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Abstract. The gravity-driven flow in an unsaturated porous medium remains one of the most important unsolved problems

in multiphase flow. Sometimes a diffusion-like flow, known as stable flow, with a uniform wetting front is observed, but at

other times, it is unstable with distinct preferential pathways. The formation of an unstable wetting front in a porous medium

depends on many factors, including the type of the porous medium, the initial saturation, and the applied infiltration rate. As the5

infiltration rate increases, the wetting front first transitions from stable to unstable at low infiltration rates and then from unstable

to stable at high infiltration rates. We propose a governing equation and its discretized form, the semi-continuum model,

to describe this significant non-monotonic transition. We show that the semi-continuum model is able to capture the influx

dependence together with the correct finger width and spacing. Moreover, we demonstrate that the instability of the wetting

front is closely related to the saturation overshoot in one dimension. Finally, we show that the flow can still be preferential even10

when the porous medium is completely wetted.

1 Introduction

In the field of hydrology, the gravity-driven multiphase flow in porous media, typically involving the flow of water into soil,

remains a long-standing and unsolved problem. In the early 1980s, a series of seminal papers provided important insights

into this phenomenon (Diment et al., 1982; Diment and Watson, 1983, 1985). A decade later, the influence of soil matrix15

hydrophobicity on water movement was described (Dekker and Ritsema, 1994). A detailed overview of the research on porous

media flow up to the year 2000 is presented in Rooij (2000).

The infiltration of water into soil is an extremely complicated physical phenomenon that exhibits two kinds of flow behavior:

diffusion-like and finger-like flow (Rooij, 2000; DiCarlo, 2013; Xiong, 2014). In the case of diffusion-like flow, a stable

wetting front is observed and is referred to as stable flow. Conversely, finger-like flow, characterized by an unstable wetting20

front, is called unstable flow. The lack of a well physically-based and experimentally verified model of soil water movement

is a major obstacle to the development of rainfall-runoff models at the hydrological scale. This issue has received consistent

attention for many years, as evidenced by the recommendation that rainfall-runoff models should include a robust model

of soil water movement (Kutílek and Nielsen, 1994). Traditionally, the standard concept of diffusion-like flow based on the
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Richards’ equation (Richards, 1931) has been used for modeling water movement in soil. However, this concept is inadequate25

for modeling finger-like flow (DiCarlo, 2013). Consequently, there is an ongoing search for a concept that can describe both

types of flow, given its substantial application potential in soil science (Lake, 1989; Bundt et al., 2000; DiCarlo, 2013; Xiong,

2014) and other fields (Sutherland and Chase, 2008; Vafai, 2011). This paper is devoted to the description of such a model.

The instability of the wetting front is accompanied by preferential flow, where most of the water moves through the preferen-

tial pathways, leaving much of the porous medium dry even after hours of uniform infiltration. This type of flow is characterized30

by the formation of fingers (DiCarlo, 2013). A finger consists of two parts: an undersaturated tail and an oversaturated tip, and

this non-monotonicity of saturation is known as saturation overshoot. Therefore, wetting front instability and associated satura-

tion overshoot have been at the center of attention for several decades (Saffman and Taylor, 1958; Chuoke et al., 1959; Smith,

1967; Hill and Parlange, 1972). Since then, a huge number of laboratory and field experimental works have become available.

Some of the works concern 3D experiments (Glass et al., 1990; Yao and Hendrickx, 1996), but most are performed in 1D (long35

vertical tubes) (DiCarlo, 2004, 2007, 2010; Aminzadeh and DiCarlo, 2010) and in 2D (Hele-Shaw cells) (Smith, 1967; Glass

et al., 1988, 1989a, b, c; Liu et al., 1994; DiCarlo et al., 1999; Glass et al., 2000; Bauters et al., 2000; Sililo and Tellam, 2005;

Rezanezhad et al., 2006; Wei et al., 2014; Cremer et al., 2017; Pales et al., 2018; Chen et al., 2022; Liu et al., 2023) due to

simpler realization.

It turns out that flow in an unsaturated porous medium has many unexpected features. For example, a non-monotonic de-40

pendence of the wetting front velocity and finger width on the initial saturation is observed (Bauters et al., 2000). At lower

initial saturation, the wetting front is unstable with slow and wide fingers. With increasing initial saturation, the fingers first

narrow and speed up and then slow and widen again until a stable wetting front is observed. Another non-intuitive behavior

is the dependence on applied influx (Glass et al., 1989c; Yao and Hendrickx, 1996; DiCarlo, 2013), which is crucial for un-

derstanding the precipitation-runoff relationship in hydrology. Glass et al. (1989c) infiltrated into a two-dimensional chamber45

with a thickness of 1cm filled with a homogeneous porous medium. Water was uniformly applied at a constant flux qtop at the

top boundary. They observed a stable wetting front when the flux was close to the saturated conductivity, but with decreasing

applied influx, the flow tended to become significantly preferential. Yao and Hendrickx (1996) performed similar experiments,

but they infiltrated water into large three-dimensional columns with diameters of 30cm and 100cm, and the applied flux was

much lower. They demonstrated that as the flux decreases, the finger-like flow disappears and a stable wetting front reappears.50

This behavior was maintained regardless of the type of homogeneous sand used. Therefore, preferential flow is observed only

within a certain range of infiltration flux. Note that while homogeneous soil does not actually exist, as there is always some

level of heterogeneity, this term commonly refers to soils, such as sands, where the characteristics of soil hydraulic properties

appear uniform from a macroscopic perspective.

Approaches to modeling unsaturated porous media flow can be divided into two categories: (1) microscale models, which are55

developed for small-scale where the Darcy-Buckingham law (Buckingham, 1907) can be applied, and (2) macroscale models,

which focus directly on large-scale where the Darcy-Buckingham law is not applicable. Macroscale models, such as the ARM

model (Liu et al., 2005; Liu, 2022), cannot capture individual fingers because the computational grid is too coarse, so multiple

fingers are included within each computational element. In contrast, microscale models do not have this limitation but are
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very computationally intensive. A typical example of a microscale model is the Richards’ equation, which combines the mass60

balance law and the Darcy-Buckingham law. Richards’ equation is diffusive in nature, as it is unable to model a non-monotonic

saturation profile in the case of uniform infiltration rate with a smooth and non-decreasing retention curve (Fürst et al., 2009).

Therefore, many extensions of the Richards’ equation, known as continuum models, have been proposed (Hassanizadeh et al.,

2002; Eliassi and Glass, 2002; Brindt and Wallach, 2020; Cueto-Felgueroso et al., 2020; Beljadid et al., 2020; Roche et al.,

2021; Ommi et al., 2022a, b). Other approaches include discrete (pore-scale) models (Lenormand et al., 1988; Primkulov et al.,65

2018; Wei et al., 2022) and combinations of discrete and continuum approaches (Glass and Yarrington, 1989, 2003; Vodák

et al., 2022).

Any microscale model designed primarily for small-scale processes should be first thoroughly validated using small-scale

experiments. The opposite approach, i.e., validating with in-field experiments without proper small-scale validation, can lead

to fundamentally incorrect conclusions. For instance, Tesař et al. (2004) developed a model based on upscaling the Richards’70

equation. The model was validated using outflow data from the Liz catchment, covering an area of 1km2 during the vegetation

season of 1999. However, subsequent simulations showed that water always flowed through the entire porous medium regard-

less of initial and boundary conditions, revealing the model’s inaccuracies. Therefore, the validation of microscale models

should be focused on small-scale experiments, such as those performed in the laboratory, which provide a detailed analysis

of flow behavior. Well-defined boundary and initial conditions in laboratory experiments enable a thorough examination of75

simulation details, allowing to determine whether the model accurately captures preferential and diffusion flow. This makes

the validation of the model more thorough and reliable. Following rigorous validation, one can then transition to more complex

in-field experiments.

