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Abstract. The shape of ice crystals affects their radiative properties, growth rate, fall speed, and collision efficiency and

thus, plays a significant role in cloud optical properties and precipitation formation. Ambient conditions like temperature and

humidity determine the basic habit of ice crystals, while microphysical processes such as riming and aggregation further shape

them, resulting in a diverse set of ice crystal shapes and densities. Current classification algorithms face two major challenges:

(1) ice crystals are often classified as a whole (on the image scale), necessitating identification of the dominant component of5

aggregated ice crystals, and (2) single-label classifications lead to information loss because of the compromise between basic

habit and microphysical process information. To address these limitations, here we present a two-pronged solution: a rotated

object detection algorithm (IceDetectNet) that classifies each component of an aggregated ice crystal individually, and a multi-

label classification scheme that considers both basic habits and physical processes simultaneously. IceDetectNet was trained

and tested on two independent datasets obtained by a holographic imager during the NASCENT campaign in Ny-Ålesund,10

Svalbard, in November 2019 and April 2020. The algorithm correctly classifies 92 % of the ice crystals as either aggregate or

non-aggregate and achieved an overall accuracy of 86 % for basic habits and 82 % for microphysical processes classification.

On the component scale, IceDetectNet demonstrated high detection and classification accuracy across all sizes, indicating

its ability to effectively classify individual components of aggregated ice crystals. Furthermore, the algorithm demonstrated

good generalization ability by classifying ice crystals from an independent test dataset with overall accuracies above 70 %.15

IceDetectNet can provide a deeper understanding of ice crystal shapes, leading to better estimates of ice crystal mass, fall

velocity, and radiative properties and thus, has the potential to improve precipitation forecasts and climate projections.

1 Introduction

The shape of ice crystals within clouds impacts the Earth’s radiation budget (Ehrlich et al., 2008; Sun and Shine, 1994; Matus

and L’Ecuyer, 2017; Flanner et al., 2007; Järvinen et al., 2018). As ice crystals interact with solar and terrestrial radiation they20

scatter, absorb and emit radiation, thereby influencing the radiative properties of the atmosphere (Flanner et al., 2007; Järvinen

et al., 2018; Yang et al., 2015). Furthermore, the shape of ice crystals has substantial effects on global precipitation, influencing
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both the spatial distribution and precipitation rate (Sterzinger and Igel, 2021; Woods et al., 2007; Jensen et al., 2017). The

growth mechanisms of ice crystals play a crucial role in precipitation formation (Wegener, 1911; Findeisen, 1938; Lohmann

et al., 2016; Kalina and Puxbaum, 1994; Mosimann et al., 1993). The efficiency of these processes is largely determined by the25

ice crystal shape, further highlighting its importance (Heymsfield, 1972; Khvorostyanov and Curry, 2002; Bailey and Hallett,

2004; Mitchell, 1996; Mitchell et al., 1990; Wang and Ji, 2000).

The initial shape of an ice crystal, also known as its basic habit (e.g., column, plate), is governed by the ambient conditions

such as temperature and supersaturation that it experiences during its initial diffusional growth phase (Libbrecht 2016; Bailey

and Hallett 2004). They are further shaped by microphysical processes including riming (i.e., supercooled cloud droplets collide30

and freeze on the ice crystal) and aggregation (i.e., individual ice crystals collide and stick together). This leads to a wide range

of ice crystal shapes, sizes and densities, introducing considerable challenges in the systematic classification of ice crystals.

Early ice crystal classification techniques used simple features like edge complexity (Cunningham, 1978), circular deficiency

(Rahman et al., 1981), the square area of the image (Duroure et al., 1994), particle maximum dimension and area ratio (i.e.,

McFarquhar and Heymsfield 1996) to classify the shape of ice crystals, but cannot distinguish between composite ice crystals,35

such as irregular, aggregates, or bullet rosettes. More advanced techniques, like ice crystal classification with principal compo-

nent analysis (Lindqvist et al., 2012) and logistic regression (Praz et al., 2017), have been developed and have achieved 80-90 %

accuracy but still require manual feature extraction (e.g., aspect ratio). Furthermore, these algorithms demonstrated poor gener-

alization abilities, as their classification performance is strongly dependent on the characteristics of the training dataset (Bishop

and Nasrabadi, 2006; Goodfellow et al., 2016) and thus required considerable adjustments of optimal thresholds when applied40

to unseen datasets.

The emergence of convolutional neural networks (CNNs) as part of deep learning algorithms has brought significant im-

provements in the classification of ice crystal habits, with their capability for automated feature extraction (Li et al., 2021;

Albawi et al., 2017; Touloupas et al., 2020). Although CNNs exhibit a remarkable capacity to recognize key aspects of im-

ages, they struggle when faced with complex ice crystals such as columns on capped columns (CPCs) (observed by (Pasquier45

et al., 2023)) or aggregates consisting of different basic habits (Zhang, 2021). Furthermore, CNNs that are based on single-

label classification schemes face the challenge of information loss when composite ice crystals are classified (Zhang, 2021;

Xiao et al., 2019). For example, an aggregated column can only be labeled either as ’aggregate’ or ’column,’ which results

in information loss of either the basic habit or the microphysical process. According to the study by Korolev et al. (1999), in

Arctic clouds, pristine ice habits (ice crystals without undergoing any microphysical processes) account for only 3 % of the50

particles observed, which would result in losing a substantial fraction (97 %) of ice information regarding either basic habits

or microphysical processes when implementing a single-label classification scheme if the ice habits are still recognizable. To

tackle this problem, Jaffeux et al. (2022) combined data from the Precipitation Imaging Probe and 2DS-Stereo Probe to train

CNNs to classify ice crystals according to their basic habit and occurrence of riming and aggregation. Although their study

considered potential microphysical processes for each ice crystal category manually after the CNN classification, the specific55

microphysical processes associated with individual components of an aggregated ice crystal remained unknown.
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To summarize, there are two key limitations of current ice crystal classification algorithms: (1) Algorithms often classify the

images of an ice crystal as a whole, necessitating the identification of the dominant component of an aggregated ice crystal and

thus, are not able to account for the presence of multiple basic habits in an aggregated ice crystal. (2) Single-label classification

algorithms require a compromise between basic habit and microphysical process information, leading to information loss. To60

address these issues, we propose a novel approach that consists of a rotated object detection algorithm (called IceDetectNet)

along with a multi-label classification scheme. IceDetectNet can classify the ice crystals down to the scale of aggregated ice

crystal components with both basic habit and microphysical process information, thereby eliminating the need to identify

a dominant aggregated component. The multi-label classification scheme simultaneously accounts for both basic habits and

microphysical processes of an ice crystal, reducing information loss. The data used to train and test IceDetectNet are described65

in Sect. 2. The structure of IceDetectNet is presented in Sect. 3. The performance of our proposed algorithm is evaluated in

Sect. 4. Finally, Sect. 5 presents our conclusions and the relevant discussion of this study.

