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Abstract. Rainfall time series prediction is essential for monitoring urban hydrological systems, but it is challenging and

complex due to the extreme variability of rainfall. A hybrid deep learning model (VMD-RNN) is used in order to improve

prediction performance. In this study, variational mode decomposition (VMD) is first applied to decompose the original rainfall

time series into several sub-sequences according to the frequency domain, where the number of decomposed sub-sequences is

determined by power spectral density (PSD) analysis. To prevent the disclosure of forthcoming data, non-training time series5

are sequentially appended for generating the decomposed testing samples. Following that, different recurrent neural network

(RNN) variant models are used to predict individual sub-sequences and the final prediction is reconstructed by summing the

prediction results of sub-sequences. These RNN-variants are long short-term memory (LSTM), gated recurrent unit (GRU),

bidirectional LSTM (BiLSTM) and bidirectional GRU (BiGRU), which are optimal for sequence prediction. In addition to

three common evaluation criteria, mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage10

error (MAPE), the framework of universal multifractals (UM) is also introduced to assess the performance of predictions,

which enables the extreme variability of predicted rainfall time series to be characterized. The study employs two rainfall time

series with daily and hourly resolutions, respectively. The results indicate that the hybrid VMD-RNN model provides a reliable

one-step-ahead prediction, with better performance in predicting high and low values than the pure LSTM model without

decomposition.15

1 Introduction

Prediction of rainfall time series plays an important role in monitoring urban hydrological systems and their geophysical

environment. Accurate and trustworthy predictions can serve as an early warning of floods and other extreme events, as well

as a guide for water resource allocation. Although predicting rainfall time series is not a novel concept, it has remained

fundamentally difficult due to the extreme variability, in fact intermittency, of rainfall over a wide range of space-time scales,20

i.e. increasingly heavy precipitation is concentrated over smaller and smaller fractions of the space-time.

Classical forecast models are either process-driven physical models or data-driven statistical models. The former repre-

sents the most important physical processes and numerically solves the governing equations based on initial and boundary

conditions (Lynch, 2008). Due to the fact that rainfall depends on a variety of land, ocean, atmospheric processes, and their

complex interactions, physical models are developed based on simplifications of those processes, in particular by truncating25
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the scales and introducing rather ad-hoc parametrisations. This greatly increases their unpredictability (Bauer et al., 2015). On

the contrary, data-driven models strive to establish a link between input and output data to predict time series without regard

to underlying physical processes (Reichstein et al., 2019). In general, they provide a unique output therefore with no informa-

tion on the uncertainty generated by the nonlinearity of the involved processes. A sort of hybrid approach has been developed

using stochastic models physically based on the cascade paradigm (e.g., Schertzer and Lovejoy, 1987; Marsan et al., 1996;30

Schertzer and Lovejoy, 2004, 2011). This ensures that intermittency is directly taken into account, including in the generation

of uncertainty.

The explosion of supercomputing and data availability offers immense potential for data-driven models to significantly

contribute to prediction (Schultz et al., 2021). There are several methods available for predicting rainfall time series, including

linear and nonlinear models. The traditional linear data-driven model is the autoregressive integrated moving average (ARIMA)35

(Chattopadhyay and Chattopadhyay, 2010), which ignores the nonlinearity of the relationship between input and output time

series, leading to poor prediction ability. Because of increased data availability and computing power, various deep learning

(DL) models have been proposed and applied in predicting nonlinear time series (Lara-Benítez et al., 2021).

Recurrent neural network (RNN) models are a subset of deep learning models, which have been specifically designed to solve

sequential prediction problems (Elman, 1990). However, standard RNN struggles with long-term dependence and exhibits the40

gradient vanishing or exploding problems (Hochreiter and Schmidhuber, 1997). RNN variants, such as long short-term memory

(LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM) and bidirectional GRU (BiGRU), are intended to alleviate

the limitations of standard RNN. These variant models have been employed in various fields (e.g., Graves et al., 2013; Cho

et al., 2014; Su et al., 2020; Lin et al., 2022), including time series prediction (e.g., Ma et al., 2015; Ding et al., 2019; Gauch

et al., 2021). In particular, great efforts have been devoted to predicting rainfall time series (e.g., Ni et al., 2020; Barrera-Animas45

et al., 2022; He et al., 2022), as shown in Table 1.