A validation procedure on a small-scale through detailed laboratory experiments was proposed by DiCarlo (2013). Specif-

ically, the author suggested criteria for evaluating which model is the “most appropriate” (see section 6.6 in DiCarlo (2013)).80

According to the author, the model should have a minimum of adjustable parameters, be capable of producing the diffusive

character of the flow as seen in the Richards’ equation, match observed 1D profiles well, and finally, be able to predict 2D and

3D preferential flow in terms of finger widths and finger spacings. Our aim is to demonstrate that the semi-continuum model

proposed by Vodák et al. (2022) succeeds in this type of evaluation. The authors developed the semi-continuum model and

its formal limit in the form of a partial differential equation with a Prandtl-type hysteresis operator (Visintin, 1993) under the85

derivative. It was shown that the semi-continuum model was able to correctly reproduce experiments of flow into a long vertical

tube (Kmec et al., 2019). In Kmec et al. (2021), the model was used to replicate the transition between unstable and stable

wetting fronts for increasing initial saturation. Along with this, the model was shown to correctly capture the finger persistence

and the flow across a heterogeneous porous medium. Finally, the strong non-monotonic dependence of the wetting front on

the initial saturation for a point source infiltration was captured well (Kmec et al., 2023). According to the suggested model90

evaluation, the semi-continuum model has successfully addressed all aspects except for predictions of 2D and 3D preferential

flow. The model has already reproduced the dependency on initial saturation in 2D (Kmec et al., 2021, 2023). However, the

final aspect required for full validation is to accurately capture the dependence on the infiltration rate in 2D/3D.
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There are a few models that are able to capture the transition between diffusion and finger-like flow for various infiltration

rates in 1D, but analyzing the 2D case is much more complex. Although the 2D experiments are over 30 years old (Glass95

et al., 1989c; Yao and Hendrickx, 1996), they have not yet been successfully reproduced by any model. Finding a model

capable of simulating this complex transition thus remains a major challenge (DiCarlo, 2013). One of the most promising and

recent attempts to simulate the dependence on applied influx in 2D was proposed by Beljadid et al. (2020), who introduced

a nonlocal model endowed with an entropy function. This model extends the Richards’ equation by incorporating a fourth-

order spatial derivative of saturation. The authors demonstrated the transition from finger-like to diffusion-like flow under100

high applied fluxes. Moreover, the model showed good agreement with experimentally measured finger widths for large fluxes

(Glass et al., 1989c). However, inconsistencies arise at very low fluxes, where the wetting front does not stabilize as expected

from experiments (Yao and Hendrickx, 1996). In contrast, decreasing the infiltration rate results in thinner fingers, maintaining

the preferential character of the flow. Therefore, matching experiments in 1D does not guarantee a match in 2D/3D (Cueto-

Felgueroso and Juanes, 2009; Beljadid et al., 2020).105

In this paper, we aim to demonstrate the ability of the semi-continuum model to accurately capture the 2D transition from

stable to unstable flow for low infiltration fluxes (Yao and Hendrickx, 1996) and the transition from unstable to stable flow for

high infiltration fluxes (Glass et al., 1989c), along with making correct predictions of preferential flow in terms of experimen-

tally measured finger widths and spacings. In addition, we will investigate the relationship between the saturation overshoot in

1D and the wetting front instability in 2D to demonstrate further agreement with experimental observations.110

2 Methods

In this section, we first introduce the Prandtl-type hysteresis operator and the resulting governing partial differential equation,

which was derived as a formal limit of the semi-continuum model (Vodák et al., 2022). We then present a proper discretization

of the governing equation along with the discretization of the Prandtl-type hysteresis operator to provide a detailed description

of the semi-continuum model. This model describes the movement of the wetting liquid in a porous medium; specifically, it is115

a multiphase flow model used for modeling unsaturated porous media flow.

2.1 Prandtl-type hysteresis operator

The Prandtl-type hysteresis operator PH [Pa] is the pressure operator defined by the following differential inequality (Visintin,

1993):

(KPS∂tS− ∂tPH)(PH − v)≥ 0, ∀v ∈ [C2,C1], PH ∈ [C2,C1], (1)120

where S [−] denotes the saturation of the wetting phase and KPS [Pa], C1 [Pa], and C2 [Pa] are constants. A detailed description

of this operator’s characteristics can be found in Visintin (1993), specifically on page 16.

Figure 1 illustrates the form of the Prandtl-type hysteresis operator for KPS = 105. Hysteresis implies that the pressure

value P depends not only on the current saturation S but also on its history. The Prandtl operator, described by Eq. (1), defines
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how the pressure value is assigned as a function of saturation. Assume the initial pressure value is C1. When the saturation125

is non-decreasing over time, the pressure value remains at C1. Otherwise, the pressure value “jumps” from C1 to C2 over

time, with the rate of this transition determined by KPS . The same principle applies when the pressure value is C2. The value

remains at C2 when saturation is non-increasing; otherwise, it jumps from C2 to C1. These transitions, represented by non-

vertical scanning curves, are marked in black in Fig. 1. The value KPS indicates a large gradient of these scanning curves,

causing the pressure to change significantly between values C1 and C2 with a negligible change in saturation.130
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Figure 1. Prandtl-type hysteresis operator PH . Blue lines denote constants C1 and C2, and black lines are non-vertical scanning curves with

large gradient KPS = 105.

Although the behavior of the Prandtl operator is relatively straightforward, its mathematical description is not trivial, as the

community is usually not familiar with differential inequalities. For more details, we refer to Vodák et al. (2022), specifically

its supplement, where we have demonstrated that the mathematical description follows the explanation of the Prandtl operator

provided above. We have also shown that the Prandtl operator can be generalized using non-decreasing functions instead of

constants C1 and C2.135

2.2 Governing equation

The governing equation is given by Eq. (2). It is a partial differential equation containing the Prandtl-type hysteresis operator

PH (Fig. 1) under the spatial derivative.

θ∂tS+div

[
κ

µ

√
k(S−)

√
k(S+)

(
ρg−∇PH

)]
= 0, S±(x0, t) = lim

x→x±
0

S(x,t). (2)

In this equation, the porous medium is characterized by its porosity θ [−], intrinsic permeability κ [m2], and relative permeabil-140

ity k(S) [−]. The wetting phase (liquid) is characterized by its saturation S [−], density ρ [kgm−3], dynamic viscosity µ [Pas],

and pressure P [Pa] defined by operator PH . In a porous material that is not completely filled with liquid, the pressure P repre-

sents the capillary pressure, which is the tensile stress by which the liquid is held in pores. This pressure P in the liquid phase

is less than the pressure in the non-wetting phase (gas), which is assumed to be zero, and therefore P becomes negative. The

5



vector g = (0,0,g), where g [ms−2] denotes the acceleration due to gravity, thus the gravity acts only in the third dimension.145

Note that k(S−) and k(S+) denote the left and right limits of relative permeability in the spatial variable. The discontinuity

in saturation arises from the use of a geometric mean conductivity (Vodák et al., 2022). In the case of continuous saturation,

S− = S+, which results in
√
k(S−)

√
k(S+) = k(S).

The Prandtl-type hysteresis operator causes Eq. (2) to switch between parabolic and hyperbolic types in the case of an

unsaturated porous medium. When the pressure value is defined by values C1 or C2 (blue lines in Fig. 1), the pressure-saturation150

relation is constant, resulting in ∇PH = 0. Thus, the equation becomes a hyperbolic differential equation. Otherwise, when the

pressure is given by the scanning curves (black lines in Fig. 1), the equation is a parabolic differential equation.

It is well known that different types of flow, saturated and unsaturated, can occur in parallel in the porous medium (Brand-

horst et al., 2021). In a fully saturated medium, the pressure-saturation relation is no longer defined by the Prandtl-type hys-

teresis operator PH . In this case, the pressure becomes hydrostatic pressure and takes on positive values. Using the hydrostatic155

pressure in Eq. (2) instead of PH , we obtain Laplace’s equation as k(S) = 1 and ∂tS = 0. Since we focus on unsaturated flow,

hydrostatic pressure is not implemented and the case of a fully saturated medium is not studied further.

