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Abstract. The gravity-driven flow in unsaturated porous medium is still one of the biggest unsolved problems in multiphase

flow. Sometimes a stable flow with an uniform wetting front is observed, but at other times it is unstable with distinct prefer-

ential pathways even if the porous material is homogeneous. The formation of an unstable wetting front in a porous medium

depends on many factors such as the type of the porous medium, the initial saturation or the applied infiltration rate. As the5

infiltration rate increases, the wetting front first transitions from stable to unstable for low infiltration rates, and then from

unstable to stable for high infiltration rates. We propose a governing equation and its discretized form, the semi-continuum

model, to describe this significant non-monotonic transition. We show that the semi-continuum model is able to capture the

influx dependence together with the correct finger width and spacing. We also present that the instability of the wetting front is

closely related to the saturation overshoot in 1D. Finally, we demonstrate that the flow can be still preferential even when the10

porous medium is completely wetted.

1 Introduction

In hydrology, the gravity-driven multiphase flow in porous media is a long-standing and still unsolved problem. Typically, this

involves the flow of water into the soil, which is extremely complicated physical phenomenon and exhibits counter-intuitive

behavior. The standard concept of the diffusion-like flow does not apply here (DiCarlo, 2013; Xiong, 2014) as an unstable15

wetting front is usually observed. The instability of the wetting front is accompanied by preferential flow. In this case, most of

the water flows through the preferential pathways, while the rest of the porous medium remains dry even after hours of uniform

infiltration. The preferential flow is also known as the finger-like flow because the main characteristic of this type of flow is

the so-called fingers (DiCarlo, 2013). The finger consists of two parts, an undersaturated tail and an oversaturated tip, and this

non-monotonicity of saturation is called saturation overshoot. The physical description of preferential flow has been and still20

is a great challenge because it has huge application potential in the soil science (Lake, 1989; DiCarlo, 2013; Xiong, 2014) and

in other fields (Bundt et al., 2000; Sutherland and Chase, 2008; Vafai, 2011).

Wetting front instability and associated saturation overshoot have been in the center of attention for several decades (Saffman

and Taylor, 1958; Chuoke et al., 1959; Smith, 1967; Hill and Parlange, 1972). Since then, a huge number of laboratory and field
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experimental work has become available. Some of the works concern 3D experiments (Glass et al., 1990; Yao and Hendrickx,25

1996), but most of them are performed in 1D (long vertical tubes) (DiCarlo, 2004, 2007, 2010; Aminzadeh and DiCarlo, 2010)

and in 2D (Hele-Shaw cells) (Smith, 1967; Glass et al., 1988, 1989b, c, a; Liu et al., 1994; DiCarlo et al., 1999; Glass et al.,

2000; Bauters et al., 2000; Sililo and Tellam, 2005; Rezanezhad et al., 2006; Wei et al., 2014; Cremer et al., 2017; Pales et al.,

2018; Chen et al., 2022; Liu et al., 2023) due to simpler realization. It turns out that flow in an unsaturated porous medium

has many unexpected features. For example, a non-monotonic dependence of the wetting front velocity and finger width on30

the initial saturation is observed (Bauters et al., 2000). At lower initial saturation, the wetting front is unstable with slow and

wide fingers. With increasing initial saturation, the fingers first narrow and speed up and then slow and widen again until a

stable wetting front is observed for a residual initial saturation. Another non-intuitive behavior is the dependence on applied

influx (Glass et al., 1989c; Yao and Hendrickx, 1996; DiCarlo, 2013). The wetting front is stable at low infiltration fluxes, then

unstable within a certain range, and stable again at high infiltration fluxes.35

Together with an unstable wetting front, the preferential nature of the flow, i.e., the heterogeneity of the water flow, is

essential. Therefore, many attempts to quantify the heterogeneity of water flow in homogeneous soil were performed. Probably

the first attempt was made by Bouma et al. (1978) using small infiltrometers. The proposed method was later used by Kneale

and White (1984), who introduced the so-called bypassing ratio, which is the ratio of the preferential flow rate to the total

flow rate. Another attempt was made by Täumer et al. (2006) using the effective cross section. The authors applied this40

approach to measure preferential flow for field experiments. Furthermore, a degree of preferential flow was introduced in

Lichner et al. (2011) to quantify the heterogeneity of water flow. The authors estimated the effective cross section and the

degree of preferential flow from a saturation image of a vertical section of sandy soil.

The classical approach to model an unsaturated porous media flow is the Richards’ equation (Richards, 1931), which is a

combination of the mass balance law and the Darcy-Buckingham law (Buckingham, 1907). The Richards’ equation is diffusive45

in nature as it is unable to model a non-monotonic saturation profile in the case of uniform infiltration rate (Fürst et al.,

2009). Therefore, many extensions of the Richards’ equation known as continuum models have been proposed (Hassanizadeh

et al., 2002; Eliassi and Glass, 2002; Brindt and Wallach, 2020; Cueto-Felgueroso et al., 2020; Beljadid et al., 2020; Roche

et al., 2021; Ommi et al., 2022a, b). Other approaches are, for example, discrete (pore-scale) models (Lenormand et al.,

1988; Primkulov et al., 2018; Wei et al., 2022) and combination of discrete and continuum approaches (Glass and Yarrington,50

1989, 2003; Liu et al., 2005; Liu, 2017, 2022; Liu et al., 2023).

One such combination is the model proposed by Vodák et al. (2022). The authors developed the semi-continuum model and

its formal limit in the form of a partial differential equation with a Prandtl-type hysteresis operator (Visintin, 1993) under the

derivative. It was shown that the semi-continuum model was able to correctly reproduce experiments of flow into a long vertical

tube (Kmec et al., 2019). In Kmec et al. (2021), the model was used to replicate the transition between unstable and stable55

wetting front for increasing initial saturation. Along with this, the model was shown to correctly capture the finger persistence

and the flow across a heterogeneous porous medium. Finally, the strong non-monotonic dependence of the wetting front on

the initial saturation for a point source infiltration was captured well (Kmec et al., 2023). However, there is still one essential

thing missing: the dependence of 2D/3D preferential flow on applied flux in terms of finger width and finger spacing (Yao and
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Hendrickx, 1996; Glass et al., 1989c; DiCarlo, 2013). In this paper, we want to demonstrate the ability of the model to correctly60

capture the transition from stable to unstable flow for low infiltration fluxes (Yao and Hendrickx, 1996) and the transition from

unstable to stable flow for high infiltration fluxes (Glass et al., 1989c). This complicated transition is not yet captured by any

model. We also want to show that the model captures well the flow instability and finger width as a function of infiltration flux.

In addition, the relation between the saturation overshoot and the wetting front instability will be investigated.

2 Methods65

In this section, we first introduce the governing equation, which is a formal limit of the semi-continuum model derived by

Vodák et al. (2022). Then, a proper discretization of the governing equation is presented together with the discretization of the

Prandtl-type hysteresis operator to provide a description of the semi-continuum model. The semi-continuum model is used to

describe the movement of the wetting liquid in a porous medium, specifically it is a multiphase flow model used for modeling

unsaturated porous media flow.70

2.1 Governing equation

The governing equation is given by Eq. (1). It is a partial differential equation containing Prandtl-type hysteresis operator PH

(Fig. 1) under the spatial derivative.

