
We thank the referees for the obvious time and care they put into their reviews, which helped us
to revise the manuscript with improved focus and clarity. We have addressed all of the referee
comments as described below. The reviewer comments are shown in bold font, followed by our
response in normal font.

Anonymous Referee #1
This is an interesting study showing how sparse sampling may affect trends and monthly
means of ozone in the troposphere. We all have to live with the limitations of our
observing system. This study explicitly shows some of them, and also gives some ideas
about possible improvements, by using additional parameters, or additional
observations at suitable times. All of this is scientifically interesting and I commend the
authors for a well written and well illustrated paper. Unfortunately, we also know that
many observing systems are controlled by factors much different from the statistical
properties of the observed atmospheric property, e.g. ozone. So while the study is very
good and interesting, I wonder how much change, e.g. in ozone sounding frequency it
could, or should, generate. Hopefully not a reduction.

Apart from this more general question, I don't really have any detailed comments. I think
the authors have done a very good job, probably with a few iterations.

We thank the reviewer for the positive feedback. In this study we aim to do our best to convince
the readers that reliable ozone trend assessment should be based on an adequate sampling
rate (in most cases this is not met), and that increasing the sampling frequency is as important
as maintaining continuous records and expanding observational networks. To better address
this comment, we have replaced Figure 6 in the submitted version with a more elucidated
demonstration (it is the same analysis, but is shown in a different way, i.e., based on
fundamental statistical metrics, such as statistical power/type II error; and to avoid introducing
an additional concept, such as logistic regression). We consider this to be a powerful overview
of the challenges associated with a low sampling rate, and clearly emphasizes that a regular
sampling frequency of 3 samples/week is a desirable (minimal) requirement.

The discussion associated with the new Figure 6 is added as follows (the obsolete version of
Figure 6 along with the relevant discussion is relegated to the supplemental material):

To further demonstrate the challenges with a low sampling rate, we aim to quantify the
improvement of sampling bias by increasing the number of samples per month (Strategy B in
Table 2). We evaluate the sampling bias at two stages. The first is to investigate the statistical
power at different sampling frequencies (the likelihood of detecting a trend from subsamples,
based on the fact that a true trend is observed in the full MLO record). At the second stage, we
define the acceptable rate as how many random samples produce a trend that falls within ±10%
of the truth (after excluding the samples which fail to detect the signal at the first stage). With
this approach we are able to explicitly quantify the percentages of samples that can, (1) detect
the signal, and, (2) produce an accurate estimate.



Figure 6 shows the full ranges of individual sampling bias and variability for 2, 4, 8, 12, 16 and
20 samples per month, along with the resulting statistical power and acceptable rate. A
dogmatic approach to comparing trends is based on the intersection of uncertainty ranges; two
trends are deemed as having no “significant difference” if their confidence intervals overlap.
Figure 6 clearly highlights that this dichotomy is simply unsatisfactory: despite the subsampled
uncertainty estimates intersecting with the true range, there is no justification for one to
conclude that there is no sampling difference between the results for 4 and 12 samples per
month. For 12 samples per month, 69.7% of the samples yielded a trend with the 2-sigma
interval greater than zero. The acceptable rate indicates that 53.3% of the samples were able to
detect the trend within ±10% of the true value. In contrast, a strategy of 4 samples per month
yielded a low statistical power of 40.1%, and only 9.7% of the samples could detect the trend
accurately. A strategy of just 2 samples per month yielded an acceptable rate of zero because
the subsamples either severely overestimated the trend, or were not able to detect the trend.

It should be noted that statistical power is heavily affected by the absolute magnitude of the
trend and sigma values, so we also considered other scenarios. Figure S10 shows: (a) when a
stronger signal and a lower sigma are present (e.g. SNR>5), a high statistical power (99.9%)
can be achieved at a lower sampling rate; and (b) when a similar signal is present, a lower
sigma uncertainty can also enhance the statistical power (from 40.1% to 73.2%). Nevertheless,
the acceptable rate is still far from ideal for low sampling rates, even if the trend and SNR are
strong. A further detailed analysis of Strategy B is provided in the Supplementary Material
(beyond the selected frequencies in Figure 6). Overall, based on an extensive evaluation, we
conclude that a minimal sampling rate of either 3 regular samples per week (Strategy A) or 12
random samples per month (Strategy B) is required for the trend statistics to be robust against
the sampling impact.

