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Abstract. Wildfires in the southwestern United States, particularly in northern California (nCA), have grown in size and

severity in the past decade. As they have grown larger, they have been associated with large emissions of absorbing aerosols in

to the troposphere. Utilizing satellite observations from MODIS, CERES, AIRS, and CALIPSO, the meteorological effects of

aerosols associated with fires during the wildfire season (June-October) were discerned over the nCA-NV (northern California

and Nevada) region in the 2003-2022 time frame. As higher temperatures and low relative humidity RH dominate during high5

surface pressure ps atmospheric conditions, the effects of the aerosols on high (90th percentile) fire days compared to low fire

(10th percentile) days were stratified based on whether ps was anomalously high or anomalously low (10th percentile). An

increase in tropospheric temperatures was found to be concurrent with more absorbing aerosol aloft, which is associated with

significant reductions in tropospheric RH during both 90th and 10th percentile ps conditions. Furthermore, high fire days under

low ps conditions are associated with reduced cloud fraction CF , which is consistent with the traditionally-defined aerosol-10

cloud semi-direct effect. The reduced CF , in turn, is associated with reduced TOA SW radiative flux, a warmer surface, and

less precipitation. These changes could create a positive feedback that could intensify fire weather, and therefore extend fire

lifetime and impacts.

1 Introduction

As a result of climate change, land use change, and forest management, frequency and severity of wildfires in the southwestern15

Unites States (US) have trended upwards over the last decade (Li & Banerjee, 2021; Brown et al., 2023), and are projected

to increase in coming years due to intensified drought and heatwaves (Goss et al., 2020; Palinkas, 2020; Ager et al., 2021;

United Nations Environment Programme, 2022). In both higher and lower CO2 mitigation scenarios, large wildfire events are

projected to become more commonplace by the end of the 21st century worldwide, as well in the southwestern US (United

Nations Environment Programme, 2022). Large wildfire events in the late 2010’s and early 2020’s, known as "mega-fires",20

were associated with more intense "fire weather": high temperatures T , low relative humidity RH , and high surface wind

speeds Us (Varga et al., 2022; Keeley & Syphard, 2019). These fire weather conditions may be potentially intensified, or al-

leviated, by the fires themselves. As fires combust vegetation, they emit biomass burning (BB) aerosols such as black carbon

(BC), organic aerosols (OA), and brown carbon. Higher burn severity wildfires, such as the 2020 wildfires in California (CA),
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have been observed to inject smoke plumes higher into the troposphere than in previous years (Wilmot et al., 2022). These25

smoke plumes consist of both shortwave (SW) absorbing aerosols such BC and reflective aerosols such as OA, as well as

brown carbon, which is both absorbing and reflective. Additionally, they may contain other aerosols aside from BB aerosols,

such as dust(Wagner et al., 2021, 2018), which also has SW absorbing properties (Highwood & Ryder, 2014). The absorbing

properties of wildfire smoke over the western US, measured using absorbing aerosol optical depth (AAOD), is uncertain. How-

ever, a recent study of CA fires indicates that wildfires increase AAOD relative to the annual mean by tenfold (Cho et al.,30

2022). An injection of absorbing aerosols into the troposphere may cause a local warming affect, altering the hydrological

and radiative balance of the atmosphere. Smoke plumes that reach the upper troposphere (pressures<500 hPa) may deposit

absorbing aerosols that could burn off high clouds, and promote more stable low clouds (Stjern et al., 2017; Smith et al., 2018;

Allen et al., 2019), leading to SW and longwave (LW) cooling, an effect also observed to occur with methane SW absorption

(Allen et al., 2023). Alternatively, if the absorbing aerosols are concurrent with low clouds, the relative humidity of the liquid35

cloud layer would be decreased, burning off low clouds and leading to increased SW forcing (Koch & Del Genio, 2010; Allen

& Sherwood, 2010). Additionally, the higher injection of absorbing aerosol may alter cloud microphysics, which also has the

potential to change the radiative balance of the surface and atmosphere. An influx of aerosols into the troposphere may cre-

ate an abundance of cloud condensation nuclei (CCN) for droplets to condense onto, decreasing effective radius Reff of the

clouds, an effect already observed with smoke (OA/BC) particles in the northwestern US (Twohy et al., 2021). A decrease in40

Reff would increase the albedo of the clouds, assuming constant water path, which would then increase outgoing SW radiation.

As the western US, and other parts of the world, enter this new regime of mega-fires, there comes a need for improved

understanding of the effects of aerosols primarily and secondarily emitted by wildfires. Models participating in the Coupled

Model Intercomparison Project version 6 (CMIP6) (Eyring et al., 2016) do not have parametrizations of BB aerosol emissions45

that respond to CO2 emissions in most of their experiments, including the DECK (Diagnosis, Evaluation, and Characterization

of Klima) experiments (Gomez et al., 2023). Instead, modellers rely on prescription of BB aerosols in these experiments.

Recent modelling experiments have found significant effects of wildfires on regional and global climate scales. Previously,

using prescribed aerosol simulations in the Community Earth System Model version 2 (CESM2), it was hypothesized that

the large 2019 wildfires in Australia could have intensified that year’s La Niña through aerosols directly cooling the ocean50

surface (Fasullo et al., 2021). Another CMIP6 study observed a similar effect on La Niña as a result of a teleconnection caused

by an influx of absorbing aerosols into the atmosphere from South African wildfires (Amiri-Farahani et al., 2020). While

studies such as these demonstrate that it is possible to model past effects of fires on local and global climate, without proper

parameterization of BB aerosol emission, as well as parametrization of secondary dust aerosol emission from wildfire-cleared

vegetation, the radiative forcing of future fires’ primary and secondary aerosols will remain a source of uncertainty. Therefore,55

to further motivate the need to incorporate interactive aerosol emissions from wildfires in climate models, as well as to further

understand the effects of wildfires on the climate of one of the most populated areas in the US, this paper aims to quantify the

radiative as well as microphysical effects that these aerosols have in the region under different atmospheric conditions utilizing

satellite data.
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2 Satellite and Other Observational Data60

The objective of this analysis is to determine how cloud properties differ as a result of primary and secondarily emitted wildfire

aerosols over the southwestern US using satellite observations from the Aqua and Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation (CALIPSO) (Winker, 2019; Tackett et al., 2018) satellites, as well as fire dry matter emission data DM

from the Global Fire Emissions Database (GFED) (van der Werf et al., 2017; Randerson et al., 2017). All data sets are level 3

globally gridded data sets, with the exception of GFED which is considered a level 4 globally gridded dataset.65