2 Data description

The data used in this study was collected in Arctic mixed-phase clouds during the NASCENT campaign (Pasquier et al.,

2022a) conducted in Ny-Ålesund, Norway. Ice crystal images were captured by the holographic imager HOLIMO mounted on70

the tethered balloon system HoloBalloon (Ramelli et al., 2020). The measured ice particle sizes ranged from 50 µm to 2.4 mm.

First, the cloud particles were classified as cloud liquid droplets and ice crystals using a convolutional neural network (CNN)

approach, as described in (Touloupas et al., 2020). This preliminary classification served as the basis for the subsequent detailed

classification of the ice crystals.

Following this initial categorization, each ice crystal was classified into one of seven basic habits: ’column’, ’plate’, ’lollipop’75

(Pasquier et al., 2022a), ’Columns on Capped-Columns’ (CPC, Pasquier et al. 2023), ’irregular’, ’frozen droplets’, and ’small’.

Additionally, up to two microphysical process attributes (i.e., ’aggregate’ and ’aged’) were assigned to each ice crystal. Table 1

describes the seven basic habits and four microphysical processes categories (i.e., ’pristine’, ’aged’, ’aggregate’ and ’aged and

aggregate’). Thus, the final habit classification of an ice crystal is a combination of the basic habit and microphysical processes

(final classification = basic habit + microphysical processes). Not all combinations of basic habits and microphysical processes80

are feasible, resulting in a total of 19 ice classes (examples are shown in Fig. 1) rather than the theoretically possible 28 (7× 4)

categories. For instance, the ’small’ class includes ice crystals that are too small to determine their habit, making it impossible

to derive their microphysical processing. Furthermore, all ice crystals in the classes ’lollipop’, ’CPC’ and ’irregular’ are defined

as aged ice (as they are not newly-produced ice) while they are still basic habit categories.

The training dataset was collected on 11 November 2019 and the test dataset was collected on 1 April 2020 (Pasquier et al.,85

2022b). The training dataset is used for training IceDetectNet, while the test dataset is not used during training and evaluates

the generalization abilities of IceDetectNet. Figure 1 offers a summary of both training and test datasets. The training dataset

consists of 18’864 ice particles, where the ’column’ and ’CPC’ were the dominant classes, accounting for 47.5 %. Non-pristine

ice, which is ice that is not freshly formed, accounts for 70.5 % of the ice crystals in the training data. Additionally, 18.8 % of

3

https://doi.org/10.5194/egusphere-2023-2770
Preprint. Discussion started: 18 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 1. Description of the ice crystal categories including seven basic habits and four microphysical process categories. All ’small’ ice

crystals are categorized as ’pristine’ (’#’), while all the ice crystals in the classes marked with ’*’ are categorized as ’aged’.

Property Class Description

Basic

habits

Column Columnar ice crystal

Plate Plate-like ice crystal

Frozen droplet Frozen cloud or drizzle droplets are characterized by non-spherical

shapes or distortions.

Small# Ice crystals that are too small to be classified into an ice habit (usually

smaller than 75 µm).

Columns on capped-columns (CPC) * Ice crystals that contain both columnar and plate-like features, often

resembling an ’H’. These ice crystals are formed when growing in both

the column and plate temperature regimes (Pasquier et al., 2023).

Lollipop* Lollipop are formed when a supercooled droplet collides with columns

and freezes upon impact (Keppas et al., 2017)

Irregular* Irregular-shaped ice crystal with no clearly defined ice habit.

Microphysical

processes

Pristine Ice crystals that have not undergone any microphysical processes.

Aged Ice crystals that have undergone microphysical processes such as

riming or sublimation.

Aggregate Ice particles that are composed of two or more ice crystals stuck

together.

Aged & aggregate Ice crystals that have undergone both aging and aggregation.

the non-pristine ice crystals have undergone two microphysical processes and aggregated ice makes up 12 % of the ice crystals90

in the training dataset.

The test dataset has a significant fraction of ’irregular’ (47.3 %) and ’small’ (23.4 %) ice crystals (Fig. 1). Unlike the training

dataset, the test dataset does not include any instances of the ’lollipop’ or ’CPC’ classes and, consequently, the corresponding

compound categories ’lollipop-aggregate’ or ’CPC-aggregate’ do not exist. Moreover, the test dataset only contains three

occurrences of the ’frozen droplet’ class, with small numbers for ’frozen droplet-aged’ (8) and ’frozen droplet-aged-aggregate’95

(12), while ’frozen droplet-aggregate’ is not present. The proportion of non-pristine ice increases from 70.5 % in the training

dataset to 93.9 % in the test dataset. The fraction of aggregate ice increases from 11.9 % in the training dataset to 37.7 % in the

test dataset.

The difference between the training and test datasets is an example of the natural variability of field observations. In our

case, the two datasets were collected during different seasons, resulting in variations in the environmental conditions. The100
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training dataset was collected in the temperature range from -8 to -3◦C (mostly in the column regime) while the test dataset

was collected between -23 and -15◦C (mostly in the plate regime) (Pasquier et al., 2022b). These differences allow us to assess

the generalization ability of IceDetectNet and to examine its performance in diverse environmental conditions.

3 Methodology

In this section, we first provide an overview of Convolutional Neural Networks (CNNs), which serve as the foundation for the105

object detection algorithm in IceDetectNet. We start by explaining the overall structure of CNNs (Sect. 3.1), followed by an

introduction to the rotated object detection algorithm developed in this study and implemented into IceDetectNet (Sect. 3.2).