(KPS∂tS− ∂tPH)(PH − v)≥ 0, ∀v ∈ [C2,C1], PH ∈ [C2,C1]. (1a)

θ∂tS + div
(

κ

µ

√
k(S−)

√
k(S+)

(
(0,0,ρg)−∇PH

))
= 0, S±(x0, t) = lim

x→x±0

S(x,t). (1b)75

In this equation, the porous medium is characterized by its porosity θ [−], intrinsic permeability κ [m2] and relative permeability

k(S) [−]. If the saturation is continuous, then k(S) =
√

k(S−)
√

k(S+). The wetting phase (liquid) is characterized by its

saturation S [−], density ρ [kgm−3], dynamic viscosity µ [Pas] and pressure P [Pa]. In a porous material that is not completely

filled with liquid, the pressure P has the meaning of capillary pressure which is actually the tensile stress by which the liquid is

held in the pores. This pressure P in the liquid phase is less than the pressure in the non-wetting phase (gas), which is assumed80

to be zero, therefore P becomes negative. The parameter g [ms−2] denotes acceleration due to gravity.

In soil physics, the relationship between the saturation S and the pressure P exhibits strong hysteresis and is known as

the retention curve. The retention curve has two main hysteresis branches: the wetting branch and the draining branch. Both

branches are similar in shape and are increasing functions of saturation and pressure. However, the shape of the retention curve

strongly depends on the size of the sample on which the measurement is performed (Larson and Morrow, 1981; Mishra and85

Sharma, 1988; Zhou and Stenby, 1993; Perfect et al., 2004; Hunt et al., 2013; Ghanbarian et al., 2015; Silva et al., 2018).

Moreover, as the sample size decreases, the pore size variability within the sample also decreases and the retention curve

becomes flatter which was experimentally confirmed in Silva et al. (2018). In the case of an infinitesimal volume of porous

medium (i.e., a single pore), the main wetting and draining branches are constant and are referred to as the water entry and air
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entry values (points). Let us note that the constant main branches are also obtained for a porous medium with zero pore size90

variability (Pražák et al., 1999). This is consistent with a flattening of the retention curve as the pore size variability decreases.

The hysteretic relationship for an infinitesimal volume is defined in Eq. (1) by the Prandtl-type hysteresis operator PH (Visintin,

1993) and has the form shown in Fig. 1. The main wetting branch C1 [Pa] (water entry value) and the main draining branch

C2 [Pa] (air entry value) are denoted by blue lines in Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0
Saturation [-]

C2

C1

Pr
es

su
re
 [P

a]

Figure 1. Prandtl-type hysteresis operator PH for an infinitesimal volume of porous medium. Blue lines represent constant main wetting

branch P (S) = C1 (water entry value) and constant main draining branch P (S) = C2 (air entry value). Red and black lines are scanning

curves with large gradient KPS – the direction of transition between the branches of the retention curve is indicated by the corresponding

arrows.

There are many approaches to model the hysteresis between saturation and pressure (Mualem, 1976; Lenhard and Parker,95

1987; Parker and Lenhard, 1987; Beliaev and Hassanizadeh, 2001; Abreu et al., 2019). Here, we use the following simple

approach similar to the play-type hysteresis (Schweizer, 2017): If the saturation at a point in the material switches from wetting

to draining, the pressure starts moving from the main wetting branch toward the main draining branch along the straight line

with large gradient KPS (red line in Fig. 1). The same applies for the transition from the main draining branch to the main

wetting branch (black line in Fig. 1). These transition curves are called scanning curves in soil physics. Note that the parameter100

KPS defined in Eq. (1) thus denotes the slope of the scanning curves.

The Prandtl-type hysteresis operator introduced in this way has the effect that the Eq. (1) switches between parabolic and

hyperbolic types. If the pressure value is defined by the main branches, then the pressure-saturation relation is constant, and

therefore ∇PH = 0. Thus, the equation becomes a hyperbolic differential equation. Otherwise the equation is a parabolic

differential equation; the value of the pressure is given by the scanning curves in this case.105

It is well known that different types of flow, saturated and unsaturated, can occur in parallel in the porous medium (Brand-

horst et al., 2021). In a fully saturated medium, the pressure-saturation relation is no longer defined by the Prandtl-type hys-

teresis operator PH . In this case, the pressure becomes hydrostatic pressure and takes on positive values. Using the hydrostatic

pressure in Eq. (1) instead of PH , we obtain the Laplace’s equation as k(S) = 1 and ∂tS = 0. Since in this paper we are focused

on unsaturated flow, hydrostatic pressure is not implemented and the case of a fully saturated medium is not studied further.110
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2.2 Discretization of the porous medium

We want to simulate experiments in two dimensional Hele-Shaw cell of a porous medium, hence 2D discretization is used.

The porous medium is a rectangle of size A×B, where A and B denote the horizontal and vertical widths of the porous

medium, respectively. The porous medium is represented by a square mesh consisting of N ×M blocks (finite volumes) of

size ∆x×∆x. These blocks retain the character of the porous medium.115

2.3 Discretization of the Prandtl-type hysteresis operator

The discretization of the governing Eq. (1) has already been described in Kmec et al. (2023) as the semi-continuum model.

The basic idea is to appropriately discretize the Prandtl-type hysteresis operator PH given by Eq. (1a). Its discretized version

is the capillary pressure operator P (S) which satisfies P (S)→ PH(S) for ∆x→ 0. The basic idea of the discretization is that

the shape of the retention curve depends on the size of the sample on which the measurement is performed (Silva et al., 2018).120

This fact is not ignored in our model; the sample size dependence is implemented so that the retention curve depends on the

block size ∆x. We refer to discretization as scaling of the retention curve. The proposed scaling is explained below, however

for a detailed mathematical and physical justification we refer to the paper Vodák et al. (2022). For the reference block size

∆x0, the retention curve is given by the van Genuchten equation (Genuchten, 1980):

Pw
0 (S) =− 1

αw

(
S

nw
1−nw − 1

) 1
nw

, P d
0 (S) =− 1

αd

(
S

nd
1−nd − 1

) 1
nd , (2)125

where Pw
0 is the main wetting branch, P d

0 is the main draining branch, αw,nw are parameters of the main wetting branch, and

αd,nd are parameters of the main draining branch. For a block size ∆x < ∆x0, the main wetting and draining branches are

scaled as follows:

Pw(S, ∆x) =
∆x

∆x0
Pw

0 (S) +Pw
0 (0.5)

(
1− ∆x

∆x0

)
, P d(S, ∆x) =

∆x

∆x0
P d

0 (S) +P d
0 (0.5)

(
1− ∆x

∆x0

)
. (3)

Obviously, for ∆x = ∆x0, the retention curve is given by Eq. (2). For ∆x→ 0, the retention curve converges to the Prandtl-130

type hysteresis operator PH so that C1 = Pw
0 (0.5) and C2 = P d

0 (0.5). Hence, C1 and C2 represent the constant limits of the

main wetting and draining branches, respectively. Note that the reference block size ∆x0 is a parameter of the semi-continuum

model that is not arbitrary. For instance, the parameter ∆x0 was calibrated for 20/30 sand in Kmec et al. (2023) using the

experiments of Bauters et al. (2000). Figure 2 shows the capillary pressure operator P (S) for different block sizes. It can be

clearly seen that for ∆x→ 0 the operator P (S) converges to the Prandtl-type hysteresis operator PH shown in Fig. 1.135