2.1 Global Fire Emissions Database (GFED)

GFED emissions are calculated in the Carnegie–Ames–Stanford Approach (CASA) model, which requires MODIS burned

area data, meteorological data from the ERA-Interim reanalysis dataset, photsynthetically active radiation data based on Ad-

vanced Very High Resolution Radiometer satellite instrument retrievals, and vegetation continuous fields data from the MODIS

MOD44B dataset (van der Werf et al., 2017). The model is run using burned area data from combined MODIS-Aqua and70

MODIS-Terra level 3 data (MCD64A1). Use of a burned area based dataset is preferable to a fire power dataset for this paper,

as cloud cover may obstruct fire power data retrievals, leading to an underestimation of fire size/severity on a given day. This

underestimation is demonstrated in Figure S2, which indicates that Aqua fire power retrievals underestimate fire severity com-

pared to DM with 98% of days reporting a lower normalized fire power than normalized DM . Therefore, for fire power to be

a more useful metric, a daily combined Aqua/Terra dataset would have to be used, which is not available for the time frame of75

interest. GFED fire emissions are also preferred over fire power data and raw burned area data as calculation of fire emissions

takes vegetation type and net primary production into account. Raw burned area and fire power datasets yield information

about fire size and intensity, but as aerosol emission also depends on the type of vegetation being burned, use of either dataset

over a fire emissions dataset may under-estimate or over-estimate biomass burning aerosol impacts on clouds. However, use of

GFED data has drawbacks. While use of burned area data reduces the chance of an underestimation of fire impacts, a temporal80

uncertainty is introduced. This temporal uncertainty is ±1 day for clear sky conditions, ±5 days under consistent 75% cloud

cover, and up to ±20 days over persistently very cloudy (85% or higher) intervals (Giglio et al., 2013). However, this temporal

uncertainty is likely of little significance for this paper, as cloud cover over the western US during the wildfire season is rarely

persistently high (aside from "June gloom" in coastal regions), and the lifetime of biomass burning aerosols (roughly 4-12

days) is generally greater than or equal to the temporal uncertainty of clear sky or persistently cloudy burned area data (Cape85

et al., 2012). Additionally, as the output from GFED is from an older model, which may introduce additional uncertainty. As a

result, caution must be taken when analyzing the results. To ensure results are accurate, the GFED DM stratification method

was verified by analyzing AOD anomalies during large fire events (Section 3.3, Section 4.2), and by performing cross corre-

lations between AOD and DM (Supplement section 1). GFED emissions and burned area data are available from 1997-2016.

Data for 2017-2022 is also available, but the data is in "beta" and therefore is more limited. Both the complete and the beta90

data contain total carbon emissions, as well as dry matter emission. GFED also estimates the contribution of 6 different types

of vegetation biomes (boreal forest, temperate forest, grassland, agriculture, and peat) to the carbon and dry matter emissions.
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However the beta dataset only estimates these contributions for DM . Therefore, DM is used as a proxy for the severity of a

given fire’s emissions, as it is the only variable that both the complete and beta data contain and speciate. All other datasets

utilized in this project have a 1o resolution, however GFED emission data is of a 0.25o resolution. Therefore, this data was95

regridded to a 1o grid.

2.2 Aqua

MODIS-Aqua: Cloud and aerosol optical depth (AOD) data were derived from Moderate Resolution Imaging Spectrora-

diometer (MODIS) level 3 data. Specifically, the MODIS collection 6.1 1o level 3 product (MYD08_D3) (Platnick et al., 2003;

Salomonson et al., 2002; MODIS Atmosphere Science Team, 2017) is utilized, which yields daily retrieval products from the100

Aqua satellite. For MODIS cloud retrievals during periods of large AOD, especially when the aerosols are concurrent with

clouds, it is possible for MODIS to misidentify aerosols as clouds (Herbert & Stier, 2023). This may cause errors in cloud

property retrievals, as well as an overestimation of cloud fraction CF . This may lead to overestimation of CF during anoma-

lously large fire events. While the MODIS Dark-Target and Deep Blue AOD algorithms are extensively quality controlled and

evaluated (Levy et al., 2013; Platnick et al., 2017; Wei et al., 2019), there is still room for errors in AOD and cloud retrieval.105

Additionally, as it is not possible to distinguish wildfire AOD from other AOD, whenever possible fire emissions from GFED

are used to discern the impacts of fires on cloud properties.

AIRS: Data concerning T and RH profiles, as well as surface temperature Ts and surface relative humidity RHs, were derived

from Atmospheric Infrared Sounder (AIRS) level 3 daily data (AIRS3STD) (AIRS Science Team & Texeira, 2013). AIRS110

collects data on an ascending (morning) a descending (afternoon/evening) overpass. For this paper, the descending data was

used as it is more temporally consistent with the MODIS derived cloud properties, and the data was associated with lower

standard errors than the ascending data for the region of interest.

CERES: Top of atmosphere radiative flux data was derived from Clouds and the Earth’s Radiant Energy System (CERES) level115

3 time-interpolated daily data Aqua edition (SSF1deg-Day)(Wielicki et al., 1998; Doelling, 2016). The SSF1deg dataset also

has auxillariary variables that are computed using the Goddard Earth Observing System (GEOS) model. From this subset of

data, surface pressure ps and Us variables are derived. AIRS also has a ps variable which is calculated from a model. The model

that AIRS utilizes for ps calculation is the National Centers for Environmental Prediction Global Forecast System. Comparison

of both variables yields very similar results. For the sake of simplicity, CERES/GEOS ps was utilized for the main results.120

2.3 GPCP Combined Precipitation Dataset

Precipitation P data for this project was derived from the daily Global Precipitation Climatology Project (GPCP daily) Climate

Data Record (CDR), Version 1.3 dataset (Huffman et al., 2001; Adler et al., 2018). GPCP combines satellite observations as

well as rain gauge data to produce 1o daily precipitation amount data.
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2.4 CALIPSO125

The CALIPSO satellite dataset utilized is the AL_LID_L3_Tropospheric_APro_AllSky-Standard-V4-20 dataset (Tackett et al.,

2018; Winker, 2019). CALIPSO was utilized to confirm that the mega-fires are associated with an increase in extinction

coefficient EC of aerosols, and which atmospheric layers the largest increases in absorbing aerosols are observed. While all

other data sets in this study are daily data, CALIPSO only has monthly data available, and this data is at a much coarser

resolution (2o latitude x 5o longitude). Additionally, CALIPSO only has available data between 2006-2021, while all other130

utilized datasets have data available from 2003-2022 for the relevant seasonal time frame. For level 3 EC data, CALIPSO

distinguishes between 3 types of aerosol: dust, polluted dust, and smoke. This study will primarily utilize the dust and polluted

dust EC products.