Subsequently, we discuss the data preparation (Sect. 3.4) and training process (Sect. 3.7), outlining the essential steps for

training the model. Lastly, the evaluation metrics are introduced that are used to assess the performance of IceDetectNet on the

training dataset and its ability to generalize to the unseen test dataset (Sect. 3.8).110

3.1 Convolutional Neural Networks (CNNs)

CNNs are a class of neural networks widely recognized for their exceptional performance in image classification tasks (Gu

et al., 2018; Albawi et al., 2017; Rawat and Wang, 2017; Touloupas et al., 2020). CNNs consist of a specific architecture de-

signed to extract meaningful features from images. The key components of a typical CNN include convolutional layers, pooling

layers, and fully connected layers (Fig. 2). These layers work together to enable effective image analysis. The convolutional115

layer scans the input image with a small filter or kernel, extracting low-level features such as edges and color. The pooling layer

reduces the spatial size of the convolved feature (Feature Map shown in Fig. 2) and aims to decrease computational complexity.

The fully connected layer, which is usually the final layer of a CNN, performs the classification using the flattened or pooled

output from the preceding layers.

In practice, CNN structures can be much more complex than the basic CNN described above. He et al. (2016) proposed a120

deep residual learning approach, which stores input information and propagates it directly from the first layer to the last. This

approach has been successfully used in subsequent object detection algorithms that utilize the ResNet-50 structure (He et al.,

2016). Due to this success, IceDetectNet (described in Sect. 3.5) is trained using the pre-existing parameters of ResNet-50,

which was trained on the ImageNet dataset consisting of approximately 1.3 million images labeled into 1000 categories, with

the exception of the last layer due to the different number of categories in ice classification (Deng et al., 2009; He et al., 2016).125

This helps to speed up the training process and achieve better performance.

3.2 Rotated object detection algorithm

Building on the foundations of CNNs, object detection algorithms serve as an extension to detect and classify objects within

images. While CNNs typically classify the image as a whole, object detection algorithms localize and classify specific objects

within these images, providing both their location (through the bounding box) and class labels (Zhao et al., 2019). The rect-130

angular box that tightly encloses the object of interest is called a bounding box (as shown in Fig. 3). Rotated object detection

5

https://doi.org/10.5194/egusphere-2023-2770
Preprint. Discussion started: 18 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Overview of the number of ice crystals in each class for both the training and test datasets, along with illustrative examples for

each class. The green circles with a plus symbol indicate that the corresponding ice class is part of the Aggregate/non-Pristine category in

the dataset, while the orange circles with a minus symbol indicate the opposite. Please note that the examples shown are intended for visual

reference only and may not be representative of the entire dataset.
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Figure 2. General structure of a CNN with an example of ice crystal classification. The input ice crystal is classified into one of the ice

classes based on computed probabilities, with the highest probability determining the assigned class. In this example, the input ice crystal is

classified as ’column-aged-aggregate’ with a 70 % probability.

algorithms additionally predict the angle of rotation of the bounding box (Zou et al., 2023). In this study, we introduce such a

rotated object detection algorithm for ice crystal classification as part of IceDetectNet. This algorithm classifies multiple com-

ponents of aggregated ice crystals individually and predicts the center, the dimensions and the rotation angle of bounding boxes

enclosing the ice crystal components. This ensures that the ice components are captured within the smallest feasible rectangle,135

which offers a more accurate recognition of the object by minimizing the inclusion of background pixels (Ding et al., 2019).

Here, we use the S2ANet network structure (Han et al., 2021) as the base structure of the rotated object detection algorithm

within the IceDetectNet.

3.3 Hand-labeling of bounding boxes and ice categories

Accurate hand labeling is essential for training IceDetectNet, as is for all supervised learning methods. In contrast to conven-140

tional classification algorithms, rotated object detection models such as IceDetectNet require a dual process of hand labeling.

The first is to locate the ice components within the images by drawing bounding boxes and the second is to assign the appro-

priate category labels to each component based on our multi-label classification scheme.
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In the present study, both the training and test datasets were initially hand-labeled on the image scale using our multi-label

ice classification scheme (Sect. 2). For the hand-labeling on the image scale, the basic habit of the largest ice component is145

considered the basic habit of the image. Regarding microphysical processes, any image containing an ice component showing

signs of aging was labeled ’aged’. Additionally, images consisting of multiple ice components were categorized as ’aggregated’.

The hand-labeling on the image scale served as the basis for the hand-labeling on the component scale.

For hand-labeling of non-aggregated ice crystals (identified using the hand label on the image scale), we applied an auto-

mated method for drawing bounding boxes. The method uses the color contrast between the typically black ice pixels and the150

typically grey background to identify the location of the ice component regions. Then we calculated the minimum bounding

rectangle of the ice regions automatically as the bounding box of these non-aggregated ice crystals. The non-aggregated ice

crystals were assigned the same ice category labels as the corresponding labels on the image scale.

For aggregated ice crystals, the hand-labeling of the bounding boxes (i.e., drawing) was done manually using the platform

provided by hub.ango.ai as illustrated in Appendix A and Fig. A1. Bounding boxes were manually drawn representing the155

minimum enclosing rectangle of each ice component. Furthermore, every bounding box was visually classified in an ice cat-

egory following the multi-label classification scheme introduced in Sect. 2. In total, we manually labeled 2255 aggregated ice

crystals and 16609 non-aggregated ice crystal components. Note that the hand-labeling on a component scale was only done

for the training dataset due to the large effort involved with the hand-labeling of bounding boxes and ice categories. The test

dataset was only hand-labelled on the image scale.160

3.4 Image preprocessing

Before the image is fed into IceDetectNet, the initial image needs to be enlarged by 15 % (see input in Fig. 3), by adding

black pixels (pixel values = 1) around the borders. This augmentation ensures that the entire bounding box is located within

the image, even when parts of the bounding box extend beyond the original image frame. To ensure consistency across the

network training and testing, all images are then uniformly resized to 512× 512 pixels after the enlargement.165

The input images are normalized to meet the pre-trained ResNet-50 model’s input specifications. For example, the pre-

trained ResNet-50 model requires a RGB image as input, which consists of three dimensions by default. Given that our images

only have one dimension, we replicate the single dimension three times to emulate the three-dimensional structure of RGB

images and to produce pseudo-RGB images.