However, these pure variant models are not always capable of efficiently handling extremely nonlinear time series with

several noisy components without the need for appropriate preprocessing. Decomposition is a typical preprocessing method in

time series analysis, which can extract hidden information to aid in the comprehension of the complex original time series. For

decomposition approaches, wavelet decomposition (Pati et al., 1993), empirical mode decomposition (EMD) (Huang et al.,50

1998) and variational mode decomposition (VMD) (Dragomiretskiy and Zosso, 2013) are commonly used to decompose

original data. Relevant studies on time series prediction by combining decomposition technique with deep learning models are

also presented in Table 1. Because wavelet decomposition is highly dependent on the choice of the mother wavelet function, its

adaptability in decomposing time series is limited (Hadi and Tombul, 2018). Meanwhile, EMD suffers from boundary effects,

mode mixing, and a lack of exact mathematical foundations (Devi et al., 2020). In comparison, VMD, which is theoretically55

sound, presents the advantage of solving the mode overlap problem. Considering the dominant characteristics of VMD in

decomposing nonlinear time series and the beneficial performance of variant RNN models in predicting complex sequential

problems, this study employs a hybrid model based on VMD and RNN for rainfall time series prediction.

In the VMD process, the number of generated sub-sequences has an influence on the decomposition performance (Dragomiret-

skiy and Zosso, 2013; Zuo et al., 2020). The occurrence of modal mixing phenomena can be attributed to an excessive number60
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of sub-sequences, while an insufficient number of sub-sequences can lead to inadequate extraction of information from the

original sequences. In this study, we define the number of decomposed sub-sequences by analyzing the power spectral density

(PSD) of the last sub-sequence. In order to mitigate the risk of revealing future data during the decomposition of non-training

time series, a precautionary approach has been implemented. This approach differs from the direct method of decomposing

the testing time series using VMD in the hydrological field (e.g., He et al., 2019; Xie et al., 2019). The non-training data is65

added to the training set in a sequential manner to create a new time series, and the amount of newly generated time series is

equal to the number of non-training data points. The VMD technique is thereafter used to decompose the aforementioned new

time series into several sub-sequences. Subsequently, the final data point of each newly generated sub-sequence is retrieved

and designated as non-training data, which is then used to build validation and testing samples.

When evaluating performance in predicting time series, MAE, RMSE and MAPE criteria are widely used (e.g., Lara-Benítez70

et al., 2021; Wu et al., 2021). They can define the difference between predicted and observed values, but they cannot describe

the variability of rainfall time series over a wide range of scales. For reasons discussed above, a commonly used technique for

describing such variability is stochastic multifractals, which are based on the concept of multiplicative cascades (Schertzer and

Lovejoy, 1987; Gupta and Waymire, 1993; Deidda, 2000; Schertzer et al., 2010). To be more specific, universal multifractals

(UM) with only three scale-independent parameters have been extensively employed to represent the scaling variability of75

rainfall (e.g., Tessier et al., 1993; Schertzer et al., 1997; Harris et al., 1997; Gires et al., 2013; Yu et al., 2014). The analysis of

variability using UM technology contributes to the reliability of performance evaluations.

The rest of this article is organized as follows. In section 2, the corresponding methodologies are presented in detail, including

VMD, RNN variants and UM. Two rainfall time series with daily and hourly resolutions are performed by VMD-RNN in

section 3. The results are discussed and analyzed in section 4. Finally, conclusions and future work are given in section 5.80

[Table 1 about here.]

2 Methodology

2.1 Variational mode decomposition

The primary process of variational mode decomposition (VMD) is constructing and solving the variational problem (Dragomiret-

skiy and Zosso, 2013). For rainfall time series f(t), the variation problem is described as identifying K sub-sequences85

uk(t)with center frequency ωk to minimize the sum value of the estimated bandwidth of each uk(t). The constrained condition

is that the aggregation of the sub-sequences uk(t) should be equal to the original sequence f(t). The constrained variational

problem can be expressed as follows:

min
{uk},{ωk}

{
K∑

k=1

∥∥∥∥∂t

[(
δ (t) +

j

πt

)
∗uk(t)

]
e−jωkt

∥∥∥∥
2

2

}
s.t.

