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Abstract. Wildfires in the southwestern United States, particularly in northern California (nCA), have grown in size and

severity in the past decade. As they have grown larger, they have been associated with large emissions of absorbing aerosols and

heat into the troposphere. Utilizing satellite observations from MODIS, CERES, and AIRS, as well as reanalysis from MERRA-

2, the meteorology associated with fires during the wildfire season (June-October) were discerned over the nCA-NV (northern

California and Nevada) region in the 2003-2022 time period. Wildfires in the region have a higher probability of occurring5

on days of positive temperature T anomalies and negative relative humidity RH anomalies, making it difficult to discern

the radiative effects of aerosols that are concurrent with fires. To attempt to better isolate the effects of large fire emissions on

meteorological variables, such as clouds and precipitation, variable anomalies on high fire emission days (90th percentile) were

compared to low fire emission days (10th percentile) and were further stratified based on whether surface relative humidity

RHs was anomalously high (75th percentile) or low (25th percentile) compared to typical fire season conditions. Comparing10

the high fire emission/high RHs data to the low fire emission/high RHs data, positive tropospheric T anomalies were found

to be concurrent with positive AOD anomalies. Further investigation found that due to shortwave absorption, the aerosols heat

the atmosphere at a rate of 0.041 ± 0.016 K day−1 to 0.093 ± 0.019 K day−1, depending on whether RH conditions are

anomalously positive or negative. The positive T anomalies were associated with significant negative 850 hPa-300 hPa RH

anomalies during both 75th percentile RHs conditions. Furthermore, high fire emission days under high RHs conditions are15

associated with negative CF anomalies that are concurrent with the negative RH anomalies. This negative CF anomaly is

associated with a significantly negative regional precipitation anomaly and an positive net top of atmosphere radiative flux

anomaly (a warming effect) in certain areas. The T , RH , and CF anomalies under the high fire emission/high RHs conditions

compared to low fire/high RHs conditions correlate significantly spatially with AOD anomalies. Additionally, the vertical

profile of these variables under the same stratification are consistent with positive black carbon mass mixing ratio anomalies20

from MERRA-2. However, causality is difficult to discern, and further study is warranted to determine to what extent the

aerosols are contributing to these anomalies.
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1 Introduction

As a result of climate change, land use change, and forest management, the frequency of wildfires in California has trended

upward from 100 fires per year in the 1920s to 300 fires per year in the late 2010s (Li & Banerjee, 2021). The size of these25

wildfires has also increased, with total burned area (square distance burned by a fire) increasing from roughly 1000 km2 to

almost 4000 km2 in the same time period (Li & Banerjee, 2021). According to a recent study, frequency of extreme daily

wildfire events in the region are projected to increase by 59%-172% in coming years due to climate change (Brown et al.,

2023), which is consistent with findings of numerous other studies (Palinkas, 2020; Ager et al., 2021; United Nations Envi-

ronment Programme, 2022). In both higher and lower CO2 mitigation scenarios, large wildfire events are projected to become30

more commonplace by the end of the 21st century worldwide, as well in the southwestern US (United Nations Environment

Programme, 2022). Large wildfire events in the late 2010’s and early 2020’s were associated with more intense "fire weather":

high temperatures T , low relative humidity RH , and high surface wind speeds Us (Varga et al., 2022; Keeley & Syphard,

2019). These fire weather conditions may be potentially intensified, or alleviated, by the fires themselves. Higher burn severity

wildfires, such as the 2020 wildfires in California (CA), have been observed to inject smoke plumes higher into the troposphere35

than in previous years (Wilmot et al., 2022). These smoke plumes consist of both shortwave (SW) absorbing aerosols such

black carbon BC and reflective aerosols such as organic aerosol (OA), as well as brown carbon, which is absorbing and reflec-

tive. Additionally, wildfires have also been associated with emission of other aerosol species through feedbacks. While dust is

not emitted from biomass burning, a number of studies have linked fires to concurrent dust emission through creation of con-

vective updrafts (Wagner et al., 2018, 2021) and delayed dust emissions through wildfire clearing of vegetation (Wagenbrenner40

et al., 2013, 2017; Yu & Ginoux, 2022). The absorbing properties of wildfire smoke and co-emitted dust over the western

US, measured using absorbing aerosol optical depth (AAOD), is uncertain. However, a recent study of CA fires indicates that

wildfires increase AAOD relative to the annual mean by tenfold (Cho et al., 2022). An injection of absorbing aerosols into the

troposphere may cause a local warming affect, altering the hydrological and radiative balance of the atmosphere (Allen & Sher-

wood, 2010; Thornhill et al., 2018; Allen et al., 2019; Herbert & Stier, 2023). Smoke plumes that reach the upper troposphere45

(pressures<500 hPa) may deposit absorbing aerosols that could burn off high clouds, and promote more stable low clouds

(Stjern et al., 2017; Smith et al., 2018; Allen et al., 2019), leading to SW and longwave (LW) cooling. Alternatively, if the

absorbing aerosols are concurrent with low clouds, the relative humidity of the liquid cloud layer would be decreased, burning

off low clouds and leading to a decrease in outgoing SW flux (Koch & Del Genio, 2010; Allen & Sherwood, 2010). These

are both examples of aerosol semi-direct effects. Past observations and modelling experiments have shown dust aerosol is50

associated with semi-direct effects (Tsikerdekis et al., 2019; Amiri-Farahani et al., 2017; Helmert et al., 2007), as dust also has

SW absorbing properties (Highwood & Ryder, 2014; Kok et al., 2023). Furthermore, the higher altitude of absorbing aerosol

from California fires may alter cloud microphysics, which also has the potential to change the radiative balance of the surface

and atmosphere. An influx of aerosols into the troposphere may create an abundance of cloud condensation nuclei (CCN) for

droplets to condense onto, decreasing effective radius Reff of the clouds, an effect already observed with smoke (OA and55

BC) particles in the northwestern US (Twohy et al., 2021). A decrease in Reff would increase the albedo of the clouds, as-
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suming constant water path, which would then increase outgoing SW radiation. This decrease in Reff can also affect liquid

water path LWP as the smaller droplets can evaporate much faster than larger droplets, or the smaller droplets can suppress

precipitation, which increases LWP by reducing the liquid water leaving the cloud (Goren & Rosenfeld, 2012). The lighter

droplets can also be lofted higher in the atmosphere, where they condensate further and release latent heat, then eventually fall60

from this greater height and evaporate. Therefore, to compensate, polluted clouds have more intense updrafts and downdrafts

than pristine clouds (Khain, 2009). SW absorption itself can also decrease precipitation P in other ways, such as reducing SW

radiation reaching the surface or through rapid atmospheric adjustments (Sand et al., 2020; Samset, 2022; Allen et al., 2023).

Large Fires are not only limited to the western US. Australia, the Mediterranean Basin, and South America have all experienced65

an increase in large fire events due to climate change and land management (Shi et al., 2021; Ruffault et al., 2020; Artaxo et al.,

2013; Allen et al., 2024a). As the western US, and other parts of the world, enter this new regime of large fires, there comes a

need for improved understanding of the effects of aerosols emitted primarily (through biomass burning), secondarily (oxidation

of emitted volatiles), or through feedbacks (such as dust emissions concurrent with fires) by wildfires. Models participating in

the Coupled Model Intercomparison Project version 6 (CMIP6) (Eyring et al., 2016) do not have parametrizations of biomass70

burning (BB) aerosol emissions that respond to CO2 emissions in most of their experiments, including the DECK (Diagnosis,

Evaluation, and Characterization of Klima) experiments (Gomez et al., 2023). The models that have interactive BB aerosol

emissions tend to parameterize them as a function of fuel flammability (temperature and moisture), fuel density, and plant

functional type (Mangeon et al., 2016; Li et al., 2019). Most models participating in CMIP6 do not have dynamic vegetation

models (Li et al., 2019), and therefore are incapable of incorporating fire-dust feedbacks. Instead, modelers rely on prescription75

of BB aerosols in most experiments.