3.5 Inference process of IceDetectNet170

The structure of the IceDetectNet algorithm is shown in Fig. 3. The input for IceDetectNet (Fig 3 step 1) are the processed

images undergoing the preprocessing steps described in Sect. 3.4. The algorithm uses the ResNet-50 backbone network (He

et al., 2016) to extract image features on a per-pixel scale. After feature extraction, IceDetectNet predicts potential bounding

boxes for individual ice components (Fig. 3 step 2). These predicted bounding boxes contain the location, size, and rotation

angle of the respective ice components. Multiple bounding boxes might be predicted for the same ice component, or some175

predicted bounding boxes may be too large to tightly capture an ice component, while others could be too small, missing some
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parts of an ice component (Fig. 3 step 2). Prior to classification, duplicate bounding boxes are removed (Fig. 3 step 3) by a

feature alignment module (Sect. 3.6). The remaining predicted bounding boxes enclosing the individual ice components are the

input for the classification module (Fig. 3 step 4), which outputs a predicted ice label with a confidence level (Fig. 3 step 5). A

post-processing step follows after classification, which removes duplicate bounding boxes (Fig. 3 step 6) using the Intersection180

over Union (IoU) threshold. The IoU quantifies the overlap between two predicted bounding boxes and is calculated as:

IoU =
Area of overlap
Area of union

(1)

If the IoU between two predicted bounding boxes exceeds a threshold (in our case, IoU > 50 %), the bounding box with the

lower confidence level is discarded. This threshold was set to 50 % in the present study to minimize the number of misclassified

aggregated ice crystals as non-aggregated and vice versa. Previous studies suggested that an IoU threshold within the range of185

50 % to 75 % leads to the best performance (Zhang et al., 2019).

3.6 Training process of IceDetectNet

The training phase of IceDetectNet is a crucial and complex process because it requires a careful balance between reducing

detection errors (Fig. 3 step 2) and classification errors (Fig. 3 step 5), all through a process of loss minimization. The feature

alignment module (Fig. 3 step 3) is trained to reduce the difference between the predicted and hand-labeled bounding boxes.190

If the IoU between a predicted and a hand-labeled bounding box is above 50 %, the prediction is considered correct (Zhang

et al., 2019). On the contrary, an IoU below 50 % indicates an incorrect prediction, resulting in a loss that the training process

then aims to minimize. To reduce the loss, a method called backpropagation is employed. Backpropagation adjusts the model’s

parameters to reduce errors and refines the feature extraction to improve the accuracy of bounding box prediction in step 2. The

primary objective of the feature alignment module is to fine-tune the orientation and positions of bounding boxes, especially195

those with an IoU below 50 %. The images within the refined bounding boxes are then processed by the classification module.

Incorrectly predicted labels contribute to the model’s loss in classification, which is further minimized using backpropagation

as well, leading to improved classification in step 5. Steps 6 and 7 belong to post-processing and are not subject to training.

3.7 Training details

The training details of IceDetectNet and the hyperparameters used during training are described here. To prevent the model200

from memorizing the training data (a problem known as ’overfitting’) and to lower the generalization errors when it is applied

to new unseen data, we introduced transformations to our training images. More specifically, we applied a technique called

data augmentation which performs random flips of the images in horizontal, vertical, and diagonal directions with a 25 %

probability. During the inference, no data augmentation was applied to prevent any distortion in the final output.

The training was executed on a computational system equipped with four RTX 2080 GPUs. A batch size of 64 was chosen205

to optimize computational efficiency and training stability.

The learning rate underwent a structured adaptation during the training process as follows:
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Figure 3. Structure of the IceDetectNet algorithm consisting of predicting potential bounding boxes (step 2), removing duplicate predicted

bounding boxes (step 3), cropping the remaining bounding box for classification (step 4) and predicting the ice crystal categories of each

bounding box (step 5). The yellow and orange dashed lines indicate bounding boxes predicted by the algorithm and their corresponding

labels and confidence intervals (step 5), whereas the solid lines show the hand-labeled bounding boxes (step 3). The individual steps are

described in the main text.

1. Initially, the learning rate was set to 0 and linearly increased to 0.0025 over the initial 500 steps. Here, a ’step’ is defined

as a single iteration in the training process, in which one batch of data is processed to update IceDetectNet’s parameters.

2. After the first 500 steps, the learning rate was kept constant at 0.0025.210

3. A reduction by a factor of 10 was applied at specific epochs: the learning rate was set to 0.00025 from the 64th to the

88th epochs and further reduced to 0.000025 after the 88th epoch. This decremental strategy aimed at refining model

parameters with progressively smaller updates as the training advanced.

To ensure model robustness and prevent overfitting, we employed the early stopping technique (Jabbar and Khan, 2015).

Checkpoints were integrated to retain the best-performing model based on the validation dataset.215
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3.8 Evaluation

To evaluate the performance of IceDetectNet, we used a cross-validation approach (Sect. 3.8.1) and a range of evaluation

metrics (Sect. 3.8.2): overall accuracy, precision, recall, and the confusion matrix, as highlighted in the following sections.

3.8.1 Cross-validation

IceDetectNet was validated by applying a five-fold cross-validation approach, which is a method that minimizes the variance in220

performance estimation while maximizing the use of available data for training (Browne, 2000). Here we randomly partitioned

the dataset into five equally sized sub-samples or ’folds’. Four of the five sub-samples were used for training the model while

the remaining sub-sample was retained as the validation data for testing the model. This process was then repeated five times

(the folds), with each of the five sub-samples used exactly once for validation. Each fold was designed to include images

from every class, thus ensuring that the model was trained and evaluated on a diverse set of ice crystals from all categories.225

This helped to prevent bias in the evaluation of the model’s performance due to an unrepresentative selection of training and

test data (Arlot and Celisse, 2010). The five outcomes from the folds were then averaged to produce a single estimation of

IceDetectNet’s performance.