Although it is well known that the retention curve is dependent on the sample size of the porous medium (Larson and

Morrow, 1981; Mishra and Sharma, 1988; Zhou and Stenby, 1993; Perfect et al., 2004; Hunt et al., 2013; Ghanbarian et al.,

2015), the implementation of this dependence is not common in flow modeling. Moreover, other characteristics of the porous

medium, such as permeability and porosity, are also dependent on the sample size (Mishra and Sharma, 1988; Ewing et al.,

2010; Ghanbarian et al., 2017, 2021; Esmaeilpour et al., 2021). In the semi-continuum model, the sample size dependence of140

5

https://doi.org/10.5194/egusphere-2023-2785
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



0.0 0.2 0.4 0.6 0.8 1.0
Saturation [-]

-2000

-1000

C2= Pd0(0.5)

0

C1= Pw0 (0.5)
Pr
es

su
re
 [P

a]
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Δx=0.50 ⋅ Δx0
Δx=0.25 ⋅ Δx0
Δx=0.01 ⋅ Δx0

Figure 2. The scaling of the retention curve for different block sizes ∆x. The solid lines denote the main wetting branches and the dashed

lines denote the main draining branches. The parameters αw,nw,αd,nd are given in Table 1. For ∆x→ 0, the retention curve converges to

the Prandtl-type hysteresis operator PH such that the main wetting and draining branches rotate around values C1 and C2.

the retention curve is implemented by a proper scaling of the retention curve. In principal, it means that individual blocks of the

discretization mesh represent a real sample of the porous medium, hence these blocks carry the information about the physical

characteristics. This differs fundamentally from standard numerical schemes for partial differential equations, where the mesh

plays only a mathematical role and ignores the fact that the individual elements/volumes represent the real domain. However,

some authors have already taken this fact into account in modeling porous media. For instance, White et al. (2006) estimated a145

lower limit of finite elements and then used this size in their model. They argue that the use of smaller elements would not be

appropriate because it would lead to violation of the continuum assumptions.

2.4 Discretization of the governing equation – the semi-continuum model

Each block of the discretized porous medium is denoted by the indices (i, j) representing the corresponding row and column.

St(i, j) [−] and Pt(i, j) [Pa] denote the saturation and the pressure of the wetting phase (liquid) of the block (i, j) at time t,150

respectively. The both values are assumed to be constant within the block. Moreover, q
(i1,j1)

t(i2,j2)
[ms−1] denotes the flux of the

wetting phase from the block (i1, j1) to the block (i2, j2) at time t.

The semi-continuum model, i.e., the discretization of the governing Eq. (1), consists of three consecutive steps: saturation

update, pressure update and flux update. First, the saturation in each block is updated according to discretized mass balance

law:155

St+∆t(i, j) = St(i, j) +
∆ t

θ

1
∆x

(
q

(i−1,j)
t(i,j) − q

(i,j)
t(i+1,j) + q

(i,j−1)
t(i,j) − q

(i,j)
t(i,j+1)

)
, (4)

where ∆t is a time step and ∆x is the block size.

The second step is to update the pressure in each block to obtain the pressure at time t + ∆t, i.e., Pt+∆t. The pressure is

updated according to the capillary pressure operator P (S) which is a discretized Prandtl-type hysteresis operator. The operator

P (S) consists of the main wetting and draining branches given by Eq. (3). For a complete definition of the capillary pressure160
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operator it is necessary to include the hysteresis. All the scanning curves between the two main branches are straight lines with

large gradient KPS (see red and black lines in Fig. 1).

The third and final step is the flux update. Let us define the effective permeability as γ(S) = κk(S). For the relative perme-

ability function k(S) we use the form derived in Genuchten (1980):

k(S) = Sλ

[
1−

(
1−S

n
n−1

)n−1
n

]2

, (5)165

where λ [−] is a free parameter and n [−] is a parameter of the retention curve given by Eq. (2). The flux between blocks is

updated using the discretized version of Darcy-Buckingham law (Bear, 1972):

q
(i1,j1)

t+∆t(i2,j2)
=





1
µ

√
γ(St+∆t(i1, j1))γ(St+∆t(i2, j2))

(
ρg− Pt+∆t(i2,j2)−Pt+∆t(i1,j1)

∆x

)
, for j1 = j2, i2 = i1 + 1

1
µ

√
γ(St+∆t(i1, j1))γ(St+∆t(i2, j2))

(
0− Pt+∆t(i2,j2)−Pt+∆t(i1,j1)

∆x

)
, for i1 = i2, j2 = j1 + 1

0, otherwise

(6)

The acceleration due to gravity is included only for the vertical fluxes. Unsurprisingly, the fluxes between non-neighboring

blocks are set to zero. Note that the geometric mean is used to average the effective permeability between blocks which is170

consistent with the governing Eq. (1). Moreover, this type of averaging is also consistent with the experimental observation

(Jang et al., 2011). After updating the fluxes between neighboring blocks, we update the time t = t + ∆t and return to the

saturation update given by Eq. (4).

If the fluxes between blocks are too large, especially if the flux is close to the saturated conductivity KS = κ
µρg, the saturation

may exceed one. This is often the case for other models as well. For example, in Cueto-Felgueroso and Juanes (2009), a175

“compressibility term” is used for the capillary energy-saturation dependence. This term becomes dominant near saturation

close to one, so it prevents the saturation to increase any further. We use a different approach; the magnitude of the flux to the

block can be at most so large that the saturation does not exceed one. This straightforward approach is only possible because

of the simple numerical scheme used.

Let us note that various discretizations of the Prandtl-type hysteresis operator PH can be proposed. However, the used180

linear scaling of the retention curve is physically justifiable. It is convenient to preserve the same fluxes between blocks for

various block sizes. According to Eq. (6), decreasing the block size ∆x by half doubles the flux. Therefore, the linear scaling

is introduced in Eq. (3) so that the fluxes remain the same as the block size decreases.

According to Eq. (4) and Eq. (6), if a standard retention curve without scaling is used, i.e., it does not converge to a Prandtl-

type hysteresis operator PH , the semi-continuum model degenerates into a numerical scheme for solving the classical Richards’185

equation. Unlike the semi-continuum model, the Richards’ equation is unable to admit finger-like solutions regardless of the

hysteresis used (Fürst et al., 2009). From a mathematical point of view, in the case of an unsaturated porous medium, the

Richards’ equation is only a parabolic differential equation compared to the governing Eq. (1), which is a hyperbolic-parabolic

differential equation.
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3 Results190

3.1 Experimental setup

We want to reproduce the dependence of the wetting front stability on different infiltration rates (Glass et al., 1989c; Yao and

Hendrickx, 1996; DiCarlo, 2013). We first briefly describe the experiments of Glass et al. (1989c) and Yao and Hendrickx

(1996). Although these experiments are approximately 30 years old, they have not yet been fully reproduced by any model.

Glass et al. (1989c) infiltrated into a two-dimensional chamber with a thickness of 1cm. Water was uniformly applied at a195

constant flux qtop at the top boundary of the porous medium. They showed that the finger width increases with increasing

applied flux until a stable wetting front is observed when the flux is close to the saturated conductivity KS . Yao and Hendrickx

(1996) performed similar experiments, but they infiltrated into large three-dimensional columns (with diameters 30cm and

100cm) and the applied flux was much lower, approximately between 0.001− 0.45cm min−1. They demonstrated that as the

flux decreases, the finger-like flow disappears and a stable wetting front reappears. Therefore, the finger-like flow is observed200

only within a certain range of applied flux. This is not consistent with stability arguments of Chuoke et al. (1959) and Parlange

and Hill (1976) as they do not predict an increase in finger width towards very low fluxes.