Recent modelling experiments have found significant effects of wildfires on regional and global climate scales. Previously,

using prescribed aerosol simulations in the Community Earth System Model version 2 (CESM2), it was shown that the large

2019 wildfires in Australia could have intensified that year’s La Niña through aerosols directly cooling the ocean surface80

(Fasullo et al., 2021). Another CMIP6 study observed a similar effect on La Niña as a result of a teleconnection caused

by an influx of absorbing aerosols into the atmosphere from South African wildfires (Amiri-Farahani et al., 2020). Biomass

burning aerosols may also have other effects on large scale ocean circulation, such as an invigoration of the Atlantic Meridional

Overturning Circulation (Allen et al., 2024b). As far as the southwestern US is concerned, a modeling experiment using the

WRF/CHEM model was run to analyze the effects of a wildfire event on weather forecasts (Chen et al., 2014). This study85

found that the BB aerosols suppressed convection, prevented cloud formation, and decreased precipitation. While studies such

as these demonstrate that it is possible to model past effects of fires on local and global climate, without parameterization

of BB aerosol emission, as well as parametrization of secondary dust aerosol emission from wildfire-cleared vegetation, the

radiative forcing of future fires’ primary and secondary aerosols will remain a source of uncertainty. Furthermore, there are

few, if any studies, that attempt to discern the impacts of large fires over the southwestern US. Twohy et al. (2021) analyzed90

satellite observations of cloud microphysical properties over part of the region, however this study was conducted during only
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one wildfire event in 2018. As a result, there is no comprehensive long-term observational study over the southwestern US

concerning wildfire aerosol-cloud interaction. Therefore, to further understand the effects of wildfires on the climate of one of

the most populated areas in the US, this paper aim to identify radiative as well as microphysical effects that these aerosols may

have in the region under different atmospheric conditions utilizing satellite data.95

2 Satellite and Reanalysis Datasets

The objective of this study is to quantify the impacts of wildfire aerosol emissions on meteorological parameters, such as clouds

and precipitation, over the southwestern US using observations. This includes the Aqua satellite with the MODIS, AIRS and

CERES instruments. The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis

project (Randles et al., 2017; Global Modeling And Assimilation Office & Pawson, 2015) is used to obtain daily black carbon100

mass mixing ratio vertical profiles. Fire dry matter emission data DM are used as a proxy for fire severity, and are derived from

the Global Fire Emissions Database version 4 (GFED4) (van der Werf et al., 2017; Randerson et al., 2017). All data sets are

globally gridded observational data sets, with the exception of GFED4 and MERRA-2 which are considered globally gridded

reanalysis datasets.

2.1 Global Fire Emissions Database (GFED4)105

GFED4 DM emissions are calculated in the Carnegie–Ames–Stanford Approach (CASA) model, which requires MODIS

burned area data, meteorological data from the ERA-Interim reanalysis dataset, photosynthetically active radiation data based

on Advanced Very high-resolution Radiometer satellite instrument retrievals, and vegetation continuous fields data from the

MODIS MOD44B dataset (van der Werf et al., 2017). DM is the emission of any gas or aerosol from burned vegetation, and

a list of all these types of emission can be found in van der Werf et al. (2017). The CASA model is run using burned area110

data from combined MODIS-Aqua and MODIS-Terra level 3 data (MCD64A1). Wildfire studies tend to either use fire power

(from MODIS or VIIRS) or burned area-based datasets to quantify fire severity. Burned area is determined by MODIS from

a time series of burn sensitive vegetation index, which compares daily surface reflectances (Giglio et al., 2018). Fire power is

the radiated energy from fires over time, and MODIS determines this quantity by comparing the brightness temperature of a

fire pixel to the background brightness temperature (Peterson et al., 2013). Use of a burned area-based dataset is preferable to115

a fire power dataset for this paper, as cloud cover may obstruct fire power data retrievals, leading to an underestimation of fire

size/severity in a given time period. While cloud cover can also block burned area retrievals, burned area can be recorded once

cloud cover has been dissipated, unlike fire power. This introduces a temporal uncertainty, however. This temporal uncertainty

is ±1 day for clear sky conditions, ±5 days under consistent 75% cloud cover, and up to ±20 days over persistently very

cloudy (85% or higher) intervals (Giglio et al., 2013). However, this temporal uncertainty is likely of little significance for120

this paper, as cloud cover over the western US during the wildfire season is rarely persistently high (aside from "June gloom"

in coastal regions), and the lifetime of biomass burning aerosols (roughly 4-12 days) is generally greater than or equal to the

temporal uncertainty of clear sky or consistently cloudy burned area data (Cape et al., 2012). The daily underestimation of fire
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power is demonstrated in Figure S1, which indicates that Aqua fire power retrievals, taken from the MYD14A1 dataset (Giglio

& Justice, 2015), underestimate daily fire severity compared to DM with 98% of days reporting a lower normalized fire power125

than normalized DM . Therefore, for fire power to be a more useful metric, a daily combined Aqua/Terra/VIIRS dataset would

have to be used, which is not available for the time period of interest. GFED4 fire emissions are also preferred over fire power

data and raw burned area data as calculation of fire emissions takes vegetation type and net primary production into account.

Raw burned area and fire power datasets yield information about fire size and intensity, but as aerosol emission also depends

on the type of vegetation being burned, use of either dataset over a fire emissions dataset may under-estimate or over-estimate130

biomass burning aerosol impacts on clouds. However, use of GFED4 data has drawbacks. While use of burned area data reduces

the chance of an underestimation of fire impacts, the previously mentioned temporal uncertainty is introduced. Additionally,

the CASA model itself is associated with uncertainties. Calculation of net primary production in the model, for example, does

not take meteorological variables into account (Liu et al., 2018). As a result, caution must be taken when analyzing the results.

To ensure results are robust, the GFED4 DM stratification method was verified by analyzing MODIS AOD anomalies (see135

Section 2.2) during large fire events (Section 3.3, Section 4.2), and by performing cross correlations between AOD and DM

(Supplement section 1, Figure S2). GFED4 emissions and burned area data are available from 1997-2016. Data for 2017-2022

is also available, but the data is in "beta" and therefore is more limited. Both the complete and the beta data contain total

carbon emissions, as well as dry matter emission. GFED4 also estimates the contribution of 6 different types of vegetation

biomes (boreal forest, temperate forest, grassland, agriculture, and peat) to the carbon and dry matter emissions. However, the140

beta dataset only estimates these contributions for DM . Therefore, DM is used as a proxy for the severity of a given fire’s

emissions, as it is the only variable that both the complete and beta data contain and speciate. All observational datasets utilized

in this study have a 1o resolution, however GFED4 emission data is of a 0.25o resolution. Therefore, this data was regridded to

a 1o grid. It should be noted that GFED5 has recently been released (Chen et al., 2023), however this dataset was not used as it

does not yet include emissions, only has data available up to 2020, and was released after analysis for this paper had concluded.145

2.2 Aqua

MODIS-Aqua: Cloud and aerosol optical depth (AOD) data were derived from Moderate Resolution Imaging Spectrora-

diometer (MODIS) level 3 data. Specifically, the MODIS collection 6.1 1o level 3 product (MYD08_D3) (Platnick et al., 2003;

Salomonson et al., 2002; MODIS Atmosphere Science Team, 2017) is utilized, which yields daily retrieval products from

the Aqua satellite. The Aqua satellite makes two overpasses for the region of interest: one ascending run from 2-3 PM, and150

one descending run from 2-3 AM. The descending dataset is used as most MODIS level 3 cloud property products provided

are descending (morning) only. For MODIS cloud retrievals during periods of large AOD, especially when the aerosols are

concurrent with clouds, it is possible for MODIS to misidentify aerosols as clouds (Herbert & Stier, 2023). This may cause

errors in cloud property retrievals, as well as an overestimation of cloud fraction CF . This may lead to overestimation of CF

during anomalously large fire events. While the MODIS Dark-Target and Deep Blue AOD algorithms are extensively quality155

controlled and evaluated (Levy et al., 2013; Platnick et al., 2017; Wei et al., 2019), there is still room for errors in AOD

and cloud retrieval. Additionally, as it is not possible to distinguish wildfire AOD from other AOD, whenever possible, fire
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emissions from GFED4 are used to discern the impacts of fires on cloud properties.

AIRS: Data concerning T , water mass mixing ratio MH2O, CF , and RH profiles, as well as surface temperature Ts and sur-160

face relative humidity RHs, were derived from Atmospheric Infrared Sounder (AIRS) level 3 daily data (AIRS3STD) (AIRS

Science Team & Texeira, 2013). As with the MODIS data, the descending dataset is used.

CERES: Top of atmosphere as well as in-atmosphere radiative flux data was derived from Clouds and the Earth’s Radiant

Energy System (CERES) level 3 daily 1 degree Synoptic product (SYN1deg-Day) (Doelling, 2016, 2017, 2023). This is a165

combined Terra and Aqua dataset from 2002-2021, and for 2022 it is a combined Terra and NOAA-20 dataset. This CERES

dataset combines cloud data from MODIS/VIIRS, aerosol data from GEOS, and top of atmosphere radiative flux data from

CERES to produce all-sky, clear-sky, and aerosol-free radiative flux profiles.

