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Anonymous Referee #2: 

General Comments 

The authors derive a clear objective, investigating the robustness of LSTM and 

MC_LSTM against data sparsity, stability against parameter initialization, and test the 

transferability under different climatic conditions. The paper is in my opinion highly 

relevant given the current developments in using KI in Hydrology, it is generally well 

structured, easy to read and understandable and compact without missing relevant 

information. I belief therefore the manuscript is well suited for publication in the HESS 

journal. 

Thank you very much. We appreciate the positive comments. 

 

Some comments/suggestion that I believe would improve the manuscript and that 

should be addressed before final publication is the following: 

Thank you very much for the constructive suggestions and we have improved the paper 

accordingly. Below please find the point-to-point responses. 

 

 It is clearly stated and shown in the last publications of the Kratzert/Nearing 

group that the full potential of LSTM application can be achieved when training 

the LSTM on a large number of variable catchments including also static and 

dynamic catchment features (see also most recent contribution: 

https://eartharxiv.org/repository/view/6363/). I would at least like to see a 

discussion of this topic and how this is related to the presented work. 

Thank you very much for the insightful comment. Following the recommend literature, 

we have rewritten the Discussion section to clarify the differences and connections 

between this paper with the mentioned literature above. The related part are as follows: 



“Although TGDS models can provide more accurate and robust predictions than pure 

DL models in basin-wise scale or data scarce conditions, it deserves additional scrutiny 

when trained with data from a large number of diverse basins (Frame et al., 2022; 

Nearing et al., 2021; Wi and Steinschneider, 2022). Recent studies have illustrated that 

the LSTM network works better for rainfall-runoff prediction when trained with a large 

amount of hydrologically diverse data than with data from a single watershed (Kratzert 

et al., 2024). Specifically, for DL models, physical constraints are effective in local 

models but offer little improvement in the regional models (Frame et al., 2023; Xie et 

al., 2021), even reduce predictive performance under extreme events (Frame et al., 

2022). This outcome can be attributed to that pure DL models might be flexible enough 

to capture the behaviour in observation data with inconsistent water balance closure 

better than DL models constrained by the strict water balance (Kratzert et al., 2024; 

Frame et al., 2023; Beven, 2020). Besides, catchments with similar flood generating 

processes and similar characteristics may have some similar outliers and DL models 

can capture the rainfall-runoff responses among these basins (Xie et al., 2021; Bertola 

et al., 2023; Wi and Steinschneider, 2024). Therefore, there seems to be a compensating 

effect between data and knowledge on DL models, where the process knowledge is 

crucial for models trained with sparse data but less important with sufficient data. 

Large-sample hydrology is thus expected to enhance the performances of DL models 

for extreme events predictions and climate change projections (Bertola et al., 2023; Wi 

and Steinschneider, 2022, 2024). 

Given that data is not always sufficient, the sensitivity of DL models when given 

scarce training data is essentially important (Feng et al., 2021; Gauch et al., 2021b). 

The TGDS provides effective tools for reducing data requirements of DL models 

(Karniadakis et al., 2021; Karpatne et al., 2017; Read et al., 2019; Xie et al., 2021). 

Therefore, this paper explores the effects of the water balance constraint on the 

robustness of the LSTM under restricted conditions, thereby training single model for 

each single basin rather than simultaneously for a large number of basins. Although the 

latter can achieve better performance (Kratzert et al., 2024), it is beyond the scope of 



this paper but worthy of further study.…” (Page 19, Lines 378 to 397) 

 

 Given for example the results of Figure 2, they can be interpreted as LSTM’s 

being “better” than the EXP-Hydro model. However, as actually mentioned by 

Beven (2020, doi10.1002/hyp.13805), it is still ~50% of the catchments show 

KGE-values of below 0.6, in my opinion indicating strong problems in the 

modelling outside the model-structure and calibration procedure. 

Thank you very much for the constructive comment. The catchments with KGE values 

below 0.6 are mainly located in the central arid regions of the United States. In these 

areas, the runoff generation is dominated by the infiltration-excess overland flow, which 

is largely controlled by short-duration, high-intensity precipitation events (Berghuijs et 

al., 2016). The EXP-HYDRO model operates with a mechanism of saturation-excess 

overland flow and is mainly applicable in the central arid regions (Jiang et al., 2020). 