K∑

k=1

uk = f(t) (1)
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where {uk(t)}= {u1(t),u2(t), ...,uK(t)} and {ωk}= {ω1,ω2, ...,ωK} are shorthand notations for decomposed sub-sequences90

and their center frequencies, respectively; δ(t) is the Dirac distribution, the symbol ∗ denotes convolution and e−jωkt is a phasor

describing the rotation of the complex signal in time, with j2 =−1.

The variational problem is addressed efficiently using the alternate direction method of multipliers (ADMM). The modes

uk(t) are updated by Wiener filtering in the Fourier domain with a filter tuned to the current center frequency, see Eq. (2), then

the center frequencies ωk are updated as the center of gravity of the corresponding mode’s power spectrum, expressed as Eq.95

(3), and finally the Lagrangian multiplier λ enforcing exact constraints is updated as the dual ascent by Eq. (4). The updating

procedure is repeated until the convergence condition is satisfied, as in Eq. (5).

ûn+1
k (ω)← f̂(ω)−∑i<k ûn+1

i (ω)−∑i>k ûn
i (ω) + λ̂n(ω)

2

1 +2θ(ω−ωn
k )2

(2)

ωn+1
k ←

∫∞
0

ω
∣∣ûn+1

k (ω)
∣∣2 dω

∫∞
0

∣∣ûn+1
k (ω)

∣∣2 dω
(3)

λ̂n+1(ω)← λ̂n(ω) + τ

(
f̂(ω)−

∑

k

ûn+1
k (ω)

)
(4)100

∑

k

∥∥ûn+1
k − ûn

k

∥∥2

2

∥ûn
k∥

2
2

< ϵ (5)

where ûn+1
k (ω),f̂(ω) and λ̂n+1(ω) represent the Fourier Transforms of un+1

k (t),f(t) and λn+1(t), respectively; n is the itera-

tions, θ is a quadratic penalty term, τ is the iterative factor that indicates VMD’s noise tolerance and ϵ denotes the convergence

tolerance.

2.2 Recurrent neural network105

Recurrent neural network models perform deep learning by a unique recurrent structure (Elman, 1990), as illustrated in Figure

1. In terms of time series predicting, the recurrent units remember earlier information, processing not only new data but also

previous outputs to generate an up-to-date prediction. However, RNN models have difficulty dealing with long-term informa-

tion. Additionally, standard RNN suffers from the gradient vanishing or exploding problem. To overcome the constraints of

standard RNN, long short-term memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM) and bidirectional110

GRU (BiGRU), these variants of RNN are designed. Their working principles are explained in detail as follows.

[Figure 1 about here.]
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2.2.1 Long short-term memory

LSTM models are explicitly constructed with special recurrent structures to remember information for long periods, and they

have three gates to control the cell state that stores and conveys information (Hochreiter and Schmidhuber, 1997), which is115

depicted as Figure 2. The forget gate ft determines how much information should be forgotten from the cell state, which

constructs the long-term memory, as represented in Eq. (6). The input gate it is responsible for deciding what new information

should be stored in the cell, and the corresponding equations are Eq. (7) and Eq. (8). The output gate ot is to generate outputs,

Eq. (9), and update the cell states Ct and the hidden states ht, expressed as Eq. (10) and Eq. (11) respectively.

[Figure 2 about here.]120

ft = σ (Wxfxt + Whfht−1 + bf ) (6)

it = σ (Wxixt + Whiht−1 + bi) (7)

C̃t = tanh(WxCxt + WhCht−1 + bC) (8)

ot = σ (Wxoxt + Whoht−1 + bo) (9)

Ct = ft⊗Ct−1 + it⊗ C̃t (10)125

ht = ot⊗ tanh(Ct) (11)

where σ and tanh are activation functions, denoting sigmoid function and hyperbolic tangent function, respectively; xt is the

input and C̃t is candidate memory; Wxf , Wxi, WxC , Wxo and Whf , Whi, WhC , Who represent the corresponding weights to

xt and ht−1; bf , bi, bC and bo are the related bias vectors; ⊗ indicates element-wise multiplication.