2.3 GPCP Combined Precipitation Dataset

P data for this project was derived from the daily Global Precipitation Climatology Project (GPCP daily) Climate Data Record,170

Version 1.3 dataset (Huffman et al., 2001; Adler et al., 2018). GPCP combines satellite observations as well as rain gauge data

to produce 1o daily precipitation amount data.

2.4 MERRA-2 Aerosol Profiles

Daily vertical black carbon aerosol mass mixing ratio profiles are derived from the M2I3NVAER data product (Global Mod-

eling And Assimilation Office & Pawson, 2015; Buchard et al., 2015). This product estimates aerosol profiles by assimilat-175

ing MODIS AOD into the GEOS5 model, which is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and

Transport (GOCART) aerosol module. The GOCART model includes biomass burning emissions from the NASA Quick Fire

Emission Dataset (QFED) version 2.1, which provides daily biomass burning aerosol estimates (Buchard et al., 2015). These

profiles were then validated using ground and satellite observations of aerosol profiles. This dataset has been previously used

to determine effects of wildfire aerosols in other parts of the world (Raga et al., 2022; Nguyen et al., 2020). The aerosol pro-180

files are archived in a high-resolution hybrid sigma pressure grid, and therefore must be interpolated into 1 degree grid cells,

and converted into traditional pressure levels. For the purposes of this paper, only the black carbon variables are analyzed.

MERRA-2 separates BC into two types: hydrophobic black carbon BCpho and hydrophilic black carbon BCphi.

2.5 CALIPSO

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite (CALIPSO) provides observations of aerosol185

extinction coefficient profiles. MERRA-2 profiles are utilized in the main analysis instead of CALIPSO profiles as gridded

CALIPSO data is too low resolution, and is monthly as opposed to daily. Additionally, CALIPSO started collecting data in
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2006, which makes the satellite not temporally consistent with MODIS and AIRS, which started collecting data in 2002. More

information on CALIPSO can be found in Supplement Section 2.

3 Methods190

3.1 Statistics

The bulk of the analysis for this paper involves empirical cumulative distribution functions (CDFs). Empirical distribution

functions are calculated for each variable of interest under differing fire and meteorological conditions, and the shift in each

distribution is compared. Plotting two CDFs on the same axis allows for comparison on how likely an anomaly is to be positive

or negative under differing circumstances, such as how likely a positive/negative anomaly for a certain variable is to occur195

during a high (90th percentile) fire dry matter emission (DM90) or low (10th percentile) fire dry matter emission (DM10)

event. The 90th percentile is chosen as the purpose of this paper is to analyze the effects of large fire events on climate, not

the effects of fires in general. From the calculated normal distributions, the effect size of one variable’s distribution on another

variable’s distribution are estimated using Cohen’s d d. d is an approximation of by how many standard deviations σs the

distribution shifts in response to a change in a variable. In this paper, d is calculated to determine the effect size of DM on200

other variables. d is approximated using

d=
ā− b̄

0.5
√
σ2
a +σ2

b

(1)

where ā is the mean of the (DM90) group (group a), and b̄ is the mean of the (DM10) group (group b), σa is the standard

deviation of group a, and σb is the standard deviation of group b. d=0.2-0.5 is considered to be a weak effect, d=0.5-0.8 is a

moderate effect, and d=0.8 or higher is classified as a strong effect.205

When comparing two data sets, a two-tailed pooled t-test is used to assess significance, where the null hypothesis of a zero

difference is evaluated, with n1+n2-2 degrees of freedom, where n1 and n2 are the number of elements in each data set

respectively. Here, the pooled variance

s2 =
(n1 − 1)S2

1 +(n2 − 1)S2
2

n1 +n2 − 2
(2)210

is used, where S1 and S2 are the sample variances. For the purposes of this project, the t-test is evaluated at 90% significance.

3.2 Data Stratification and Comparison

In section 3.1, it was mentioned that CDFs for variable anomalies during anomalously high and low DM emission events are

generated to discern to what degree fires impact these anomalies. The purpose of this stratification, particularly stratification

of days into anomalously high and low fire events, is to isolate the effects of fires on clouds and/or weather. The remainder215

of this section will detail how data stratification is accomplished. First, a variable is chosen for analysis (such as CF ). Next,
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this variable as well as the variable(s) that are used to stratify the variable are filtered to include only the region of interest.

As the Aqua satellite does not record data for each gridcell at every time step, wherever a coordinate (latitude,longitude,time)

is missing a value for a specific variable, the variable(s) it is being stratified by also has the value at that coordinate replaced

by a missing value (and vice-versa). Next, to focus on potential feedbacks fires may have on land, a land-sea mask is applied.220

Then, the daily regional anomaly for each variable is taken. Then, the 2003-2022 wildfire seasons are spliced together, which

results in a roughly 3060-day time series. From this 3060 day time series, any days with no data are removed. Next, the average

of each day of the wildfire season is removed from each data point in the distribution to give a time series of anomalies for

each variable. Booleans that filter out days above or below a certain percentile for the stratification variables are then applied

simultaneously. For each dataset, an empirical CDF is then calculated. Then, the means are differentiated from each other225

to determine if the stratification variable (such as DM ) leads to a significant change in the variable anomaly in question.

This process can be applied both for a regional average, or on a gridcell-by-gridcell basis. When this process is performed

on a gridcell-by-gridcell basis, the Pearson cross correlation coefficient r is determined by spatially correlating the stratified

variables with one another. This helps determine if one change in a variable as a result of fires (or other factors) feedbacks

onto another to cause a change in anomaly. Figure 1 serves as a verification of the stratification method, as well as validation230

of GFED4 emissions data. Monthly cross correlation analysis (Supplement Section 1, Figure S2) as well as previous works

(Wilmot et al., 2022; Schlosser et al., 2017; Cho et al., 2022) indicate that during large fire events, AOD and/or particulate

matter concentration are significantly larger compared to no fire conditions. The significant increase in AOD over most of the

southwestern US supports the assertion that GFED4 fire emissions are an acceptable indicator of large fire occurrences.

235

It should be noted that while this method allows for the comparison of meteorology during very similar weather conditions, it

does not completely remove the possibility of random meteorological fluctuations within the stratification that can affect the

anomalies. Therefore, if anomalies are found, causality is difficult to discern.

3.3 Regions of Interest

First, the region within the southwestern US in which the most significant fire emissions originate was discerned. Based on240

what is generally considered to be the time of year in which most wildfires occur in the western US (Urbanski, 2013; Urbanski

et al., 2011), data was collected from June 1st-October 31st for the 2003-2022 time period. 2003-2022 was chosen as this is the

time period in which Aqua satellite data is available for the fire season. Analysis was limited to fire seasons as opposed to the

entire year so that the threshold for what constitutes a 90th percentile fire is increased. First, for each gridcell, the 2003-2022

seasonal average daily DM emissions was taken. The portion of the southwestern US that had the largest 2003-2022 seasonal245

average daily DM emissions is the region that shall be referred to as "northern California" (nCA), which is highlighted in the

blue box in Figure 1a. The reason for limiting DM data to this region is again to ensure that the threshold for 90th percentile

DM is kept high. The nCA region is characterized by temperate forests along the coastline, in the far north, as well as the

east. Agricultural lands are scattered throughout about every gridcell in nCA, with higher concentrations in the central valley

as well as the coastal north. Grasslands are also found throughout most grid cells in this region, with higher concentrations in250
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central CA. The dominant contributor of DM in this region is the temperate forests in the north (Figure S3). At this time of

year, predominant wind patterns in nCA would favor transportation of smoke from these fires to northern Nevada. During the

fire season, northwesterlies tend to blow across nCA towards northern Nevada, and south westerlies blow through the central

valley and Sierra Nevada range (Zaremba & Carroll, 1999; LeNoir et al., 1999). Therefore, the expectation is for the majority

of wildfire aerosols to be concentrated in nCA, and neighboring northern/central Nevada. In differentiating AOD anomalies255

on high nCA DM days and AOD anomalies on low nCA DM days, AOD is found to be anomalously positive in both nCA

and Nevada (Figure 1b), confirming this hypothesis. However, there are also significant AOD anomalies throughout the entire

region. For reasons that will be explained in Section 4.1, the main analysis will still be relegated to northern CA and Nevada.