Due to the infrequent storms and flood records in such regions, it is difficult for the 

LSTM network to satisfactorily reproduce flashy hydrographs (Jiang et al., 2020). Such 

a spatial pattern of model performance was also revealed in previous studies (Kratzert 

et al., 2018; Newman et al., 2017; Jiang et al., 2020). To dig into the applicable model 

in such regions is beyond the scope of this paper but worthy of further study. In order 

to show the competitive performances of the LSTM, MC-LSTM and EXP-HYDRO 

models in this paper compared to previous studies, we have added a comparison table 

about the model performance: 

“Table 2 compares the Nash-Sutcliffe efficiency (NSE) of the three models in this paper 

with those in previous studies (Jiang et al., 2020; Kratzert et al., 2018; Patil and Stieglitz, 

2014; Newman et al., 2017; Hoedt et al., 2021), most of which are based on the same 

dataset and the roughly overlapping testing period as those in this paper. Among these 

models, the LSTM, MC-LSTM and EXP-HYDRO models in this paper exhibit 

competitive performances, suggesting the reasonability of the hyperparameter 

optimization and calibration procedures.” (Page 11, Lines 247 to 252) 



Table 2. Comparison of daily NSE statistics across the CAMELS catchments. 

Model 
Single model 

for  

Count of 

basins 
Dataset 

Daily NSE statistics 

Source 
median mean 

Proportion for 

NSE ≥0.55 

LSTM Single basin 531 CAMELS 0.67 0.63 76% This paper 

MC-LSTM Single basin 531 CAMELS 0.63 0.59 71% This paper 

EXP-HYDRO* Single basin 531  CAMELS 0.49 0.42 40% This paper 

LSTM Single basin 569 CAMELS 0.60 0.52 61.5% Jiang et al. (2020) 

EXP-HYDRO* Single basin 569 CAMELS 0.48 -0.16 38.3% Jiang et al. (2020) 

LSTM Single basin 241 CAMELS 0.65 0.63 NA Kratzert et al. (2018) 

EXP-HYDRO Single basin 756 HCDN NA NA ~43% (>0.6) Patil and Stieglitz (2014) 

VIC Single basin 531 CAMELS 0.57-0.59 NA ~56% Newman et al. (2017) 

LSTM Multiple basins 447 CAMELS 0.737 NA NA Hoedt et al. (2021) 

MC-LSTM Multiple basins 447 CAMELS 0.726 NA NA Hoedt et al. (2021) 

HCDN: Hydro-Climate Data Network; VIC: Variable Infiltration Capacity model 

EXP-HYDRO*: Deep learning wrapped EXP-HYDRO model; NA: not available 

 

Additionally, as mentioned by the literature (Beven, 2020), the observation data 

with inconsistent water balance closure may be one of the reasons for that physical 

constraints offer little improvement in the regional models and even reduce predictive 

performance under extreme events, thus we have added this reason in the Discussion 

section: 

“This outcome can be attributed to that pure DL models might be flexible enough to 

capture the behaviour in observation data with inconsistent water balance closure better 

than DL models constrained by the strict water balance (Kratzert et al., 2024; Frame et 

al., 2023; Beven, 2020)” (Page 19, Lines 384 to 386) 

 

 I believe the statement in L374-375 is not supported by the experimental design 

of the paper – no LSTM model is trained simultaneously to many catchments 

here, so the statement needs to be modified – or I have misread section 2/3 

Thank you very much for the careful comment. We are sorry for the confusing 

information and have removed this sentence. 



 

Specific/technical Comments 

The following minor comments/suggestions I would like to make: 

 L51: “On” instead of “One” 

Thanks a lot for your careful comment. We have corrected this mistake. 

