
Authors’ comments to Anonymous Referee #2 

We would like to thank the peer reviewer for the thorough review of our manuscript 
and the insightful feedback. These comments have significantly improved the quality 
of our work. In the following sections, we present the reviewer's comments (in black), 
our responses (in red), and the changes made in the revised manuscript (in blue). 
Please note that all line numbers in our responses correspond to those in the revised 
manuscript. 

 

 

Overall comments: 

The manuscript “IceDetectNet: A rotated object detection algorithm for classifying 
components of aggregated ice crystals with a multi-label classification scheme” by 
Zhang et al. presents a new deep learning algorithm that classifies each component 
of aggregated ice crystals based on their basic habit and physical processes. This 
algorithm enables a more detailed classification of the ice crystals than conventional 
algorithms and thus provides an innovative and improved tool for identifying 
atmospheric ice crystals. The algorithm and its evaluation are well described, 
individual steps are listed in detail, which makes the content of the manuscript very 
comprehensible and easy to follow. I recommend this paper for publication after 
major revision. 

1. - L. 75: “Following this initial categorization, each ice crystal was classified 
into one of seven basic habits: ’column’, ’plate’, ’lollipop’ (Pasquier et al., 
2022a), ’Columns on Capped-Columns’ (CPC, Pasquier et al. 
2023), ’irregular’, ’frozen droplets’, and ’small’.“ Can the authors explain and 
justify why this ice particle classification is used? What about other ice 
crystals occurring in the atmosphere, e.g., needles, droxtals, rosettes, …? 
Why are the ice particles classified in specific (e.g. lollipop) and unspecific 
shapes (e.g. irregular)? This shape categorization results in a strong 
unbalanced training data set. I see, the authors consider this imbalance in 
their analyses. However, a better classification of particles will counteract the 
imbalance and might increase the classification performance of IceDetectNet 
and its applicability to other independent test datasets. 

We agree with the reviewer that a clearer justification for the classes used in 
this study needs to be provided. Therefore, and in line with the same concern 
raised by reviewer 1, we have now clearly stated in the main text: 



L83-85: 

“Our seven basic habit categories were determined by their presence and 
distinct shape features observed in our dataset collected in Arctic mixed-
phase clouds in NyAlesund. These basic habit classes are based on the 
categories used in Pasquier et al., 2022b as we used the same dataset.” 

While we acknowledge that the 'CPC' and 'lollipop' categories may appear to 
be more specialized, their inclusion was intentional and aimed at 
understanding the microphysical processes responsible for their creation 
(Pasquier et al. 2023). This allows IceDetectNet to maintain high performance 
on well-defined categories, while still providing a mechanism to classify ice 
crystals that do not fit nicely into these commonly used shapes. 

We understand the critical role that a wider range of ice crystal habits, such as 
needles, play in mixed-phase clouds. The absence of these habits in our 
dataset limits the inclusion of these habits in the classification scheme and in 
the training and validation process of IceDetectNet. In our extended 
discussion (see below), we highlight the potential of fine-tuning IceDetectNet 
to integrate ice crystal habits that were not part of the original training set.  

L94-99: 

“For a more detailed discussion of the categorization criteria, we refer to 
Appendix B. However, due to data limitations, our dataset does not capture 
every possible basic ice habit, such as needles and rosettes. This limitation is 
acknowledged and further discussed in Sect.5 where we look at potential 
extensions to IceDetectNet. As new data containing additional ice habits 
become available, IceDetectNet can be updated as it is designed to 
incorporate these new habits through fine-tuning, ensuring the continued 
evolution of the model.” 

L462-468: 

“As the current dataset used for the training of IceDetectNet does not include 
some basic habits such as needles and rosettes, we plan to adapt 
IceDetectNet to include these categories once additional datasets containing 
these habits are available. ” 

Regarding the applicability of IceDetectNet, on the validation subset, 
IceDetectNet achieved 92% detection accuracy and classified ice crystals with 
86% accuracy for basic habits and 81% accuracy for microphysical 



processes. Also, it performed comparably to traditional algorithms for non-
aggregates. These could state that IceDetectNet has good performance.  