From this point forward, the focus will be on the effects of the fires in the blue box in Figure 1a (nCA) on the area highlighted

in the green box (nCA-NV) in Figure 1b.260

3.4 Heating Rate

Aerosol shortwave heating rate of the atmosphere SWHaer was calculated using

∂T

∂t
= SWHaer =

g

cp
· ∆Faer

∆p
(3)

where t is time in days, g is gravity, cp is the heat capacity at constant pressure, Faer is the shortwave radiative effect of the

aerosols, and p is pressure. Faer itself was derived from the CERES SYN1deg-Day downward and upward shortwave radiative265

fluxes. Faer between two atmospheric layers is given by

Faer = SWd1 −SWu1 − (SWd2 −SWu2) (4)

where SWd1 denotes downward shortwave flux at the higher layer, SWu1 denotes upward shortwave flux at the higher layer,

SWd2 denotes downward shortwave flux at the lower layer, and SWu2 denotes upward shortwave flux at the lower layer.

4 Results270

4.1 High & Low Surface Relative Humidity Stratification

The fingerprints of a traditionally-defined semi-direct effect where aerosols coincide with clouds would entail an anomalous

warming of the cloud layer, and a corresponding decrease in RH . However, the meteorological conditions around which fires

tend to occur need to be considered. As previously stated, large fires tend to occur during fire weather, which includes hot,

dry, and windy conditions (Varga et al., 2022). Hot and dry conditions themselves are associated with high pressure anomalies275

in this region (Figure S4). Therefore, these fire weather conditions need to be "filtered out" as much as possible to isolate

any potential semi-direct effects. Therefore, in addition to DM , variables need to be stratified by a second variable to account

for the influence of meteorology on P , CF , and cloud properties. Fire season data was stratified by high (75th percentile) vs

low (25th percentile) Ts, RHs, Us, and surface pressure to determine which variable was associated with the largest DM ,
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and successfully filtered out fire weather condition anomalies. The 75th/25th percentiles were chosen for the potential second280

stratification variables as opposed to extremes (90th/10th percentiles) to ensure a robust number of data points, and to have a

dataset that is more representative of common conditions in the region. Figure 2 depicts CDFs for meteorological conditions

and DM under high RHs extremes (RHs75) and low RHs extremes (RHs25) in the entire southwestern US. RHs was

chosen as the second stratification variable, as stratifying nCA DM by high (RHs75) and low RHs conditions (RHs25)

and differentiating the means of these distributions yields a significant DM anomaly of ∆DM =−1.04e-4± 3.5e-5 kg m−2285

day−1. The absolute value of this anomaly is an order of magnitude higher than the differences in mean DM between high and

low conditions of the other potential stratification variables (surface pressure, Ts, and Us ) (Figure S4, Figure S5, and Figure

S6). This indicates that fire occurrence/fire emission are more dependent on RHs than these other fire weather variables.

Low RHs extremes in the southwestern US are associated with significantly higher T throughout the troposphere/surface,

significantly reduced RH throughout the troposphere/surface, and significantly lower CF , while high RHs extremes are290

associated with the opposite (Figure 2). This demonstrates a need to separate the effects of fires from the meteorological

effects of low RHs extremes, as positive DM anomalies are significantly more likely to occur on (RHs25) days as opposed

to (RHs75) days, as which is expected as moisture, and moist plants, suppress the ability of fires to grow and be maintained

(Minnich & Chou, 1997; Ford & Johnson, 2006). The immediate direct effect of BB aerosols tends to be a net cooling of the

surface (Sakaeda et al., 2011; Abel et al., 2005). However, certain semi-direct effects, such as the burning off of low clouds,295

may overpower this effect, leading to a net surface warming. As the meteorological conditions associated with low RHs days

are also hallmarks of a semi-direct effect (Figure 2), from here onward data will be stratified into four categories: one with

high DM and high RHs (DM90,RHs75), one with low DM and high RHs (DM10,RHs75), one with high DM and low

RHs (DM90,RHs25), and one with one with low DM and low RHs (DM10,RHs25). In differentiating the average of the

variables on (DM90,RHs75) days and (DM10,RHs75) days, the effects of the meteorological conditions that come with high300

DM extremes can be minimized. However, a caveat to this analysis is that it is possible that there may be a bias towards lower

values of RHs in the DM90 datasets compared to DM10 datasets, as fire weather conditions can invigorate fire activity.

Therefore, while this analysis removes a lot of weather variability as per Figure 2, it does not remove all of it and caution

should be taken when interpreting the results. Figure 3 demonstrates that during large fires, AOD anomalies under both high

and low RHs stratifications are significantly positive in the nCA-NV region. The increase in mean AOD is larger under low305

RHs at 0.24 ± 0.04. The corresponding change under high RHs is 0.13 ± 0.05. As the AOD is consistently significant only

in the nCA-NV region under both stratifications, this region will be the focus of the study.

4.2 Vertical Distribution of Black Carbon and Absorption in nCA-NV Region

Freshly emitted BC is highly hydrophobic, and as it ages it becomes less resistant to accumulating water droplets (Lohmann

et al., 2020). BC has an average lifetime of 1 week (Lohmann et al., 2020), and the aging process begins after 1-2 days (He310

et al., 2016). Furthermore, in a region with such low fire season wet deposition such as the southwest US, the BC on av-

erage can live much longer than one week (Ogren & Charlson, 1983). Therefore, hydrophobic and hydrophilic BC profiles

are important to differentiate because they can give an idea of how long the BC stays in the atmosphere, and it hints at how
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much BC can contribute to indirect and semi-direct effects. Figure 4 displays high compared to low DM mass mixing ratio

anomalies for BCphi, BCpho, and combined BC on high and low RHs days. Significant positive anomalies of BC mass315

mixing ratio are present from 950Pa-300 hPa for all types of BC under both (DM90,RHs75) and (DM90,RHs25) con-

ditions compared to the corresponding low fire conditions. The most significant increase in BC is from about 950-600 hPa

for the (DM90,RHs75) days, and from 950-550 hPa for the (DM90,RHs25) days. Comparing the MERRA-2 BC pro-

files to the CALIPSO DM90-DM10 months 2006-2021 smoke aerosol daytime and nighttime extinction coefficient profile,

MERRA-2 places more absorbing aerosol below 700 hPa, while CALIPSO generally places more absorbing aerosol above 700320

hPa (Figure S7). Therefore, it is important to note that CALIPSO profiles do not agree with MERRA-2 when it comes to the

positioning of the smoke in the troposphere. However, as the MERRA-2 and CALIPSO profiles are not temporally consistent,

the comparison between these profiles is not 1-1. Additionally, as the CALIPSO profiles are not temporally consistent with the

rest of the data in this paper, their use is not preferred over the MERRA-2 profiles.

325

There is roughly an equal amount of BCphi and BCpho during both high and low RHs days, indicating that on these days

there is roughly as much fresh and aged aerosol in the troposphere. This is important as the quantity of BCpho indicates

that microphysical effects are possible as it suggests a large amount of CCN are present in the troposphere. Additionally,

the presence of aged BC indicates that the BC can affect the atmosphere radiatively over the course of multiple days. To

estimate the impact of these aerosols on the troposphere over time, a SWHaer profile was created from CERES radiative330

flux data (Figure 5). Shortwave profiles used to generate these heating rate profiles, along with LW profiles, can be found in

Figure S8. Under both (DM90,RHs75) (Figure 5a) and (DM90,RHs25) (Figure 5b) RHs conditions compared to the

corresponding low DM conditions, there is a positive SWHaer anomaly from 850 hPa to the next highest pressure level in

the CERES dataset, 500 hPa. For high RHs, this corresponds to a heating rate of SWHaer = 0.041± 0.016 K day−1, and for

low RHs this corresponds to a heating rate of SWHaer = 0.093 ±0.019 K day−1. Spatially, the 850 hPa-500 hPa heating rate335

is significant over almost all grid cells in the region of interest where there is data, with the most positive heating rates over

eastern nCA and eastern Nevada (Figure 5c,d).