 

 L53: Mass Balance has already been introduced by Frame et al. 2023 

Thank you for the insightful comment. We have added this citation:  

“On the one hand, without explicit physical mechanism such as the conservation of 

mass and energy, the LSTM network cannot guarantee causal relationships as physical 

models can (Wang et al., 2023; Xie et al., 2021; Frame et al., 2023), which may lead to 

spurious and inaccurate prediction that is potential to violate water balance, particularly 

when extrapolating beyond the range of training data (Bhasme et al., 2022; Reichstein 

et al., 2019).” (Page 2, Lines 45 to 49) 

 

 L66: please define robustness as used here – in statistics it has a very specific 

meaning related to performance when a priori assumption (e.g. Normality) are 

violated 

Thank you for the constructive comment. The definition of the robustness used in this 

paper has been added: 

“Therefore, there is yet no consensus on the effects of the water balance constraint on 

the use of the LSTM network for rainfall-runoff prediction (Pokharel et al., 2023), 

particularly its robustness—the ability to perform consistently across varying 

conditions (Manure et al., 2023). Aiming to bridge the gap, this paper focuses on how 

the water balance constraint in model architecture affects the robustness of the basin-

wise trained LSTM network for rainfall-runoff prediction. Focusing on the robustness 



of the LSTM and MC-LSTM, the objectives are to examine (1) the sensitivity to data 

sparsity, (2) the stability against random parameters initialization and (3) the 

transferability under contrasting climate conditions…” (Page 3, Lines 60 to 66) 

 

 L80: a small figure as e.g. in Kratzert et al. 2018 to visulalize the LSMT would 

not be bad, the equations are not intuitive, it would also help in L98f to 

understand the implementation of the MC 

Thanks for your suggestion. To help understand the implementation of mass balance, 

two figures of the internal operations of a standard LSTM network and a MC-LSTM 

network have been added in the Supplement as Fig. S1 and Fig. S2, respectively. 

 

 

Figure S1. The internal operation of a standard LSTM network. 

 

 

Figure S2. The internal operation of a MC-LSTM network. 

 

 L120: Equation 11 does not explain how M, ET Q Ps and Pr are calculated – 

can also go into an appendix 

Thank you. The explanation of how to calculate the 5 flux variables of the EXP-

HYDRO model has been added in the Supplement as Text S1: 



“The EXP-HYDRO model is a conceptual, spatially lumped rainfall-runoff model 

developed by Patil and Stieglitz (2014). The physical equations and parameters are well 

introduced and organized in Text S1 in the Supporting Information of Jiang et al. (2020). 

For easy reading, the calculation equations of the 5 flux variables (𝑀, 𝐸𝑇, 𝑄, 𝑃𝑠 and 

𝑃𝑟) are briefly introduced here.   

𝑃𝑠 and 𝑃𝑟 are respectively the daily snowfall (mm/day) and rainfall (mm/day), 

which are estimated by the daily precipitation (𝑃, mm/day) and daily temperature (𝑇, ℃) 

as follows: 

𝑃𝑠 = 𝑓𝑢𝑛1(𝑃, 𝑇, 𝑇𝑚𝑖𝑛) = {
0, 𝑇 > 𝑇𝑚𝑖𝑛

𝑃, 𝑇 ≤ 𝑇𝑚𝑖𝑛
(S1) 

𝑃𝑟 = 𝑓𝑢𝑛2(𝑃, 𝑇, 𝑇𝑚𝑖𝑛) = {
𝑃, 𝑇 > 𝑇𝑚𝑖𝑛

0, 𝑇 ≤ 𝑇𝑚𝑖𝑛
(S2) 

Where 𝑇𝑚𝑖𝑛  is a parameter representing the temperature threshold where the 

precipitation falls as snow. 

The snowmelt (𝑀, mm/day) is simulated by a simple thermal degree-day model 

related to 𝑇 and the snow accumulation bucket (𝑆0) based on the following equation: 

𝑀 = 𝑓𝑢𝑛3(𝑆0, 𝑇, 𝐷𝑓 , 𝑇𝑚𝑎𝑥) = {
𝑚𝑖𝑛{𝑆0, 𝐷𝑓 ∙ (𝑇 − 𝑇𝑚𝑎𝑥)}, 𝑇 > 𝑇𝑚𝑎𝑥 𝑎𝑛𝑑 𝑆0 > 0

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (S3) 

Where 𝐷𝑓 is a parameter denoting the thermal degree-day factor (mm/day/℃); 𝑇𝑚𝑎𝑥 

is another parameter representing the temperature threshold where the accumulated 

snow begins to melt. 