We also added a summary at the beginning of the Conclusions Section:
Since the late 1980s, the challenges of quantifying global or regional-scale ozone climatologies
and trends from sparsely sampled ozone profiles have been regularly revisited (Prinn, 1988;
Logan 1999; Cooper et al., 2010; Saunois et al., 2012; Chang et al., 2020). While the great
majority of attention has been paid to maintaining long-term operations or expanding
observational networks, scant effort has been devoted to increasing the regular sampling rate.
The under-appreciation of high frequency sampling might be due to a common assumption that
the impact of sampling bias (along with meteorological influence) can be neutralized once the
time series is sufficiently long (typically 20 or 30 years). It should be noted that the larger the
data variability, the longer the data length required to detect a given trend (Weatherhead et al.,
1998; Fischer et al., 2011). This paper shows that a low sampling frequency generally results in
an unexpectedly larger uncertainty, which leads to suppressed statistical power and requires a
much longer time period (e.g. persistence for 40 years in some cases) for free tropospheric
ozone trend detection. In conclusion, we found that a regular sampling frequency of at least 3
samples per week is required to avoid most of the impact from low sampling rates.



Figure 6. Statistical power and accuracy for trend detection: This figure illustrates how trend
values can become noisy and uncertain when the data set is thinned from full sampling (every
day of the month) to 2, 4, 8, 12, 16 and 20 samples per month. The blue vertical lines represent
the 1990-2021 ozone trend based on the full record (without meteorological adjustments), with
the solid line being the mean trend value and the dashed lines representing the 2-sigma
interval. For each panel, subsamples are generated randomly and independently over 1000
iterations, and resulting subsampled trends are sorted along the y-axis from the lowest to the
highest values (purple line, the lowest and highest values are indicated in the bias range); each
horizontal line indicates the 2-sigma interval. Subsampled trends with p-values ≤ 0.05 (dark gray
and orange) are summarized by statistical power. Subsampled trends with p-values ≤ 0.05 and
within ±10% bias (orange) are summarized by the acceptable rate.



Figure S10. Same as Figure 6, but (a) for 1990-2021 with meteorological adjustments (to show
the scenario when a stronger trend and SNR are present), and (b) for 1995-2021 with
meteorological adjustments (to show the scenario that when a similar trend is present, a lower
sigma can also yield a reasonable statistical power). Note that meteorology is accounted for in
these panels, so the acceptable rate at a low sampling frequency is greater than Figure 6 (see
Section 3.2 for detailed discussions of meteorological impact on trend accuracy and precision),
however, the results are less satisfactory compared to scenarios with higher sampling rates.
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Anonymous Referee #2
This paper is a comprehensive sensitivity study of the impact of sampling rate on the
accuracy and precision of inferred long-term trends. The paper’s syntax and structure
are clear, although from time to time, the excessive amount of details makes it more
difficult to follow.

The authors start with a high-elevation, multi-decadal surface ozone timeseries (Mauna
Loa Observatory, 19.5N) known to have a high sampling frequency with very few gaps
over several decades (the “perfect timeseries”), then design a number of scenarios in
which only a fraction of all samples are used to compute the trends using classic
multi-component LS and LAD fitting models (collocated dew point found to be the most
critical proxy after deseasonalizing). The monthly mean bias, and trend bias and error are
computed for all scenarios to assess which sub-sampling scenarios yield best
agreement with the full-sampling results. The scientific approach is excellent and the
authors try to address a very important and well-known aspect of atmospheric
composition trend in general, which means that their findings are potentially applicable
to a lot more studies beyond free tropospheric ozone.

We thank the reviewer for the positive feedback.