3 Methods

3.1 Statistics135

The bulk of the analysis for this paper involves cumulative distribution functions (CDFs). These CDFs are created by taking

a set of data, then fitting a normal distribution. The integral of this normal distribution yields the CDF, which measures the

probability of a number, or any number smaller than that number, occurring. Plotting two CDFs on the same axis allows

for comparison on how likely an anomaly is to be positive or negative under differing circumstances, such as how likely a

positive/negative anomaly for a certain variable is to occur during a high (90th percentile) fire dry matter emission (DM90)140

or low (10th percentile) fire dry matter emission (DM10) event. From the calculated normal distributions, effect size of one

variable’s distribution on another variable’s distribution are estimated using Cohen’s d d. d is an approximation of by how many

standard deviations σs the distribution shifts in response to a change in a variable. In this paper, d is calculated to determine

the effect size of DM on other variables. d is approximated using

d =
ā− b̄

0.5
√

σ2
a + σ2

b

(1)145

where ā is the mean of the (DM90) group (group a), and b̄ is the mean of the (DM10) group (group b), σa is the standard

deviation of group a, and σb is the standard deviation of group b. d=0.2-0.5 is considered to be a weak effect, d=0.5-0.8 is a

moderate effect, and d=0.8 or higher is classified as a strong effect.

When comparing two data sets, a two-tailed pooled t-test is used to assess significance, where the null hypothesis of a zero150

difference is evaluated, with n1+n2-2 degrees of freedom, where n1 and n2 are the number of elements in each data set

respectively. Here, the pooled variance

s2 =
(n1− 1)S2

1 + (n2− 1)S2
2

n1 + n2− 2
(2)

is used, where S1 and S2 are the sample variances. For the purposes of this project, the t-test is evaluated at 90% significance.
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3.2 Data Stratification and Comparison155

In section 3.1, it was mentioned that CDFs for variable anomalies during anomalously high and low DM emission events are

generated to discern to what degree fires impact these anomalies. The purpose of this stratification, particularly stratification

of days into anomalously high and low fire events, is to isolate the effects of fires on clouds and/or weather. The remainder

of this section will detail how data stratification is accomplished. First, a variable is chosen for analysis (such as CF ). Next,

this variable as well as the variable(s) that are used to stratify the variable are filtered to include only the region of interest.160

As the Aqua satellite does not record data for each gridcell at every time step, wherever a coordinate (latitude,longitude,time)

is missing a value for a specific variable, the variable(s) it is being stratified by also has the value at that coordinate replaced

by a missing value (and vice-versa). Next, to focus on potential feedbacks fires may have on land, a land-sea mask is applied.

Then, the daily regional mean for each variable is taken. This is done by first averaging over longitude, then taking a weighted

average over latitude. Then, the 2003-2022 wildfire seasons are spliced together, which results in a roughly 3060 day time165

series. From this 3060 day time series, any days with no data are removed. Next, the average of these time series is removed

to give a time series of anomalies for each variable. Then, filters are applied to stratify the variable in question. If the variable

is being stratified by one variable (such as DM ), the result would be two roughly 306 day long datasets: one stratified by the

90th percentile of the stratification variable, and one stratified by the 10th percentile of the stratification variable. In the cases

where the data is stratified by two variables, the result is four datasets. These datasets then have a normal distribution fit to170

them (Section 3.1) where the average is calculated and a CDF is fit. Once the average is taken for each dataset, σ for each

distribution is taken and divided by the square root of the number of data points in each distribution to give the standard error

of each dataset. Then, the means can be differentiated from each other to determine if the stratification variable (such as DM )

leads to a significant change in the variable anomaly in question. This process can be applied both for a regional average, or

on a gridcell-by-gridcell basis. When this process is performed on a gridcell-by-gridcell basis, the Pearson cross correlation175

coefficient r is determined by spatially correlating the stratified variables with one another. This helps determine if one change

in a variable as a result of fires (or other factors) feedbacks onto another to cause a change in anomaly.

3.3 Regions of Interest

First, the region within the southwestern US in which the most significant fire emissions originate from was discerned. Based

on what is generally considered to be the time of year in which most wildfires occur in the western US (Urbanski, 2013;180

Urbanski et al., 2011), data was collected from June 1st-October 31st for the 2003-2022 time frame. 2003-2022 was chosen

as this is the time frame in which Aqua satellite data is available for the fire season. Analysis was limited to fire seasons as

opposed to the entire year so that the threshold for what constitutes a 90th percentile fire is increased. First, for each gridcell,

the 2003-2022 seasonal average daily DM emissions was taken. The portion of the southwestern US that had the largest 2003-

2022 seasonal average daily DM emissions is the region that shall be referred to as "northern California" (nCA), which is185

highlighted in the blue box in Figure 1a. The reason for limiting DM data to this region is again to ensure that the threshold

for 90th percentile DM is kept high. The nCA region is characterized by temperate forests along the coastline, in the far north,
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as well as the east. Agricultural lands are scattered throughout just about every gridcell in nCA, with higher concentrations in

the central valley as well as the coastal north. Grasslands are also found throughout most gridcells in this region, with higher

concentrations in central CA. The dominant contributor of DM in this region is the temperate forests in the north (Figure190

S1). At this time of year, predominant wind patterns in nCA would favor transportation of smoke from these fires to northern

Nevada. During the fire season, northwesterlies tend to blow across nCA towards northern Nevada, and south westerlies blow

through the central valley and Sierra Nevada range (Zaremba & Carroll, 1999; LeNoir et al., 1999). Therefore, the expectation

is for the majority of wildfire aerosols to be concentrated in nCA, and neighboring northern/central Nevada. In differentiating

nCA DM on high fire days and nCA DM on low fire days, AOD is found to be significantly higher in both nCA and Nevada195

Figure 1b, confirming this suspicion. Therefore, from this point forward, the focus will be on the effects of the fires in the blue

box in Figure 1a (nCA) on the area highlighted in the green box (nCA-NV) in Figure 1b.