2. - While the evaluation of the model performance based on the training data 
set is extensive (Sect. 4.1-4.2), the application of the IceDetectNet algorithm 
to the test data set is far too short. A more detailed analysis of the 
generalization ability of IceDetectNet would be desirable. How accurate is the 
basic habit classification and physical process classification for the test data 
set? Why do the individual values of evaluation parameters change when the 
test data set is used instead of the training data set? What are the reasons? 
Where are (no) challenges, issues? What conclusions can the authors draw 
from the evaluation of IceDetectNet using the independent test dataset? How 
well could the algorithm be applied to other test data sets from different 
seasons, locations, … ? Do the authors expect any limitations here? 

Thanks for pointing this out and we agree that we did not discuss the test data 
set thoroughly. Also, test dataset sounds a bit confusing. With this in mind, we 
have renamed the test dataset to generalization dataset, explicitly described 
the division of the training set and updated the main text accordingly. 

To clarify, here we use two different datasets: a training dataset, and a 
generalization dataset, each of which serves different purposes. 

1. Training and validation subsets: This subset allows us to perform cross-
validation and ensure that the model performs consistently within the known 
parameters of the dataset. 

2. Generalization dataset: The generalization dataset is separate from the 
training process. It is designed to evaluate the model's ability to generalize 
across different environmental conditions, especially those not represented in 
the training dataset. This dataset was intentionally collected under 
significantly different conditions (from -23 to -15°C) to challenge the model 
with ice particle types that may not be present in the training data. We 
acknowledge that this dataset does not include classes such as 'lollipop' or 
'CPC' due to their absence under the specific conditions and seasons of 
collection. 

L100-106: 

“The dataset collected on November 11, 2019 (Pasquier et al., 2022b), 
hereafter training dataset,  was used to train IceDetectNet. During the training 
it was divided into a training subset (comprising 80% of the data) and a 
validation subset (made up of the remaining 20%), using a cross-validation 



method (detailed introduction in Sect. 3.8.1). This validation subset serves a 
similar purpose as the traditional test sets used in other studies (Jaffeux et al., 
2022; Xiao et al., 2019; Touloupas et al., 2020), providing an initial evaluation 
of the model's performance under known conditions. On the other hand, the 
generalization dataset was collected on a different date, April 1, 2020 
(Pasquier et al., 2022b) which is not used during training but to evaluate the 
generalization abilities of IceDetectNet.” 
Moreover, we have now added the confusion matrix plots for the 
generalization dataset and added the analysis on the plots as follows: 

L433-456: 
“To gain further insights into IceDetectNet's performance in each ice category, 
here we analyzed the confusion matrices (mean of 5 models) for basic habit 
classification (Fig.9) and microphysical processes classification (Fig.10) for 
the generalization dataset as well.  

IceDetectNet achieved an overall accuracy of 81% for the basic habit 
categories (Fig.9) The confusion matrix shows that IceDetectNet still 
performed better for the ice categories that comprise a large fraction of the 
dataset, like 'small' (precision of 90%). However, among these, 'column' 
classification performance had a large performance drop (18% decrease in 
precision compared to the training dataset), and its two main misprediction 
sources were 'irregular' and 'plate', which almost represent all the 
mispredictions (29%). This could be due to the data distribution shift from 
'column' to 'plate'. Under the general decrease trend among all categories, 
'irregular' surprisingly has a 10% increase in precision. The main 
misprediction of ‘irregular’ comes from 'column' in both the training dataset 
and generalization data, which could be the reason that IceDetectNet learned 
many column features in the training dataset and thus distributed higher 
weights on these column features. While the number of ‘column’ is much less 
in the generalization dataset and thus leads to better performance in 
classifying ‘irregular’. For the missing categories like 'lollipop' and 'CPC' that 
had zero actual occurrences, IceDetectNet still predicted 113 ice as 'lollipop' 
and 50 as 'CPC', with most misclassifications as 'irregular'. This problem is 
likely due to the model's handling of sparse data and its tendency to fit 
'irregular' into these less common categories, since 'irregular' learned the 
most complex features since any unrecognizable shape is 'irregular'. 