If there must be one main criticism, it is only to say that the results are extremely
detailed, too detailed at times, to a point that many figures could be simplified in order
for the reader to extract the essential information. For example, I suggest that the
"without meteorological adjustment" figures be removed after section 3.2. Another
example, is the number of time periods, ranging from 1980-2021 to 2005-2021. I think
showing results for only 2 or maximum 3 periods is just enough and will avoid
overloading many figures.

To address the issue of overloaded details, we have made the following revisions:
1. Since the variable selection process in Section 3.2 can be independent from our

discussion of sampling bias (but still considered to be important), the relevant discussion
is moved to Appendix A.

2. The discussion in Section 3.3 is rewritten and substantially reduced (with much less
technical details, also see the response to reviewer 1). This allows us to avoid
introducing an additional statistical concept (e.g. logistic regression), and instead place
the focus on sampling impact.

3. Discussion is mainly focused on meteorologically adjusted trends in Sections 3.3 - 3.5.
The comparison of seasonal trends with or without meteorological adjustments was
removed from Figure 7. We also added a note in Section 3.3 as follows:
Since the sampling frequency is the only control variable in the following analysis,
hereafter, unless additional demonstrations are needed to highlight the influence from
other factors, we place the focus on the meteorologically adjusted mean trends over
1990-2021.



4. The original Figure 6 was fairly complicated and difficult to understand, so we moved it to
the Supplement and replaced it with a simpler plot.

These arrangements reduced some of the technical discussions in the main text, and enabled
us to stay focused on the essential information.

However, we would like to keep the integrity in Figures 5 and 10, as these represent the general
implications of meteorological adjustments and sampling schemes. More importantly, these
figures directly address some common doubts or misperceptions about trend analysis, such as:

1. Is the trend result sensitive to different time periods (or the choice of beginning/ending
years)?

2. How long does the time series need to be, in order for the trends (if any) to become
detectable?

3. 30-years should be sufficiently long to wash out the sampling bias.
By having different ranges of time periods, we can better justify the importance of enhanced
sampling for trend detection (i.e., the shorter the record, the larger the impact of the sampling
bias; and the bias can persistently affect the trend estimate for time series as long as 40-years).

To better connect our sampling discussion to the issue of time periods, we added a discussion
in the Conclusions section:

Since the late 1980s, the challenges of quantifying global or regional-scale ozone climatologies
and trends from sparsely sampled ozone profiles have been regularly revisited (Prinn, 1988;
Logan 1999; Cooper et al., 2010; Saunois et al., 2012; Chang et al., 2020). While the great
majority of attention has been paid to maintaining long-term operations or expanding
observational networks, scant effort has been devoted to increasing the regular sampling rate.
The under-appreciation of high frequency sampling might be due to a common assumption that
the impact of sampling bias (along with meteorological influence) can be neutralized once the
time series is sufficiently long (typically 20 or 30 years). It should be noted that the larger the
data variability, the longer the data length required to detect a given trend (Weatherhead et al.,
1998; Fischer et al., 2011). This paper shows that a low sampling frequency generally results in
an unexpectedly larger uncertainty, which leads to suppressed statistical power and requires a
much longer time period (e.g. persistence for 40 years in some cases) for free tropospheric
ozone trend detection. In conclusion, we found that a regular sampling frequency of at least 3
samples per week is required to avoid most of the impact from low sampling rates.

The next main debatable point is the choice of ozone climatology for their so-called
"adaptive sampling" strategy (D). Why choose 1980-1989 and not the entire period, or the
period over which trends are computed? By choosing 1980-1989, it leaves room for a
possible offset from the mean values that would be computed over the later periods,
which potentially can skew the distribution of monthly mean bias on which strategy D is
based upon.
The choice of 1980-1989 is based on a practical consideration, because if we aim to mimic the
improvement since 1990, we only have the 1980-1989 data available for building the



climatology (it is not realistic to have the 1980-2021 climatology available for the year 1990,
because the years 1991-2021 have not yet happened).