Figure 1 also serves as a verification of the stratification method, as well as validation of GFED emissions data. Monthly cross

correlation analysis (Supplement Section 1) as well as previous works (Wilmot et al., 2022; Schlosser et al., 2017; Cho et al.,200

2022) indicate that during large fire events, AOD and/or particulate matter concentration are significantly larger compared to

no fire conditions. The significant increase in AOD over most of the southwestern US supports the assertion that GFED fire

emissions are an acceptable indicator of large fire occurrence.

3.4 CALIPSO

To determine the difference in EC profile between anomalously high and low fire events, the average for each aerosol type’s205

EC at each pressure level was taken over (DM90) months and (DM10) months in the 2006-2021 range (the time frame in

which CALIPSO data is available) in the region of interest. The difference between these two profiles is then taken. The moti-

vation for this process is for one, to remove the effects of potential background aerosols such as BC or OA (from anthropogenic

sources such as fossil fuel burning) and isolate the effects of the aerosols emitted from mega-fires. The resulting profile then

depicts the effects on the vertical EC profile that fires have. The EC profile of the aerosols is not further stratified as the210

CALIPSO data is monthly.

4 Results

4.1 Vertical Distribution of Absorbing Aerosols in nCA-NV Region

The three absorbing aerosols that are associated with fires that can be discerned by CALIPSO are smoke, dust, and polluted

dust. While dust is not emitted from biomass burning, a number of studies have linked fires to concurrent dust emission215

through creation of powerful convective updrafts (Wagner et al., 2018, 2021) and delayed dust emissions through wildfire

clearing of vegetation (Wagenbrenner et al., 2013, 2017; Yu & Ginoux, 2022). Past observations and modelling experiments

have shown dust to create semi-direct effects (Tsikerdekis et al., 2019; Amiri-Farahani et al., 2017; Helmert et al., 2007).
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However, increases in non-polluted dust during fires may be related to the concurrence of high winds that tend to be a driver of

the mega-fires themselves. Emissions of polluted dust, however, are far more likely to be related to fires, as this aerosol species220

is a combination of dust and smokey aerosols. Therefore, focus was placed upon smoke and polluted dust. Polluted dust is a

mixture of smoke and dust, and therefore should have stronger SW absorption than dust alone. Figures 2a & 2b depict monthly

2006-2021 nCA-NV regional average EC(DM90)-EC(DM10) in the daytime (Figure 2a) and the nighttime (Figure 2b)

for both smoke and polluted dust. These plots demonstrate that polluted dust and smoke EC increases significantly in most

parts of the troposphere in months where an anomalously large fire occurs. This includes altitudes with pressures p less than225

500hPa, where there are relatively large and significant increases in polluted dust (Figures 2c, 2d). These high altitude changes

are important as in (DM10) months, there is no smoke or polluted dust EC above roughly p =400hPa (Figure S3,S4), which

supports the assertion that wildfire aerosol plumes deposit absorbing aerosols high in the troposphere. However, it should be

noted that there are a few altitudes where there is anomalously low smoke EC observed, such as around p =900hPa in the

daytime profile and around 500-400hPa in the nighttime profile. The standard errors on these negative differences are quite230

high however, and may be dominated by an outlier month with abnormally high smoke concentration in the (DM10) emission

months (possibly from transportation of smoke from a fire outside of the region of interest).

4.2 High & Low Pressure Extremes Stratification

The fingerprints of a semi-direct effect would entail an anomalous warming of the cloud layer, and a corresponding decrease

in RH . However, the meteorological conditions around which fires tend to occur need to be taken into account. Figure 3235

depicts cumulative distribution functions (CDFs) for meteorological conditions under high ps extremes (ps90) and low ps

extremes (ps10). High ps extremes in the southwestern US are associated with higher T throughout the troposphere/surface,

reduced RH throughout the troposphere/surface, and reduced CF , while low ps extremes are associated with the opposite

(Figure 3). This demonstrates a need to separate the effects of fires from the meteorological effects of high ps extremes, as

positive DM anomalies are significantly more likely to occur on (ps90) days as opposed to (ps10) days. Additionally, Figure240

3h demonstrates that surface wind speeds tend to be larger in the nCA-NV region during ps10 days. This could impact the

transportation of the BB/polluted dust aerosols, potentially allowing for further transportation. Figure 4a demonstrates that

AOD is not significantly different whether fires occur during (ps90) or (ps10) days. However, Figure 4b,c demonstrate that

the distribution of AOD is significantly different between the positive/negative ps extremes. Under (ps90) conditions, the area

with the highest AOD is the origin of the BB aerosols: nCA. Under (ps10) conditions, the AOD is significantly high over both245

nCA and Nevada.

4.3 Responses in Temperature & Humidity Profiles

The immediate direct effect of BB aerosols tends to be a net cooling of the surface (Sakaeda et al., 2011; Abel et al., 2005).

However, semi-direct effects, such as the burning off of low clouds, may overpower this effect, leading to a net surface warm-

ing. As the meteorological conditions associated with high pressure days are also hallmarks of a semi-direct effect (Figure250

3), from here onward data will be stratified into four categories: one with high DM and high ps (DM90,ps90), one with
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low DM and high ps (DM10,ps90), one with high DM and low ps (DM90,ps10), and one with one with low DM and

low ps (DM10,ps10). In differentiating the average of the variables on (DM90,ps90) days and (DM10,ps90) days, the ef-

fects of fires can be discerned independent of the meteorological conditions that come with high ps extremes. Additionally,

in comparing the (DM90,ps10) dataset to the (DM10,ps10) dataset, the effects of high ps are not present, so this further255

isolates the effects of the fires. Figure 5 displays 2003-2022 June-October nCA-NV vertical profiles of high minus low fire

days’ T (Figure 5a,d and RH (Figure 5c,f) profiles. Figure 5a-c are stratified by high ps, while Figure 5d-f are stratified by

low ps. These profiles demonstrate that when anomalously large fires are occurring, whether it is during high or low pressure

extremes, temperature is significantly anomalously high at all points of the troposphere at p≥250hPa compared to conditions

with anomalously low fires. In both Figure 5a and Figure 5d, the temperatures in the 850hPa to 250hPa pressure level range260

are consistently significantly higher than the surface layer (900hPa to 1000hPa). Comparing Figure 5 to Figure 2, the positive

differences in temperature anomaly are generally consistent with the positive differences in polluted dust and/or smoke EC.

In comparing Figure 5d to Figure 5c, RH anomalies in the 700hPa to 250hPa range (and at sea level) are significantly lower

when anomalously large fires occur during low pressure extremes.

