologic predictions, even without explicit physical 

mechanisms (Nearing et al., 2021; Wi and Steinschneider, 2022). Though experiments here do not evaluate the impact of data 380 

quality or uncertainty in model inputs on the quality of predictions, such efforts could provide additional insights beyond the 

scope of this paper (Read et al., 2019). 

Given that data is not always sufficient, the sensitivity of DL models when given scarce training data is essentially 

important (Feng et al., 2021; Gauch et al., 2021b).  The TGDS provides effective tools for reducing data requirements of DL 

models (Karniadakis et al., 2021; Karpatne et al., 2017; Read et al., 2019; Xie et al., 2021). In this paper, the incorporation of 385 

the water balance constraint into the LSTM network provides direct guidance based on physical knowledge to the internal 

calculation processes, thus reducing the need to learn this specific physical mechanism form large amounts of data (Frame et 

al., 2023; Hoedt et al., 2021). Another TGDS strategy, which reconfigures the loss functions with physical penalties, allows 

DL models to obtain additional guidance to their training process from the physical mechanisms, also leading to less training 

data requirement (Wang et al., 2023; Yang et al., 2020; Zhao et al., 2019). Moreover, recent studies showed that using synthetic 390 

data generated by physical models to pretrain DL models could also contribute to overcome the conditions of sparse 

observation data (Read et al., 2019; Xie et al., 2021; Zhang et al., 2022). Furthermore, this paper also demonstrates the potential 

of enforcing physical constraints such as the water balance constraint to strengthen the robustness of DL models under random 

parameters initialization and climate change. 

Although TGDS models can provide more accurate and robust predictions than pure DL models in basin-wise scale or 395 

data scarce conditions, it deserves additional scrutiny when trained with data from a large number of diverse basins (Frame et 

al., 2022; Nearing et al., 2021; Wi and Steinschneider, 2022). Recent studies have illustrated that for DL models, physical 

constraints are effective in local models but offer little improvement in the regional models (Frame et al., 2023; Xie et al., 

2021), even reduce predictive performance under extreme events (Frame et al., 2022). This outcome can be attributed to that 

catchments with similar flood generating processes have some similar outliers (Bertola et al., 2023) and that extreme events 400 

that did not occur frequently in one basin may occur in other basins (Xie et al., 2021). Therefore, there seems to be a 

compensating effect between data and knowledge on DL models, where the process knowledge is crucial for models trained 

with sparse data but less important with sufficient data. With much more available data to learn the patterns that hydrologic 
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systems respond to previously unobserved extreme events and climate conditions, large-sample hydrology is expected to 

enhance the performances of DL models for extreme events predictions and climate change projections (Bertola et al., 2023; 405 

Wi and Steinschneider, 2022). 

 

6 Conclusions 

This paper is concentrated on the effects of the water balance constraint in model architecture on the robustness of the 

basin-wise trained LSTM for rainfall-runoff prediction. That is, large-sample tests based on CAMELS dataset are conducted 410 

to assess the robustness of the LSTM and its architecturally mass-conserving variant (MC-LSTM) from three perspectives, 

i.e., the sensitivity to data sparsity, the stability across random parameters initialization and the transferability under contrasting 

climate conditions. The results show that the water balance constraint contributes to the robustness of the basin-wise trained 

LSTM. One finding is that for varying data sparsity of training data ranging from 1 year to 15 years, the addition of the water 

balance constraint decreases the sensitivity of the LSTM to data sparsity from 95.0% to 32.7%. Another finding is that the 415 

water balance constraint is effective in improving the stability of the LSTM at 450 (85%) when available data are 3 years. The 

third finding is that the water balance constraint enhances the transferability of the LSTM from the driest years to the wettest 

years at 318 (67%) basins. The in-depth investigations of this paper facilitate insights into the use of the LSTM network and 

other DL models for rainfall-runoff modelling. 

 420 
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