Sprin-water temperature suggests widespread occurrence of Alpine permafrost in pseudo-relict rock glaciers

Luca Carturan1, Giulia Zuecco1,2, Angela Andreotti1, Jacopo Boaga3, Costanza Morino1, Mirko Pavoni3, Roberto Seppi4, Monica Tolotti5, Thomas Zanoner4, Matteo Zumiani6

1Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, Italy
2Department of Chemical Sciences, University of Padova, Padova, Italy
3Department of Geosciences, University of Padova, Padova, Italy
4Department of Earth and Environmental Sciences, Pavia, Italy
5Fondazione Edmund Mach - Istituto Agrario San Michele All’Adige, S. Michele all’Adige, Italy
6Geological Service, Autonomous Province of Trento, Trento, Italy

Correspondence to: Luca Carturan (luca.carturan@unipd.it)

Abstract

Runoff originating from ground ice contained in landforms like rock glaciers and talus slopes represents an important water supply for the lowlands. Pseudo-relict rock glaciers host patchy permafrost, but appear to be visually relict, and therefore can be misinterpreted by using standard classification approaches. Permafrost content, spatial distribution and frequency of this type of rock glaciers are poorly known. Therefore, identifying pseudo-relict rock glaciers that might still host permafrost, and potentially ice, is crucial for understanding their hydrological role in a climate change context.

This work analyses rock-glacier spring-water temperature in a 795 km² catchment in the Eastern Italian Alps to understand how many rock glaciers classified as relict could have spring-water temperature comparable to intact rock glaciers, as possible evidence of their pseudo-relict nature. Spring-water temperature, often used as auxiliary to other approaches for specific sites, was used for a preliminary estimate of the permafrost presence in 50 rock glaciers classified as relict. In addition, we present electrical resistivity tomography (ERT) results on two relict rock glaciers with opposing spring-water temperature and surface characteristics to constrain spring-water temperature results at local scale.

The results show that about 50% of rock glaciers classified as relict might be pseudo-relict, thus potentially containing permafrost. Both supposedly relict rock glaciers investigated by geophysics contain frozen sediments. The majority of cold springs are mainly associated with rock glaciers with blocky and sparsely vegetated surface, but geophysics suggest that permafrost may also exist in rock glaciers below 2000 m a.s.l., entirely covered by vegetation and with spring-water temperature up to 3.7°C. We estimate that pseudo-relict rock glaciers might contain a significant portion (20%) of all the ice stored in the rock glaciers in the study area. These results highlight the relevance of pseudo-relict rock glaciers in periglacial environments. Even if not a conclusive method, spring-water-temperature analyses can be used to preliminarily distinguish between relict and pseudo-relict rock glaciers in wide regions.
1. Introduction

Timings and magnitude of cryosphere runoff have high climatic sensitivity and are impacted by the current changes of Earth’s climate (Engelhardt et al., 2014; Zemp et al., 2015; Carturan et al., 2019). Moreover, a deterioration of the water quality has been reported for springs fed by melting permafrost (Thies et al., 2013; Ilyashuk et al., 2014). Due to glacier decline, in the last decades growing attention has been given to other water reservoirs, such as subsurface ice, including debris-covered glacier ice and, in particular, ground ice stored in periglacial landforms such as rock glaciers and glacial-permafrost composite landforms (e.g., Brighenti et al., 2019; Jones et al., 2019; Schaffer et al., 2019; Seppi et al., 2019; Wagner et al., 2021). Projection of ice loss rates indicates that in the second half of the 21st century more subsurface ice may be preserved than glacier surface ice because of their different response times to atmospheric warming (Haeberli et al., 2017). Subsurface ice is therefore expected to significantly contribute to stream runoff under future climate warming (Janke et al., 2015, 2017).

Jones et al. (2018) assessed the importance of ice contained in rock glaciers at global scale, estimating that 62.02 ± 12.40 Gt of ice is contained in intact rock glaciers. Even though relict rock glaciers should not contain ice (Haeberli, 1985; Barsch, 1996), more recent studies showed that some relict rock glaciers can preserve permafrost and ice far below the regional lower limit of discontinuous permafrost (e.g., Delaloye, 2004; Strozzi et al., 2004; Lewkowicz et al., 2011; Bollati et al., 2018; Colucci et al., 2019).