265

Aside from temperature, the other potential factor that could affect RH is that of specific humidity, which is analogous to

water mass mixing ratio MH2O. Utilizing the same process that generated the T and RH profiles, profiles of MH2O were

generated for high and low ps extremes (Figures 5b,e). There is no significant anomaly under high ps conditions, but under

low ps there are significant negative anomalies at 1000hPa, and 500-300hPa. This means that the negative RH anomaly in the

high troposphere under high fire conditions is due at least in part to a negative specific humidity anomaly. Figure 6 depicts270

high minus low DM extremes’ 500hPa-250hPa and 700hPa-500hPa T , MH2O, and RH anomalies during low ps extremes.

In both the high and low/mid-troposphere in the nCA-NV region (highlighted in the green box), there are significant increases

in T and decreases in RH . However, in the high troposphere, there is a significant decrease in MH2O over Nevada that is not

present in the low/mid troposphere. Therefore, decreases in RH in the high troposphere are likely in part due to changes in

MH2O in addition to increases in T . It is unknown if the fires are the cause of this difference in specific humidity anomaly,275

but this is further explored in section 2 of the supplement. As the change in T is the more robust signal over all parts of the

troposphere, the changes in T will be the focus of the remainder of the paper.

4.4 Changes in Cloud Fraction, Precipitation, and Shortwave Flux

Figure 5 implies that during anomalously large fire events, there is a significant increase in temperatures in the low, mid, and

high troposphere compared to anomalously low fire conditions. Does this increase in temperature translate to a decrease in280

CF , and therefore a change in the radiative balance? Figure 7 displays CDFs for nCA-NV regional average variable anoma-

lies during high DM /low ps days (solid red), low DM /high ps days (dashed red), high DM /low ps days (solid blue), and low

DM /low ps days (dashed blue). Figure 7a and Figure 7b demonstrate that during both high and low ps extreme days, the mean

liquid water cloud fraction CFlw anomaly and cirrus cloud fraction anomaly CFcir anomaly are shifted significantly leftward

under high DM conditions. This implies that when anomalously large fires occur, there is a significantly higher probability285
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(at the 90% confidence interval) of seeing a negative CFlw and/or CFcir anomaly. While the distribution of all other variables

depicted in Figure 7, such as CF , cloud top height CTH , P , and outgoing top of atmosphere shortwave flux TOA SW

flux, are shifted leftward on high DM days compared to low DM days, the shifts are not significant during high ps extremes.

However, these shifts are significant for low ps extreme days (Figure 7). The explanation for as to why the distribution shifts

farther leftward when anomalously large fires occur during low pressure compared to high pressure extremes lies in Figure 5.290

High pressure extremes create conditions favorable for sinking air. During high pressure extremes, RH is already significantly

lower than normal conditions, as temperatures throughout the troposphere are already high and atmospheric water vapor con-

tent is low. This creates conditions of cloud-free skies. Therefore, further decreasing the already low RH should not lead to

significantly lower cloud fraction, P , or outgoing TOA SW flux as CF is already low. However, during low DM /low ps days,

Figure 7 demonstrates that conditions are favorable for clouds and rain. This is because during these low pressure extremes, T295

is lower and RH is high. Therefore, when anomalously large fires introduce aerosols that create a semi-direct effect, the drop

in RH is significant enough to reduce the chances of seeing positive cloud/rain anomalies. In response to the higher probability

of negative cloud fraction anomaly, the probability that SW radiation will be reflected back into space decreases. The effect

sizes of high DM emissions on nCA-NV regional averages of the variables in Figure 7 are depicted in Figure 8. Figure 8a

demonstrates that during high ps extremes, anomalously large fires have a weak-to-no effect size on the relevant variables. For300

low ps extremes, the anomalously large fires have a moderate-to-strong effect size on the relevant variables.

Thus far, the focus of this project has been on the regional average of the nCA-NV region. However, it is essential to determine if

the changes in the relevant variables are spatially consistent. As the fire semi-direct effect signal is strongest during significant

low pressure days, the focus from here will be on the meteorological effects of fires during high DM /low ps days. Figure305

9 displays composite differences between high DM /low ps and low DM /low ps days’ meteorological variables for each

gridcell over the entire southwestern US. Figures 6a,b display the composite differences in cloud layer (700hPa≥ p≥250hPa)

temperature TCL and cloud layer relative humidity RHCL. These plots depict that TCL significantly (significant changes are

marked with a black dot in each gridcell) increases almost everywhere across California and Nevada, with the most significant

increase in the green box (the nCA-NV region). The differences in TCL correlate significantly with AOD(DM90,ps10)-310

AOD(DM10,ps10) at r = 0.79 across the entire southwest. The decreases in RHCL have a very similar spatial distribution

to TCL, with the strongest decreases in the nCA-NV region. Again, this correlates significantly with AOD with r =−0.77

over the entire southwest. While the increases in cloud layer T are widespread across all of California and Nevada, significant

increases in Ts (Figure 9c), decreases in RHs (Figure 9d), decreases in CF (Figure 9e), decreases in CTH (Figure 9f),

decreases in P (Figure 9g), and decreases in TOA SW flux (Figure 9h) are essentially exclusive to the nCA-NV region.315

The differences in all of these variables across the southwestern US correlate significantly with AOD, supporting the assertion

that aerosols concurrent with fires create semi-direct effects. Of particular note are the changes in Ts and P , which are two

variables intrinsically related to fire duration. A spatial cross correlation of the change in Ts and TOA SW yields r =-0.59,

which is significant at the 90% confidence interval. Furthermore, correlating P with RHCL using the same method yields an

even stronger correlation of r =0.80. Breaking down the changes in CF into liquid and ice cloud components, it appears that320
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cirrus clouds contribute the most to the decrease in CF and CTH . Figure 10 depicts composite differences between high

DM /low ps and low DM /low ps days’ CFlw and CFcir. The differences in CFlw are spatially consistent with the changes in

RH in the 700-500hPa levels of the troposphere, while The differences in CFcir are spatially consistent with the changes in

RH in the 500-200hPa levels of the troposphere (Figure 6).