It should be noted that aerosol absorption can be affected by water vapor in the atmosphere, which can cause swelling and

lensing effects that increase absorption (Wu et al., 2018; Peng et al., 2016). Therefore, this possibility will be investigated in

Section 4.3.340

4.3 Responses in Temperature, Humidity, & Cloud Profiles

Figure 6 displays 2003-2022 June-October nCA-NV vertical profiles of high minus low fire T (Figure 6a,e) and RH (Figure

6c,g) profiles. Figure 6a-d are stratified by high RHs, while Figure 6e-h are stratified by low RHs. In both Figure 6a and

Figure 6e, the temperature anomalies in the 850 hPa to 300 hPa pressure level range are consistently significant and positive

at around 1 K. Comparing Figure 6 to Figure 4, the positive differences in temperature anomaly are generally consistent with345

the positive BC anomalies. Also, the changes in T from 850 hPa-500 hPa are spatially consistent with the 850-500hPa heating

rate anomalies where data is available (Figure 5c, Figure 5d). Under both high RHs (Figure 6c) and low RHs (Figure 6g)
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conditions, RH anomalies throughout the entire profiles are negative but are only consistently significant during high RHs

extremes. The AIRS CF profile under high RHs conditions (Figure 6d) demonstrates significant negative anomalies from 300

hPa-600 hPa that are consistent with significant negative RH anomalies and significant positive T anomalies. However, there350

is an increase in CF at 850 hPa (Figure 6d). This pressure level corresponds to the highest concentration of BCphi (Figure

4c), and perhaps this indicates at this pressure level there is cloud seeding occurring. For the low RHs profile, there is only a

significant negative cloud anomaly close to the surface at 925 hPa (Figure 6h).

Aside from temperature, the other potential factor that could affect RH is that of specific humidity, which is analogous to355

water mass mixing ratio MH2O. Figures 6b,f depicts the effect of fires on MH2O anomalies under high RHs and low RHs

conditions respectively. There is no significant anomaly under high or low RHs conditions but is consistently positive at 700

hPa and below. Furthermore, the changes in the RH profile follow the changes in the T profile as opposed to the MH2O profile,

implying the positive T anomalies generally dominate the change in RH anomalies. The insignificant change in MH2O also

casts doubt that water vapor is affecting the absorption of the aerosols in any significant way.360

While these profiles provide a general overview of how T , MH2O, RH , and CF are changing over the region of interest, it

is important to determine if these changes are consistent spatially with one another, as well as whether the changes coincide

with BC anomalies. As the T , RH , and CF anomalies are strongest during high RHs days, the focus from here will be on

the meteorological effects of high DM on high RHs days. Figures 7-11 depict the effect of fires on the spatial distributions365

of BC, T , MH2O, RH , and CF anomalies at each AIRS pressure level up to 200 hPa on under high RHs conditions. The

positive MERRA-2 BC anomalies in Figure 7 correlate positively and significantly with MODIS AOD for each pressure level

between 925 hPa-300 hPa (Figures 7b-h), and are spatially consistent with positive AIRS T anomalies (Figure 8). Shifting

attention to Figure 9, there appear to be significant negative anomalies in MH2O in northeastern Nevada from 700 hPa-400 hPa,

and significant positive anomalies over grid cells associated with large fires (Figure 1a) in the lower troposphere (925 hPa-850370

hPa). Comparing these changes in T and MH2O spatially to changes in RH (Figure 10), it appears that changes in T tend to

dominate changes in RH over CA, western NV, and southern NV while changes in MH2O appear to contribute to the negative

RH anomaly in northeastern NV. Additionally, the positive MH2O at 850 hPa appears to mitigate the negative RH anomalies

at the same level, which may explain why BC appears to be able to act as a CCN at this level but not others: RH does not

decrease enough to prevent clouds from forming. The increase in MH2O has a myriad of possible explanations. It may be due375

to emission of moisture from the burned vegetation (Jacobson, 2014; Dickinson et al., 2021), from lofting of water vapor from

the surface to higher levels of the atmosphere (Yu et al., 2024), or from moisture advection due to a change in wind vectors

from the northeastern part of Nevada towards CA (Figure S9). This scattered significant increase in MH2O, being relegated to

a few gridcells in few pressure levels, is not generally spatially consistent with the changes in SWHaer (Figure 5c), especially

compared to the spatial distribution of BC (Figure 7), further indicating that lensing effects are not the dominant contributor380

to the increase in aerosol absorption. Viewing Figure 11c, the increase in CF at 850 hPa appears to be driven predominantly

by a few significant and large coastal CF anomalies. This indicates that there is an increase in shallow marine clouds at this
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pressure level, while clouds at other pressure levels are generally being suppressed. Figure 11 demonstrates that significant

negative CF anomalies are generally spatially consistent with negative RH anomalies from 700-400 hPa. The significant

negative CF anomalies in northeastern Nevada that correspond with significant negative RH anomalies, but not significant385

positive T anomalies, at 700 hPa and higher indicate that the difference in clouds in this region is specific humidity dependent.

This may be due to a transport of moisture outside of these grid cells due to anomalously positive southeastern wind speed

anomalies in some of these grid cells (Figure S9b) that advect moisture towards southern California and southern Nevada,

however further scrutiny is warranted to confirm this. It is not known if these wind speed anomalies are related to T anomalies

to the west, or if these wind speed anomalies in this region are an artifact. Changes in wind vectors are further analyzed in390

supplement section 3. As the change in T is the more robust signal over all parts of the troposphere, the changes in T will be

the focus of the remainder of the paper.

4.4 Changes in Cloud Type, Precipitation, and Shortwave Flux

With AIRS data indicating that large fires are associated with enhanced T , as well as lower RH and CF , it is essential to

determine how liquid vs ice clouds are impacted, and what the corresponding impacts on P and radiative balance are. Figure395

12 displays CDFs for nCA-NV regional average variable anomalies during high DM /low RHs days (solid red), low DM /high

RHs days (dashed red), high DM /low RHs days (solid blue), and low DM /low RHs days (dashed blue). Figure 12a and

Figure 12b demonstrate that during high RHs extreme days, the effect of fires on the liquid water cloud fraction CFlw dis-

tribution and cirrus cloud fraction CFcir distribution is a significant shift towards a preference for negative anomalies. The

effect of the large fires creates an average -0.04 ± 0.02 CFlw anomaly, and an average -0.05 ± 0.04 CFcir anomaly under400

high RHs conditions. In addition, MODIS total CF shifts by -0.07 ± 0.05 under the same stratifications. Precipitation also

shifts significantly by -0.3 ± 0.23 mm day−1. However, these shifts are significant only for high RHs extreme days (Figure

12). The explanation why the distribution shifts farther towards negative anomalies when anomalously large fires occur during

high RHs compared to low RHs extremes lies in Figure 2. During low RHs days, RH throughout the troposphere is already

significantly lower than normal conditions (Figure 2e), as temperatures throughout the troposphere are already high (Figure405

2c) and atmospheric water vapor content is low. This creates conditions of negative CF anomalies (Figure 2f). Therefore,

further increasing the already high T should not lead to significantly lower cloud fraction as RH is already low, and clouds

require 100% RH to form. This can also be explained by the RH profile in Figure 6g, which demonstrates through most parts

of the troposphere that RH is not significantly lowered during fires. However, during low DM /high RHs days, Figure 12

demonstrates that conditions are favorable for clouds and rain. This is because during these high RHs extremes, T is lower and410

RH is high. Therefore, when anomalously large fires introduce a positive T anomaly, the drop in RH is significant enough

to reduce the chances of seeing positive cloud/precipitation anomalies. In response to the higher probability of negative cloud

fraction anomaly, the probability that SW radiation will be reflected into space decreases. This reduction in top of atmosphere

shortwave flux leads to a net increase in cloud only (all-sky minus clear-sky) top of atmosphere radiative forcing TOAcld

(Figure 12f). Though it should be noted that this increase is not significant, it is significant and positive over much of the415

region marked by a decrease in CF (Figure 13e,h), with a significant spatial cross correlation of r =−0.67. Regional all-sky

13



SW and LW responses can be found in Figure S10.

Figure 13 displays composite differences between meteorological variables on high DM /high RHs and low DM /highRHs

days for each gridcell over the entire southwestern US. Figures 13a,b display the composite differences in cloud layer (850420

hPa≥ p≥300 hPa) temperature TCL and cloud layer relative humidity RHCL. These plots depict that TCL significantly in-

creases almost everywhere across California and Nevada, with the most significant increase in the green box (the nCA-NV

region). The differences in TCL correlate significantly with differences in AOD at r = 0.72 across the entire southwestern US.

The decreases in RHCL have a very similar spatial distribution to TCL, with the strongest decreases in the nCA-NV region.