This evidence raises the question whether a significant fraction of rock glaciers classified as relict is actually to be considered ‘pseudo-relict’, i.e. “rock glaciers which appear to be visually relict but still contain patches of permafrost” (Kellerer-Pirklbauer et al., 2012; Kellerer-Pirklbauer, 2008, 2019). This question is relevant because landforms classified as relict in some regions can be up to an order of magnitude larger and more numerous than intact rock glaciers (e.g., Seppi et al., 2012; Scotti et al., 2013; Koffler et al., 2020), with potentially significant ecological and hydrological impacts (e.g., Brenning, 2005a; Millar and Westfall, 2019; Brighenti et al., 2021; Sannino et al., 2021). According to Jones et al. (2019), identifying and establishing the activity state of rock glaciers is an important initial step in determining their potential hydrological significance.

Previous investigations on the possible permafrost content of relict rock glaciers looked at single case studies or small groups of landforms (e.g., Delaloye, 2004; Kellerer-Pirklbauer et al., 2014; Popescu, 2018; Colucci et al., 2019; Pavoni et al., 2023), whereas studies considering a larger number of relict rock glaciers at the regional scale, were mainly focussed on the past distribution of mountain permafrost and on the reconstruction of related paleoclimatic conditions (e.g., Frauenfelder et al., 2001; Seppi et al., 2010; Charton et al., 2021; Dlabáčková et al., 2023).

As a result, the actual distribution, frequency, and ice content of pseudo-relict rock glaciers might be underestimated, with the latter being essential for implementing worldwide estimates of water resources stored in periglacial landforms (e.g., Jones et al., 2018). Detailed geophysical investigation of selected landforms is certainly suitable as a first step towards a better knowledge of pseudo-relict rock glaciers and their ice content. However, due to logistic constraints, this approach cannot be applied to a large number of rock glaciers at the catchment or regional scale. A recent and commendable advance on this topic has been achieved by the proposition of operational guidelines on the InSAR-based kinematic characterization of rock glaciers (Bertone et al., 2022), which can be used for thorough studies of wide areas. However, this approach is not suitable for distinguishing between relict and pseudo-relict rock glaciers, because their surface is motionless.
A possible way to investigate the presence of permafrost in these landforms over large areas is by analysing spring-water temperature measured downslope of rock glaciers. Haeberli (1975) proposed the monitoring of spring-water temperature in late summer as useful evidence of permafrost, and various authors employed such method as auxiliary permafrost evidence (e.g., Frauenfelder et al., 1998; Scapozza, 2009; Imhof et al., 2000; Strozzi et al., 2004; Cossart et al., 2008). Carturan et al. (2016) demonstrated that this method can be used successfully for mapping permafrost distribution at the catchment scale. All these works are based on the evidence that, in late summer, spring water affected by permafrost has lower temperature compared to those unaffected, with upper thresholds ranging between 0.9 and 1.1°C for probable permafrost, and between 1.8 and 2.2°C for possible permafrost.

In this work, we analyse the spatial variability of spring-water temperature in a 795 km² catchment located in the Eastern Italian Alps, where 338 rock glaciers were inventoried (Seppi et al., 2012), to better understand permafrost distribution. We hypothesise that a significant portion of rock glaciers classified as relict have spring-water temperature comparable to those of intact rock glaciers, as possible evidence of their permafrost content and of their pseudo-relict nature. The specific objectives of this study are to:

i) analyse the influence of topographic and geomorphological factors on spring-water temperature,

ii) investigate the main controls on water temperature for springs downslope of rock glaciers, and particularly relict rock glaciers,

iii) investigate via geophysical analyses the presence of permafrost in two rock glaciers selected for their different spring-water temperature and surface characteristics, to constrain spring-water temperature results at local scale.