4.5 Cloud Microphysical Effects325

Up to this point, we have investigated aerosol direct/semi-direct effects on clouds. Aerosols may also influence clouds via

microphysical effects, which are investigated in this section. High fire emissions under both low and high ps conditions are

associated with non-significant differences in liquid and ice Reff (Figure 11). Under high fire/high ps extremes, there is an

increase in ice water path IWP . IWP scales positively with T , so this is a fingerprint of a dominate radiative effect (Ou

& Liou, 1995). Furthermore, there is a significant decrease in LWP under anomalously high fire/low ps conditions. This330

significant decrease in LWP may be due to the decrease in RH , which reduces liquid water within clouds. This decrease in

LWP may be of importance, as LWP scales positively with cloud albedo (Han et al., 1998). Therefore, this decrease in LWP

may contribute to an increase in absorbed solar radiation at the surface. In summary, while the nCA fires significantly inject of

aerosols into the troposphere, these aerosols do not appear to act as CCN, and instead burn off clouds. Previously, BC has been

shown to aid cloud droplet/ice formation, but only after the particles have undergone over a week of aging (Lohmann et al.,335

2020). Therefore, the freshly emitted BC during the anomalously high fire events may be too hydrophobic to act as CCN, and

instead radiative effects of the aerosol dominate. Additionally, the warming effects of these aerosols may reduce RH to the

point where clouds are unable to form in the first place.

5 Discussion

The results of this paper indicate that large fires in nCA are concurrent with significant amounts of absorbing aerosols and a340

warmer troposphere. When the fires occur during low ps extremes, this increase in T is associated with a significant decrease in

RH in the low, mid, and high cloud layers (700hPa-250hPa) at the 90% confidence interval. This decrease in RH is associated

with a reduction of clouds, which results in a reduction in CF and P significantly in the nCA-NV region. This reduction in

clouds is then associated with a reduction in outgoing TOA SW flux. This reduction in outgoing TOA SW flux is concurrent

with an increase in Ts and a reduction in RHs in the nCA-NV region. However, this warming effect may be somewhat345

muted by a reduction in CTH , which could increase outgoing TOA LW flux, presumably as a result of a disproportionate

reduction in CFcir compared to CFlw seen in Figure 9. In short, during low pressure extremes, fires in nCA appear to create

a positive feedback that entails emissions of absorbing aerosols that warm the troposphere, creating a semi-direct effect. This

semi-direct effect then creates conditions more favorable to fires, including warmer surface temperatures and reduced P , as a

result of reduced cloud cover and cloud layer RH . Significant reductions in nCA P may prolong the wildfire season further350

into autumn (Goss et al., 2020), and increases in Ts as well as decreases in RHs may create conditions more favorable for

more fires to ignite and grow. This positive feedback may also prolong poor air quality conditions inside the southwestern
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US (Liu & Peng, 2019; O’Neill et al., 2021; Schlosser et al., 2017), as well as other parts of the country (Hung et al., 2020).

Additionally, these significant decreases in P and/or increases Ts occur in heavily populated regions in the southwestern US,

including: the San Francisco bay area, Humboldt County in California, and Washoe County in Nevada. It is possible that these355

results may also be applicable to other Mediterranean climates, but further research is needed. Therefore, this study highlights

an increased need for a curtailment of CO2 emissions (Ma et al., 2021; Touma et al., 2021) and better land management

practices (DellaSala et al., 2022; Minnich et al., 2000; Minnich, 2001), as climate change and land mismanagement have both

contributed to the mega-fires in nCA in recent years. Additionally, this paper highlights the need for more climate models to

incorporate feedbacks between wildfires, their aerosols, and semi-direct effects. Models that include interactive emissions of360

BB aerosols as well as account for the radiative effects of these aerosols on the surface are few and far between, and those that

do exist remain in their infancy (Mangeon et al., 2016; Li et al., 2012). Furthermore, as the fire module of these models tend

to be unused in the main CMIP simulations, this study highlights a potential deficiency in projections of radiative balance, fire

lifetime, and the corresponding air quality impacts in climate model simulations. Therefore, future projections of fire duration,

and the associated air quality reduction may be underestimated.365

Code availability. Code used to process satellite data is available upon request from author.

Data availability. All datasets utilized in this analysis are available online. MODIS datasets are available via the 787 NASA Level-1 and

Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive 788 Center (DAAC) at https://ladsweb.modaps.eosdis.

nasa.gov/archive/allData/61/. CERES datasets can be found at https://ceres.larc.nasa.gov/. AIRS data is available via NASA’s Earth Science

Data 794 extremes (ESDS) program at https://www.earthdata.nasa.gov/. CALIPSO datasets are available at the Atmospheric Science Data370

Center (ASDC) at https://asdc.larc.nasa.gov/. GFED fire emission data is archived on the GFED web page at https://www.globalfiredata.org/.

MERRA-2 data can be found on the Goddard Earth Sciences Data and Information Services Center (GES DISC) website at https://disc.gsfc.

nasa.gov/datasets?project=MERRA-2.
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Appendix A

Symbol Definition Dataset Derived From Name of Product Used

DM Fire dry matter emissions GFED DM, daily_fraction

ps Surface Pressure CERES/GEOS sfc_press

AOD Aerosol Optical Depth MODIS Deep Blue Deep_Blue_Aerosol_Optical_Depth_550_Land_Mean

MH2O Water Mass Mixing Ratio AIRS H2O_MMR_D

EC Extinction Coefficient CALIPSO

Extinction_Coefficient_532_Mean_Elevated_Smoke,

Extinction_Coefficient_532_Mean_Polluted_Dust

Extinction_Coefficient_532_Mean_Dust

T Temperature AIRS Temperature_D

Ts Surface Temperature AIRS SurfAirTemp_D

RH Relative Humidity AIRS RelHum_D

RHs Surface Relative Humidity AIRS RelHumSurf_D

CF Cloud Fraction MODIS Cloud_Fraction_Mean

CFcir Cirrus Cloud Fraction MODIS Cirrus_Fraction_Infrared

CFlw Liquid Water Cloud Fraction MODIS Cloud_Retrieval_Fraction_Liquid

CTH Cloud Top Height MODIS Cloud_Top_Height_Mean

P Precipitation GPCP precip

TOA SW
Outgoing Top of Atmosphere

Short Wave Flux
CERES all_toa_sw

Us Surface Wind speed CERES/GEOS sfc_wind_speed

Liquid Reff Liquid Cloud Effective Radius MODIS Cloud_Effective_Radius_Ice_Mean

Ice Reff Ice Cloud Effective Radius MODIS Cloud_Effective_Radius_Liquid_Mean

LWP Liquid Water Path MODIS Cloud_Water_Path_Liquid_Mean

IWP Ice Water Path MODIS Cloud_Water_Path_Ice_Mean

Table A1. Definition of variables that were derived from satellite observational datasets, as well as the instrument and dataset they are derived

from.
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Symbol Definition

nCA Northern California

nCA-NV Northern California-Nevada

US United States

BB Biomass Burning

BC Black Carbon

OA Organic Aerosol

CA California

SW Shortwave

AAOD Absorbing Aerosol Optical Depth

LW Longwave

CCN Cloud Condensation Nuclei

CDF Cumulative Distribution Function

Table A2. Definitions of abbreviations found throughout the paper that are not associated with a dataset.
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Descriptor Definition