Moreover, Yao and Hendrickx (1996) used four different sands (14/20, 20/30, 30/40 and 40/60) varying in the size of

particles from coarser to finer. The authors showed that the transition from an unstable to a stable flow for low fluxes is

maintained regardless of the used sand. They also demonstrated that fingers tend to be wider for finer sand compared to coarser205

sand. This is expected because a stable wetting front is more readily observed for finer sand (Cremer et al., 2017). In this paper,

we decided to use only one type of sand, since it has already been shown in Kmec et al. (2023) that the semi-continuum model

captures this dependence well and that the fingers are indeed wider for finer sands (for details we refer to section B3 in Kmec

et al. (2023)).

In Kmec et al. (2023) we used the semi-continuum model to correctly reproduce the experiments reported in Bauters et al.210

(2000) – the non-monotonic dependence of the saturation overshoot and the finger velocity on the initial saturation, the so-

called Bauters’ paradox. Here we use the same parameters as in Kmec et al. (2023), including ∆x0, to avoid the possibility that

we have adjusted the parameters of the semi-continuum model to obtain the best results. Thus, without additional parameter

adjustment, we want to reproduce completely different phenomena of porous media flow. Parameters used for reproducing the

dependence on different infiltration rates are given in Table 1. The porous medium used for simulations is 20/30 sand. Let215

us note that the value of KPS does not affect the results if it is chosen large enough. The differences between solutions are

negligible for KPS ≥ 105 Pa (see Fig. 3.13 in Kmec (2021)). Here we use the lower limit KPS .
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Table 1. Parameters used for reproducing the dependence on different infiltration rates. Parameters for 20/30 sand were adopted from

Schroth et al. (1996) and DiCarlo (2004).

Parameter Symbol Value

Horizontal width of the chamber A 50 cm

Vertical width of the chamber B 50 cm

Reference block size ∆x0
10
12

cm

Block size ∆x 0.25 cm

Porosity θ 0.35

Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pas

Intrinsic permeability κ 2.294× 10−10 m2

Relative permeability exponent λ 0.8

Acceleration due to gravity g 9.81 ms−2

Wetting curve parameter αw 0.177 cm−1

Wetting curve parameter nw 6.23

Draining curve parameter αd 0.0744 cm−1

Draining curve parameter nd 8.47

Slope of scanning curves KPS 105 Pa

Initial saturation Sin 0.01

Residual saturation Srs 0.05

The scheme of the experimental setup is shown in left panel of Fig. 3. The porous medium is initially dry (initial saturation

Sin = 0.01), and all the blocks begin on the main wetting branch. Boundary conditions are set to be consistent with the

experiments we want to reproduce (Yao and Hendrickx, 1996; Glass et al., 1989c). The constant infiltration rate qtop is applied220

at the whole top boundary. In total, we used 18 different infiltration rates qtop, with the lowest influx equal to 0.001cm min−1

and the highest influx equal to the saturated conductivity KS = 15cm min−1. The lateral boundaries of the porous medium are

impenetrable, so the lateral fluxes are set to zero. For the bottom boundary flux qbot, a free discharge is prescribed:

qbot := q
(N,j)

t(out) =

{
0 for St ≤ Srs

1
µγ(St(N,j))

(
ρg + Pt(N,j)

∆x

)
, j = 1, . . . ,M, for St > Srs

, (7)

where N denotes the bottom row index. Thus, the flux from the bottom boundary is set to zero if the saturation of the225

corresponding block does not exceed the residual saturation Srs, otherwise it is non-zero. This implementation is standard for

the models based on the Richards’ equation (Šimůnek and Suarez, 1994) and for the semi-continuum model was already used

in Kmec et al. (2021). Moreover, if the porous medium is homogeneous, this does not mean that all characteristics, such as

the intrinsic permeability, are exactly the same for each block. Therefore, a small distribution of spatially correlated intrinsic
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permeability is included (see right panel of Fig. 3). A similar distribution has been also used for example in Cueto-Felgueroso230

and Juanes (2009); Gomez et al. (2013); Kmec et al. (2023).

Figure 3. Left panel: The scheme of the experimental setup. Right panel: The distribution of spatially correlated intrinsic permeability. The

average value of κ equals approximately 2.294× 10−10 m2 and the distribution satisfies κmax/κmin ≈ 4. The values are colored according

to the color bar on the right.

3.2 Evolution of the saturation profile

Figure 4 shows the evolution of the saturation profile at six different times for qtop = 0.05cm min−1. Times are displayed

in the upper left corner for each frame. First, a stable wetting front with small frontal perturbations is developed for time

t = 300s. These perturbations then grow into long persistent fingers. Finally, when fingers reach the bottom of the chamber,235

the water flows out of the chamber through preferential pathways so that the most of the porous medium remains dry. This

evolution of the wetting front instability is consistent with the experimental observation (DiCarlo, 2013). Note that if small

frontal perturbations do not grow, stable flow is produced.

3.3 Dependence of flow on infiltration rate

Let us now examine the dependence of flow on different infiltration rates. In total, 18 simulations for infiltration rates in range240

qtop = 0.001−15cm min−1 are performed. Saturation profiles for nine simulations are shown in Fig. 5. For the sake of clarity,

saturation profiles of all simulations are given in Appendix A1; see Figs. A1 and A2. The time for each flux is chosen so that

the saturation reaches 40cm from the upper boundary. In addition, the flux and the corresponding time are displayed in the

upper left corner for each frame. At low fluxes, the transition from a stable wetting front to the finger-like flow is well observed.

Moreover, if the flux is close to the hydraulic conductivity, the fingers widen and a stable wetting front develops. This is the245
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first model that is able to simulate this non-trivial transition. A more detailed view can be found in the videos, where transient

simulations can be seen. The videos are available in Kmec (2023b) for each applied influx.

It is known that in unstable flow, two fingers can merge or one finger can split into two fingers (Glass et al., 1989b, c;

Rezanezhad et al., 2006). Both scenarios are reproduced here, but to see details, we recommend to look at videos of the

transient simulations that can be downloaded from Kmec (2023b). The merging can be seen, e.g., for qtop = 5cm min−1,250

where two wide fingers are merged. The finger merging is also well observed for lower fluxes. Furthermore, the splitting of the

finger into two can be observed for qtop = 2.5cm min−1.

Note that the saturation overshoot is clearly evident for fluxes between 0.05−5cm min−1. Moreover, even for lower fluxes,

for which an unstable behavior is still present, the saturation overshoot can be observed. However, the magnitude of the

saturation overshoot (i.e., the saturation difference between finger tip and tail) is very small, so that it is not visible in Fig. 5.255

This is discussed in more detail in Sect. 3.6 Wetting front instability.

Figure 4. Evolution of saturation profile for qtop = 0.05cmmin−1 at six different times. Times are displayed in the upper left corner for

each frame. Saturation is colored according to the color bar on the right.
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Figure 5. Saturation profiles for nine different infiltration rates. For each frame, the influx is displayed together with the simulation time.