2.3 Discretization of the porous medium

We want to simulate experiments in a two dimensional Hele-Shaw cell of a porous medium; hence, a 2D discretization is

used. The porous medium is a rectangle of size A×B, where A and B denote the horizontal and vertical widths of the porous160

medium, respectively. The porous medium is represented by a square mesh consisting of N ×M blocks (finite volumes) of

size ∆x×∆x. These blocks retain the character of the porous medium.

2.4 Discretization of the Prandtl-type hysteresis operator

In soil physics, the relationship between saturation S and pressure P exhibits strong hysteresis and is known as the retention

curve. The retention curve consists of two main branches: the wetting and draining branches. The shape of the retention curve165

strongly depends on the size of the sample on which the measurement is performed (Larson and Morrow, 1981; Mishra and

Sharma, 1988; Zhou and Stenby, 1993; Perfect et al., 2004; Hunt et al., 2013; Ghanbarian et al., 2015; Silva et al., 2018). As

the sample size decreases, the pore size variability within the sample also decreases, and the retention curve becomes flatter,

which was experimentally confirmed in Silva et al. (2018). This sample size dependence of the retention curve is taken into

account in the discretization of the Prandtl-type hysteresis operator given by Eq. (1).170

The discretization of the Prandtl operator has already been described in Kmec et al. (2023). Its discretized version is the

capillary pressure operator P (S), which satisfies P (S)→ PH(S) as ∆x→ 0. The well-known fact that the shape of the

retention curve depends on the sample size (Ghanbarian et al., 2015; Silva et al., 2018) is incorporated into our model so that

the retention curve depends on the block size ∆x. We refer to this discretization as the scaling of the retention curve. The

proposed scaling is explained below; however, for a detailed mathematical and physical justification, we refer to Vodák et al.175

(2022). For the reference block size ∆x0, the reference retention curve is given by the van Genuchten equation (Genuchten,

1980):
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Pw
0 (S) =− 1

αw

(
S

nw
1−nw − 1

) 1
nw

, P d
0 (S) =− 1

αd

(
S

nd
1−nd − 1

) 1
nd , (3)

where Pw
0 is the main wetting branch, P d

0 is the main draining branch, αw,nw are parameters of the main wetting branch, and

αd,nd are parameters of the main draining branch. For a block size ∆x <∆x0, the main wetting and draining branches are180

scaled as follows:

Pw(S,∆x) =
∆x

∆x0
Pw
0 (S)+Pw

0 (0.5)

(
1− ∆x

∆x0

)
, P d(S,∆x) =

∆x

∆x0
P d
0 (S)+P d

0 (0.5)

(
1− ∆x

∆x0

)
. (4)

Obviously, for ∆x=∆x0, the retention curve is given by Eq. (3). For ∆x→ 0, the retention curve converges to the Prandtl-

type hysteresis operator PH so that C1 = Pw
0 (0.5) and C2 = P d

0 (0.5). Constants C1 and C2 in the semi-continuum model

represent the water entry and air entry values, respectively (Vodák et al., 2022). Instead of the midpoint S = 0.5 in Eq. (4), it185

is possible to choose, for example, an inflection point of the main branches. However, the effect on the results is negligible

because the flux is calculated relative to the pressure gradient. Note that the reference block size ∆x0 is a parameter of the

semi-continuum model and its determination can be obtained, for example, through calibration experiments. Figure 2 shows the

capillary pressure operator P (S) for different block sizes. It can be clearly seen that for ∆x→ 0, the operator P (S) converges

to the Prandtl-type hysteresis operator PH shown in Fig. 1.190
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Figure 2. The scaling of the retention curve for different block sizes ∆x. The solid lines denote the main wetting branches and the dashed

lines denote the main draining branches. The parameters αw,nw,αd,nd are given in Table 1. For ∆x→ 0, the retention curve converges to

the Prandtl-type hysteresis operator PH , as both main branches take the form of horizontal lines C1 and C2.

Decreasing the block size results in a decrease of the pore size variability. Therefore, it is useful to examine the influence

of pore size variability on the shape of the retention curve. Such influence has been studied by Pražák et al. (1999). They

demonstrated that the main draining branch becomes flatter as the pore size variability decreases. Moreover, they showed that

for a hypothetical porous medium with identical pores (i.e., without pore size variability), the main draining branch has a step-

like form such that it is constant for S ∈ (0,1). This perfectly aligns with the proposed scaling of the retention curve defined195

by Eq. (4). For non-zero, but very small ∆x (see black lines in Fig. 2), both main branches take the form of step-like functions

that are almost constant for S ∈ (0,1).
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Note that all scanning curves are non-vertical straight lines, as illustrated in Fig. 1. This approach is similar to the play-

type hysteresis (Schweizer, 2017). There are various approaches to modeling the hysteresis between saturation and pressure

(Mualem, 1976; Lenhard and Parker, 1987; Parker and Lenhard, 1987; Beliaev and Hassanizadeh, 2001; McNamara, 2014;200

Abreu et al., 2019), and these methods could potentially be implemented in our model. However, using a more complex

hysteresis model is not beneficial, as we have achieved good agreement with experiments using the simpler model.

Although it is well known that the retention curve is dependent on the sample size of the porous medium (Ghanbarian et al.,

2015), the implementation of this dependence is not common in flow modeling. Moreover, other characteristics of the porous

medium, such as permeability and porosity, are also dependent on the sample size (Mishra and Sharma, 1988; Ewing et al.,205

2010; Ghanbarian et al., 2017, 2021; Esmaeilpour et al., 2021). In the semi-continuum model, the sample size dependence of the

retention curve is implemented by a linear scaling of the retention curve. This means that individual blocks of the discretization

mesh represent a real sample of the porous medium, and these blocks carry information about the physical characteristics. This

approach fundamentally differs from standard numerical schemes for partial differential equations, where the mesh serves only

a mathematical role and ignores the fact that individual elements/volumes represent the real domain. However, some authors210

have already considered this aspect in modeling porous media. For instance, White et al. (2006) estimated a lower limit of finite

elements and then used this size in their model. They argue that the use of smaller elements would not be appropriate because

it would lead to a violation of the continuum assumptions.

2.5 Discretization of the governing equation – the semi-continuum model

Each block of the discretized porous medium is denoted by indices (i, j) representing the corresponding row and column.215

St(i, j) [−] and Pt(i, j) [Pa] represent saturation and pressure of the wetting phase (liquid) within block (i, j) at time t, respec-

tively. These values are assumed to be constant within each block. Moreover, q (i1,j1)
t(i2,j2)

[ms−1] denotes the flux of the wetting

phase from block (i1, j1) to block (i2, j2) at time t.

The semi-continuum model, which is the discretization of the governing Eq. (2), consists of three consecutive steps: satura-

tion update, pressure update, and flux update. First, the saturation in each block is updated according to the discretized mass220

balance law for a given time step ∆t and the block size ∆x:

St+∆t(i, j) = St(i, j)+
∆ t

θ

1

∆x

(
q

(i−1,j)
t(i,j) − q

(i,j)
t(i+1,j) + q

(i,j−1)
t(i,j) − q

(i,j)
t(i,j+1)

)
. (5)

The second step is to update the pressure in each block to obtain the pressure at time t+∆t, i.e., Pt+∆t. The pressure is updated

according to the hysteretic capillary pressure operator P (S), whose main wetting and draining branches are given by Eq. (4)

and scanning curves are illustrated in Fig. 1.225

The third and final step is the flux update. We adopt the following form of the relative permeability function k(S) (Genuchten,

1980):

k(S) = Sλ

[
1−

(
1−S

n
n−1

)n−1
n

]2
, (6)
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where λ [−] is a free parameter and n [−] is a parameter of the retention curve given by Eq. (3). To simplify the notation,

we introduce the so-called effective permeability as γ(S) = κk(S). The flux between blocks is updated using the discretized230

version of Darcy-Buckingham law (Bear, 1972):

q
(i1,j1)

t+∆t(i2,j2)
=


1
µ

√
γ(St+∆t(i1, j1))γ(St+∆t(i2, j2))

(
ρg− Pt+∆t(i2,j2)−Pt+∆t(i1,j1)

∆x

)
, for j1 = j2, i2 = i1 +1

1
µ

√
γ(St+∆t(i1, j1))γ(St+∆t(i2, j2))

(
0− Pt+∆t(i2,j2)−Pt+∆t(i1,j1)

∆x

)
, for i1 = i2, j2 = j1 +1

0, otherwise

(7)

The acceleration due to gravity is included only for the vertical fluxes. Unsurprisingly, the fluxes between non-neighboring

blocks are set to zero. The geometric mean is used to average the effective permeability between blocks. This aligns with

the approach utilized in governing Eq. (2), where the geometric mean is also used. Moreover, this type of averaging is also235

consistent with the findings of Jang et al. (2011). After updating the fluxes between neighboring blocks, we update the time

t= t+∆t and return to the saturation update given by Eq. (5).