(DM90)
Variable stratified by 90th percentile fire dry matter

emission anomaly days in nCA

(ps90)
Variable stratified by 90th percentile surface

pressure anomaly days in nCA-NV

(DM10)
Variable stratified by 10th percentile fire dry matter

emission anomaly days in nCA

(ps10)
Variable stratified by 10th percentile surface

pressure anomaly days in nCA-NV

(DM90,ps90)

Variable stratified by 90th percentile fire dry

matter emission anomaly days in nCA and 90th

percentile surface pressure anomaly days in nCA-NV

(DM10,ps90)

Variable stratified by 10th percentile fire dry

matter emission anomaly days in nCA and 90th

percentile surface pressure anomaly days in nCA-NV

(DM90,ps10)

Variable stratified by 90th percentile fire dry

matter emission anomaly days in nCA and 10th

percentile surface pressure anomaly days in nCA-NV

(DM10,ps10)

Variable stratified by 10th percentile fire dry

matter emission anomaly days in nCA and 10th

percentile surface pressure anomaly days in nCA-NV

cl Cloud layer (700-250hPa) average of variable

s Variable measured at the surface

ht High troposphere (500-200hPa) average of variable

lt Low/mid Troposphere (700-500hPa) average of variable

∆
Difference in variable under different fire and/or

pressure conditions

Table A3. Definitions of subscripts and other descriptors for variables.
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Figure 1. Distribution of fires and the corresponding aerosol optical depth AOD anomaly impacts. (a) average daily fire dry matter DM

emissions for the southwestern United States. Blue box signifies the nCA (northern California) region, where average daily fire emissions are

the highest. (b) 2003-2022 June-October daily Deep Blue MODIS Aerosol optical depth (AOD) difference between average AOD on 90th

percentile DM (DM90) and average AOD on 10th percentile DM (DM10) days within the 2003-2022 June-October time frame. ∆AOD

represents AOD(DM90)−AOD(DM10). Green box symbolizes the nCA-NV (northern California-Nevada) region, where increases in

AOD and changes in cloud properties (Figure 9) are most significant. Black dots represent statistically significant differences at 90%

confidence according to a two-tailed test.
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Figure 2. Aerosols extinction coefficient EC profiles on high minus low fire months. Difference in 2006-2021 northern California/Nevada

(nCA-NV) regional average CALIPSO EC profiles that occur in 90th percentile northern California (nCA) fire emission months and 10th

percentile nCA fire emission months within the 2006-2021 June-October time frame. Blue represents the smoke EC profile, and gold

represents the polluted dust EC profile. (a,c) depict the daytime CALIPSO retrievals, while (b,d) depict nighttime CALIPSO retrievals. (a)

and (b) display the entire vertical EC profiles, while (c,d) display the profiles in the high troposphere (pressures less than 500hPa). Error

bars represent standard errors. 23
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Figure 3. Dependence of meteorological variables on high versus low surface pressure. Regional average cumulative distribution functions

(CDFs) for variable anomalies stratified by 90th percentile surface pressure (ps90) days (red) and 10th percentile (ps10) (blue) days within the

2003-2022 June-October time frame. Variables depicted include (a) northern California (nCA) fire dry matter (DM) emissions, (b) northern

California-Nevada (nCA-NV) surface temperature Ts, (c) nCA-NV cloud layer (700-250hPa) average temperature Tcl , (d) nCA-NV surface

relative humidity RHs, (e) nCA-NV cloud layer average relative humidity RHcl , (f) nCA-NV cloud fraction CF , (g) nCA-NV precipitation

P , and (h) nCA-NV surface wind speed U . ∆ represents the difference between the variable’s average anomaly for ps90 and ps10 days.
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Figure 4. Difference in aerosol optical depth AOD on high and low surface pressure ps days. Daily northern California-Nevada (nCA-

NV) AOD anomalies stratified by ps and northern California (nCA) fire dry matter DM emission extremes within the 2003-2022 June-

October time frame. (a) displays cumulative distribution functions for daily June-October 2003-2022 daily northern California-Nevada (nCA-

NV) AOD stratified by high (90th percentile) nCA DM emissions and high nCA-NV ps AOD(DM90,ps90) (solid red line),low (10th

percentile) DM and high ps AOD(DM10,ps90) (dashed red), high DM /low ps AOD(DM90,ps10) (solid blue line), and low nCA

DM /low ps AOD(DM10,ps10) (dashed blue line). The red ∆AOD represents the difference between the solid red and dashed red

line AOD(DM90,ps90)-AOD(DM10,ps90) and the blue ∆AOD represents the difference between the solid and dashed blue lines

AOD(DM90,ps10)-AOD(DM10,ps10). (b) Depicts a map of AOD(DM90,ps10)-AOD(DM10,ps10) with the nCA-NV region high-

lighted in the green box. Pearson cross correlation coefficient r between ∆AOD and nCA DM emissions is depicted in the top left corner.