Again, this correlates significantly with AOD with r =−0.55 over the entire southwest. The differences in all these variables425

across the southwestern US correlate significantly with AOD, supporting the assertion that aerosols concurrent with fires are

associated with warming and drying. Of note are the changes in Ts and P , which are two variables intrinsically related to

fire duration. Spatially correlating P with RHCL yields a significant, but notably weaker, correlation of r = 0.44, implying

a relationship between the negative P anomalies and the biomass burning aerosols. However, it should be noted that though

the regional P anomaly is significant and negative, that it appears to be dominated by just strong changes in just a few grid-430

cells. Ts correlates significantly with AOD over the southwestern US, with r = 0.51, and is generally spatially concurrent

with increases in TCL with r = 0.72. The equivalent for Figure 13 for low RHs days is given in Figure S11. Of note for this

supplementary figure is that there are weak, but significant and widespread, negative CF , RH , and P anomalies over nCA

and eastern Nevada, despite not being significant in the regional average (Figure 12c,e). This implies that the meteorological

anomalies seen during high RHs days are also prevalent on low RHs days, but weaker and less widespread due to the lower435

availability of moisture.

While cross correlations indicate that there is a statistically significant relationship between fires and meteorology, practical

significance needs to be established as well. The effect sizes of high DM emissions on nCA-NV regional averages of the

variables in Figure 12 and Figure 13 are depicted in Figure 14. For high RHs extremes (Figure 14a), the anomalously large440

fires are associated with a moderate-to-strong effect size on most of the relevant variables. Figure 14b demonstrates that during

low RHs conditions, anomalously large fires are associated weak-to-no effect size on the relevant variables, aside from TCL

in which fires have a very strong effect size on. It should be noted that effect size does not imply causality, but instead only

quantifies how different the mean of a distribution is when a single variable is changed.

445

4.5 Cloud Microphysical Effects

Up to this point, we have investigated how cloud fraction and type differ during large fires. Aerosols from wildfires may also

influence clouds via microphysical effects, which are investigated in this section. High fire emissions under high RHs condi-

tions are associated with non-significant differences in microphysical variables (Figure 15). Spatial maps of high minus low

fire Reff and LWP under high RHs conditions show a mix of areas with positive and negative changes, most of which are not450
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significant (Figure S12). Although there is a small tendency for negative Reff anomalies to occur in Nevada and a small ten-

dency for negative LWP anomalies to occur in nCA and western NV. Since negative Reff anomalies can affect precipitation,

the spatial distribution of Reff anomalies (Figure S12, Figure S13) was compared to the spatial distribution of P anomalies

(Figure 13, Figure S11) under high compared to low DM conditions. Significant negative Reff anomalies were not found

to be spatially consistent with significant negative P anomalies under either high or low RHs conditions. This casts doubt on455

wildfires in this region creating microphysical suppression of P .

There are significant regional changes in liquid Reff and LWP under low RHs conditions (Figure 15, Figure S13). Liquid

Reff significantly increases under these conditions, which is contrary to what one would expect as a response to increased

AOD (Twohy et al., 2021; Conrick et al., 2021; Fan et al., 2016). One possible explanation for this increase in Reff is that460

Reff is directly proportional to temperature (Martins et al., 2011), and perhaps the effects of the TCL anomalies dominate over

the condensation of new droplets onto BCphi. Alternatively, this increase may be driven by changes in atmospheric dynamics,

as increased updraft strength and enhanced turbulence could lead to increased coalescence (Khain, 2009). Coincident with the

strongest increase in Reff (at the northernmost coast of California) under these conditions is a significant negative (upward)

pressure velocity anomaly from 1000 hPa-925 hPa, which implies that an increase in upward convection near the surface may465

be a factor of the increase in Reff , as an upward pressure velocity should increase droplet lifetime (Figure S14). It is also

noted that there are negative pressure velocity anomalies under high RHs conditions from 1000 hPa-850 hPa (Figure S15),

and this corresponds with an increase in Reff near the Bay Area.

Comparing high to low fire conditions, LWP under simultaneously low RHS conditions shows a significant decrease (Figure470

15c). This significant negative LWP anomaly may be due to the negative RHCL anomaly (Figure S11b), as lower saturation

of the air would reduce liquid water within clouds. This decrease in LWP may be of importance, as LWP scales positively

with cloud albedo (Han et al., 1998). Therefore, this decrease in LWP may contribute to an increase in absorbed solar radiation

at the surface. In summary, while the nCA fires significantly inject aerosols into the troposphere, these aerosols do not appear

to generally act as CCN, and instead contribute to a positive T anomaly that burns off clouds. This may be because BC is475

generally more hydrophobic compared to other aerosols, and instead the radiative effects of the aerosol dominate.

5 Discussion

The results of this paper indicate that large fires in nCA are concurrent with significant amounts of absorbing aerosols, which

themselves are associated with a shortwave heating rate of 0.041 ± 0.016 K day−1 to 0.093 ± 0.019 K day−1. This heating

rate contributes to positive atmospheric T anomalies in the region that are concurrent with large fires, however the extent of480

this contribution is unknown. When the fires occur during high RHs conditions, the positive T anomalies (Figure 8, Figure

13a) are associated with significant negative RH anomalies in the low, mid, and high cloud layers (850 hPa-300 hPa) at the

90% confidence interval (Figure 10, Figure b). These negative RH anomalies are associated with a reduction of clouds, which
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is associated with significant negative P anomalies in the nCA-NV region. These negative CF anomalies are also associated

with an increase in TOA radiative flux (Figure 13h), despite a decrease in CTH (Figure 13f). In short, wildfires in nCA are485

associated with region wide negative CF anomalies that are cause by positive T anomalies. Aerosols emitted from biomass

burning contribute to these positive T anomalies through shortwave absorption, indicating that the traditionally defined aerosol-

cloud semi-direct effect is a possible explanation for the decrease in clouds. Furthermore, the TCL, RHCL, and CF , anomalies

correlate significantly with positive BC and AOD anomalies (Figure 7, Figure 8, Figure 10, Figure 11, Figure 13), further

supporting the assertion that aerosols are contributing to these anomalies. However, it is unknown to what extent the aerosols490

contribute to the atmospheric T anomalies observed, and therefore to the negative RH , CF , and P anomalies. One possible

source of noise is wind. Figure S9 depicts a positive wind speed in northern Nevada that may be influencing cloud cover over

that part of the region, and it is unknown if this signal has anything to do with the positive T anomalies. Additionally, wildfires

are associated with an increase in sensible heat flux from the combustion of biofuels, which may contribute to the positive T

anomalies as well (Dickinson et al., 2021). Furthermore, random weather variations within the stratification may also create495

anomalies favorable enhanced fire activity, which would increase DM , making causality difficult to discern. However, another

study that utilized a similar methodology to this paper to analyze the effects of large fires using combined aircraft observations

and a climate model indicates the possibility that the aerosols in this study are a significant contributor to the negative CF

anomalies (Thornhill et al., 2018). They ran the Met Office Unified Model using aircraft observations of AOD and BB aerosol

properties. They compared meteorological variables in high vs low fire emission conditions over South America and found a500

clear sky shortwave heating rate of the low-to-mid troposphere that is larger (0.2 K day−1), but comparable, to the heating rates

calculated in this paper. This was also associated with a higher BC mass mixing ratio, and a significant negative CF anomalies

of around 0.08, which is a similar anomaly to the 0.07± 0.05 MODIS CF anomaly observed in this study during high RHs

conditions (Figure 12c). Though not related to fire, an aircraft observational study of anthropogenic BC over the Bay of Ben-

gal found a BC heating rate of around 0.5 Kday−1 (Kant et al., 2023), which further demonstrates that BC can be associated505

with atmospheric warming. Furthermore, the results of this study are consistent with numerous other satellite observational

studies over the tropics and subtropics that demonstrate that aerosols associated with wildfires are shortwave absorbing and

can contribute to burn-off of clouds, resulting in a positive radiative forcing (Wilcox, 2012; Kaufman et al., 2005; Ackerman

et al., 2000; Hansen et al., 1997). Additionally, the reduction in CF and P is consistent with the results of Chen et al. (2014),

which was a biomass burning modelling experiment conducted over the United States. However, their proposed mechanism510

for these decreases was a change in convection due to the distribution of warming of the aerosols. Concerning the increase

in MH2O above sites of fire emission in Figure 9b,c, this is consistent with a recent study that found comparable results (Yu

et al., 2024), however they found more water vapor higher in the troposphere than this paper. Additionally, it is noted that the

observed microphysical effects of the BB aerosols in this paper, namely the lack of a regional decrease in Reff , contrast to

another observational study that overlaps with the region of interest in this paper (Twohy et al., 2021). An important note about515

that study, however, is that it only sampled the 2018 wildfire season while this study focuses on the entire 2003-2022 time span.
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The results of this paper highlight that it is necessary to understand the contribution of biomass burning aerosols to the anoma-

lies that favor enhanced fire weather. If the aerosols are a significant contributor to these anomalies, this can create a positive

feedback loop where large fires emit copious amounts of BC, warm the atmosphere, reduce cloud cover, suppress P , and there-520

fore intensify fire activity. As this potential feedback would prolong wildfires, it would therefore also prolong poor air quality

conditions inside the southwestern US (Liu & Peng, 2019; O’Neill et al., 2021; Schlosser et al., 2017), as well as other parts

of the country (Hung et al., 2020). Significant reductions in nCA P may prolong the wildfire season further into autumn (Goss

et al., 2020), and increases in atmospheric T as well as decreases in atmospheric RH may create conditions more favorable for

more fires to ignite and grow (Varga et al., 2022). Additionally, the negative P anomalies and/or positive Ts anomalies in this525

paper occur in heavily populated regions in the southwestern US, including: the San Francisco Bay Area, Humboldt County in