2.2.2 Gated recurrent unit130

GRU also overcomes the drawbacks of standard RNN. Unlike LSTM, however, it only has two gates: a reset gate and an

update gate (Cho et al., 2014). The rest gate rt is accountable for the short-term dependencies by determining which historical

5

https://doi.org/10.5194/egusphere-2023-2710
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



data should be forgotten, represented as Eq. (12). The update gate zt manages the long-term dependencies by controlling what

information is delivered to the future, Eq. (13). The hidden state ht is then updated according to Eq. (4) and Eq. (15). The

update gate performs functions similar to the forget and input gates of LSTM, so the recurrent structure of GRU (Figure 3) is135

less complex, which makes it more efficient computationally from a theoretical standpoint (Chung et al., 2014).

rt = σ (Wxrxt + Whrht−1 + br) (12)

zt = σ (Wxzxt + Whzht−1 + bz) (13)

ĥt = tanh(Wxhxt + Whh(rtht−1) + bh) (14)

ht = zt⊗ht−1 + (1− zt)⊗ ĥt (15)140

[Figure 3 about here.]

2.2.3 Bidirectional recurrent neural network

Bidirectional RNN (BiRNN) is an RNN variant model that takes into account both past and future information to predict the

target (Schuster and Paliwal, 1997; Graves and Schmidhuber, 2005). The architecture of a bidirectional RNN is seen in Figure

4. It adds an additional hidden layer to the RNN construction so that information can be conveyed backward. The hidden state145

ht is obtained by concatenating the forward and backward hidden states,
−→
h t and

←−
h t, implying that the output is generated

by combining information from two hidden layers. To avoid the limitations of standard RNN, BiLSTM and BiGRU are used

instead of BiRNN, which have excellent performance in time series prediction.

[Figure 4 about here.]

2.3 Universal multifractals150

Universal multifractals (UM) have been widely used to describe nonlinear phenomena that have a multiplicative structure, such

as rainfall. The core principle of the framework of UM is briefly explained here, and interested readers could refer to references

(e.g., Schertzer and Lovejoy, 1987, 2011; Lovejoy and Schertzer, 2007) for more details. Let’s denote ελ is a conservative field

at resolution λ (=L/l, the ration between the outer scale of the phenomenon L and the observation scale l), the statistical

moment of order q can be defined as:155
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⟨εq
λ⟩ ≈ λK(q) (16)

where K(q) is the moment scaling function, characterizing the variability of the field at all scales.

In the UM framework, the moment scaling function K(q) can be determined by two scale-invariant parameters C1 and α

in the conservative field, expressed as Eq. (17) (Schertzer and Lovejoy, 2011). C1 is the mean intermittency co-dimension,

which measures the average sparseness of the field. α is the multifractality index (0≤ α≤ 2), which indicates how fast the160

intermittency evolves when considering singularities slightly different from the average field singularity.

K(q) =





C1
α−1 (qα− q) α ̸= 1

C1qlnq α = 1
(17)

The trace moment (TM) technique can be used to estimate UM parameters (Schertzer and Lovejoy, 2011; Gires et al., 2013).

The steps in the technique are as follows: first, calculate the empirical statistical moment ⟨εq
λ⟩ (corresponding to the trace

moment of fluxes) of order q for each resolution λ, then plot the logarithm of the average field ⟨εq
λ⟩ versus the logarithm of λ,165

later perform linear regression to obtain the slope K(q), and finally, according to the theoretical expression of K(q) (Eq. (17)),

C1 is given by K ′(1) = C1 and α by K ′′(1) = αC1 because ⟨εq
λ⟩= 1, i.e. K(1) = 0 for the conservative field.

An alternative method for directly estimating the UM parameters C1 and α is the double trace moment (DTM) (Lavallée

et al., 1993; Gires et al., 2012). Based on the assumption that the conservative field ε
(η)
λ is renormalized by upscaling the

η-power of the field at maximum resolution,170

ε
(η)
λ =

εη
λ

⟨εη
λ⟩

(18)

Then, the statistical moment K(q,η) of order q is defined as:

〈
ε
(η)q
λ

〉
≈ λK(q,η) (19)

with

K(q,η) = K(qη)− ηK(q) (20)175

In the specific framework of UM, the statistical moment K(q,η) can be expressed as:

K(q,η) = ηαK(q) (21)

Therefore, UM parameters C1 and α are obtained according to the slope and intercept of the linear portion of the log-log

plot K(q,η) vs η.
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When a multifractal field ϕλ is non-conservative (⟨ϕλ⟩ ̸= 1), it is usually assumed that it can be written as:180

ϕλ = ελλ−H (22)

where ελ is a conservative field (⟨ελ⟩= 1) of the moment scaling function Kc(q) depending only on C1 and α; H is the

non-conservation parameter (H = 0 for the conservative field).