If the fluxes between blocks are too large, especially if the flux is close to the saturated conductivity KS = κ
µρg, the saturation

may exceed one. This occurs due to the inherent nature of the semi-continuum model and is often the case for other models as

well. For example, in Cueto-Felgueroso and Juanes (2009), a “compressibility term” is used for the capillary energy-saturation240

dependence. This term becomes dominant near saturation close to one, so it prevents the saturation from increasing any further.

We use a different approach; the magnitude of the flux to the block can be at most so large that the saturation does not exceed

one. This straightforward approach is only possible because of the simple numerical scheme used.

According to Eq. (5) and Eq. (7), if a standard retention curve without scaling is used, i.e., it does not converge to a Prandtl-

type hysteresis operator PH , the semi-continuum model degenerates into a numerical scheme for solving the classical Richards’245

equation. The crucial difference in our model is that the shape of the retention curve depends on the block size ∆x. From a

mathematical point of view, in the case of an unsaturated porous medium, the Richards’ equation is diffusive in nature, as it is a

parabolic differential equation (DiCarlo, 2013). This is not the case for the governing Eq. (2), which is a hyperbolic-parabolic

differential equation.

3 Results250

3.1 Numerical setup

The parameters used for simulations of the infiltration dependence experiments are given in Table 1. The porous medium used

for simulations is 20/30 sand. The parameter λ= 0.8, which is consistent with measurements (Schaap and Leij, 2000). It is

important to emphasize that we use the same parameters as in Kmec et al. (2023), where the semi-continuum model accurately

reproduced the experiments reported in Bauters et al. (2000). This includes a parameter of the semi-continuum model, the255

reference block size ∆x0 =
10
12 , which was calibrated for 20/30 sand in Kmec et al. (2023) using the experiments of Bauters

et al. (2000). This decision was made to demonstrate that the semi-continuum model can simulate different flow phenomena

without additional parameter adjustments. Hence, our aim is not to optimize the parameters to achieve the best agreement with
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experiments. Let us note that the slope of the scanning curves KPS does not affect the results if it is chosen to be large enough.

The differences between solutions are negligible for KPS ≥ 105Pa. Here, the lower limit for KPS is used.260

Table 1. Parameters used for reproducing the flow dependence on different infiltration rates. Parameters for 20/30 sand were adopted from

Schroth et al. (1996) and DiCarlo (2004).

Parameter Symbol Value

Horizontal width of the chamber A 50 cm

Vertical width of the chamber B 50 cm

Reference block size ∆x0
10
12

cm

Block size ∆x 0.25 cm

Porosity θ 0.35

Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pas

Intrinsic permeability κ 2.294× 10−10 m2

Relative permeability exponent λ 0.8

Acceleration due to gravity g 9.81 ms−2

Wetting curve parameter αw 0.177 cm−1

Wetting curve parameter nw 6.23

Draining curve parameter αd 0.0744 cm−1

Draining curve parameter nd 8.47

Slope of scanning curves KPS 105 Pa

Initial saturation Sin 0.01

Residual saturation Srs 0.05

The scheme of the numerical setup is shown in the left panel of Fig. 3. Initial and boundary conditions are set to be consistent

with the experiments we aim to reproduce (Yao and Hendrickx, 1996; Glass et al., 1989c). The porous medium is initially dry

with an initial saturation Sin = 0.01, and all the blocks begin on the main wetting branch. A constant infiltration rate qtop

is applied to the entire top boundary. A total of 18 different infiltration rates qtop are used, with the lowest influx equal to

0.001cmmin−1, and the highest influx equal to the saturated conductivity KS = 15cmmin−1. The lateral boundaries of the265

porous medium are impenetrable, so the lateral fluxes are set to zero. For the bottom boundary flux qbot, the outflow of water

into the air is prescribed. The following implementation is used so that it does not affect the flow above the bottom boundary:

qbot := q
(N,j)

t(out) =

{
0 for St ≤ Srs

1
µγ(St(N, j))

(
ρg+ Pt(N,j)

∆x

)
, j = 1, . . . ,M, for St > Srs

, (8)
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where N denotes the bottom row index. Thus, the flux from the bottom boundary is set to zero if the saturation of the corre-

sponding block does not exceed the residual saturation Srs; otherwise, it is non-zero. Residual saturation refers to the maximum270

amount of water that the porous medium can retain against the force of the gravity. The value of Srs = 0.05 corresponds to the

experimentally measured residual saturation for 20/30 sand in Bauters et al. (2000). This implementation of bottom boundary

flux is similar to a free discharge (Šimůnek and Suarez, 1994) and has already been used for the semi-continuum model in

Kmec et al. (2021).

To obtain a more realistic description of the porous medium, such as a 20/30 sand, it is convenient to slightly perturb its275

characteristics. Therefore, a small distribution of spatially correlated intrinsic permeability is included (see the right panel of

Fig. 3). A similar distribution has been used in Cueto-Felgueroso and Juanes (2009); Gomez et al. (2013); Kmec et al. (2023).

The effect of intrinsic permeability distribution is discussed in Sect. 4.4.

Figure 3. Left panel: The scheme of the numerical setup. Right panel: The distribution of spatially correlated intrinsic permeability. The

average value of κ equals approximately 2.294× 10−10m2 and the distribution satisfies κmax/κmin ≈ 4. The values are colored according

to the color bar on the right.

3.2 Evolution of the saturation profile

Figure 4 shows the evolution of the saturation profile at six different times for qtop = 0.05cmmin−1. Times are displayed280

in the upper left corner for each frame. Initially, a stable wetting front with small frontal perturbations develops at t= 300s.

These perturbations then grow into long persistent fingers. Finally, when the fingers reach the bottom of the chamber, the water

flows out of the chamber through preferential pathways so that the most of the porous medium remains dry. This evolution of

the wetting front instability is consistent with the experimental observation (DiCarlo, 2013).

11



Figure 4. Evolution of saturation profile for qtop = 0.05cmmin−1 at six different times. Times are displayed in the upper left corner for

each frame. Saturation is colored according to the color bar on the right.

3.3 Dependence of flow on infiltration rate285

A total of 18 simulations for infiltration rates in range qtop = 0.001− 15cmmin−1 are performed. Saturation profiles for nine

infiltration rates are shown in Fig. 5. For clarity, saturation profiles for all infiltration rates are provided in Appendix A1 (Figs.

A1 and A2). The time for each flux is selected so that the saturation reaches 40cm from the upper boundary. The flux and

corresponding time are displayed in the upper left corner for each frame. At low fluxes, the transition from a stable wetting

front to finger-like flow is clearly observed. As the flux approaches the hydraulic conductivity, the fingers widen, and a stable290

wetting front develops. To the best of our knowledge, this is the first model capable of simulating this non-trivial transition.

More detailed views are available in the videos of transient simulations corresponding to each applied influx (Kmec, 2023b).