However, it is also true that we can adjust the climatology on a regular basis to avoid potential
offsets. We added a sentence in Section 3.4 as follows:

We could also constantly update the climatology by incorporating new information from recently
available samples, to better represent long-term baseline variability.

Other comments are minor:
Figure 2 and related text (page 4):
There is no information on the measurement uncertainty for the MLO temperature and
ozone surface instruments. Instruments yielding large measurement uncertainty are
likely to produce similar inconsistency between calculated trends. The authors probably
assume that the total measurement uncertainty of these instruments is small enough to
be taken out of the equation. If so, please state it.

Thanks for pointing out the issue of measurement uncertainty, we added a discussion as follows
(Section 2.1):

The measurement uncertainty for the MLO records (typically ~2-4%) is assumed to be random
and not explicitly taken into account in our analysis (in addition, the daily nighttime averages are
expected to smooth out some measurement uncertainty). Nevertheless, if the measurement
uncertainty is not random, its effect is likely to be similar to sampling bias, and their total
uncertainty is expected to be propagated (and not neutralized).

Figure 4, lines 17-29 (note on the sampling deviation vs. sampling bias):
This sentence is not clear. What does the expression “insufficient number of samples to
infer a monthly mean value” mean exactly? Please re-phrase/clarify.

We revised the text as follows:

Note that the sampling deviation associated with each daily value represents the true ozone
inter-daily variability, and should not be considered to be a sampling bias; the sampling bias
occurs only if we use limited samples to estimate the monthly mean value or trend.

Figure 7:
Too much information between top and bottom row. I suggest top row shows only “with
meteorological adjustment” trends, and only for period 1990-2021. This way reader has a
much faster access to the actual information to be used from this figure (seasonality).

Thanks for the suggestion. The top panels were replaced with meteorologically adjusted
seasonal trends over 1990-2021.



Figure 9:
Because panel (b) shows a coverage rate of 2.2 samples/week, I would suggest to show a
2-samples/week example in panel (a) instead of Sunday (1 day/week).
Thanks for the suggestion. Our intention is to show how the sampling biases (as indicated by
vertical lines) are reduced by including additional samples, so instead of replacing the top panel
(1-sample/week) with 2-samples/week, we replace the bottom panel (2.5 samples/week) with
1.5 samples/week. Therefore the coverage rates are more similar.

Figure S15:
It would be nice here to plot the trends from ozonesonde data itself, together with the
MLO subsampled data. The consistency of these two independent datasets could be
demonstrated, and would provide a direct justification to apply the methods discussed in
this appear to the ozonesonde launch programs, among others. On the other end, if the
two datasets do not show consistent results, this would trigger (a needed) discussion on
the applicability of the method discussed in this paper, for example highlighting the
possible impact of measurement uncertainty and long-term stability.

We added a new analysis in the supplementary material as follows:

Previous trend studies of free tropospheric ozone profiles and/or columns were typically
conducted without considering other covariates (apart from the basic trend model (Tiao et al.,
1986; Oltmans et al., 2006)) or by only incorporating large-scale circulations, such as ENSO
and QBO (Logan, 1994; Oltmans et al., 2013; Chang et al., 2022). No previous trend studies (to
the best of our knowledge) have thoroughly investigated the attributions of free tropospheric
ozone profile data variability to meteorological variates. Therefore, while we aim to investigate
the consistency between the Hilo ozonesondes and the MLO nighttime averages (subsampled
to the colocated dates), it is also desirable to consider meteorological influences on ozonesonde
trends. Note that relative humidity sensors on the older sondes were not as reliable as modern
sensors (Fujiwara et al., 2003), so the records before July 1991 were excluded from this
analysis.

Since the once-per-week sampling scheme at Hilo has too few profiles to perform the
resampling analysis (as we did for the MLO record in Figures 4-6), we are not able to properly
quantify the improvement of trend accuracy due to covariate adjustments, so we focus on the
reductions of fitted residuals (an indication of the overall fitted quality) before and after
incorporating covariates. The results are shown in Figure S18:

● An overall strong correlation can be found between individual Hilo ozonesondes (680
hPa) and the colocated MLO nighttime averages.