In future applications, if the performances of the five individual models are similar (performance are evaluated in Sect. 4),

a single model could be selected for use, simplifying the process. Alternatively, the ensemble of five models can be used to230

make the final predictions, increasing reliability. For example, if 3 models predict one ice component as a ’column’ while 2

predict it as a ’plate’, then the component is predicted as a ’column’. The advantage of this method over repeated random sub-

sampling is that all ice crystals are used for both training and validation and each ice crystal is used for validation exactly once.

This method, though computationally expensive, provides a robust evaluation of IceDetectNet’s performance and its ability to

generalize to new, unseen data (Arlot and Celisse, 2010).235

3.8.2 Evaluation Metrics

To assess the performance of IceDetectNet, we employ several metrics that evaluate the model performance with regard to

different aspects. The overall accuracy is defined as the ratio of the number of correct predictions to the total number of

particles as described as follows:

Overall accuracy =
TP + TN

TP + TN + FP + FN
(2)240

Here, TP refers to true positives (correctly predicted positive instances), TN refers to true negatives (correctly predicted

negative instances), FP refers to false positives (incorrectly predicted positive instances), and FN refers to false negatives

(incorrectly predicted negative instances). An overall accuracy of 100 % means that all particles were correctly predicted,

while an overall accuracy of 0 % indicates that all particles were mispredicted. While overall accuracy provides a quick and

straightforward metric to interpret the model performance, it can be misleading when dealing with imbalanced datasets where245
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classes are not equally represented. In such cases, the model may perform well in predicting the dominant classes but struggle

with predicting rare classes.

Precision and recall both measure the accuracy of a deep-learning classification model in predicting positive instances.

Precision is calculated as the ratio of the number of true positive predictions of a specific class to the total number of positive

(true and false) predictions, while recall is defined by the ratio of the number of true positive predictions of a specific class to250

the total number of instances of this class (i.e., including true positive and false negative). They are calculated as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

A high precision score indicates effective identification of a specific class, while a high recall score indicates that the model

excels in identifying instances of a particular class and is less likely to miss relevant instances that belong to the class.255

All of these metrics can be combined and visualized in a so-called confusion matrix. In a confusion matrix, the diagonal,

from top-left to bottom-right, corresponds to correct predictions made by the model, while the elements outside this diagonal

represent misclassifications. The bottom-right cell of the matrix displays the total number of ice crystals and the overall ac-

curacy. The bottom row provides the actual counts per class and their respective per-class precision. Similarly, the rightmost

column presents the predicted counts per class and the associated per-class recall.260

4 Results

4.1 Evaluation of model performance

The evaluation of IceDetectNet differs from traditional deep learning classification algorithms because both detection (Sect. 4.1.1)

and classification (Sect. 4.1.2) steps need to be evaluated. As described in Sect. 3.8.1, we trained five models using a five-fold

cross-validation approach. Four folds were used for training, and the remaining fold was used for validation. A small portion265

of the images for which no bounding boxes were predicted (validation fold in training dataset: 11/3755) were labeled as ’none’

and excluded from the following analysis.

4.1.1 Performance of aggregate detection

The detection performance of IceDetectNet was examined by first evaluating the ability of the algorithm to distinguish between

aggregate and non-aggregate ice. Images with a single bounding box were defined as non-aggregate ice, whereas images with270

multiple bounding boxes were defined as aggregate ice. The aggregate/non-aggregate detection was evaluated by comparing

the number of predicted bounding boxes with the number of hand-labeled bounding boxes for the training dataset (Fig. 4a).
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Hand-labeled and predicted bounding boxes are in good agreement, with an overall accuracy of 92 %, reflecting the ability of

IceDetectNet to correctly classify images as aggregated or non-aggregated ice.

To understand the source of the 8 % misdetected aggregate and non-aggregate ice, we analyzed the number of overdetected275

and underdetected bounding boxes. Here we consider it overdetection when the algorithm predicts multiple bounding boxes for

an ice crystal that is hand-labeled as non-aggregate (i.e. one bounding box) and underdetection when the algorithm predicts one

bounding box for an ice crystal that is hand-labeled as aggregate (i.e. multiple bounding boxes). In absolute numbers, there were

266 instances of overdetection and 63 instances of underdetection (Fig. 4b). In relative terms, 40 % of the predicted aggregates

were hand-labeled as non-aggregates (overdetection), resulting in a recall of 60 % for actual non-aggregates. Conversely, only280

2 % of the predicted non-aggregates were hand-labeled as aggregates (underdetection), indicating a high recall of 98 % for

actual aggregates (Fig. 4c). This shows that while the model tends to overestimate the presence of aggregates, it is highly

effective at identifying actual aggregates. Considering that only 12 % of the training dataset was aggregate ice (as detailed in

Sect. 2), a few mispredictions of non-aggregate ice as aggregate can significantly increase the overdetection. For example, if

2 % of the non-aggregate (66 ice crystals) were misclassified as aggregate, this would lead to a 14.6 % overdetection. Up to285

now, we evaluated how well the predicted categories match the actual categories. As a complement, we now turn our attention

to precision, examining the accuracy of the predictions in terms of correctly identified categories. The precision is 88.7 % for

aggregate (i.e., 88.7 % of the predicted aggregates were hand-labeled as aggregates) and 77.1 % for non-aggregate, consistently

showing the model’s tendency to over-predict the numbers of bounding boxes.

To address the issue of overdetection or underdetection of bounding boxes, it is possible to adjust the IoU threshold in the290

post-processing (as introduced in Sect. 3.2). In the present study, an IoU threshold of 50 % was applied to remove duplicate

bounding boxes (see Fig. 3), but the IoU threshold can be changed based on the relative composition of the ice classes in the

dataset. Generally, when an overdetection problem was identified, a higher IoU threshold could be implemented to reduce the

number of detected bounding boxes, and the opposite adjustment could be made if underdetection was observed. Thus, the IoU

threshold can be used as a tuning parameter to reduce/increase the number of bounding boxes kept after the post-processing.295

4.1.2 Performance of ice classification

The classification performance of IceDetectNet was examined by quantifying the accuracy with which detected components

are categorized into their respective basic habit and microphysical processes classes (following the multi-label classification

scheme detailed in Sect. 2). As discussed in Sect. 3.3, the basic habit of an ice crystal (i.e. image scale) is determined by

the largest bounding box. The presence or absence of an ’aged’ classification is based on the detection of aging signatures300

among all bounding boxes, while aggregation is defined by ice crystals with more than one bounding box. We evaluated the

performance of the five trained models using the cross-validation approach described in Sect. 3.8.1. The overall accuracies

for ice multi-label classification (19 classes), basic habit classification (7 classes), and microphysical process classification (4

classes) are shown in Table 2. The mean overall accuracies range between 78 % (for multi-label classification) and 86 % (for

basic habit classification) and thus indicate good classification performance. Standard deviation values below 1 % demonstrate305

robust results among the five models.
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Figure 4. (a) Histogram of the number of hand-labeled (orange) and model-predicted (brown) bounding boxes (average over five models).