The transition from stable to unstable and back to stable flow is well observed. Saturation is colored according to the color bar on the right.

3.4 Finger width as function of influx

DiCarlo (2013) plotted the measured finger widths as a function of influx in a single graph together for low (Yao and Hendrickx,

1996) and high (Glass et al., 1989c) infiltration rates. The measured finger widths for both experiments are shown in Figure 2

in DiCarlo (2013) along with the predicted finger widths using standard theory (Chuoke et al., 1959; Parlange and Hill, 1976).260

The observed results can be summarized as follows:

– A stable wetting front is observed at very low fluxes – in this case the finger width is equal to the chamber width. This is

not predicted by standard theory (Chuoke et al., 1959; Parlange and Hill, 1976).

– As the influx increases, a rapid decrease in the finger width is observed followed by a long flat valley of almost constant

finger width for different fluxes – specifically, the finger width first slightly decrease and then slightly increase.265
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– Finally, if the magnitude of the flux is getting close to the saturated conductivity, the finger widths increase again,

followed by stable flow.

Let us now calculate the finger width on the influx for all performed simulations. For each influx, we use the saturation

profile at the time of the simulation for which the water reaches the bottom of the chamber, i.e., 50cm. Therefore, the bottom

boundary flux given by the Eq. (7) does not influence the saturation profile. However, in the case of unstable flow, the calculated270

finger widths are the same if a much longer simulation time is used, so that water flows out of the porous medium. This is due

to the fact that the fingers are persistent in time and do not disappear even after several hours of steady infiltration (Glass

et al., 1989b; Rezanezhad et al., 2006). Since this finger persistence is captured well by the semi-continuum model (Kmec

et al., 2021) (see also Fig. 4), the simulation time used for finger width calculation in the case of unstable flow is irrelevant. To

calculate the finger width, a segmentation of all fingers is done for each influx. In the case of finger-like flow, this segmentation275

is straightforward because fingers are well developed. For a stable flow, the entire saturation profile is assumed to be a “finger”

(the same notation is used in DiCarlo (2013)). However, a more complex case is the intermediate phase between stable and

unstable flow (see qtop = 0.01cm min−1 in Fig. 5) – the transition between unstable and stable flow. Some fingers are narrow

and some are diffusely expanding, so a completely objective segmentation of the fingers is not possible here. For clarity, all

performed finger segmentations are included in Appendix A2 (see Fig. A3). Note that fingers in contact with the edge of the280

chamber are not included in the analysis, as they were also not included in Glass et al. (1989c). These “side” fingers tend to be

slightly narrower (see Fig. 5), which is consistent with the experimental observations (Glass et al., 1989c).

Figure 6 shows the dependence of the calculated finger width on the influx. Red, green and blue dots indicate fluxes for which

we observe stable flow, a transition between stable and unstable flow, and unstable flow, respectively. The results are consistent

with experimentally observed behavior – a nearly constant finger width is observed for flows between 0.01− 2.5cm min−1,285

followed by a stable flow for very low and very high applied fluxes. Even a slight increase in the finger width for fluxes

above 0.01cm min−1 is in perfect agreement with experiments (see Figure 2 in Glass et al. (1989c)). The specific case is

qtop = 5cm min−1 (see Fig. 5); two fingers are first developed and then both fingers merge at a depth of approximately 30cm.

The average width of the two fingers or of the one merged finger can be calculated. In Fig. 6 the second case is selected, i.e.,

the width is calculated from one merged finger.290

Glass et al. (1989c) calculated the number of fingers including side fingers for each applied flux. They reported that in the

case of unstable flow, the number of fingers does not change significantly for different fluxes, as it varies between four and

six. Given the size of the chamber used for the experiments (30cm), the expected number of fingers for the 50cm used in our

simulations is approximately between seven and ten. This corresponds to the number of fingers developed in the simulations,

which for unstable flow range from six to ten. Hence, the spacing between the fingers is also captured well in the simulations.295
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Figure 6. Dependence of the finger width on the influx. A stable wetting front is observed at either very low or very high applied fluxes – in

this case the “finger width” is approximately equal to the horizontal width of the chamber. The color of dots indicate the type of flow: stable,

intermediate and unstable flow.

3.5 Preferential flow as function of influx

Let us now examine how much the flow is preferential depending on the influx. One possible approach is to calculate for a given

saturation profile the fraction of wetted area to the total area of a porous medium of size 50cm×50cm. For each top boundary

flux, the saturation profile is chosen at the simulation time when the flow is already stabilized. This means that analysis of the

saturation profiles over a longer simulation period leads to the same conclusions, because the saturation profile does not change300

even if the inflow continues. Figure 7 shows the fraction of wetted area versus influx. It is not surprising that in the case of

unstable flow the ratio of wetted area to the total area of a porous medium is mostly between 40−60%, while for stable flow it

is 100%. Note that the porous medium is completely wetted for the intermediate cases as well. However, the fraction of wetted

area is not an appropriate metric for calculating how much water flows preferentially. This is because this fraction says nothing

about whether the majority of the water flows through only a small part of the porous medium. Therefore, a by-pass ratio in305

the horizontal section based on a similar approach to that of Kneale and White (1984) is used instead.

The by-pass ratio is calculated as follows: First, the inflow to the block is calculated for each block that corresponds to the

horizontal section at a depth of 30cm. The total number of blocks is 200 as the horizontal width of the porous medium is 50cm

and the block size ∆x = 0.25cm. The inflows to the blocks are then normalized so that the average inflow of one block is

equal to one. Using this type of normalization, the inflow values for perfectly stable flow are equal to one for all blocks. These310

values represent the by-pass ratio. The simulation times are the same as for calculation the fraction of wetted area to the total

area shown in Fig. 7. Therefore, the analysis in longer simulation times does not affect the obtained results.
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Figure 7. Ratio of wetted area to the total area of a porous medium of size 50cm×50cm depending on influx. For each influx, the saturation

profile is chosen at a sufficiently long simulation time so that the flow is already stabilized. The color of dots indicate the type of flow: stable,

intermediate and unstable flow.

Left panel of Fig. 8 shows the by-pass ratio in the horizontal section at a depth of 30cm for three different influxes. The color

indicates the type of flow: red, green and blue colors denote an example of stable, intermediate and unstable flow, respectively.