2. Study area

Val di Sole is located in the upper part of the Noce River catchment, a tributary of the Adige River, which is the main river system in northeastern Italy (Fig. 1). The catchment is 795 km² wide, with elevation ranging between 520 m a.s.l. at the outlet (Mostizzolo) and 3769 m a.s.l. at the summit of Mt. Cevedale, averaging 1705 m a.s.l. (Fig. 1). Metamorphic rocks (mica schists, paragneiss and orthogneiss) prevail in the northern side of the valley, whereas tonalite is found in the southwestern part and dolomites and limestones prevail in the southeastern part.
Figure 1: Geographic location of the study area and of sampled springs. The background is the hillshaded Lidar 2014 DEM surveyed by the Provincia Autonoma di Trento (https://siat.provincia.tn.it/stem/).

The catchment includes a glacierised area of 16 km² (in 2006, Salvatore et al., 2015). Bare bedrock and debris are found outside the glaciers down to an elevation of 2700 m, which is the lower regional limit of discontinuous permafrost (Boeckli et al., 2012). A discontinuous cover of alpine meadows and shrubs is present between 2200 m and 2700 m, while below 2000-2200 m forests are dominant. The valley bottom is covered by cultivations and settlements.

Val di Sole lies in a transition zone between the “inner dry alpine zone” in the north (Frei and Schär, 1998) and the wetter area under the influence of the Mediterranean Sea in the south. At the valley floor, the annual precipitation averages ~900 mm. Precipitation increases with elevation and in the southern part, with a maximum of 1500 mm in the Adamello-Presanella Group (Carturan et al., 2012; Isotta et al., 2014). The mean annual 0°C isotherm is located at 2500 m. The mean annual air temperature variability is dominated by elevation, whereas latitudinal and longitudinal variations are negligible.

Seppi et al. (2012) mapped 338 rock glaciers in Val di Sole. The largest part of rock glaciers was classified as relict (229, 68% of the total), whereas of the 109 intact rock glaciers only 42 can be classified as active based on multitemporal high-resolution images.
resolution digital elevation models (DEMs). Most rock glaciers (302, 89% of the total) are composed of deposits of metamorphic rocks in the orographic left side of the valley.

3. Materials and methods

3.1 Experimental design

We focussed our investigations on the northern part of Val di Sole because it has a rather homogeneous lithology (metamorphic rocks with predominant micaschists) and mean annual precipitation (1233 mm at 2600 m, Carturan et al., 2016). This was done to minimise the effects of different lithologies and annual precipitation on the spatial variability of spring-water temperature, and to highlight the role of other variables related to their catchment, upslope area or upslope rock glaciers.

To obtain statistically meaningful and generalisable results, we designed a sampling scheme for rock-glacier spring-water temperature considering the variability of permafrost-related characteristics in the study area, namely vegetation cover (related to ground temperature and fine debris infill), size (length, area), elevation, slope, aspect, and lithology (Barsch, 1996; Haeberli, 1985; Lambiel and Reynard, 2001; Boekli et al., 2012).

We inspected these variables, reported for each rock glacier of Val di Sole in the database of Seppi et al. (2012), using a correlation matrix and the Principal Component Analysis. The aim was to evaluate their possible covariance and to optimise the number of variables and their combinations, to be included in the sampling scheme. The analysis revealed high positive covariance between length and area (both related to size). Negative covariance was found between elevation and vegetation cover, and between slope and length/area.

Based on these outcomes and considering accessibility, we built a sampling scheme around four variables: i) rock glacier activity, ii) length, iii) mean elevation, and iv) vegetation cover. The last two variables are correlated because intact rock glaciers are at high elevation and almost free from vegetation, and the opposite is true for relict rock glaciers. Vegetation cover is probably one of the few variables that may aid at identifying rock-glacier activity (Ikeda and Matsuoka, 2002; Strozzi et al., 2004, Kofler et al., 2020), and it can vary greatly among rock glaciers at similar elevation. For this reason, we kept both elevation and vegetation, applying a modification to the vegetation-cover classification proposed by Seppi et al. (2012). We distinguish between two classes, namely ‘vegetated’ and ‘non vegetated’ for both intact and relict rock glaciers (see Table 1 for threshold values). The vegetation cover was visually estimated in the field and in orthophotos for each rock glacier. Our sampling scheme ensured that at least one rock glacier was sampled for each combination of variables (Table 2). The frequency distribution of rock glacier length and mean elevation was used to identify three terciles, employed for grouping them into short-mid-long rock glaciers and into low-mid-high elevation rock glaciers. Frequency distributions and terciles of intact and relict rock glaciers were calculated separately (Table 2).
Table 1 - Classification of intact and relict rock glaciers in two different classes of vegetation cover.