 



For the microphysical processes category (Fig.10), IceDetectNet achieved an 
overall accuracy of 73% (with a 9% drop compared to the training dataset). 
The model still performed well in identifying 'pristine' ice crystals (82%). In 
contrast, it shows a better performance in predicting 'aggregate' (17% higher 
than in the training dataset) and 'aged-aggregate' (7% higher than in the 
training dataset) ice crystals. This could be due to the changes in the data 
distribution, especially the changes in the aggregate fraction from 12% in the 
training dataset to 37.7% in the generalization dataset, which further 
emphasizes the importance of the balance of the dataset. After checking the 
main source of misprediction, we can see that underdetection still plays an 
important role, for example, the main source of misprediction of 'aggregate' is 
'pristine', which is a typical misprediction problem.” 

 



Figure 1 Similar confusion matrix as Fig. 5 in the manuscript, but for generalization dataset. Class ’CPC’ and ’Lollipop’ 
are missing in the dataset and thus are 0 in its corresponding column. 

 

Figure 2 Similar confusion matrix as Fig. 6 in the manuscript, but for generalization dataset 

3. - L. 38: “generalization abilities“: This term is too broad to be understandable. 
Although this term will be explained later it would be useful to use a more 
specific formulation here. 

Thanks for pointing this out. We have revised the sentence to make 
"generalization abilities" clearer. Specifically, we have added a description that 
emphasizes the dependence of an algorithm's performance on the 
characteristics of the training dataset and the subsequent need for threshold 
adjustments when encountering new datasets. 

L41-45: 



“Furthermore, these algorithms demonstrated limitations in their ability to 
perform effectively on different datasets, as their classification performance 
was strongly influenced by the characteristics of the training dataset (Bishop 
and Nasrabadi, 2006; Goodfellow et al., 2016), which is defined as the 
generalization ability of the models. This dependency requires significant 
adjustments to the optimal thresholds when these algorithms are applied to 
new, unseen datasets.” 

4. - L.34: Square area of the image, particle maximum dimension, and area ratio 
do not classify the shape of ice crystals, they define the size of ice crystals. 
Please correct. 

Thanks for catching this, we have now rephrased this to:  

L36-38: 
“Early ice crystal classification techniques used simple features like edge 
complexity (Cunningham, 1978), circular deficiency (Rahman et al., 1981), the 
surface area and perimeter (Duroure et al., 1994), the complexity (combined 
several geometric features such as particle area and area ratio (Schmitt and 
Heymsfield, 2014) to classify the shape of ice crystals,” 

5. - L. 85: Please provide more information about the training and test data set 
(location, meteorological conditions, ...). How representative are both data 
sets for the occurrence of generally possible ice particles in the atmosphere 
(in all seasons and locations)? 

The detailed location information and meteorological conditions are included 
in Pasquier et al., 2022b. We also briefly introduced the information in: 

Line 118-122: 

“The difference between the training and generalization datasets is an 
example of the natural variability of field observations. In our case, the two 
datasets were collected during different seasons, resulting in variations in the 
environmental conditions. The training dataset was collected in the 
temperature range from -8 to -3 ℃ (mostly in the column regime) while the 
generalization dataset was collected between -23 and -15℃ (mostly in the 
plate regime) (Pasquier et al., 2022b) These differences allow us to assess 
the generalization ability of IceDetectNet and to examine its performance in 
diverse environmental conditions.” 

 Regarding the representativeness of the data, our seven basic habit 
categories were determined by their presence and distinct shape features 



observed in our dataset collected in Arctic mixed-phase clouds in NyAlesund, 
which is representative of these measurements conducted in NyAlesund 
(Pasquier et al., 2022b) but do not capture the full range of conditions. Also, to 
clarify, the main goal of this paper is to introduce a novel technique 
(IceDetectNet) that could classify ice crystal components.  

6. - L. 156: “Every bounding box was visually classified in an ice category 
following the multi-label classification scheme”. In Fig. 1, some ice particles of 
different categories look similar. How does a visual, i.e., subjective, 
classification scheme influence the training of the data set? How is it decided 
that an ice particle that could apparently fit into two classes is assigned to one 
class? 