California, and Washoe County in Nevada. Therefore, it is essential to further investigate the relationship between anomalously

large fires in the region and the local meteorology, as if the fires are contributing to these meteorological anomalies, this would

dictate an increased need for a curtailment of CO2 emissions (Ma et al., 2021; Touma et al., 2021) and better land management

practices (DellaSala et al., 2022; Minnich et al., 2000; Minnich, 2001), as climate change and land mismanagement have both530

contributed to the large fires in nCA in recent years. Additionally, the confirmation that these BC anomalies are associated

with a positive heating rate anomaly is enough to advocate for these changes, as the fires are worsening already warm western

US weather. Furthermore, as large fires are projected to become more commonplace throughout the 21st century due to these

factors (Flannigan et al., 2013; United Nations Environment Programme, 2022), the results of this paper will become more

relevant over time as today’s 90th percentile fire emission conditions become more common throughout the 21st century.535

Overall, to determine if the fires are significantly contributing to the negative RH , CF , and P anomalies, it is essential to run

a climate modelling experiment where BC is increased over the region of interest, and to quantify the effects of this increased

BC on these meteorological variables.

Code availability. Code is available upon request from the authors.

Data availability. All datasets utilized in this analysis are available online. MODIS datasets are available via the 787 NASA Level-1 and540

Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive 788 Center (DAAC) at https://ladsweb.modaps.eosdis.

nasa.gov/archive/allData/61/. CERES datasets can be found at https://ceres.larc.nasa.gov/. AIRS data is available via NASA’s Earth Science

Data 794 extremes (ESDS) program at https://www.earthdata.nasa.gov/. CALIPSO datasets are available at the Atmospheric Science Data

Center (ASDC) at https://asdc.larc.nasa.gov/. GFED4 fire emission data is archived on the GFED4 web page at https://www.globalfiredata.

org/. MERRA-2 data can be found on the Goddard Earth Sciences Data and Information Services Center (GES DISC) website at https:545

//disc.gsfc.nasa.gov/datasets?project=MERRA-2.
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Appendix A

Symbol Definition Dataset Derived From Name of Product(s) Used

BC Black Carbon MERRA-2 BCPHILIC, BCPHOBIC

DM Fire dry matter emissions GFED4 DM, daily_fraction

AOD Aerosol Optical Depth MODIS Aerosol_Optical_Depth_Land_Ocean_Mean

MH2O Water Mass Mixing Ratio AIRS H2O_MMR_D

T Temperature AIRS Temperature_D

Ts Surface Temperature AIRS SurfAirTemp_D

RH Relative Humidity AIRS RelHum_D

RHs Surface Relative Humidity AIRS RelHumSurf_D

CF Cloud Fraction
MODIS

AIRS

Cloud_Fraction_Mean

FineCloudFrc_D

CFcir Cirrus Cloud Fraction MODIS Cirrus_Fraction_Infrared

CFlw Liquid Water Cloud Fraction MODIS Cloud_Retrieval_Fraction_Liquid

CTH Cloud Top Height MODIS Cloud_Top_Height_Mean

P Precipitation GPCP precip

SWHaer Aerosol Shortwave Heating Rate CERES
adj_all_sw_dn, adj_all_sw_up,

adj_naer_sw_dn, adj_naer_sw_up

Faer Shortwave aerosol radiative forcing CERES Same as above variable

TOAcld

Cloud-only

Net Top of Atmosphere Flux
CERES

adj_all_sw_dn, adj_all_sw_up,

adj_all_lw_up adj_clr_sw_dn,

adj_clr_sw_up, adj_clr_lw_up

SWu Shortwave aerosol upward flux CERES adj_all_sw_up, adj_clr_sw_up

SWd Shortwave aerosol downward flux CERES adj_all_sw_dn, adj_clr_sw_dn

Us Surface Wind speed CERES/GEOS sfc_wind_speed

Liquid Reff Liquid Cloud Effective Radius MODIS Cloud_Effective_Radius_Ice_Mean

Ice Reff Ice Cloud Effective Radius MODIS Cloud_Effective_Radius_Liquid_Mean

LWP Liquid Water Path MODIS Cloud_Water_Path_Liquid_Mean

IWP Ice Water Path MODIS Cloud_Water_Path_Ice_Mean

Table A1. Definition of variables that were derived from satellite observational datasets, as well as the instrument and dataset they are derived

from.
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Symbol Definition

nCA Northern California

nCA-NV Northern California-Nevada

US United States

BB Biomass Burning

OA Organic Aerosol

CA California

SW Shortwave

AAOD Absorbing Aerosol Optical Depth

LW Longwave

TOA Top of atmosphere

CCN Cloud Condensation Nuclei

CDF Cumulative Distribution Function

Table A2. Definitions of abbreviations found throughout the paper that are not associated with a dataset.
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Descriptor Definition

(DM90)
Variable stratified by 90th percentile fire dry matter

emission anomaly days in nCA

(RHs75)
Variable stratified by 75th percentile surface

relative humidity anomaly days in nCA-NV

(DM10)
Variable stratified by 10th percentile fire dry matter

emission anomaly days in nCA

(RHs25)
Variable stratified by 25th percentile surface

relative humidity anomaly days in nCA-NV

(DM90,RHs75)

Variable stratified by 90th percentile fire dry

matter emission anomaly days in nCA and 75th

percentile surface relative humidity anomaly days in nCA-NV

(DM10,RHs75)

Variable stratified by 10th percentile fire dry

matter emission anomaly days in nCA and 75th

percentile surface relative humidity anomaly days in nCA-NV

(DM90,RHs25)

Variable stratified by 90th percentile fire dry

matter emission anomaly days in nCA and 25th

percentile surface relative humidity anomaly days in nCA-NV

(DM10,RHs25)

Variable stratified by 10th percentile fire dry

matter emission anomaly days in nCA and 25th

percentile surface relative humidity anomaly days in nCA-NV

CL Cloud layer (850-300 hPa) average of variable

s Variable measured at the surface

pho Hydrophobic aerosol

phi Hydrophilic aerosol

aer
radiative forcing variable calculated from all-sky

minus clear sky products (aerosol only)

cld
radiative forcing variable calculated from all-sky

minus no aerosol products (cloud only)

∆
Difference in variable under different fire and/or

relative humidity conditions

Table A3. Definitions of subscripts and other descriptors for variables.
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Figure 1. Distribution of fires and the corresponding aerosol optical depth AOD anomaly impacts during the fire season. (a) 2003-2022 aver-

age daily fire dry matter DM emissions for the southwestern United States during the fire season (June-October). Blue box signifies the nCA

(northern California) region, where average daily fire emissions are the highest. (b) 2003-2022 June-October daily MODIS Aerosol optical

depth (AOD) difference between average AOD on 90th percentile DM (DM90) and average AOD on 10th percentile DM (DM10) days

within the 2003-2022 June-October time period. ∆AOD represents AOD(DM90)−AOD(DM10). Green box symbolizes the nCA-NV

(northern California-Nevada) region, where increases in AOD and changes in cloud properties (Figure 11) are most significant. Black dots

represent statistically significant differences at 90% confidence according to a two-tailed test.
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Figure 2. Dependence of meteorological variables on high versus low surface relative humidity RHs during the fire season. Regional

average cumulative distribution functions (CDFs) for variable anomalies stratified by 75th percentile surface relative humidity (RHs75)

days (red) and 25th percentile (RHs25) (blue) days within the 2003-2022 June-October time period. Variables depicted include (a) northern

California (nCA) fire dry matter (DM) emissions, (b) southwestern US surface temperature Ts, (c) nCA-NV cloud layer (850-300 hPa)

average temperature TCL, (d) southwestern US surface relative humidity RHs, (e) southwestern US cloud layer average relative humidity

RHCL, (f) southwestern US cloud fraction CF , (g) southwestern US precipitation P , and (h) southwestern US surface wind speed U . ∆

represents the difference between the variable’s average anomaly for RHs75 and RHs25 days.
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Figure 3. Difference in AOD anomalies on high and low RHs days during the fire season. Daily nCA-NV AOD anomalies stratified by

nCA-NV RHs and nCA DM extremes within the 2003-2022 June-October time period. (a) displays cumulative distribution functions for

daily June-October 2003-2022 daily northern California-Nevada nCA-NV AOD stratified by high (90th percentile) nCA DM emissions

and high nCA-NV RHs AOD(DM90,RHs75) (solid red line), low (10th percentile) DM and high RHs AOD(DM10,RHs75) (dashed

red), high DM /low RHs AOD(DM90,RHs25) (solid blue line), and low nCA DM /low RHs AOD(DM10,RHs25) (dashed blue line).