● Our previous findings show that meteorological adjustments on average reduce the fitted
residuals by 27% and trend uncertainty by 35% at MLO. Consistent improvements can
be found at the corresponding level (680 hPa) above Hilo, by 24% and 34%,
respectively, further demonstrating that the free tropospheric ozone variability can be
attributed to colocated meteorological influence (i.e., dewpoint variability in this analysis).



● Nevertheless, highly consistent trends are still not observed between the Hilo
ozonesonde (680 hPa) and the colocated MLO record. The reason behind this warrants
further detailed investigation, but the combined effect of measurement uncertainty and
intra-daily variability is expected to play a major role.

Figure S18. (a) Measurement correlation between individual Hilo ozonesondes (680 hPa) and
their colocated MLO nighttime average over 1991-2021; and (b) the Hilo trend profiles, along
with the MLO trends (full or colocated record), with or without the meteorological adjustments.
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Page 14, lines 18-24: discussion on stratospheric intrusions:
Actually, stratospheric intrusions could (should?) be included among the
“meteorological adjustments”. There is no scientific reasons to exclude samples
underlying stratospheric intrusions and yet include samples underlying other
dynamical/natural variability.

We revised the text as follows:

Data measured during those events are highly leveraged and can be either filtered out or taken
into account in meteorological adjustments (if a proper covariant can be identified) for
tropospheric ozone trend analysis.



Raeesa Moolla
Overall, well written, in depth analysis, sound statistical methodological approach used.

Thank you for the positive feedback.

Minor comments:
Page 3 - Line 19 - the word 'are' is missing (averages 'are' generally much smoother)

Fixed.

Page 11 - section 3.4 - Is it an option to increase frequency of reading and reduce spatial
variability (i.e. less sondes, but more sampling days?

Thanks for pointing this out. Spatial variability is indeed a critical factor when studying regional
trends. While spatial representativeness is also a very important topic, this study aims to present
a clean analysis on how the temporal sampling can affect long-term trends. Therefore we can
acknowledge how much bias can be attributed to temporal sampling schemes alone (while
keeping other factors invariant).

Since the current observational network is inhomogeneously distributed and sparsely located
over the globe, it is not possible to distinguish between temporal and spatial variability merely
based on profile data. Fortunately, the issue of spatial representativeness will be addressed by
the Chemical Reanalysis working group within the TOAR-II activity by using model evaluations
(based on the assessment framework described by Miyazaki & Bowman (2017)), so the spatial
variability can be better characterized. We added the relevant reference at the end of the paper
when discussing spatial variability.

Miyazaki, K., & Bowman, K. (2017). Evaluation of ACCMIP ozone simulations and ozonesonde
sampling biases using a satellite-based multi-constituent chemical reanalysis. Atmospheric
Chemistry and Physics, 17(13), 8285-8312.

Page 12 - line 4 - Why 2-7 days and not 2-5 days? focus has been on 2-5 days mostly, so
why analyse the cost-benefit of an additional 2 days ?

It is because we like to mimic a scenario of what happens if we have full sampling at a particular
season (all 7 days per week) and once-per-week sampling at other seasons, which is
summarized in Figure 7. Since we do not see consistent improvements, we then discuss the
reason behind this phenomena (i.e. select bias or preferential sampling) and do not explore this
sampling strategy further.

In Table 3 we choose 5 samples/week at one season and 1 sample/week at other seasons for
Strategy C, because we aim to compare different sampling strategies based on similar total
sample sizes (or temporal coverage). Therefore we can quantify how much improvements from



our adaptive sampling strategy, in terms of better trend accuracy and precision (greater benefit),
but with similar or lower total sample sizes (lower cost).

We revised the text as follows:

Strategy C is a mixed sampling approach in which we use once-per-week sampling for all
months as the baseline, then during a particular season the frequency is increased to 2-7
samples per week (while the other seasons maintain once-per-week sampling), so we can
investigate if the overall trend estimate can be improved by (partially or completely) removing
specific seasonal sampling biases.