Instances with more than three bounding boxes are combined into a single category and instances with zero detected bounding boxes (11)

are excluded. (b) Histogram with the number of predicted bounding boxes for hand-labeled aggregated (blue) and non-aggregated (orange)

ice crystals. The shaded orange and blue regions denote areas of overdetection and underdetection, respectively. (c) Same as panel (b),

but all bounding boxes larger than one are combined, thereby providing an intuitive visualization of the percentages of overdetection and

underdetection.

To gain further insights into IceDetectNet’s performance in each ice category, we analyzed the confusion matrices (mean of

5 models) for basic habit classification (Fig. 5) and microphysical processes classification (Fig. 6). IceDetectNet achieved an

overall accuracy of 86 % for the basic habit categories (Fig. 5). The confusion matrix shows that the IceDetectNet performed

well for the ice categories that are represented as a large fraction in the dataset, like ’column’ (precision of 90 %, 1978 instances)310

and ’small’ (precision of 93 %, 324 instances). However, IceDetectNet encountered challenges in accurately classifying rare

classes such as ’plate’ (67 %, 47 instances) and ’lollipop’ (77 %, 73 instances). The main source of misclassification for plates

was confusion with ’column’ (7 instances). For the microphysical processes category (Fig. 6, IceDetectNet achieved an overall

accuracy of 82 %. While the model performed well in identifying ’Pristine’ ice crystals (92 %), it showed lower performance

in predicting ’aggregate’ (47 %) and ’aged-aggregate’ (49 %) ice crystals. This might be explained by the imbalanced dataset,315

where ’Pristine’ ice crystals dominated with a total contribution of 66 %. This suggests that balancing the dataset could further

optimize IceDetectNet’s classification performance for ’aggregate’ and ’aged-aggregate’ ice crystals in future iterations. A

closer examination of the misclassified ice crystal images shows that the primary source of error was an underdetection of

the number of bounding boxes. For example, in an image containing two aged columns, only one ’column-aged’ crystal was

detected resulting in mislabeling it as ’aged’ instead of ’aged-aggregate’.320

To investigate the classification performance of IceDetectNet in simpler scenarios, we evaluated the performance on non-

aggregated ice and aggregated ice separately (Table 3). The evaluation on non-aggregated ice provides a benchmark because
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Figure 5. Confusion matrix of the mean performance of the basic habit classification for the training dataset (mean of 5 models). The y-axis

represents predicted values, while the x-axis represents hand-labeled values. Bottom black row: The number of hand-labeled ice crystals

(white) and precision (blue) in each class. The bottom right box shows the overall number of ice crystals (white) and the overall accuracy

(blue). Rightmost black column: The number of ice crystals predicted (white) and recall (blue) in each class. The boxes in the middle (non-

black boxes) evaluate the hand-labeled and predicted labels of the classification. For example, the second box in the first row means that

101.6 ice crystals are predicted as ’column’ but the actual labels of these 101.6 ice crystals are ’columns on capped-columns’ (CPCs). The

percentage in this box represents the ratio of the number of ice crystals in this box (i.e. 101.6) to the total number of hand-labeled ’CPCs’

(i.e. 785).
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Figure 6. Similar confusion matrix as Fig. 5, but for physical processes.
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Table 2. Overall accuracy of the multi-label, basic habit and microphysical processes ice classification. The table displays the overall accuracy

values for each of the five models, along with the mean and standard deviation (std) values (all values are reported in percentages). The

validation set is broken down into ’aggregate’ (agg) and ’non-aggregate’ (non-agg) subsets.

1 2 3 4 5 mean std

Multi-label

All data (19-class) 78.1 78.0 78.3 77.0 79.4 78.2 0.9

Non-agg (10-class) 82.5 81.3 81.6 81.2 83.5 82.0 1.0

Agg (9-class) 46.1 53.7 54.4 47.0 50.5 50.3 3.8

Basic habit

All data (7-class) 86.5 86.5 86.3 85.6 87.2 86.4 0.6

Non-agg (7-class) 89.4 90.0 89.4 88.8 90.7 89.7 0.7

Agg (6-class) 71.7 76.1 72.6 70.7 71.3 72.5 2.1

Microphysical processes

All data (4-class) 81.4 82.0 81.3 80.8 82.6 81.6 0.7

Non-agg (2-class) 85.6 84.0 84.6 84.7 86.2 85.0 0.9

Agg (2-class) 48.9 55.0 56.1 48.3 52.4 52.1 3.5

non-aggregated ice images consist of a single ice component and thus allows us to compare the performance to traditional

deep learning algorithms. When considering only non-aggregated ice crystals, IceDetectNet has an accuracy of 82 % for all

data, 90 % for basic habits, and 85 % for microphysical processes (Table 2). Previous studies using single-label classification325

(Xiao et al., 2019; Jaffeux et al., 2022; Zhang, 2021) have reported overall accuracies above 90 %, which is higher compared to

IceDetectNet for all data (82 %). However, for the multi-label classification, IceDetectNet classifies both basic habits and mi-

crophysical processes. While non-aggregated ice does not have an aggregation process, aging processes are still present. When

one considers solely the basic habit classification, the accuracy of IceDetectNet (90 %) for non-aggregated ice closely aligns

with the results reported in the aforementioned studies. Thus, under the same classification domain, IceDetectNet performs330

competitively with existing classification models and offers additional information regarding microphysical processes.