The saturation overshoot is evident for fluxes between 0.05−5cmmin−1. Even at lower fluxes, for which unstable behavior

persists, the saturation overshoot is observed. However, its magnitude (i.e., the saturation difference between finger tip and tail)

is very small, and thus not visible in Fig. 5. This phenomenon is further discussed in Sect. 3.6.295

In cases of unstable flow, two fingers can merge, or one finger can split into two (Glass et al., 1989b, c; Rezanezhad et al.,

2006). Both scenarios are reproduced here, but for detailed observation, we recommend viewing the videos of transient sim-

ulations (Kmec, 2023b). Merging can be observed at qtop = 5cmmin−1, where two wide fingers merge. However, finger

merging is also noticeable at lower fluxes. Splitting can be seen at qtop = 2.5cmmin−1. Although these are minor details,

such experimental consistency is beneficial.300
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Figure 5. Saturation profiles for nine infiltration rates. For each frame, the influx is displayed together with the simulation time in the upper

left corner. The transition from stable to unstable and back to stable flow is clearly observed. Saturation is colored according to the color bar

on the right.

3.4 Finger width as function of influx

DiCarlo (2013) plotted experimentally measured finger widths as a function of influx in a single graph, incorporating data for

both low (Yao and Hendrickx, 1996) and high (Glass et al., 1989c) infiltration rates. The measured finger widths are shown in

Figure 2 in DiCarlo (2013) along with the predicted finger widths using standard theory (Chuoke et al., 1959; Parlange and

Hill, 1976). The observed results can be summarized as follows:305

– A stable wetting front is observed at very low fluxes, where the finger width is equal to the chamber width. This is not

predicted by standard theory (Chuoke et al., 1959; Parlange and Hill, 1976).

– As the influx increases, a rapid decrease in finger width is observed, followed by a long flat valley of almost constant

finger widths for different fluxes – specifically, the finger width first slightly decreases and then increases.
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– As the influx approaches the saturated conductivity, the finger widths increase again, followed by stable flow.310

– Fingers in contact with the edge of the chamber are narrower and thinner and are not included in the analysis of DiCarlo

(2013). Simulations performed by the semi-continuum model are consistent with this observation; thus, these fingers are

not included in the following analysis as well.

To calculate the finger width for a specific applied influx, we use the saturation profile at the time of the simulation when

the water reaches the bottom of the chamber. This ensures that the bottom boundary condition does not influence the obtained315

results. For each saturation profile, all fingers are segmented as shown in Fig. A3 in Appendix A2. For preferential flow, this

segmentation is straightforward because all the fingers are fully developed. It is worth noting that the fully developed fingers

are persistent over time, so segmented fingers are not influenced by longer simulation time. In the case of stable flow, the

approach used by DiCarlo (2013) is followed, where the entire saturation profile is assumed to be one “finger”. However, the

so-called intermediate flow – the transition between stable and unstable flow – is more complicated because some fingers are320

narrow while others are diffusively expanding. Therefore, completely objective segmentation is not possible in this case. After

segmenting the fingers, the average finger width is calculated for each applied influx.
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Figure 6. Finger width as a function of the applied influx. A stable wetting front is observed at either very low or very high applied fluxes

– in this case, the “finger width” is approximately equal to the horizontal width of the chamber. The color of dots indicate the type of flow:

stable, intermediate and unstable flow.

Figure 6 shows calculated finger widths for 18 infiltration rates. Red, green and blue dots indicate fluxes for which we

observe stable, intermediate, and unstable flow, respectively. The results are consistent with experimentally observed behavior

– a nearly constant finger width is observed for fluxes between 0.01− 2.5cmmin−1, followed by stable flow for very low and325

very high applied fluxes. Even a slight increase in the finger width for fluxes above 0.01cmmin−1 is in perfect agreement with
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experiments (see Figure 2 in Glass et al. (1989c)). The specific case is at qtop = 5cmmin−1 (see Fig. 5), where two fingers

are first developed and then both fingers merge at a depth of approximately 30cm. In this case, the average width is calculated

from one merged finger.

According to the evaluation suggested by DiCarlo (2013), the model should be able to predict preferential flow in terms330

of finger widths and finger spacings. It has already been demonstrated that finger widths are captured well. To demonstrate

the model’s capability in terms of finger spacings, the number of fingers can be investigated. Glass et al. (1989c) calculated

the number of fingers, including those in contact with the edge of the chamber. They reported that, in the case of preferential

flow, the number of fingers does not change significantly with different fluxes, varying between four and six. Given the size

of the chamber used in their experiments (30cm), the expected number of fingers for the 50cm used in our simulations is335

approximately between seven and ten. This corresponds well to the number of fingers developed in the simulations, which

ranges from six to ten for preferential flow. Hence, the spacing between the fingers is also well captured.

3.5 Preferential flow as function of influx

To calculate the degree of preferential water flow, the by-pass ratio approach is used, which is defined as the ratio of the

preferential flow rate to the total flow rate (Kneale and White, 1984). First, the inflow is calculated for each block corresponding340

to the horizontal section at a depth of 30cm. These inflow values are then divided by the top boundary flux qtop to normalize

them to one. The normalized values represent the by-pass ratio. The simulation time is always chosen to be sufficiently long to

ensure that extending the simulation time period further does not affect the calculated values. Note that if the flow is uniform

throughout the porous medium, the by-pass ratio is equal to one everywhere.

The left panel of Fig. 7 shows the by-pass ratio in the horizontal section at a depth of 30cm for three different influxes. The345

color indicates the type of flow: red, green and blue denote examples of stable, intermediate and unstable flow, respectively.

The by-pass ratio for stable flow equals one almost everywhere with no significant flow preferences. For unstable flow, the

by-pass ratio corresponds to the developed fingers. Water flows only through the fingers, and outside the flow is zero. The

intermediate case is quite surprising: water flows through the entire porous medium, but the flow is still highly preferential.

This is counterintuitive since the porous medium is fully wetted in this case, yet preferential pathways are formed through350

which the most of the water flows. The origin of these pathways can be seen in Fig. 5 for qtop = 0.005cmmin−1, where they

appear as a slight increase in saturation. For better illustration, the right panel of Fig. 7 shows the saturation profile at a longer

simulation time (t= 24000s) with the maximum value of the color bar adjusted to make the pathways more visible. Developed

pathways are well observed and do not disappear even when the porous medium is completely wetted. Comparing the by-pass

ratio for qtop = 0.005cmmin−1 (the left panel of Fig. 7) and the corresponding saturation profile (the right panel of Fig. 7),355

we can clearly see that the highest by-pass ratio corresponds to the most saturated parts of the porous medium.

We conjecture that this is a very important observation about the problem of preferential flow in unsaturated porous media

because experimental measurements are highly limited for this case. Using the semi-continuum model, more details can be

observed, making it easier to understand the origin of the preferential pathways for different boundary conditions. For com-
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pleteness, by-pass ratios for all performed simulations are depicted in Fig. A4. It is evident that a similar scenario, as for360

qtop = 0.005cmmin−1, holds for another two intermediate cases, i.e. for qtop = 0.0075 and 0.01cmmin−1.

Figure 7. Left panel: The by-pass ratio, defined as the ratio of the preferential flow rate to the total flow rate, is shown for stable (red),

intermediate (green) and unstable flow (blue) at a depth of 30cm in the porous medium. There are no significant preferences for stable flow,

while pronounced preferential pathways develop for unstable flow. Such behavior is expected for both cases. A surprise, however, is the

intermediate case, where water still flows preferentially even when the porous medium is fully wetted. Right panel: Saturation profile for

qtop = 0.005cmmin−1 at time t= 24000s. The simulation corresponds to the intermediate case in the left panel of this figure. Saturation

is colored according to the color bar on the right. The pathways of saturation are clearly visible and correspond to the highest by-pass ratio

values.