(c) Depicts a map of average AOD(DM90,ps90)-AOD(DM10,ps90). Black dots in (b),(c) represent statistically significant differences

at the 90% confidence interval according to a two-tailed test.
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Figure 5. Responses in temperature T , water mass mixing ratio MH2O , and relative humidity RH profiles to large fires under high and low

surface pressure ps extremes. Northern California-Nevada regional-temporal average differences in T , water mass mixing ratio MH2O and

relative humidity RH profiles between high (90th percentile) and low (10th percentile) northern California fire dry matter emissions DM

anomalies stratified by days of high and low ps anomaly extremes in the 2002-2023 fire season (June-October) time frame. (a,b.c) represent

T , MH2O , and RH differences between high and low fire days on high ps days. (d,e,f) represent T , MH2O , and RH differences between

high and low fire days on low ps days. Error bars represent standard error.
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Figure 6. Contributions of specific humidity and temperature to changes in relative humidity in the high and low troposphere. Average

high (90th percentile) minus low (10th percentile) fire dry matter emission DM days (in the 2002-2022 June-October timeframe) water

mass mixing ratio, temperature, and relative humidity anomalies in the high (500-200hPa) and low/mid (700-500 hPa) troposphere during

low surface pressure ps. Low (10th percentile) pressure extreme 90th minus 10th percentile DM seasonal average anomalies for (a) high

troposphere water mass mixing ratio MH2O(ht), (b) high troposphere temperature Tht, (c) high troposphere relative humidity RHht, (d)

low/mid troposphere water mass mixing ratio MH2O(lt), (e) low/mid troposphere temperature Tlt, and (f) high troposphere relative humidity

RHlt. Black dots represent statistically significant differences at the 90% confidence interval according to a two-tailed test. Green box

represents northern California-Nevada region. r-value represents Pearson cross correlation coefficient between the given variable and aerosol

optical depth at zero lag.
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Figure 7. Dependence of meteorological variables to high versus low surface pressure ps and fires. Cumulative distribution functions (CDFs)

for meteorological daily variables’ regional average anomalies over the northern California-Nevada (nCA-NV) region in the 2003-2022

June-October timeframe. Solid red line signifies variable anomalies are stratified by high (90th percentile) northern California (nCA) fire dry

matter emission DM and high ps anomaly days (DM90,ps90). The dashed red line signifies variable anomalies are stratified by low (10th

percentile) nCA DM and high ps anomaly days (DM10,ps90). The solid blue line represents variable anomalies are stratified by high nCA

DM and 10th percentile ps anomaly days (DM90,ps10). The dashed blue line symbolizes variable anomalies are stratified by low DM

and low ps anomaly days (DM10,ps10). Variables depicted include (a) cirrus cloud fraction CFcir , (b) liquid water cloud fraction CFlw ,

(c) cloud fraction CF , (d) cloud top height CTH , (e) precipitation P , and (f) outgoing top of atmosphere shortwave flux TOA SW . The

red ∆ represents the differences in the mean of the solid red and dashed red lines (DM90,ps90)-(DM10,ps90). The blue ∆ represents the

differences in the mean of the solid blue and dashed blue lines (DM90,ps10)-(DM10,ps10).

28

https://doi.org/10.5194/egusphere-2023-2827
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



(a)	High	ps

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

d

(b)	Low	ps

CFlw CFcir CF CTH P TOA	SW
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

d

Figure 8. Effect size of large fires on the mean of various meteorological variables. 2003-2022 June-October Cohen’s d d values for the

difference between northern California-Nevada (nCA-NV) regional averages of variables on high (90th percentile) northern California (nCA)

fire dry matter DM emission days and low (10th percentile) nCA DM emission days that coincide with (a) high surface pressure ps anomaly

and (b) low ps anomaly. Variables include liquid water cloud fraction CFlw, cirrus cloud fraction CFcir , cloud fraction CF , cloud top

height CTH , precipitation, and top of atmosphere (TOA) shortwave (SW) flux. (a) represents values of Cohen’s d for 90th percentile surface

pressure ps days while (b) represents values of Cohen’s d for 10th percentile ps days. For Cohen’s d, values of 0.2 through 0.5 signify a weak

effect size, values of 0.5 through 0.8 represent a moderate effect size, and values greater or equal to 0.8 signify a strong effect size. Red bars

represent standard error.
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Figure 9. Meteorological responses under high versus low fire days with simultaneously low surface pressure. Difference between average

variable anomalies on high (90th percentile) northern California (nCA) fire dry matter DM emission days and low (10th percentile) nCA

DM emission days that occur on low surface pressure ps days in the 2003-2022 June-October time frame. Variables include (a) 700hPa-

250hPa average Temperature Tcl, 700hPa-250hPa average relative humidity RHcl, (c) surface temperature Ts, (d) surface relative humidity

RHs, (e) cloud fraction CF , (f) cloud top height CTH , (g) precipitation, and (e) top of atmosphere TOA shortwave SW flux. Black dots

represent statistically significant differences at the 90% confidence interval according to a two tailed test. Green box symbolizes the northern

California-Nevada region. Pearson cross correlation r values in the top left corner of each plot represent the spatial correlation between

MODIS Deep Blue aerosol optical depth AOD anomaly and the variable anomaly depicted in the figure. All values of r are significant at

the 90% confidence interval according to a two-tailed test.
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Figure 10. Responses of liquid water and cirrus cloud fraction under high versus low fire days with simultaneously low surface pressure.

Difference between average variable anomalies on high (90th percentile) northern California (nCA) fire dry matter DM emission days and

low (10th percentile) nCA DM emission days that occur on low surface pressure ps days in the 2003-2022 June-October timeframe. Variables

include (a) liquid water cloud fraction CFlw and (b) cirrus cloud fraction CFcir . Black dots represent statistically significant differences at

the 90% confidence interval using a two-tailed test. r represents Pearson cross correlation coefficient values for cross correlations between

aerosol optical depth and the variable of interest. The green box represents the northern California-Nevada region. The spatial extent of the

changes in CFcir align with the changes in high troposphere water mass mixing ratio in Figure 6a, while the changes in CFlw align more

with the changes in low/mid troposphere temperature in Figure 6e.
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Figure 11. Dependence of microphysical variables to high (90th percentile) versus low (10th percentile) surface pressure ps and fires.

Cumulative distribution functions (CDFs) for cloud microphysical variables’ regional average daily anomalies over the northern California-

Nevada (nCA-NV) region in the 2003-2022 June-October time frame. Solid red line signifies variable anomalies are stratified by high northern

California (nCA) fire dry matter emission DM and high surface pressure ps anomaly days (DM90,ps90). The dashed red line signifies

variable anomalies are stratified by low DM and high ps anomaly days (DM10,ps90). The solid blue line represents variable anomalies are

stratified by high DM and 10th percentile ps anomaly days (DM90,ps10). The dashed blue line symbolizes variable anomalies are stratified

by low nCA DM and ps anomaly days (DM10,ps10). Variables depicted include (a) liquid effective radius Reff , (b) Ice Reff , (c) liquid

water path LWP , (d) and ice water path IWP . The red ∆ represents the differences in the mean of the solid red and dashed red lines

(DM90,ps90)-(DM10,ps90). The blue ∆ represents the differences in the mean of the solid blue and dashed blue lines (DM90,ps10)-

(DM10,ps10).
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