The by-pass ratio for stable flow is equal to one almost everywhere with no significant preference of flow. For unstable flow,315

the by-pass ratio corresponds to the developed fingers. Water flows only through the fingers and outside the finger the flow is

zero. Quite surprising is the intermediate case – the transition between stable and unstable flow. Water flows through the entire

porous medium, but the flow is still highly preferential. This is counterintuitive since the porous medium is fully wetted in this

case, yet preferential pathways are formed through which the most of the water flows. The origin of these pathways can be

seen in Fig. 5 for qtop = 0.005cm min−1, where they appear as a slight increase in saturation. However, for better illustration,320

right panel of Fig. 8 shows the saturation profile at a longer time (t = 24000s). Moreover, the maximum value of the color

bar is changed to make pathways more visible. The created pathways are well observed and they do not disappear even when

the porous medium is completely wetted. Comparing the by-pass ratio for qtop = 0.005cm min−1 (left panel of Fig. 8) and

the corresponding saturation profile (right panel of Fig. 8), we can clearly see that the highest by-pass ratio corresponds to the

most saturated parts of the porous medium. Note that the similar scenario holds for the other two intermediate cases for fluxes325

0.0075 and 0.01cm min−1, where the resulting pathways are more pronounced – for details, see the plot of the by-pass ratio

for all the applied fluxes in Fig. A4 in Appendix A3. We conjecture that this is a very important observation about the problem

of preferential flow in unsaturated porous media, since experimental measurements are highly limited for this case. Using the

semi-continuum model, more details can be observed and therefore it is easier to understand the origin of the preferential

pathways for different boundary conditions.330
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Figure 8. Left panel: The by-pass ratio for stable (red), intermediate (green) and unstable flow (blue) at a depth of 30cm of the porous

medium. Stable and unstable flows behave as expected. For intermediate case, water still flows preferentially when the porous medium is

fully wetted. Right panel: Saturation profile for qtop = 0.005cmmin−1 at time t = 24000s. The simulation corresponds to the intermediate

case in left panel of this figure. Saturation is colored according to the color bar on the right. The pathways of the saturation are clearly visible

in the image and correspond to the highest by-pass ratio values.

It is also useful to represent the preferential flow by a single value. This is done by calculating the smallest number of blocks

through which at least 50% of the total amount of water flows. The same horizontal section as for calculating the by-pass

ratio is used, i.e., at a depth of 30cm. In principal, the inflows to the blocks are sorted from the largest value and then it is

determined for how many blocks is the sum of the inflows at least 50% of the sum of all the inflows to the blocks. Moreover,

for each influx, the length is calculated as L = ∆x×nB , where nB denotes the calculated number of blocks. In the case of335

perfectly stable flow, the length is equal to half the horizontal width of the porous medium, i.e., 25cm. Figure 9 shows the

calculated length depending on influx. In the case of stable flow, half of the total amount of water indeed flows through almost

25cm. On the other hand, the preferential flow is dominant for unstable flow, where the length is between 5.50−8.75cm. The

exception is qtop = 2.5cm min−1, for which it is 12.50cm because the fingers are significantly wider compared to the lower

fluxes. Finally, for fluxes qtop = 0.005− 0.01cm min−1 (intermediate case), the length is similar to values of unstable flow,340

and significant preferential flow is still observed. This is consistent with the by-pass ratio analysis.
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Figure 9. The length of the porous medium in the horizontal section at a depth of 30cm through which 50% of the water flows is plotted

against the influx. For each influx, the simulation times are taken so that the flow through the porous medium does not change any further.

The dashed line denotes the case of perfectly stable flow, i.e., 25cm. The color of dots indicate the type of flow: stable, intermediate and

unstable flow.

3.6 Wetting front instability

There is mathematical and experimental evidence that the saturation overshoot in 1D is closely related to the wetting front

instability (Eliassi and Glass, 2001; Egorov et al., 2003; DiCarlo, 2013). In other words, the cause of the wetting front instability

is the saturation and pressure overshoot (Eliassi and Glass, 2001). For instance, it was shown experimentally that the flux range345

for the saturation overshoot in 1D (DiCarlo, 2004) corresponds to the flux range for the 3D unstable flow (Yao and Hendrickx,

1996; Glass et al., 1989c). The same conclusion was obtained for the dependence on initial saturation when comparing 1D and

2D experiments (DiCarlo, 2004; Bauters et al., 2000). In summary, if no overshoot is observed in 1D, the flow is assumed to

be stable in 2D/3D (Raats, 1973; Egorov et al., 2003; van Duijn et al., 2004). On the other hand, if the saturation overshoot is

observed in 1D, the 2D/3D flow is predicted to be unstable (Egorov et al., 2003; Nieber et al., 2005). This simplifies the analysis350

of the wetting front instability because we can switch to 1D where the analysis is easier. Moreover, according to the stability

analysis of Saffman and Taylor (1958), the flow is predicted to be stable if the influx is larger than the saturated conductivity,

i.e., qtop ≥KS . Otherwise, the flow is predicted to be unstable. For fluxes above the saturated conductivity, the condition is

indeed valid and the flow is stable (DiCarlo, 2013). On the contrary, the condition is not valid for lower fluxes as the flow is

observed to be stable for very low fluxes (Yao and Hendrickx, 1996).355

In this section, we want to analyze the consistency between the saturation overshoot in 1D and the instability of the wetting

front in 2D. The 1D simulations are performed with the same parameters as 2D simulations (see Table 1) with two exceptions:

the horizontal width of the chamber A is equal to the size of the block ∆x, i.e., A = 0.25cm and the distribution of the intrinsic
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permeability is not used. Again, 18 simulations are conducted for infiltration rates in range qtop = 0.001− 15.00cm min−1.

Left panel of Fig. 10 shows saturation profiles for six different applied fluxes qtop. For the lowest influx qtop = 0.001cm min−1,360

the profile is stable without saturation overshoot. For qtop = 0.010cm min−1, the saturation overshoot is formed and is more

pronounced with increasing influx up to qtop = 1.000cm min−1. Then, the saturation overshoot becomes less pronounced,

until it disappears completely and the stable profile is observed again for the highest influx qtop = 15.00cm min−1. This is in

a good agreement with 1D experiments (see figure 2 in DiCarlo (2010)). Note that the occurrence of the saturation overshoot

is consistent with 2D simulations.365
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Figure 10. Left panel: Saturation profiles for various applied fluxes. The saturation overshoot is observed for intermediate fluxes, but not for

the lowest flux (qtop = 0.001cmmin−1) and the highest flux (qtop = 15.00cmmin−1). Right panel: Tip and tail saturation dependence on

the applied flux. The occurrence of the saturation overshoot is consistent with the instability of 2D flow.

Right panel of Fig. 10 shows the saturation of finger tip and tail for 18 different infiltration rates. The difference between

the tip and tail represents the magnitude of the saturation overshoot. The obtained results are again in agreement with 1D

experiments (see figure 3 in DiCarlo (2010)). We can see a perfect consistency between 1D saturation overshoot and 2D

wetting front. Specifically, for applied fluxes for which a stable wetting front is observed in 2D, no overshoot is observed in

1D. Moreover, in the case of an unstable flow in 2D, significant saturation overshoot is observed in 1D. The most interesting370

is the intermediate case for fluxes between qtop = 0.005− 0.010cm min−1. Surprisingly, a very small saturation overshoot is

observed in 1D. Hence, even a small saturation overshoot indicates that the flow is preferential in 2D. This fine detail is very

well captured by the semi-continuum model. Note that experimental measurements of such a small saturation overshoot are

quite limited (e.g., using neutronography (Pražák et al., 1990)), since the magnitude of the saturation overshoot is between

0.007− 0.020.375
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According to the stability analysis (Saffman and Taylor, 1958; Parlange and Hill, 1976), the flow should be stable if the influx

is at least equal to the saturated conductivity KS . This condition holds for the semi-continuum model regardless of the initial

conditions. This is due to the fact that for two fully saturated blocks, the flux given by Eq. (6) is equal to KS = 15cm min−1,

because the pressure difference is zero in this case. Consequently, the flow will always be stable as long as the influx qtop ≥KS

because all blocks of the porous medium will be fully saturated, hence saturation overshoot cannot occur. This is consistent380

with performed 1D and 2D simulations, where the flow is stable for qtop = KS , as can be clearly seen in Fig. 10 and Fig. 5.