To compare the degree of preferential water flow for different boundary fluxes, it is convenient to represent it by a single

value. Again, the horizontal section at a depth of 30cm is used. We calculate the smallest number of blocks through which at

least 50% of the total amount of water flows at this horizontal section. For each influx, the length is then calculated as ∆x×nB ,

where nB denotes the calculated number of blocks. In the case of uniform flow, the length is equal to half the horizontal width365

of the porous medium, i.e., 25cm. The smaller the length is, the more the preferential flow dominates.

Figure 8 shows the length of the porous medium through which 50% of the water flows, depending on influx. For stable flow,

half of the total water flows through almost 25cm, while for unstable flow, it ranges between 5.50− 8.75cm. An exception

is at qtop = 2.5cmmin−1, where the length is 12.50cm due to significantly wider fingers compared to lower fluxes. For

qtop = 0.005− 0.01cmmin−1 (intermediate case), the length is similar to the values of unstable flow, indicating significant370

preferential flow. This aligns with the by-pass ratio analysis.
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Figure 8. The length of the porous medium in the horizontal section at a depth of 30cm through which 50% of the water flows is plotted

against the influx. For each influx, the simulation times are chosen such that the flow through the porous medium does not change any

further. The dashed line denotes the case of uniform flow, i.e., 25cm. The color of the dots indicates the type of flow: stable, intermediate

and unstable flow.

3.6 Wetting front instability

The cause of preferential flow is the saturation and pressure overshoot (Eliassi and Glass, 2001; Egorov et al., 2003; DiCarlo,

2013). The flux range for the saturation overshoot in 1D (DiCarlo, 2004) experimentally corresponds to the flux range for

preferential flow in higher dimensions (Yao and Hendrickx, 1996; Glass et al., 1989c). The same applies to different initial375

saturation levels (DiCarlo, 2004; Bauters et al., 2000). This simplifies the analysis of wetting front instability, as we can

switch to 1D. To analyze whether this experimentally confirmed dependence is replicated by the semi-continuum model,

1D simulations are performed using the same parameters as for 2D simulations. However, the distribution of the intrinsic

permeability is not included to avoid influencing the results.

The left panel of Fig. 9 shows saturation profiles for six different applied fluxes qtop. The range for which the saturation380

overshoot occurs is the same for 1D and 2D simulations. For the lowest influx, qtop = 0.001cmmin−1, the profile is stable

without saturation overshoot. For qtop = 0.010cmmin−1, the saturation overshoot is formed and becomes more pronounced

with increasing influx up to qtop = 1.000cmmin−1. The saturation overshoot then becomes less pronounced until it disappears

completely, and a stable profile is observed again for the highest influx qtop = 15.00cmmin−1. This is in good agreement with

1D experiments (DiCarlo, 2010).385

The right panel of Fig. 9 shows the saturation of finger tip and tail for 18 different infiltration rates. The results are again

in agreement with 1D experiments (DiCarlo, 2010). Moreover, the flux range connection between 1D overshoot and 2D pref-

erential flow is well captured by the semi-continuum model. When preferential flow is observed in 2D, significant saturation
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overshoot is developed in 1D. Conversely, for diffusion-like flow in 2D, no overshoot occurs in 1D. However, the most inter-

esting is the intermediate case for flux range between qtop = 0.005−0.010cmmin−1, where a very small saturation overshoot390

is formed. Even a small saturation overshoot with a magnitude below 0.02 indicates that the flow is preferential in 2D. For

qtop = 0.0005cmmin−1, the magnitude of the saturation overshoot equals only 0.007, yet the flow remains preferential even

in this case. Such a close connection is quite surprising.
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Figure 9. Left panel: Saturation profiles for various applied fluxes. The saturation overshoot is not developed for the lowest flux (qtop =

0.001cmmin−1) and the highest flux (qtop = 15.00cmmin−1). Right panel: Finger tip and tail saturations for 18 different infiltration rates.

The occurrence of the saturation overshoot is consistent with 2D preferential flow.

4 Discussion

4.1 Preferential flow in the case of fully wetted porous medium395

The semi-continuum model is the first to correctly predict both diffusion-like and finger-like flow for various applied fluxes,

as well as accurately predict experimentally measured finger widths and spacings. The well-captured connection between

saturation overshoot in 1D and preferential flow in 2D has been also demonstrated. In addition to these results, we have

observed that flow can be highly preferential even when the porous medium is fully wetted and water flows through the entire

medium. This surprising behavior is illustrated for qtop = 0.0005cmmin−1 in Fig. 7. The flow remains preferential because400

pathways with slightly increased saturation develop during infiltration into a dry porous medium and persist over time. This

slight increase in saturation is enough to make the flow preferential, causing water to flow faster through these pathways. This

is due to the power-law nature of the relative permeability function. The left panel of Fig. 10 shows the by-pass ratio along with

the saturation and relative permeability at a depth of 30cm. Clearly, the highest by-pass ratio values correspond to the highest
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relative permeability values. A slight difference is caused by the distribution of the intrinsic permeability, as demonstrated in405

the right panel of Fig. 10, where the effective permeability closely follows the by-pass ratio.
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Figure 10. Left panel: The by-pass ratio at a depth of 30cm of the porous medium is plotted for qtop = 0.005cmmin−1 at time t= 24000s,

together with the saturation and the corresponding relative permeability. By-pass ratio values are plotted on the left y-axis, and values of

saturation and relative permeability are plotted on the right y-axis. Relative permeability values are multiplied by 100, since these values

are much smaller compared to the saturation. It can be clearly seen that the by-pass ratio correlates with relative permeability. Right panel:

The by-pass ratio at a depth of 30cm of the porous medium is plotted for qtop = 0.005cmmin−1 at time t= 24000s, together with the

effective permeability. By-pass ratio values are plotted on the left y-axis, and values of the effective permeability are plotted on the right

y-axis. Effective permeability closely follows the by-pass ratio in this case.

4.2 Formation of saturation overshoot and stabilization of wetting front

Borrowing the term “hold-back pile-up effect” from Eliassi and Glass (2001), saturation overshoot occurs when water cannot

enter the dry porous medium, causing water to be held back. This hold back effect subsequently leads to water piling up above

the interface between the wet and dry porous medium. As the amount of water increases, the pressure gradient between the410

wet and dry parts of the porous medium also increases, allowing water to advance. The same principle applies to the semi-

continuum model, where the hold-back effect is caused by appropriate averaging of conductivity. However, it is not the only

factor governing the formation of the saturation overshoot in the model. The saturation overshoot is formed by two factors:

(1) the geometric mean for averaging the permeability and (2) the scaling of the retention curve. The geometric mean plays

a crucial role in creating the hold-back effect, which consequently forms the saturation overshoot. This effect occurs due to415

the very low relative permeability between blocks, which is a direct consequence of the applied geometric mean. However,

without the scaling of the retention curve, the overshoot would disappear as the block size ∆x→ 0 (Vodák et al., 2022). Note

that the geometric mean can be replaced by any type of averaging that produces a small value if one of the averaged numbers
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is small, such as the harmonic mean. The geometric mean is used in the model because it is more appropriate in the case of a

random stratified medium, while the harmonic mean is more suitable for a medium which is stratified perpendicular to the flow420

direction (Jang et al., 2011).

A crucial question arises: Why does the wetting front stabilize at low or high infiltration rates in the semi-continuum model?