The red ∆AOD represents the difference between the solid red and dashed red line AOD(DM90,RHs75)-AOD(DM10,RHs75) and

the blue ∆AOD represents the difference between the solid and dashed blue lines AOD(DM90,RHs25)-AOD(DM10,RHs25). (b)

Depicts a map of AOD(DM90,RHs25)-AOD(DM10,RHs25). Pearson cross correlation coefficient r between ∆AOD and nCA DM

emissions is depicted in the top left corner. (c) Depicts a map of average AOD(DM90,RHs75)-AOD(DM10,RHs75). Black dots in

(b),(c) represent statistically significant differences at the 90% confidence interval according to a two-tailed test.
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Figure 4. Difference in MERRA-2 black carbon BC profiles on high vs low fire days stratified by differing RHs conditions in the nCA-NV

region in the 2003-2022 June-October time period. Profiles of both aged hydrophilic black carbon BCphi (a,d) as well as freshly emitted

hydrophobic black carbon BCpho (b,e) are depicted in addition to total BC (c,f). All types of BC have significant anomalies from 850-300

hPa under both high RHs (a-c) as well as low RHs conditions (d-f).
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Figure 5. High minus low DM days regional average aerosol-only shortwave heating rate SWHaer profiles under differing RHs conditions

in the 2003-2022 June-October time period. There is a significant shortwave aerosol heating rate from 850-500 hPa under both high RHs

conditions (a) as well as low RHs conditions (b). Also depicted are spatial maps for high minus low fire days (c) under simultaneously

high RHs conditions and (d) under simultaneously low RHs conditions. Black dots represent statistical significance at the 90% confidence

interval. r represents the cross correlation between SWHaer and AOD.
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Figure 6. Responses in AIRS temperature T , water mass mixing ratio MH2O , relative humidity RH , and cloud fraction CF profiles to large

fires under high and low RHs extremes during the fire season. nCA-NV regional-temporal average differences in T , water mass mixing

ratio MH2O and relative humidity RH profiles for under high minus low DM conditions stratified by RHs75 (a-d) and RHs25 (e-h) in the

2002-2023 fire season (June-October) time period. Error bars represent the 90% confidence interval.
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Figure 7. High minus low DM days MERRA-2 BC anomalies at all AIRS pressure levels from 1000 hPa to 200 hPa (a-j) under high RHs

conditions in the 2003-2022 June-October time period. Black dots indicate statistical significance at the 90% confidence interval. r values

indicate spatial Pearson cross correlations between total BC and MODIS AOD.
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Figure 8. High minus low DM days AIRS T anomalies at all AIRS pressure levels from 1000 hPa to 200 hPa (a-j) under high RHs

conditions in the 2003-2022 June-October time period. Black dots indicate statistical significance at the 90% confidence interval. r values

indicate spatial Pearson cross correlations between T and MODIS AOD.
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Figure 9. High minus low DM days AIRS MH2O anomalies at all AIRS pressure levels from 1000 hPa to 200 hPa (a-j) under high RHs

conditions in the 2003-2022 June-October time period. Black dots indicate statistical significance at the 90% confidence interval. r values

indicate spatial Pearson cross correlations between total MH2O and MODIS AOD.
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Figure 10. High minus low DM days AIRS RH anomalies at all AIRS pressure levels from 1000 hPa to 200 hPa (a-j) under high RHs

conditions in the 2003-2022 June-October time period. Black dots indicate statistical significance at the 90% confidence interval. r values

indicate spatial Pearson cross correlations between RH and MODIS AOD.
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Figure 11. High minus low DM days AIRS CF anomalies at all AIRS pressure levels from 1000 hPa to 200 hPa (a-j) under high RHs

conditions in the 2003-2022 June-October time period. Black dots indicate statistical significance at the 90% confidence interval. r values

indicate spatial Pearson cross correlations between CF and MODIS AOD.
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Figure 12. Dependence of meteorological variables on high versus low RHs and fires during the fire season. Empirical CDFs for regional

average daily anomalies of meteorological variables over the nCA-NV region in the 2003-2022 June-October time period. Solid red line sig-

nifies variable anomalies are stratified by high nCA fire dry matter emission DM and high nCA-NV RHs anomaly days (DM90,RHs75).

The dashed red line signifies variable anomalies are stratified by low DM and high RHs anomaly days (DM10,RHs75). The solid

blue line represents variable anomalies are stratified by high DM and low RHs anomaly days (DM90,RHs25). The dashed blue line

symbolizes variable anomalies are stratified by low DM and RHs anomaly days (DM10,RHs25). Variables depicted include (a) liquid

water cloud fraction CFlw, (b) cirrus cloud fraction CFcir , (c) CF , (d)cloud top height CTH , (e) precipitation P , and cloud-only (all-

sky minus clear-sky) net top of atmosphere flux TOAcld. The red ∆ represents the differences in the mean of the solid red and dashed

red lines (DM90,RHs75)-(DM10,RHs75). The blue ∆ represents the differences in the mean of the solid blue and dashed blue lines

(DM90,RHs25)-(DM10,RHs25).
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Figure 13. Meteorological responses under high versus low nCA DM conditions with simultaneously high nCA-NV RHs during the fire

season. Difference between average variable anomalies on high (90th percentile) nCA fire dry matter DM emission days and low (10th

percentile) nCA DM emission days that occur on high nCA-NV RHs days in the 2003-2022 June-October time period. Variables include

(a) 850 hPa-300 hPa average Temperature TCL, 850 hPa-300 hPa average relative humidity RHCL, (c) surface temperature Ts, (d) RHs,

(e) CF , (f) CTH , (g) P , and (e) TOAcld . Black dots represent statistically significant differences at the 90% confidence interval according

to a two tailed test. Pearson cross correlation r values in each plot represent the spatial correlation between MODIS aerosol optical depth

AOD anomaly and the variable anomaly depicted in the figure. All values of r are significant at the 90% confidence interval according to a

two-tailed test.
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Figure 14. Effect size of large fires in nCA on the mean of various meteorological variables during the fire season. 2003-2022 June-October

Cohen’s d d values for the difference between nCA-NV regional averages of variables on high DM days minus low nCA DM emission

days that coincide with (a) high RHs and (b) low RHs. For Cohen’s d, values of 0.2 through 0.5 signify a weak effect size, values of 0.5

through 0.8 represent a moderate effect size, and values greater or equal to 0.8 signify a strong effect size. Red bars represent standard error.
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Figure 15. Dependence of microphysical variables to high versus low surface relative humidity RHs and fires during the fire season.

Empirical CDFs for regional average daily anomalies of cloud microphysical variables over the nCA-NV region in the 2003-2022 June-

October time period. Solid red line signifies variable anomalies are stratified by (DM90,RHs75). The dashed red line signifies variable

anomalies are stratified by (DM10,RHs75). The solid blue line represents variable anomalies are stratified (DM90,RHs25). The dashed

blue line symbolizes variable anomalies are stratified by (DM10,RHs25). Variables depicted include (a) liquid effective radius Reff , (b)

Ice Reff , (c) liquid water path LWP , (d) and ice water path IWP . The red ∆ represents the differences in the mean of the solid red and

dashed red lines (DM90,RHs75)-(DM10,RHs75). The blue ∆ represents the differences in the mean of the solid blue and dashed blue

lines (DM90,RHs25)-(DM10,RHs25).
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