4 Discussion

The development of stable and unstable flows for the various applied fluxes is a complex problem that has been of interest for

several decades (Saffman and Taylor, 1958; Parlange and Hill, 1976; Glass et al., 1989c; Yao and Hendrickx, 1996; DiCarlo,

2004). As the influx increases, the flow changes from stable to unstable, and back to stable again. It is a challenge to find a385

model that is able to simulate this complex transition along with finger width and finger spacing (DiCarlo, 2013). One of the

most promising attempts was proposed by Beljadid et al. (2020), who developed a nonlocal model endowed with an entropy

function. This model includes a fourth order spatial derivative of the saturation and is an extension of the Richards’ equation.

They showed the transition of an unstable to a stable wetting front for large applied fluxes. Moreover, a good agreement of the

finger width between simulations and experiments of Glass et al. (1989c) for large applied fluxes was demonstrated. However,390

for very low fluxes, the wetting front never becomes stable again, which is not consistent with the experiments (Yao and

Hendrickx, 1996). On the contrary, decreasing infiltration rate leads to thinner fingers and a stable wetting front is hence not

developed. Regardless of this discrepancy, we consider the results beneficial.

To the best of our knowledge, the semi-continuum model is the first model that is able to correctly predict stable and unstable

wetting fronts depending on the influx together with finger width and finger spacing (see Fig. 5 and Fig. 6). Even the range of395

the number of fingers in the simulations is consistent with the experiments of Glass et al. (1989c). Moreover, it is demonstrated

in Fig. 9 that the flow is highly preferential in the case of unstable wetting front and becomes non-preferential in the case of

stable wetting front. Finally, the hypothesis that the cause of the wetting front instability is the saturation overshoot (DiCarlo,

2013) is consistent with the simulations, given a match between 1D saturation overshoot and 2D wetting front instability. In

addition to the good agreement with laboratory experiments, two surprising features are found:400

1. The flow can be preferential at low infiltration fluxes even when the porous medium is fully wetted and the water flows

through the entire porous medium. This behavior is demonstrated in Fig. 8 for qtop = 0.0005cm min−1. The flow is

still preferential because preferential pathways (a slight increase in saturation) arise during infiltration into a dry porous

medium and these do not disappear over time, despite the porous medium is fully wetted at this time. And this slight

increase in saturation is enough to make the flow preferential, so water flows faster through these pathways. This is405

simply due to the relative permeability function, which is power-law in nature (see Eq. (5)). In left panel of Fig. 11, the

by-pass ratio along with the saturation and the relative permeability at a depth of 30cm is plotted. The highest values of

the by-pass ratio correspond to the highest values of the relative permeability. Moreover, the effective permeability (the
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multiplication of relative and intrinsic permeabilities) exactly follows the by-pass ratio, which is demonstrated in right

panel of Fig. 11.410

2. Next feature is the connection between the saturation overshoot and the wetting front instability. It is shown in right

panel of Fig. 10 that a very small saturation overshoot indicates the instability of the flow. This is exactly the case of

qtop = 0.0005cm min−1, where the magnitude of the saturation overshoot equal to 0.007. It means that there is a rather

close relationship between saturation overshoot in 1D and preferential flow in 2D. Moreover, the transition between

preferential and non-preferential flow is quite gradual as the influx decreases.415
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Figure 11. Analysis of preferential flow at low infiltration rates. Left panel: The by-pass ratio at a depth of 30cm of the porous medium is

plotted for qtop = 0.005cmmin−1 at time t = 24000s together with the saturation and the corresponding relative permeability. By-pass ratio

values are plotted on the left y-axis and values of saturation and relative permeability are plotted on the right y-axis. Relative permeability

values are multiplied by 100, since these values are much smaller compared to the saturation. It can be clearly seen that by-pass ratio

values correlate with relative permeability values. Right panel: The by-pass ratio at a depth of 30cm of the porous medium is plotted for

qtop = 0.005cmmin−1 at time t = 24000s together with the effective permeability. By-pass ratio values are plotted on the left y-axis and

values of the effective permeability are plotted on the right y-axis. Effective permeability values exactly follow the values of the by-pass

ratio.

It has been shown mathematically and experimentally that the stability of the 2D wetting front correlates with the saturation

overshoot in 1D (DiCarlo, 2013). Moreover, the semi-continuum model implies the same conclusions as was demonstrated in

Sect. 3.6 Wetting front instability. To understand why the wetting front is stabilized at either low or high infiltration rates, it is

therefore sufficient to study the origin of the saturation overshoot in 1D. Borrowing the term “hold-back pile-up effect” from

Eliassi and Glass (2001), the saturation overshoot occurs when the water cannot enter the dry porous medium and therefore420

water is held back. This hold back causes water to pile up above the interface between the wet and dry porous medium. As the

20

https://doi.org/10.5194/egusphere-2023-2785
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



amount of water increases, the pressure gradient between the wet and dry parts of the porous medium increases as well and

water can advance. We conjecture that this “hold-back pile-up effect” is mainly due to the very low conductivity between the

wet and dry parts, because it is determined by the geometric or harmonic mean of the respective conductivities of both parts

(Jang et al., 2011). This is why the geometric mean is included in the numerical scheme of the semi-continuum model. Note425

that this explanation of pile-up mechanism also applies to the initial saturation dependence. It was experimentally found that

as the initial saturation increases, the flow tends to be more diffusive (Bauters et al., 2000). Since at a sufficiently large initial

saturation the resulting conductivity is high enough, the saturation overshoot does not occur.

Based on the above explanation, we can understand why the wetting front stabilizes at low infiltrations. When a small amount

of water flows into a dry porous medium, the conductivity of this part increases rapidly. This is due to the power law nature of430

the relative permeability function. Using the parameters in Table 1, when the saturation increases from 0.01 to 0.05, the relative

permeability increases approximately 170 times. At very low infiltrations, the water has enough time to proceed downwards,

so that the conductivity of the dry part of the porous medium increases significantly, which subsequently allows more water to

flow downwards. In principal, it means that the water does not have sufficient time to pile-up at low infiltration rates. On the

other hand, at very high infiltrations, the porous medium is fully saturated and hence the saturation overshoot cannot occur.435

This is well observed in Fig. 10 for qtop = 15cm min−1, where the saturation is equal to one everywhere. As the applied flux

decreases, the porous medium is not fully saturated and there is room for the saturation overshoot to arise. This can be seen

for qtop = 5cm min−1; the saturation at the finger tip is still equal to one, but the influx is not high enough to fully saturate

the entire porous medium and the saturation overshoot develops. This observation is in an agreement with the experiments of

DiCarlo (2010). The author showed that the saturation of the finger tip approaches unity at very high infiltration fluxes for440

which a stable flow is observed (see figure 3 in DiCarlo (2010) for details).

Using the Darcy-Buckingham law given by Eq. (6) we can calculate the saturation in the finger tail. The saturation and

pressure in the finger tail are constant because the flux between the blocks is stabilized and is given by the value of top

boundary flux qtop. Hence, Eq. (6) implies:

k(Stail) =
qtop

KS
, (8)445

where Stail denotes the saturation in the finger tail within the relative permeability function. If the saturation in the block

increases above Stail, then the saturation overshoot will develop (water will pile-up). This is because the flow tends to stabilize,

so the saturation of the block drops to Stail over time. In addition, the calculation of Stail is independent on the initial saturation,

which is in agreement with the experimental measurements (Fritz, 2012) and also confirmed by the semi-continuum model

(Kmec et al., 2019). Moreover, for qtop = KS , it follows from the Eq. (8) that Stail equals to one. This means that the saturation450

overshoot cannot occur because the porous medium is fully saturated in this case. This is consistent with the stability condition

(Saffman and Taylor, 1958; Parlange and Hill, 1976; DiCarlo, 2013), which predicts the flow to be stable for qtop ≥KS .