<table>
<thead>
<tr>
<th>Rock glacier category</th>
<th>Vegetation cover class</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>Vegetated</td>
<td>Vegetation cover >10%</td>
</tr>
<tr>
<td></td>
<td>Non vegetated</td>
<td>Vegetation cover <10%</td>
</tr>
<tr>
<td>Relict</td>
<td>Vegetated</td>
<td>Vegetation cover >50%</td>
</tr>
<tr>
<td></td>
<td>Non vegetated</td>
<td>Vegetation cover <50%</td>
</tr>
</tbody>
</table>

Table 2: Sampling scheme used for water temperature measurements at rock glaciers springs.

<table>
<thead>
<tr>
<th>Activity state</th>
<th>Length</th>
<th>Elevation</th>
<th>Vegetation cover</th>
<th>Number of sampled rock glaciers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>Short</td>
<td>Low (<2634 m)</td>
<td>Non vegetated</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Mid (>2634 and <2811 m)</td>
<td>Non vegetated</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>High (>2811 m)</td>
<td>Non vegetated</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Mid (>142 and <251 m)</td>
<td>Low (<2596 m)</td>
<td>Non vegetated</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Mid (>2596 and <2817 m)</td>
<td>Non vegetated</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>High (>2817 m)</td>
<td>Non vegetated</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Long (>251 m)</td>
<td>Low (<2655 m)</td>
<td>Non vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mid (>2655 and <2779 m)</td>
<td>Non vegetated</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>High (>2779 m)</td>
<td>Non vegetated</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>none</td>
</tr>
<tr>
<td>Relict</td>
<td>Short</td>
<td>Low (<2267 m)</td>
<td>Non vegetated</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mid (>2267 and <2453 m)</td>
<td>Non vegetated</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>High (>2453 m)</td>
<td>Non vegetated</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetated</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Low (<2255 m)</td>
<td>Non vegetated</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Data collection

Water temperature was measured at 220 springs, 133 of which are located downslope of rock glaciers, 81 are located downslope of other deposits, and 8 are located in bedrock. Springs were sampled from mid-August to mid-October, after the end of the snowmelt. Most springs have been measured once per year from 2018 to 2020, and a small group of them was also measured in 2021. In these four years, the total number of single measurements is 540.

Based on the sampling scheme (Table 2), we measured spring-water temperature at 17 intact rock glaciers and 50 relict rock glaciers, which corresponds to 22% of all rock glaciers existing in the study area. All variables’ combinations defined for relict rock glaciers have been sampled, whereas several combinations for intact rock glaciers lack samplings. This was due to the inexistence of single combinations (e.g., there are no short and vegetated intact rock glaciers at low elevation) or to the lack of springs and inaccessibility of some rock glaciers.

Measurements of spring-water temperature were carried out using a WTW Cond3310 (WTW GmbH, Weilheim, Germany) and a Testo 110 (Testo AG, Lenzkirch, Germany). These instruments have both 0.1°C resolution, but the WTW has higher accuracy (±0.1°C) compared to the Testo (±0.2°C), which was used for back-up/validation. Water temperature measurements were carried out shading the spring from direct sunlight and avoiding probe contact with sediments, rocks, and vegetation. The calibration of the two instruments was checked at the beginning and at the end of the annual campaigns using an ice bath. In addition, runoff was visually estimated at each spring.