The moment scaling function K(q) of ϕλ is given by:

K(q) = Kc(q)−Hq (23)185

H can be estimated using the following formula Tessier et al. (1993) :

β = 1 +2H −Kc(2) (24)

where β is the spectral slope that characterizes the power spectrum of a scaling field, which follows a power law over a wide

range of wave numbers:

E(k)∝ k−β (25)190

Theoretically, a fractional integration of order H (equivalent to a multiplication by kH in the Fourier space) is performed

to retrieve ελ from ϕλ. A common approximation is to take εΛ as the absolute value of the fluctuation of ϕΛ at the maximum

resolution of Λ and renormalizing it, shown as Eq. (26) in the one-dimension (Lavallée et al., 1993). Then, ελ is obtained by

upscaling εΛ.

εΛ =
|ϕΛ(i + 1)−ϕΛ(i)|
⟨|ϕΛ(i + 1)−ϕΛ(i)|⟩ (26)195

3 Case study

3.1 Study area and datasets

Two rainfall time series with daily and hourly resolutions in Champs-sur-Marne were collected from NASA research The

POWER Project (https://power.larc.nasa.gov) that provides meteorological datasets. The daily time series covered January 1,

2001 to December 31, 2020 (a total of 7305 data), of which from January 1, 2001 to January 7, 2015(5120 data, accounting200

for 70% of the total dataset) were selected as the training set while the remaining were used as the non-training set. The

non-training set was further divided into a validation set to tune hyperparameters according to loss changes and a testing set
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(1024 data, from March 14, 2018 to December 31, 2020) to evaluate the predicting performance, as presented in Figure 5(a).

In addition, the rainfall time series with hourly resolution for the period between January 1, 2001 and November 1, 2001 (a

total of 7305 data) was also studied and divided into three sets: a training set (5120 data), a validation set (1161 data), and a205

testing set (1024 data), as shown in Figure 5(b).

[Figure 5 about here.]

3.2 Model process

3.2.1 The implementation of VMD-RNN

In order to avoid using information from the future, the original rainfall time series was first divided into the training and210

non-training sets, and then the training set was decomposed into several sub-sequences and applied to train the models (Zhang

et al., 2015; Zuo et al., 2020). To predict in the testing set, time series from the non-training set were sequentially appended to

the training set, and the decomposition process was repeated with the rainfall time series of the next step appended. Following

that, four variant RNN models were used to predict individual sub-sequences. The root mean square error (RMSE) was used to

select the ideal RNN model with the optimal parameters for each sub-sequence. In addition to RMSE, UM was also employed215

to evaluate prediction performances, characterizing the extreme variability of time series. The implementation of the hybrid

deep learning model (VMD-RNN) is summarized as follows and presented in Figure 6.

Step 1: Divide the original rainfall time series f(t) (t=1,2,...,N , where N is the length of total data) into a training set fT (t)

(t=1,2,...,Nt, where Nt is the training set length) and a non-training set fN (t) (t=1,2,...,Nn, where Nn is the non-

training set length).220

Step 2: Use VMD to decompose the training set fT (t) into sub-sequences uTi(t) (i=1,2,...,K).

Step 3: Sequentially append the non-training data fN (t) to the training set to generate Nn new appended sequences f j
NT (t)

(j=1,2,...,Nn and t=1,2,...,Nt + j), and repeat decomposing each append sequence f j
NT (t) into K sets of appended

sub-sequences uj
NTi(t) (i=1,2,...,K).

Step 4: Exact the last sample uj
NTi(Nt + j) of each set of appended sub-sequences uj

NTi(t) as a non-training sample and225

divide the generated non-training samples Nvte = Nn into two subsets: validation samples Nv and testing samples

Nte.

Step 5: For each sub-sequence, combine data from the training set and validation samples as history data, which is then used

to train four variant RNN models and tune hyperparameters to find an ideal predicting model with optimal parameters.

Step 6: For each sub-sequence, input testing samples into the corresponding predicting models and obtain an individual pre-230

dicted result yi(t) (i=1,2,...,K).