When shifting our focus to aggregated ice, the inherent complexity of classifying the multiple components of an aggregate

becomes evident by a decreased classification accuracy (Table 2). The accuracy drops to 50 % for multi-label, 72 % for basic

habits, and 52 % for microphysical processes. The reduction in performance between non-aggregate and aggregate ice subsets

was more pronounced for the classification of microphysical processes (85 % to 52 %), compared to the classification of the335

basic habit (90 % to 72 %). This suggests that the reduced performance of IceDetectNet in all-class classification can be

attributed primarily to the challenges in classifying microphysical processes.

4.2 Detection and classification performance on aggregated component scale

In the previous sections, the detection and classification performance of IceDetectNet was evaluated on an image scale. In

this section, our focus shifts from the image scale to the aggregate component scale, specifically to the bounding boxes of340

aggregate ice crystals. To evaluate the detection and classification performance on an aggregate component level, we followed

a structured approach:
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1. Pairing of bounding boxes: For each hand-labeled bounding box of an aggregate, we search for the predicted bounding

box with the highest IoU.

2. Detection performance: The detection was considered correct if the IoU between the paired predicted and the hand-345

labeled bounding box was larger than 0.5, otherwise the detection was considered incorrect.

3. Classification performance: The classification was considered correct if the label of the hand-labeled bounding box

matched the label of the paired predicted bounding box, otherwise it was considered incorrect.

In contrast to the previous sections where the mean performance of all five models was examined, the performance was

evaluated on a single model which was randomly selected (due to the robustness among the model runs). We categorized the350

bounding boxes into ’small’, ’medium’, and ’large’ using the areas of the predicted bounding boxes. The thresholds were set at

the 33 % and 66 % percentiles of all bounding box areas, corresponding to below 32,331 pixels, from 32,331 to 71,275 pixels,

and above 71,275 pixels, respectively. For a more intuitive understanding, these ranges correspond to squares with side lengths

of below 180 pixels, from 180 to 267 pixels, and above 267 pixels, respectively.

When evaluating the detection and classification performance of IceDetectNet at the aggregate component scale for the three355

bounding box size categories (small, medium, large; Fig. 7), we find good detection performance among all size categories with

accuracies ranging between 84 % (small bounding box) and 72 % (large bounding box). The detection performance decreases

for larger bounding box sizes, which might be explained by an increased variability in appearance, texture and scale for larger

bounding boxes. The classification accuracies for correctly detected bounding boxes ranged between 66 % and 71 %, with

medium-sized boxes achieving the highest classification accuracy of 71 %. This suggests that medium boxes may offer an ideal360

balance between detectability and feature richness. Thus, IceDetectNet shows good detection and classification performance

for bounding box sizes down to 662 pixels and up to 294,903 pixels.

In general, the detection performance of IceDetectNet on the aggregate component scale is higher (72 - 84 %) than the

classification performance (66 - 71 %). When combining the detection and classification performances (i.e., detection × classi-

fication), similar overall performances as reported in Table 2 for the aggregate subset (i.e. image scale) are obtained (50 %). For365

example, the accuracy for small bounding boxes was determined to be 54.6 %, derived from the product of 65 % classification

accuracy and 84 % detection accuracy. The higher performance in detection compared to classification suggests that the lower

performance observed in the aggregate subset compared to the non-aggregate subset (as described in Sec. 4.1.2) is primarily

due to misclassifications and not misdetections.

4.3 Generalization ability of IceDetectNet370

The generalization ability of IceDetectNet was evaluated by applying it to an independent test dataset, which was not used

to train the algorithm and was collected during a different season (detailed in Sect. 2). The same evaluation for detection and

classification on the image scale was performed as for the training dataset (Sect. 4.1.1).

The detection performance for aggregates of the test dataset shows an overall accuracy of 84 % with an overdetection error of

26 % and an underdetection error of 8 % (Fig. 8a, b). This corresponds to a 14 % decrease in overdetection and a 6 % increase375
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Figure 7. Sunburst diagrams to evaluate the detection (det) and classification (class) performance for (a) small, (b) medium, and (c) large

bounding boxes sizes. Inner layers show detection results, while outer layers show classification results. The percentages indicate the pro-

portion of bounding boxes in each category that were correctly or incorrectly detected and classified.

in underdetection compared to the training dataset. It is consistent across both the training (as described in Sec. 4.1.1) and

test datasets that overdetection is a larger problem than underdetection. However, the different ice category distribution in the

test dataset, specifically the increase in the aggregate from 12 % in the training dataset to 37.7 % in the test dataset, is likely

responsible for the shift in underdetection and overdetection between the training and test datasets. Thus, when the algorithm

is applied to the test dataset (with a higher fraction of aggregate), the problem of overdetection is reduced but still exists.380

The classification accuracy on the test dataset showed overall accuracies ranging from 67 % (for the ’all data’ category) to

80 % (for the ’basic habits’ category) (see Fig. 8c and Table 3). Compared to the training dataset, the classification performance

decreased. The most significant decrease of 11 %, was observed in the classification of ’all classes’, while the smallest de-

crease was observed in the classification of ’basic habits’ (6 %). The observed decrease in performance between the training

and test datasets is small, especially when considering domain shift, a situation where the data distribution differs between385

the training and test datasets (Stacke et al., 2020). Specifically, the training and test datasets have different compositions of

non-pristine ice crystals, with 71 % in the training set and 94 % in the test set. IceDetectNet’s ability to adapt to different data

compositions and maintain relatively high accuracy indicates the ability of the algorithm to generalize to different dataset char-

acteristics. Within the ’non-aggregate’ subset, IceDetectNet showed good classification performance for ’all classes’ (73 %),

’basic habits’ (86 %), and ’microphysical processes’ (78 %) (as summarized in Table 3). In the ’aggregate’ subset, performance390

levels were lower than in the ’non-aggregate’ subsets (45-65 %). The observed reduction in the aggregate subset is mainly

due to domain shift, reflecting the difference in aggregate ice fraction between the training (12 %) and test (38 %) datasets.