3.3 Data analysis

Before proceeding with statistical analyses, we preliminary filtered field data to exclude problematic or redundant measurements. First, we discarded measurements that were clearly affected by very low runoff (<0.1 l/s). We then selected one measurement site for each rock glacier and for groups of springs separated less than 10 m from each other. Spring selection was carried out favouring springs with higher runoff, repeated readings in the four years, closer location to rock glacier fronts, and with lower interannual temperature variability.
After this selection, 131 springs were retained. We characterise the springs using different variables (Table 3), namely the topographic characteristics of the catchments draining to the springs, the activity-state, topographic, geomorphological, and vegetation characteristics of rock glaciers, and the topographic, geomorphological, geological, vegetation and permafrost characteristics of the area immediately upslope of the springs. The latter is defined by the intersection of the catchment perimeter with a circular buffer zone with a radius of 100 m (Fig. 2; Carturan et al., 2016). Details on these variables, the methodology and the data sources (e.g., DEMs, orthophotos, geological maps and literature) employed to derive them are listed and described in Table 3.

Figure 2: Delimitation of the spring upslope area, defined by the intersection of a circular buffer zone with a radius of 100 m over the catchment perimeter. The methodology was introduced and tested in Carturan et al. (2016).
Table 3: Quantitative and qualitative variables used for characterizing spring areas and for statistical analyses.

<table>
<thead>
<tr>
<th>Spatial scale</th>
<th>Variable type</th>
<th>Variable</th>
<th>Classes/acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment</td>
<td>Quantitative</td>
<td>Minimum elevation (m a.s.l.)<sup>a</sup></td>
<td>\</td>
<td>Spring elevation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum elevation (m a.s.l.)<sup>a</sup></td>
<td>\</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean elevation (m a.s.l.)<sup>a</sup></td>
<td>\</td>
<td>Half sum of minimum and maximum elevations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planimetric length (m)<sup>a</sup></td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>Qualitative</td>
<td></td>
<td>Mean aspect<sup>a</sup></td>
<td>1</td>
<td>NW-NE (315° to 45°)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>NE-SE (45° to 135°) and SW-NW (225° to 315°)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>SE-SW (135° to 225°)</td>
</tr>
<tr>
<td>Spring upslope area</td>
<td>Qualitative</td>
<td>Geomorphology<sup>b,d</sup></td>
<td>VER</td>
<td>Slope deposit (scree slope or debris cone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GLAC</td>
<td>Glacial deposit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RG</td>
<td>Rock glacier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PR</td>
<td>Protalus rampart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RP</td>
<td>Bedrock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DF</td>
<td>Debris flow deposit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LS</td>
<td>Solifluction lobe</td>
</tr>
<tr>
<td></td>
<td>Lithology<sup>b</sup></td>
<td>TTP</td>
<td>Sillimanite paragneiss (Tonale Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TUG</td>
<td>Granate and cyanite paragneiss (Ultimo Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TUO</td>
<td>Orthogneiss (Ultimo Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OME</td>
<td>Chlorite e sericite micascists (Peio Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OMI</td>
<td>Granate and staurolite micascists (Peio Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OOG</td>
<td>Orthogneiss (Peio Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPN</td>
<td>Metapegmatites (Tonale Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTM</td>
<td>Marbles (Tonale Unit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetation cover<sup>c</sup></td>
<td>1</td>
<td>0-10% covered by vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10-50% covered by vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50-90% covered by vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>90-100% covered by vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permafrost evidence<sup>c,h</sup></td>
<td>weqt</td>
<td>winter equilibrium temperature measured by temperature data loggers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geophys</td>
<td>geophysical investigations (this work)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>snow perennial snowfields</td>
<td>movement</td>
<td>surface displacement visible in multi-temporal DEMs</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>none no evidence available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIM*</td>
<td>Blue permafrost in nearly all conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purple permafrost mostly in cold conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow permafrost only in very favorable conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White no permafrost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open work deposit*</td>
<td>y present (includes boulder deposits with fine infill and/or widespread vegetation cover)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n absent (includes boulder deposits with fine infill and/or widespread vegetation cover)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rock glacier</th>
<th>Quantitative</th>
<th>Qualitative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front slope (degrees)*</td>
<td>Activity*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\</td>
<td>Intact</td>
<td>Intact rock glacier (active or inactive)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relict</td>
<td>Relict rock glacier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short</td>
<td>Short rock glacier length class (as defined in Sect. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mid</td>
<td>Mean rock glacier length class (as defined in Sect. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>Long rock glacier length class (as defined in Sect. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevation*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Low rock glacier elevation class (as defined in Sect. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mid</td>
<td>Mean rock glacier elevation class (as defined in Sect. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>High rock glacier elevation class (as defined in Sect. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetation cover*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetated</td>
<td>Vegetated rock glacier (as defined in Sect. 3, Table 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non vegetated</td>
<td>Non vegetated rock glacier (as defined in Sect. 3, Table 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Front characteristics*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>No vegetation, evidence of recent instability, outcrop of fine material, little or no surface weathering, weathering degree lower than the surface of the rock glacier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Very little or no vegetation (<20%), very little or no fine material, weathering and lichen cover comparable to the surface of the rock glacier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Scarce or discontinuous and cold-adapted vegetation (≤50%), abundant debris, weathering</td>
</tr>
</tbody>
</table>
We investigated the possible relationship of each variable with the spring-water temperature by means of scatterplots, boxplots, analysis of variance (or Kruskal-Wallis one way analysis of variance on ranks when variances were not homogeneous), Dunn’s multiple comparison test, Student’s t-test, and regression analysis. We defined spring-water temperature as “the median of all available temperature measurements in the four years”, so that we smoothed the interannual variability of water temperature. However, we had also to account for the different number of measurements available for each spring (from one up to four), and in particular for the possible low representativeness of springs measured only once. In this case, there is the possibility of having measured an extreme value, far from the typical conditions of those springs. To evaluate the impact of extreme values, we computed the absolute difference between each single-year spring water measurement and the median of all available measurements at the same spring. The mean of these absolute differences was 0.12°C, the median was 0.05°C, whereas the minimum and the maximum were 0 and 0.7°C, respectively, and 89% of values was below 0.3°C. These results indicate a low impact of extreme temperatures and the suitability of using the median of all available measurements (regardless of their number) in statistical analyses. For springs with temperature measured only once, we retained the single value if runoff was >0.1 l/s.