Step 7: Aggregate the predicted results of each sub-sequence to generate the final predicted result y(t) =
∑K

i=k yi(t).
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Step 8: Use the framework of UM to analyze the predicted and actual time series in the testing set.

[Figure 6 about here.]

3.2.2 Parameters of VMD235

The decomposition performance of VMD is affected by the decomposition level K, the quadratic penalty term θ, the conver-

gence tolerance ε, and the noise tolerance τ . In this study, the number of K was identified by observing the power spectral

density (PSD) of the last sub-sequence. The value of K was determined on the training set with 5120 data. First, an initial K

value was given, such as K = 5, and there were five sub-sequences (IMFs) with the same length of training set. Then, each

sub-sequence was divided into 40 samples with 128 data, to perform the spectral analysis and plot the corresponding PSD of240

sub-sequences. After that, K was increased by one and the plotting PSD was repeated until the PSD of the last sub-sequence

exhibited an evident change, compared with the previous last sub-sequence. For daily time series, the optimal number of K

was 8, which is depicted in Figure 7, whereas K = 6 for hourly time series. Based on the trial and error, other parameters of

VMD were suggested as: θ=100, ε=1e-9 and τ=0.

[Figure 7 about here.]245

3.2.3 Parameters of RNN

In the process of training, hyperparameters such as the number of inputs, epoch, hidden layers, and hidden units all influence

the performance of models. Without loss of generality, the first sub-sequence (IMF1) is taken as an example to describe the

determination of the ideal RNN structure with the optimal hyperparameters. The specific process is as follows: First, initial a

single hidden layer model with 5, 10, 15 input neurons and 1 output neuron, run different variants of RNN model (LSTM, GRU,250

BiLSTM, BiGRU) for various hidden neurons 32, 64 and 128. All experiments were intended to run for 10,000 epochs (one

epoch is defined as when an entire dataset is passed forward and backward through the neural network only once), but early

stopping with a large patience value (=200) was applied to prevent unnecessary overfitting, which means the model will stop

the training if the performance on the validation dataset does not improve after 200 epochs. After adjusting hyperparameters,

the ideal model with optimal parameters was found for the first sub-sequence (IMF1) where RMSE is the least.255

Then, different second hidden layers with hidden neurons 32, 64 and 128 were added to the first hidden layer with optimal

parameters in order to discover the optimal parameters for the second hidden layer. By analogy, a third hidden layer was added.

Through the above method, the variant RNN model structures of IMF1-IMF8 components were obtained, as shown in Table 2.

[Table 2 about here.]

3.3 Open sources260

This study made extensive use of open-source software. Python 3.8 was the programming language. The packages, Numpy

(Van Der Walt et al., 2011), Pandas (McKinney et al., 2011), and Scikit-Learn (Pedregosa et al., 2011), were used to preprocess
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data. Tensorflow (Abadi et al., 2016) and Keras (Chollet et al., 2018) were the deep learning frameworks used to analyze time

series, and Matplotlib (Hunter, 2007) was used to create all the resulting figures. The decomposition of time series by VMD

was implemented based on the package of vmdpy (Carvalho et al., 2020), which is derived from the original VMD Matlab265

toolbox (Dragomiretskiy and Zosso, 2013). TM and DTM analysis were performed to calculate UM parameters according to

the Multifractal toolbox that was provided by the website (https://hmco.enpc.fr/portfolio-archive/multifractals-toolbox) (Gires

et al., 2011, 2012, 2013).

4 Result analysis

To verify the effectiveness of the hybrid VMD-RNN model, the benchmark method (pure LSTM model without decomposition)270

was introduced. The benchmark also used the previous 5-day rainfall values to predict the next day’s rainfall. The parameters

for the pure LSTM were adjusted by trial and error. The qualitative and quantitative analysis of one-step-ahead predicted

rainfall time series from two different models were conducted.

4.1 Daily rainfall series

Figure 8 shows the predicted daily time series in the testing set. It compares the predicted results of the VMD-RNN hybrid275

model and the pure LSTM model with the actual data. It can be clearly observed that the hybrid model has a better fit for most

of the points. The comparison of prediction performance with and without VMD for daily time series in the testing set can be

seen in Figure 9. The scatter plot demonstrates that the VMD-RNN model has superior performance in predicting high and low

values for daily time series, whereas the benchmark LSTM model is incapable of doing so. The predicted values obtained by

the baseline model exhibit a considerable deviation from the best linear fitting line (blue dotted line), which indicates inferior280

performance compared to the VMD-RNN model.