The evapotranspiration is denoted by 𝐸𝑇 (mm/day), which is calculated as the 

fraction of the potential evapotranspiration (𝑃𝐸𝑇 , mm/day, estimated by Hamon’s 

formulation as Eq. S5) as follows: 

𝐸𝑇 = 𝑓𝑢𝑛4(𝑆1, 𝑃𝐸𝑇, 𝑆𝑚𝑎𝑥) = {

0,               𝑆1 < 0

𝑃𝐸𝑇 ∙ (
𝑆1

𝑆𝑚𝑎𝑥
) , 0 ≤ 𝑆1 ≤ 𝑆𝑚𝑎𝑥

𝑃𝐸𝑇,               𝑆1 > 𝑆𝑚𝑎𝑥

 (S4) 

𝑃𝐸𝑇 = 29.8 ∙ 𝐿𝑑𝑎𝑦 ∙
𝑒∗(𝑡)

𝑇 + 273.2
  (S5) 



𝑒∗(𝑡) = 0.611 ∙ 𝑒17.3∙𝑇 (𝑇+237.3)⁄ (S6) 

Where catchment bucket ( 𝑆1 ) denotes its current storage; 𝑆𝑚𝑎𝑥  is a parameter 

representing the storage capacity of the catchment bucket; 𝐿𝑑𝑎𝑦  is the day length 

(hour). 

The streamflow (𝑄) is estimated as the sum of the baseflow (𝑄𝑏) and the capacity-

excess runoff (𝑄𝑠), which are respectively expressed as follows: 

𝑄𝑏 = 𝑓𝑢𝑛5(𝑆1, 𝑓, 𝑆𝑚𝑎𝑥 , 𝑄𝑚𝑎𝑥) = {

0,                     𝑆1 < 0

𝑄𝑚𝑎𝑥 ∙ 𝑒−𝑓∙(𝑆𝑚𝑎𝑥−𝑆1), 0 ≤ 𝑆1 ≤ 𝑆𝑚𝑎𝑥

𝑄𝑚𝑎𝑥,                    𝑆1 > 𝑆𝑚𝑎𝑥

(S7) 

𝑄𝑠 = 𝑓𝑢𝑛6(𝑆1, 𝑆𝑚𝑎𝑥) = {
0,                       𝑆1 ≤ 𝑆𝑚𝑎𝑥

𝑆1−𝑆𝑚𝑎𝑥 , 𝑆1 > 𝑆𝑚𝑎𝑥
(S8) 

𝑄 = 𝑄𝑏 + 𝑄𝑠 (S9) 

Where 𝑓 and 𝑄𝑚𝑎𝑥 are two parameters representing the decline rate of runoff (mm-

1) and the maximum subsurface runoff (mm/day), respectively.” 

 

 L125: 1-2 sentences on how EXP-Hydro is wrapped into a DL architecture 

would be interesting 

Thank you very much for the constructive suggestion. We have added more details of 

the DL-wrapped EXP-HYDRO model and revised the original information for easy 

understanding: 

“That is, the EXP-HYDRO model is rewritten using a differentiable PyTorch 

framework (Paszke et al., 2019), the typical recurrent neural network architecture, 

where the mathematical expressions and learnable parameters is replaced with the 

physical equations and parameters of the EXP-HYDRO model (Zhong et al., 2023; 

Jiang et al., 2020).” (Page 5, Lines 120 to 124) 

 

 L209: I do not think “maximumly” can be used – using to a maximum!? 



Thanks a lot for your careful comment. We have corrected this mistake. 

 

 L423: there are no further co-authors! 

 Thanks a lot for your careful comment. We have corrected this mistake. 

 

I feel, the manuscript has in general the potential to be a valuable contribution to HESS, 

however, questions and issues raised in the general comments would need to be 

addressed and discussed to a significant part before final acceptance. 

We greatly appreciate your positive comments and constructive suggestions. 
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