Thank you for your question about our classification method. In our study, 
visual classification was used as a first step to categorize ice particles based 
on observable features. We realized that this method involves a degree of 
subjectivity that could potentially affect the consistency of the training dataset 
and, consequently, the performance of the model. Thus, we added detailed 
classification guidelines to ensure consistency across categorizations. These 
guidelines include specific visual indicators for each category. Details are 
provided in ‘Appendix B: Detailed criteria for ice crystal classification’ 
which explains the criteria for defining each category.  Also, we have 
conducted several rounds of review where misclassified ice particles are 
classified and relabeled to ensure accuracy and consistency. However, we 
acknowledge that people can never be perfect but that the training dataset will 
improve as more data is incorporated. Comparing the difference between the 
first round of hand-labeling and the label after reviews, we estimate the 
misclassification to be around 5%. 

L502-523: 

Appendix B: Detailed criteria for ice crystal classification  

The classification of ice crystals into their respective basic habits and 
microphysical processes is a challenging task that requires a set of rules to 
ensure consistency and accuracy across the dataset. Here we describe the 
criteria used for the multi-label classification of ice crystals. We randomly 
select several images from each category as examples (see Fig. B2) and 
present the process of how we hand-label an ice crystal (see Fig. B1).  

 



The classification process begins by using human judgment to determine 
whether the ice particle is an aggregate that contains more than one 
component. If an ice crystal is not aggregated, the classification process 
proceeds directly with the classification of the basic habit. For aggregated 
crystals, the process differs between training and evaluation of IceDetectNet. 
In training, each component is manually located with a bounding box (i.e. 
smallest rectangle box) around the component and these boxes are then 
classified. In multi-label classification, however, only the largest visually 
identified component of the aggregate will be classified without drawing a 
bounding box. 

The next step is to classify the basic habits of the ice crystals/components. If 
the basic habit is not recognizable (as defined in Table,1), the size of the 
ice/component is assessed by eye. Small crystals are classified as 'small' and 
all others as 'irregular-aged'. If the basic habit is recognizable, we classify 
based on shape. Special shapes, like 'lollipop-aged' for lollipop-like crystals or 
'frozen droplets' for those with droplet features, are classified first. 
Rectangular shapes with multiple branches at two sides (maximum dimension 
side) are labeled 'CPC-aged,' and others as 'column.' Hexagonal crystals are 
classified by aspect ratio: normally, a high ratio indicates a 'column,' and if a 
lower one with clear hexagonal patterns is a 'plate', otherwise, a ‘column’ 
again. Crystals/components that don’t fit these categories are considered 
'irregular-aged'. 

Once the basic habit is determined, the appearance of the edges of the 
ice/component determines whether the ice/component is aged or not. As 
mentioned earlier (see section. 2) 'irregular', 'CPC', and 'lollipop-aged' are 
aged by default, while small is 'pristine' by definition. So we only need to 
decide if 'column', 'plate' and 'frozen drops' are aged or not. Usually, when an 
ice/component is aged, it has some tiny bumps on the edges. 



 

Figure 3 A randomly selected sample of ice crystal images from each category 

 



 

               Figure 4 The process of classifying ice crystals 

 

7. - L. 162: “The initial image needs to be enlarged by 15 %”. What is the 
reference? Area? Length, width? 

Thank you for your comment about the enlargement of the original image. To 
clarify, the enlargement applies to both the length and width of the image, 
each increased by 15%. We refined the original sentence as follows: 

L182-184: 

“Before the image is fed into IceDetectNet, the initial image is enlarged by 
15% (in both length and width) to ensure full coverage of bounding box 
drawing and maintain the aspect ratio (see input in Fig.3) by adding black 
pixels (pixel values = 1) around the borders.” 

8. - L. 165: “All images are then uniformly resized to 512x512 pixels.” How this is 
done? 

Thank you for your question regarding the image resizing process described 
in our manuscript.  