We remark that the values Stail for all top boundary fluxes used in the simulations correspond to the values of tail sat-

uration plotted in right panel of Fig. 10 with an average difference of 5× 10−4. There are, however, two exceptions for

qtop = 7.5cm min−1 and qtop = 10cm min−1, for which the porous medium is fully saturated and therefore the saturation455
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overshoot cannot develop. Note that if the saturation overshoot occurs, e.g., when using a higher initial saturation, then the

saturation in the finger tail will be given by Eq. (8). This behavior is confirmed in Appendix A3.

The measurement of macroscopic properties of the homogeneous porous medium, such as permeability or porosity, is usually

performed by averaging the microscopic quantities over the domain (White et al., 2006; Ghanbarian et al., 2021). For more

realistic simulations, it is appropriate to use the spatial variation of the continuum quantity. Therefore, a small distribution of the460

intrinsic permeability was used in simulations. One may wonder whether the obtained results depend on the used distribution.

In Kmec et al. (2023) it was demonstrated that it has no significant effect on the flow, because the nature of the flow remains

the same even when eight different intrinsic permeability distributions were used.

The semi-continuum model was shown to be consistent with the experiments in 1D (Kmec et al., 2019) and 2D (Kmec et al.,

2021, 2023). Moreover, taking into account the results presented in this paper, we conjecture that the model has been validated465

by the core experiments performed in an unsaturated homogeneous porous medium (Glass et al., 1988, 1989b, c, a; Selker et al.,

1992; Liu et al., 1994; Yao and Hendrickx, 1996; Bauters et al., 2000; DiCarlo, 2004; Sililo and Tellam, 2005; Rezanezhad

et al., 2006; DiCarlo, 2007, 2010). In the case of heterogeneous porous medium, the model was already used (Kmec et al.,

2021) to simulate water infiltration experiments into a layered porous medium (Rezanezhad et al., 2006). There are other well-

conducted experimental works of flow into heterogeneous porous media, e.g., by Cremer et al. (2017). Therefore, using the470

model to simulate flow in a heterogeneous porous medium may provide another opportunity for its validation.

5 Conclusions

It has long been known that the wetting front in an initially dry and homogeneous porous medium depends strongly on the

applied infiltration flux. The wetting front is observed to be stable for low and high infiltration fluxes and is unstable within a

certain range of flux. The instability of the wetting front is manifested by the formation of fingers that vary in width, velocity475

and spacing. Although experiments have been known for decades, no model has yet been developed to reliably capture this

dependence. In this paper, the governing equation containing a Prandtl-type hysteresis operator under the spatial derivative is

introduced. It is a formal limit of the semi-continuum model, which is the model used to simulate flow in porous media. It is

shown that the semi-continuum model correctly captures the complex behavior of infiltration flux dependence. This includes

the transition from stable to unstable and back to stable flow as the infiltration flux increases along with calculating the correct480

finger width and finger spacing. In addition, the model helps explain preferential flow and understand the formation of an

unstable wetting front in terms of the saturation overshoot.
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Appendix A

A1 Dependence of flow on infiltration rate

All 18 simulations for infiltration rates in the range qtop = 0.001− 15cm min−1 are presented here. Figures A1 and A2 show485

a snapshot of the saturation profiles for all the applied fluxes. The time for each influx is chosen so that the saturation reaches

40cm from the upper boundary. The applied influx and simulation time are displayed for each frame at the upper left corner.

The transition between stable and unstable flow is well observed.

Figure A1. Saturation profiles for nine different infiltration rates from qtop = 0.001cmmin−1 to 0.1cmmin−1. For each frame, the influx

is displayed together with the simulation time. Saturation is colored according to the color bar on the right.
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Figure A2. Saturation profiles for nine different infiltration rates from qtop = 0.25cmmin−1 to 15cmmin−1. For each frame, the influx is

displayed together with the simulation time. Saturation is colored according to the color bar on the right.
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A2 Finger segmentations

Figure A3. Finger segmentations for 18 different infiltration rates in the range qtop = 0.001−15cmmin−1. The segmentations are marked

with a red color. The time for each influx is chosen so that the saturation reaches the bottom of the chamber, i.e., 50cm. The applied influx

and simulation time are displayed for each frame at the upper left corner.

A3 By-pass ratio490

Figure A4 shows the by-pass ratio at a depth of 30cm of the porous medium for 18 different infiltration rates in the range

qtop = 0.001− 15cm min−1. The by-pass ratio is marked in red and is plotted together with the saturation across the same

horizontal section. Saturation values are marked in blue. It can be clearly seen that the highest values of the by-pass ratio

correlate with the location of the highest saturation values. However, the correlation between the saturation and the by-pass

ratio is lower if the saturation is high enough. This is evident for qtop ≥ 7.5cm min−1. In this case, a slight change in saturation495

no longer significantly changes the relative permeability values and so does not change the by-pass ratio. Instead, the intrinsic

permeability becomes the dominant factor of the flow.

Note that the porous medium is first fully saturated for qtop = 7.5cm min−1 and qtop = 10cm min−1 (see Fig. A2). How-

ever, the saturation then decreases because the bottom boundary flux qbot approximately equals to KS = 15cm min−1 and is

thus larger than qtop. In this case, the saturation should correspond to the calculated value Stail given by Eq. (8). Considering500
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the distribution of the intrinsic permeability, the average value of the calculated Stail over all blocks at a depth of 30cm is

0.8540 and 0.9218 for qtop = 7.5cm min−1 and qtop = 10cm min−1, respectively. Since the average values from simulations

at a depth of 30cm are 0.8552 and 0.9225, the saturation indeed corresponds to the calculated values Stail. Therefore, the

saturation at the finger tail always tends to decrease to the value obtained by Eq. (8). Moreover, for qtop = 15cm min−1, the

porous medium is still fully saturated even if water flows from the bottom boundary. This is due to the fact that Stail = 1 in this505

case.
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Figure A4. The by-pass ratio at a depth of 30cm of the porous medium for 18 different infiltration rates in the range qtop = 0.001−
15cmmin−1. The values of by-pass ratio are marked in red. Together with the by-pass ratio, the saturation (blue lines) is plotted across

the same horizontal section, i.e., at a depth of 30cm of the porous medium. By-pass ratio values are plotted on the left y-axis and values of

saturation are plotted on the right y-axis. For each frame, the corresponding influx is shown at the top.
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Code and data availability. The software code that produced the simulations is written in Python and can be downloaded from Kmec

(2023a). The code can be used for 1D, 2D and 3D simulations. Simulation data that are needed to create the plots included in the manuscript

can be downloaded from Kmec and Šír (2023a, b). Please do not hesitate to contact us if you encounter any problems when downloading the

software code and simulation data.510

Video supplement. Videos of the transient simulations of all 2D simulations can be downloaded from Kmec (2023b).
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