[Figure 8 about here.]

[Figure 9 about here.]

It was also necessary to know which model performed better from the quantitative aspect. Table 3 compares the results of

three widely used criteria: RMSE, MAE, and MAPE. It can be seen that the three criteria of VMD-RNN are plainly lower, so285

the hybrid model outperforms the pure model. It further confirms the strong capability of the hybrid model in rainfall prediction.

[Table 3 about here.]

In addition to calculating the prediction error, the UM technique was also introduced to evaluate prediction performance

since it enables the extreme variability of rainfall time series to be characterized. According to Tessier et al. (1996), the rainfall

series in France exhibits a rough scaling break phenomenon between 16 days and 30 days. Therefore, the analysis of UM starts290

with a range of scales from 1 day, increasing in powers of two to an outer scale of 16 days. Figure 10 presents log ⟨εq
λ⟩ versus
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logλ over the range of q between 0.3 and 2.5 with a coefficient of determination greater than 0.99, the log-log plot of
〈
ε
(η)q
λ

〉

vs λ for q = 1.5, and the corresponding log-log plot of K(q,η) vs η.

[Figure 10 about here.]

All the parameter values estimated using the TM and DTM methods are listed in Table 4. It is worthwhile to note that the295

values of α and C1 obtained using the DTM technique have some differences from those estimated by using TM, but the overall

difference is not significant. From the standpoint of the results of UM analysis, predicted time series by VMD-RNN are closer

to actual time series than predicted by LSTM without decomposition for daily time series.

[Table 4 about here.]

4.2 Hourly rainfall series300

Figure 11 displays the hourly time series in the testing set with 1024 data. The qualitative analysis reveals that the predicting

performance of the hybrid VMD-RNN model and the simple LSTM model without decomposition is nearly similar for hourly

rainfall time series. This is further confirmed by Figure 12, which depicts the comparison of predicted results and actual rainfall.

The scatter plot reveals that the predicted values from VMD-RNN basically agree with the corresponding actual values, but the

values predicted from the baseline LSTM model do not yield the same level of alignment.305

[Figure 11 about here.]

[Figure 12 about here.]

On the other hand, Figure 13 shows the results of UM analysis for hourly time series, and Table 5 presents the estimated

UM parameters α and C1 from TM and DTM analyses. These results indicate quantitatively that the predictive performance

of the VMD-RNN model is comparable to that of the pure LSTM model, without obviously demonstrating the benefits of310

decomposition.

[Table 5 about here.]

[Figure 13 about here.]

5 Conclusions and future work

In this study, the hybrid VMD-RNN model was used as a methodology for forecasting rainfall with a one-step lead time. VMD315

was first used to extract hidden information to understand the complex original time series. Then variants of RNN were ap-

plied to handle problems involving sequential prediction. By combining the dominant characteristics of VMD in decomposing

nonlinear time series and the favourable performance of variant RNN models in predicting complex sequential problems, the
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hybrid model based on VMD and RNN was employed to predict rainfall time series with daily and hourly resolution. The

framework of UM was subsequently introduced to evaluate the performance of predicting rainfall time series.320

According to the above study, the following conclusions could be drawn: (1) The number of K in the process of VMD can

be determined by analysing the PSD of the respective last sub-sequence. (2) The hybrid VMD-RNN model provides a reliable

one-step-ahead prediction, with better performance in predicting high and low values than the pure LSTM model. (3) From

the perspective of UM analysis, the values of α and C1 obtained from predicted daily time series by VMD-RNN are closer to

actual time series than those by LSTM without decomposition, thus validating the usefulness and applicability of the hybrid325

model. (4) For hourly rainfall time series, the prediction performance of VMD-RNN is comparable to that of the pure LSTM

model, without significantly displaying the benefits of decomposition.

However, there are still some limits to this study, and corresponding improvements will be implemented in future work. For

real applications, a one-step-ahead prediction is insufficient, multi-step-ahead rainfall prediction is therefore currently under

investigation. On the other hand, the hybrid model does not account for the advantage of UM in analyzing the randomness and330

complexity of rainfall, so it is necessary to develop a new model that combines UM and DL in order to enhance the performance

of predicting complex time series.