After the initial cropping to a square format, the images are then resized to a 
uniform dimension of 512x512 pixels. This resizing is done using the PyTorch 
library's resize function, which uses bilinear interpolation. Bilinear interpolation 
is a widely used technique in image processing that calculates the output pixel 



value in the resized image as a weighted average of the pixels in the nearest 
2x2 neighborhood in the original image. This method is particularly effective 
for scaling images as it helps to preserve the smoothness and detail of the 
original image while minimizing potential artifacts such as pixelation or loss of 
fine detail. By uniformly resizing the images to 512x512 pixels, we ensure a 
consistent input size for the neural network, which is a standard practice in 
deep learning to maintain uniformity of the input layer and optimize 
computational efficiency. This consistency is also critical for batch processing 
during model training and inference. 

In response to your question, we rephrased: 

Line 185-186: 
“To ensure consistency across the network training and testing, all images are 
then uniformly resized to 512 × 512 pixels by using bilinear interpolation after 
the enlargement.” 

9. - L. 168: “We replicate the single dimension three times to emulate the three-
dimensional structure of RGB images”. I understand why the authors are 
doing this. However, how do results change, if zero-arrays are used in the 
second and third dimension? Won’t a triple replication as the authors do lead 
to a loss of contrast in the resulting RGB image? 

This is a good point, in our methodology, the replication of the single 
dimension across the three channels of an RGB image is designed to fully 
utilize pre-trained models that inherently expect RGB input. Using zero arrays 
for the second and third dimensions, as opposed to replication, would 
significantly alter the structure of the input. While this approach preserves the 
original data in one channel, it introduces a complete lack of information in the 
other two, which could lead to suboptimal use of the capabilities of the pre-
trained network, as these models are tuned to detect and interpret 
correlations and patterns across all three channels. 

Regarding the concern about loss of contrast, it's important to distinguish 
between the perceptual contrast in the visual representation and the contrast 
relevant to a model's learning process. Channel replication maintains the 
same relative contrast between pixels as in the original single-channel image. 
Although this may appear to result in a loss of contrast in the conventional 
sense (since all channels are identical, resulting in a grey-scale image when 
viewed), for the model the informational contrast between different regions of 
the image remains intact and actionable. 



10. - Fig. 3: Why do duplicate bounding boxes have to be removed in step 6, 
when the duplicate bounding boxes should have already been removed in 
step 3? 

Good catch, we need to remove the duplicate bounding boxes in two steps to 
ensure accuracy and reduce redundancy throughout the object detection 
process at the same time. Specifically, in step 3, we address potential 
duplicate bounding boxes that arise during the training process. At each ice 
component position, multiple bounding boxes will be predicted. During this 
phase, the predicted bounding boxes are matched to the hand-labeled 
bounding boxes based on their Intersection over Union (IoU) values. If the IoU 
of a bounding box with the hand-labeled bounding box exceeds a predefined 
threshold (50%), it is considered a match, and the training target is adjusted to 
match the hand-labeled bounding box. This step may result in multiple 
bounding boxes at a single location matching one hand-labeled bounding box, 
resulting in multiple bounding boxes exceeding the IoU threshold. 

A further refinement step is required in step 6. At this point, we perform a 
comparison among all predicted bounding boxes instead of with hand-labelled 
bounding boxes. If two predicted bounding boxes have an IoU over 50%, then 
only the precited bounding box with the higher confidence level of 
classification will be kept. This additional filtering step is critical to improving 
the accuracy of our object detection algorithm, ensuring that each detected 
object is represented by a single, most likely bounding box. 

By implementing this two-step approach, we significantly reduce the likelihood 
of duplicate detections, thereby improving the accuracy and reliability of our 
model's predictions. We appreciate your attention to this detail and hope this 
explanation and the following rephrase clarifies the logic behind our 
methodology. 

Rephrased:  

L1201-204: 

“After classification, a post-processing step is performed to further remove 
duplicate bounding boxes (Fig.3 step 6) by comparing all predicted bounding 
boxes instead of hand-labeled bounding boxes using the Intersection over 
Union (IoU) threshold and the confidence level of classification.” 

11. - L. 208-213: Can the authors briefly explain why the learning rate and epochs 
are chosen in this way? 



We have chosen to start the training with a learning rate of 0, increasing 
linearly to 0.0025 over the first 500 steps, which is a technique (Gotmare et al. 
2018) known as learning rate warm-up. This approach helps to stabilize the 
training of the model early on and reduces the risk of divergent behavior by 
gradually scaling the parameter updates. This method is particularly useful for 
complex models such as IceDetectNet or datasets where abrupt, significant 
adjustments early in training can lead to instability. 