The test dataset, with a higher proportion of aggregated ice, presented more complexity and variability. Aggregates, with their

multiple bounding boxes and variable structures, are inherently more difficult to classify than non-aggregates. This increased
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Figure 8. Panel (a) and (b) show the same as Fig. 4 (b) and (c), but for the test dataset. Panel (c) shows the overall accuracy of IceDetectNet

for the training dataset (blue) and test dataset (grey) in classifying basic habits, microphysical processes, and all-classes.

complexity in the test set likely contributed to the drop in performance, highlighting the challenges posed by domain shifts in395

the data. Consistently low standard deviation values (below 3 %) were observed across all models in all data subsets, which

indicate the stable and reproducible performance of IceDetectNet. These standard deviation values represent the variability in

classification performance among different runs or configurations of the IceDetectNet model.

There are still opportunities to improve the generalization ability of IceDetectNet, particularly in the area of accurate detec-

tion and classification of aggregated ice crystals. In the case of imbalanced datasets, balancing strategies such as oversampling400

or undersampling techniques can be considered. Enriching the training dataset with a more comprehensive and diverse collec-

tion of ice crystal data will further improve the robustness and generalization capabilities of the algorithm. However, enriching

training data is always a time-consuming process, and thus addressing the time-consuming manual labeling of bounding boxes

is an important avenue for future research. New techniques, including contrastive learning (Le-Khac et al., 2020) and unsuper-

vised learning algorithms, should be investigated to reduce the need for extensive manual labeling. Furthermore, fine-tuning405

methods can be explored to improve the model performance when applied to unseen datasets. Fine-tuning involves adapting

a pre-trained model (i.e. IceDetectNet) to a new dataset, often resulting in improved performance with less data (Tajbakhsh

et al., 2016). This approach has been successful in a variety of domains, increasing the adaptability and efficiency of models to

handle new, diverse datasets from different locations or different instruments.

5 Conclusion410

In this study we introduced IceDetectNet, a novel rotated object detection algorithm that is able to classify ice crystals not

only on an image scale but down to the aggregate component scale. The algorithm was used in combination with a multi-label
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Table 3. Overall accuracy of the multi-label, basic habit and microphysical processes ice classification. The table displays the overall accuracy

values for each of the five models, along with the mean and standard deviation (std) values (all values are reported in percentages). The test

dataset is broken down into ’aggregate’ and ’non-aggregate’ subsets.

1 2 3 4 5 mean std

Multi-label

All data (14-class) 67.52 66.71 67.18 67.54 68.32 67.45 0.59

Non-agg (8-class) 72.80 73.31 71.21 74.46 73.15 72.99 1.17

Agg (6-class) 46.33 50.08 53.12 47.65 51.15 49.67 2.72

Basic habit

All data (7-class) 81.55 79.94 79.64 80.67 81.26 80.61 0.82

Non-agg (5-class) 86.39 85.93 85.42 84.84 86.68 85.85 0.74

Agg (5-class) 64.74 69.09 65.34 69.61 71.65 68.09 2.94

Microphysical processes

All data (4-class) 72.80 72.27 72.50 72.87 73.41 72.77 0.43

Non-agg (2-class) 78.45 78.03 77.39 78.07 77.27 77.84 0.50

Agg (2-class) 45.18 51.12 50.91 46.55 48.44 48.44 2.62

classification scheme, which assigns both a basic habit and microphysical processes to each ice component. The algorithm was

trained and tested on two independent holographic ice crystals datasets, which were collected during the NASCENT campaign

in Ny-Alesund, Svalbard.415

The performance of IceDetectNet was evaluated in terms of its detection and classification performance, both on the image

and aggregate component scale. At the image scale, IceDetectNet showed a good detection performance, correctly classifying

92 % of the ice crystals into the aggregate and non-aggregate classes. In terms of classification performance, it achieved an

overall accuracy of 86 % for basic habits and 81 % for microphysical processes. Moreover, IceDetectNet achieved comparable

classification accuracies as traditional deep learning algorithms on the non-aggregate subset, while the classification accuracies420

were lower for the aggregate subset. On the component scale, IceDetectNet showed good detection and classification perfor-

mance across all bounding box sizes, indicating its ability to accurately classify components of aggregated ice crystals down

to 662 pixels.

The generalization ability of IceDetectNet was examined on an independent test dataset that was collected during a differ-

ent season. IceDetectNet showed good detection performance with an overall accuracy of 84 %. Although the classification425

accuracy decreased compared to the training dataset, the overall accuracies remained satisfactory for basic habits (81 %) and

microphysical processes (72 %) classification. The aggregate subset showed lower performance compared to the non-aggregate

subset, possibly due to imbalances in the dataset. This highlights the potential to further optimize the generalization ability of

IceDetectNet through dataset balancing techniques, enlargement of the training dataset or fine-tuning.

IceDetectNet provides detailed shape information of the basic habit and microphysical processes down to the aggregate430

component scale of ice crystals and thus has the potential to improve the estimates of microphysical properties such as riming

rate and ice water content. Due to the good generalization ability of IceDetectNet, we expect that IceDetectNet can also be
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Figure A1. Overview of the graphical user interface for hand-labeling on hub.ango.ai’s platform. Users can draw and adjust bounding boxes

around components of aggregated ice and assign labels.

applied to other cloud imaging probes in connection with fine-tuning. This will help to better understand the radiative properties

of clouds and the microphysical processes leading to precipitation formation.

Code and data availability. The code and data of this study are available upon request.435

Appendix A: Hand-labeling platform

An essential component of training the rotated object detection algorithm is the hand-labeling of bounding boxes and ice

crystals, which was done through the hand-labeling platform created by (AngoAI, 2022). The platform offers a graphical user

interface to draw bounding boxes, adjust their size and rotation, and assign labels (Fig. A1).

Author contributions. HZ and XL collaborated closely to design and develop the algorithm architecture, and they conducted all the runs.440

FR and JH actively participated in discussions and gave suggestions regarding the development of the algorithm. JP collected the training

and test data with the assistance of ROD and JH and conducted the single-label hand-labeling on the image scale. Both HZ and XL labeled

the bounding boxes for the training and test data. Subsequently, HZ re-labeled the train and test data based on the proposed multi-label
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classification scheme. The manuscript was written by HZ, with valuable input and discussions from FR, JH, ROD and XL. The initial idea
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