Code and data availability. The source python code of VMD is available at https://github.com/vrcarva/vmdpy (Carvalho et al., 2020). The

Multifractal toolbox is provided by the website (https://hmco.enpc.fr/portfolio-archive/multifractals-toolbox) (Gires et al., 2013, 2012, 2011).

Two rainfall time series with daily and hourly resolutions in Champs-sur-Marne are collected from The POWER Project (https://power.larc.335

nasa.gov).
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Figure 1. The structure of standard RNN
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Figure 2. The recurrent structure of LSTM
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Figure 3. The recurrent structure of GRU
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Figure 4. The structure of BiRNN
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(b) hourly time series

Figure 5. Original rainfall time series
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Figure 6. The process of the VMD-RNN model
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Figure 7. PSD of the corresponding last sub-sequence when K from 5 to 10
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Figure 8. Predicted and actual daily time series in the testing set
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Figure 9. The comparison between predicted and actual daily rainfall values

26

https://doi.org/10.5194/egusphere-2023-2710
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



1d

16d

(a) actual time series

(b) predicted time series by VMD-RNN

(c) predicted time series by LSTM without decomposition

Figure 10. UM results for daily time series in the testing set
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Figure 11. Predicted and actual hourly time series in the testing set
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Figure 12. The comparison between predicted and actual hourly rainfall values
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(a) actual time series

(b) predicted time series by VMD-RNN

(c) predicted time series by LSTM without decomposition

Figure 13. UM results for hourly time series in the testing set
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Table 1. Relevant studies on time series prediction using deep learning models

Reference Models Applications
Evaluation methods

(Ma et al., 2015) LSTM traffic speed
MAPE, MSE

(Ding et al., 2019) GRU wind power
RMSE, MAE

(Gauch et al., 2021) multi-timescale LSTM daily and hourly rainfall-runoff
NSE

(Ni et al., 2020) wavelet-LSTM, convolutional LSTM monthly streamflow and rainfall
RMSE, NSE, MARE

(Barrera-Animas et al., 2022) Stacked-LSTM, Bidrectional-LSTM hourly rainfall time series
RMSE, MAE, RMSLE

(He et al., 2022) STL-ML daily rainfall time series
RMSE, NSE, MAE, Accuracy

(Hadi and Tombul, 2018) ANN with wavelet transformation daily streamflow
RMSE, NSE

(Devi et al., 2020) EEMD-CSO-LSTM-EFG hourly wind power
MAE, RMSE, MAPE, MASE

(He et al., 2019) VMD-DNN daily runoff
MAE, RMSE, NSE

(Xie et al., 2019) VMD-DBN-IPSO daily runoff series
MAE, RMSE, NSE
(Zuo et al., 2020) VMD-LSTM daily streamflow

NSE, NRMSE, PPTS
this study* VMD-RNN daily and hourly rainfall

RMSE, MAE, MAPE, UM
* This study incorporates four RNN models, namely LSTM, GRU, Bidirectional LSTM, and Bidirectional

GRU. The RNN model with superior architecture was selected for each subsequence.
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Table 2. Variant RNN models of IMF1-IMF8

VMD component Model type Numbers of input Model structure
IMF1 GRU 5 128-128
IMF2 BiLSTM 15 64
IMF3 BiGRU 15 64-64-64
IMF4 LSTM 10 64
IMF5 LSTM 10 64-64-64
IMF6 BiLSTM 15 64
IMF7 BiLSTM 10 128-128
IMF8 BiGRU 15 32-32
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Table 3. Prediction errors for daily time series in the testing set

MAE RMSE MAPE
VMD-RNN 0.726 0.852 9.853

LSTM 6.825 2.612 10.475
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Table 4. Estimated UM parameters for daily time series in the testing set

TM DTM

α C1 α C1

Actual 0.89 0.25 1.02 0.24
VMD-RNN 0.98 0.16 1.06 0.16

LSTM 1.11 0.17 1.23 0.16

35

https://doi.org/10.5194/egusphere-2023-2710
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 5. Estimated UM parameters for hourly time series in the testing set

TM DTM

α C1 α C1

Actual 0.55 0.26 0.84 0.25
VMD-RNN 0.79 0.21 1.04 0.19

LSTM 0.97 0.22 1.08 0.22
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