It is known that the stability of the 2D wetting front correlates with the saturation overshoot in 1D (DiCarlo, 2013). Since

the semi-continuum model implies the same conclusions, as demonstrated in Sect. 3.6, it is sufficient to study the origin of

the saturation overshoot in 1D. This significantly simplifies the analysis as we do not have to consider the spatial variability425

of flow in 2D or 3D. When a small amount of water flows into a dry porous medium, the conductivity of this part increases

rapidly due to the power-law nature of the relative permeability function. Using the parameters in Table 1, when the saturation

increases from 0.01 to 0.05, the relative permeability increases approximately 170 times. At very low infiltration rates, water

has enough time to proceed downwards, so that the conductivity of the dry part of the porous medium increases significantly,

which subsequently allows more water to flow downwards. In principle, this means that water does not have sufficient time to430

pile up at low infiltration rates. On the other hand, at very high infiltration rates, the porous medium is fully saturated, and hence

the saturation overshoot cannot occur. This is well observed in Fig. 9 for qtop = 15cmmin−1, where the saturation is equal to

one everywhere. As the applied flux decreases, the porous medium is not fully saturated and there is room for the saturation

overshoot to arise. This can be seen for qtop = 5cmmin−1; the saturation at the finger tip is still equal to one, but the influx

is not high enough to fully saturate the entire porous medium, and the saturation overshoot develops. This observation is in435

agreement with the experiments of DiCarlo (2010). The author showed that the saturation of the finger tip approaches unity at

very high infiltration fluxes for which a stable flow is observed (see figure 3 in DiCarlo (2010) for details).

According to comprehensive experimental works of DiCarlo (2004, 2010), saturation and pressure are constant at the finger

tail under uniform top boundary condition. However, some studies, such as Cho et al. (2005), have shown the opposite. As-

suming constant saturation and pressure in the finger tail, the flux between the blocks is stabilized and is given by the value of440

top boundary flux qtop. Using the Darcy-Buckingham law given by Eq. (7), we can calculate the saturation in the finger tail:

k(Stail) =
qtop
KS

, (9)

where Stail denotes the saturation in the finger tail within the relative permeability function. Therefore, Stail is independent of

the initial saturation, which is in agreement with experimental measurements (Fritz, 2012). A necessary and sufficient condition

for saturation overshoot to form is an increase in saturation of the block above the value Stail. The saturation overshoot will445

then develop as the saturation of this block drops to Stail over time. Moreover, for qtop =KS , it follows from Eq. (9) that Stail

equals one. Consequently, the flow will always be stable in the semi-continuum model as long as the influx qtop ≥KS because

the porous medium is fully saturated in this case, and thus saturation overshoot cannot arise. This has been demonstrated in

both 1D (Fig. 9) and 2D simulations (Fig. 5). Note that this is consistent with the stability condition (Saffman and Taylor, 1958;

Parlange and Hill, 1976; DiCarlo, 2013), which predicts stable flow for qtop ≥KS .450
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4.3 Importance of the geometric mean in terms of water entry value

The porous medium comprises many pores, each characterized by a specific water entry value determined by the Young-

Laplace equation based on its principal radii. The shape of the main wetting branch of the retention curve results from the

combination of various pore water entry values. The pores with the smallest radii determine the lowest pressure Plow and

the corresponding lowest saturation Slow, marking the beginning of the main wetting branch. Although this is a necessary455

physical characteristic of the porous medium, it has not been implemented into the retention curve used for simulations. This

implies that water can enter dry porous medium at a pressure equal to −∞. In this case, the Young-Laplace equation gives

r−1
1 + r−1

2 =∞, where r1 and r2 are the principal radii of curvature of the pore. This relationship is valid only if at least one

of these radii equals zero. Such a hypothetical pore is obviously unable to conduct water. The same reasoning applies to the air

entry value and the corresponding main draining branch.460

The initial saturation used in simulations is higher than Slow, thus excluding the beginning of the main wetting branch

does not affect the obtained results. One might argue that even if the chosen initial saturation is above Slow, it would still be

reasonable to define the value Slow in the retention curve, ensuring the model’s validity for lower initial saturation. This is

clearly not implemented in our model, and the retention curve satisfies P →−∞ for S → 0. However, the calculated flux in

the semi-continuum model equals zero in this case, which aligns with a hypothetical pore with zero radii. This applies due465

to the application of the geometric mean of the relative permeability and is not valid for the more common arithmetic mean.

To illustrate, consider two blocks denoted by indices 1,2: one fully saturated (S1 = 1) and the second block with saturation

decreasing towards zero, i.e., S2 → 0. Assume κ, µ and ∆x are equal to one, as these values are independent of saturation and

thus does not affect the limiting process. Note that a fully saturated block satisfies k(S1) = 1 and Pw(S1) = 0. The horizontal

flux q between blocks, given by Eq. (7), then simplifies to:470

limS2→0 q = limS2→0

[
−
√

k(S2)P
w(S2)

]
= 0. (10)

If the arithmetic mean is used instead of the geometric mean, the limit satisfies:

limS2→0 q = limS2→0 − 1+ k(S2)

2
Pw(S2) = +∞. (11)

For completeness, the numerical limiting process for both means is depicted in Fig. A6 using the parameters specified in

Table 1. For the geometric mean, the limit approaches zero, confirming that the flux indeed equals zero for S2 → 0, while for475

the arithmetic mean, the flux approaches infinity. In the case of the geometric mean, the block with zero saturation thus cannot

conduct water and represents a hypothetical pore with zero radii. This is consistent with the Young-Laplace equation that yields

a pore with zero radii for P =−∞. On the other hand, with the application of the arithmetic mean, unrealistic behavior would

occur: the flux would rapidly increase as saturation decreases, which is clearly not physically correct. Using the arithmetic

mean, it is necessary to cut off the retention curve (e.g., by using a water entry value) for low saturation values to avoid an480

increase in flux when saturation decreases. However, the increase in flux in Fig. A6 occurs already for saturation S2 < 0.57.

We conjecture that the geometric mean or the harmonic mean is thus a more reasonable type of averaging (Jang et al., 2011).
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Incorporating the point [Slow,Plow] into the main wetting branch results in a non-smooth retention curve. However, the

Richards’ equation remains unconditionally stable for saturation values above Slow, where the retention curve is smooth.

Therefore, to develop saturation overshoot with the Richards’ equation, it is necessary to violate one of the assumptions of the485

stability proof derived in Fürst et al. (2009). It is possible to define a bottleneck (zero flux) using a water or air entry pressure

(Tesař et al., 2004), which causes non-smoothness of the retention curve. Alternatively, using a non-monotonic influx at the

upper boundary can also lead to the formation of saturation overshoot (Steinle and Hilfer, 2017). We conjecture that the model

should ideally generate the overshoot without the need for a threshold incorporated into the model. Forming the saturation

overshoot should be a resulting property of the model.490

4.4 Effect of intrinsic permeability distribution

The measurement of macroscopic properties of a homogeneous porous medium, such as permeability or porosity, is usually

performed by averaging the microscopic quantities over the domain (White et al., 2006; Ghanbarian et al., 2021). For more

realistic simulations, it is appropriate to use the spatial variation of the continuum quantity. Therefore, a small distribution

of the intrinsic permeability was used in simulations, which is typical for models for unsaturated porous media flow (Cueto-495

Felgueroso and Juanes, 2009). One may wonder whether the formation of the saturation overshoot depends on the distribution

used. As evidenced by 1D simulations in Fig. 9, the saturation overshoot is not caused by the distribution of intrinsic per-

meability. This corresponds with experimental findings (DiCarlo, 2013), where the formation of saturation overshoot is not

determined by heterogeneity. Moreover, Kmec et al. (2023) demonstrated that the distribution has no significant effect on the

flow, because the nature of the flow remains the same even for eight different intrinsic permeability distributions.500

Hence, the question arises: Why use the distribution of intrinsic permeability, and how does this distribution affect the de-

velopment of preferential pathways? Even a slight distribution of intrinsic permeability can cause water not to flow uniformly

through the entire porous medium in 2D/3D. This is expected because no heterogeneity is introduced in the governing equa-

tion; hence, water will always flow uniformly unless some additional heterogeneity is introduced. This is demonstrated for 2D

simulations in Fig. A5, where saturation profiles for four different infiltration rates without a distribution of intrinsic perme-505

ability are shown. The overshoot is observed at qtop = 0.05 and 0.25cmmin−1, but not at very low and very high infiltration

rates, which is consistent with the previous simulations. Therefore, it is evident that the intrinsic permeability distribution is not

the cause of the formation of the saturation overshoot in 2D, but causes water to flow preferentially. To summarize: (1) When

using only the distribution of intrinsic permeability without incorporating the geometric mean and the scaling of the retention

curve, the overshoot will not be formed. Consequently, the flow is diffusive in this scenario, and water always flows throughout510

the entire porous medium. (2) When using only the geometric mean and the scaling of the retention curve, the overshoot can

be formed depending on initial and boundary conditions. However, the flow remains uniform throughout the entire porous

medium. By combining (1) and (2), the saturation overshoot can be formed, and water then does not flow uniformly.