At the 500-step mark, the learning rate stabilizes at 0.0025. This steady phase 
allows the model to converge to a potentially good solution space with 
consistent update sizes. The choice of 0.0025 is a balance between learning 
rates that are too slow (where the model would take an excessive number of 
iterations to converge) and too fast (where the model might overshoot optimal 
solutions). 

The subsequent reduction of the learning rate at predetermined epochs is a 
strategy known as learning rate annealing or decay. This method is crucial for 
fine-tuning the model. As training progresses and the model approaches 
optimal performance, smaller updates become necessary to refine and fine-
tune the model parameters, preventing overshooting and facilitating 
convergence to a more accurate solution. The specific epochs for reduction - 
64th and 88th - are chosen based on empirical evidence and the particular 
training dynamics of IceDetectNet, where these points mark phases of training 
where further reduction of the learning rate helps to stabilize and refine the 
learning process. 

In summary, the structured progression from a warm-up phase to a constant 
learning rate, followed by strategic reductions, is designed to lead to optimal 
performance while avoiding common pitfalls such as getting trapped in local 
minima or experiencing erratic parameter updates. These decisions (i.e. 
learning rate, epoch) are often empirical, influenced by the model's response 
to training, and aim to achieve a fine balance that promotes effective learning 
throughout the training process. 

12. - Equation 2: What are correctly predicted positive and negative instances 
when ice crystal classes are predicted? 

Thanks for catching this. We agree that this was confusing so have rephrased 
this to remove positive and negative instances completely and made the 
whole paper consistent. See the updated evaluation metrics subsubsection: 

L259-282: 



3.8.2 Evaluation Metrics 

To assess the performance of IceDetectNet, we employ several metrics that 
evaluate the model performance with regard to different aspects, including 
overall accuracy, precision, recall, confusion matrix and F1 score. The overall 
accuracy is defined as the ratio of the number of correct predictions to the 
total number of particles (Goodfellow et al., 2016). An overall accuracy of 
100% means that, for example, all ice particles were correctly predicted, while 
an overall accuracy of 0% indicates that all particles were mispredicted. While 
overall accuracy provides a quick and straightforward metric to interpret the 
model performance, it can be misleading when dealing with imbalanced 
datasets where classes are not equally represented. In such cases, the model 
may perform well in predicting the dominant classes but struggle with 
predicting rare classes. Precision and recall both measure the accuracy of a 
deep-learning classification model in predicting a single category from two 
perspectives. Precision is calculated as the ratio of the number of correct 
predictions of a specific class to the total number of predictions (Goodfellow et 
al., 2016), while recall is defined by the ratio of the number of correct 
predictions of a specific class to the total number of this class (Goodfellow et 
al., 2016). A high precision score indicates effective identification of a specific 
class, while a high recall score indicates that the model excels in identifying 
instances of a particular class and is less likely to miss relevant instances that 
belong to the class. All of these metrics can be combined and visualized in a 
so-called confusion matrix (Goodfellow et al., 2016). In a confusion matrix, the 
diagonal, from top-left to bottom-right, corresponds to correct predictions 
made by the model, while the elements outside this diagonal represent 
misclassifications. The bottom-right cell of the matrix displays the total number 
of ice crystals and the overall accuracy. The bottom row provides the actual 
counts per class and their respective per-class precision. Similarly, the 
rightmost column presents the predicted counts per class and the associated 
per-class recall. The F1 score is a harmonized metric that combines precision 
and recall, providing a balanced measure of a model's performance, 
particularly in situations where the balance between precision and recall is 
critical (Goodfellow et al., 2016). This score reaches its best value at 1 
(indicating perfect precision and recall) and its worst value at 0. In the context 
of IceDetectNet, a high F1 score would indicate not only that the model 
accurately identifies ice particles (high precision), but also that it successfully 
detects the majority of actual ice particles (high recall), making it a robust 



metric for evaluating model performance across different classes, especially 
in the presence of imbalanced datasets. 
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