Moreover, when the distribution is employed in the semi-continuum model but the saturation overshoot does not occur

(e.g., in the case of low influx), water tends to flow diffusively. This aligns well with experimental observations. Other similar515

models fail in this case, as water flows preferentially even when the saturation overshoot is not formed. In our case, if the
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overshoot is formed, preferential flow is observed. If there is no overshoot, preferential flow disappears. The distribution of

intrinsic permeability is included to make water flow non-uniformly (preferentially) throughout the entire porous medium, but

this non-uniformity occurs only when the physics of the semi-continuum model allows it, i.e., when the overshoot is formed.

4.5 Model validation and future plans520

The semi-continuum model has been shown to be consistent with well-known experiments in 1D (Kmec et al., 2019) and 2D

(Kmec et al., 2021, 2023). Based on the results presented in this paper, we conjecture that the model has been validated by

core experiments performed in unsaturated homogeneous porous media (Glass et al., 1988, 1989b, c, a; Selker et al., 1992;

Liu et al., 1994; Yao and Hendrickx, 1996; Bauters et al., 2000; DiCarlo, 2004; Sililo and Tellam, 2005; Rezanezhad et al.,

2006; DiCarlo, 2007, 2010). For heterogeneous porous medium, the model has been applied (Kmec et al., 2021) to simulate525

water infiltration experiments into a layered porous medium (Rezanezhad et al., 2006). Therefore, the semi-continuum model

is successfully validated according to DiCarlo’s approach (DiCarlo, 2013).

A crucial aspect of the model is to account for the retention curve sensitivity to the dimension of the laboratory sample

(Ghanbarian et al., 2015). This sensitivity is addressed by incorporating a single parameter, the reference block size ∆x0,

into the semi-continuum model. This makes the simulations sensitive to this parameter, but once ∆x0 is appropriately set530

through calibration, the simulations become independent of the block size ∆x. Therefore, the results are consistent regardless

of the computational mesh size used. The convergence of moisture profiles in 1D and 2D for ∆x varying over two orders of

magnitude is demonstrated in Vodák et al. (2022).

The semi-continuum model can be adapted for more complex natural conditions by incorporating different initial and bound-

ary conditions. This adaptability makes the model applicable to large-scale in-field experiments, which is highly desirable for535

hydrological applications. A complete validation of the semi-continuum model ensures the accuracy and reliability of its re-

sults on a large scale. However, the semi-continuum model is computationally intensive, thus the development of a method

to speed up its numerical scheme is necessary. Our future plan is to develop a new numerical scheme based on the Lattice

Boltzmann method, as it has been successfully applied to the Richards’ equation (Ginzburg et al., 2004). This will allow to

simulate large-scale experiments effectively.540

5 Conclusions

It has long been known that the behavior of the wetting front in an initially dry and homogeneous porous medium strongly

depends on the applied infiltration flux. The wetting front remains stable at both low and high infiltration fluxes but becomes

unstable within a certain intermediate flux range. The instability is characterized by the formation of fingers that vary in width,

velocity, and spacing. Despite decades of experimental observations, no model has yet been developed to reliably capture this545

dependence. In this paper, we introduced a partial differential equation that includes a Prandtl-type hysteresis operator under

the spatial derivative. This equation represents a formal limit of the semi-continuum model of liquid transport in a porous

medium. The semi-continuum model accurately captures the complex behavior of infiltration flux dependence. This includes
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the transition from diffusion-like to finger-like flow and back to diffusion-like flow as the infiltration flux increases. It also

correctly predicts finger widths and spacings. In addition, the model helps explain preferential flow and provides insight into550

the formation of an unstable wetting front.
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Appendix A

A1 Dependence of flow on infiltration rate

A total of 18 simulations for infiltration rates ranging from qtop = 0.001cmmin−1 to qtop = 15cmmin−1 are presented here.

Figures A1 and A2 show a snapshot of the saturation profiles for all applied fluxes. The time for each influx is chosen so that555

the saturation reaches 40cm from the upper boundary. The applied influx and simulation time are displayed at the upper left

corner of each frame. The transition between stable and unstable flow is clearly observed.

Figure A1. Saturation profiles for nine different infiltration rates ranging from qtop = 0.001cmmin−1 to 0.1cmmin−1. Each frame displays

the influx and simulation time. Saturation is colored according to the color bar on the right.
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Figure A2. Saturation profiles for nine different infiltration rates ranging from qtop = 0.25cmmin−1 to 15cmmin−1. Each frame displays

the influx and simulation time. Saturation is colored according to the color bar on the right.
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A2 Finger segmentations

Figure A3. Finger segmentations for 18 different infiltration rates ranging from qtop = 0.001cmmin−1 to qtop = 15cmmin−1. The seg-

mentations are marked in red. The time for each influx is chosen so that the saturation reaches the bottom of the chamber. The applied influx

and simulation time are displayed at the upper left corner of each frame.

A3 By-pass ratio

Figure A4 shows the by-pass ratio at a depth of 30cm for 18 different infiltration rates ranging from qtop = 0.001cmmin−1560

to qtop = 15cmmin−1. The by-pass ratio is marked in red and is plotted along with the saturation (in blue) across the same

horizontal section. The highest values of the by-pass ratio correlate with the locations of the highest saturation values. However,

this correlation decreases if the saturation is high enough, as seen for qtop ≥ 7.5cmmin−1. In such cases, the slight change in

saturation does not significantly affect the relative permeability values, and therefore, the by-pass ratio remains also unaffected.

Instead, the dominant factor influencing the flow is the intrinsic permeability of the porous medium.565

Note that the porous medium is first fully saturated for qtop = 7.5cmmin−1 and qtop = 10cmmin−1 (see Fig. A2). How-

ever, the saturation then decreases because the bottom boundary flux qbot approximately equals KS = 15cmmin−1, which is

larger than qtop. In this scenario, the saturation should correspond to the calculated value Stail given by Eq. (9). Considering

the distribution of the intrinsic permeability, the average value of the calculated Stail at a depth of 30cm is 0.8540 and 0.9218
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for qtop = 7.5cmmin−1 and qtop = 10cmmin−1, respectively. The average values from simulations at a depth of 30cm are570

0.8552 and 0.9225, showing that the saturation indeed corresponds to the calculated values Stail. Therefore, the saturation at

the finger tail always tends to decrease to the value obtained by Eq. (9). Moreover, for qtop = 15cmmin−1, the porous medium

remains fully saturated even when water flows from the bottom boundary, as Stail = 1 in this case.
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Figure A4. The by-pass ratio at a depth of 30cm of the porous medium for 18 different infiltration rates ranging from qtop = 0.001cmmin−1

to qtop = 15cmmin−1. The by-pass ratio is marked in red and is plotted along with the saturation (in blue) across the same horizontal

section. By-pass ratio values are plotted on the left y-axis and values of saturation are plotted on the right y-axis. The corresponding influx

is displayed at the top of each frame.
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A4 Simulations without intrinsic permeability distribution

Figure A5. Saturation profiles for four different infiltration rates qtop = 0.001, 0.05, 0.25, 15cmmin−1. The distribution of intrinsic per-

meability is not used. Each frame displays the influx and simulation time. Saturation is colored according to the color bar on the right.

A5 Comparison between the geometric and arithmetic means575
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Figure A6. Calculated horizontal flux between a fully saturated block (S1 = 1) and a block with saturation decreasing towards zero (S2 → 0).

The flux equals zero for S2 → 0 using the geometric mean, while it approaches infinity using the arithmetic mean.
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