3.4 Geophysical investigations

Electrical resistivity tomography (ERT) surveys were performed on 13-14 July 2022 at two neighbouring rock glaciers, classified as relict in the inventory of Seppi et al. (2012). These rock glaciers were selected considering their different

<table>
<thead>
<tr>
<th>Subdued topography<sup>a</sup></th>
<th>similar to the surface of the rock glacier, cold air draining from voids among blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Completely vegetated, little outcropping debris, without voids and cold air drainage</td>
</tr>
<tr>
<td>y</td>
<td>The lateral and frontal ridges are clearly evident and the central part of the rock glacier is depressed with respect to them (concave contour lines)</td>
</tr>
<tr>
<td>n</td>
<td>Lateral ridges are absent or evident only in the upper part of the rock glacier, from halfway down the morphology is convex or almost flat</td>
</tr>
</tbody>
</table>

^a Derived from the 2006 and 2014 LiDAR DEM of the Trento Province (siat.provincia.tn.it)

^b Derived from the 1:10000 geological map of the Trento Province (protezionecivile.tn.it)

^c Derived from the 2014 orthophoto of the Trento Province (siat.provincia.tn.it)

^d Derived from the Boeckli et al. (2012) Alpine Permafrost Index Map

^e Derived from the hillshaded 2014 LiDAR DEM of the Trento Province (siat.provincia.tn.it)

^f Derived from the Seppi et al. (2012) rock glacier inventory

^g Derived from field observations

^h Ground surface temperature data reported in Carturan et al., (2016) and references therein; http://www.protezionecivile.tn.it/.
characteristics (spring-water temperature, vegetation cover, elevation) and the easy access. The Preghena Rock Glacier has a mean elevation of 2196 m a.s.l., is mainly free of vegetation (although shrubs and trees are present) and its spring-water temperature ranged between 1.6 and 1.8°C throughout the late summer during the measuring period. The Bordolona Rock Glacier has a mean elevation of 1967 m a.s.l., is completely covered by vegetation and its spring-water temperature ranged between 3.5 and 3.7°C in the late summer during the measuring period. Both rock glaciers are northeast oriented (Fig. 3).

Figure 3: Location of ERT lines (black solid lines) performed on the Bordolona and Preghena rock glaciers in July 2022. The white dots indicate the lower edge of rock glaciers. The green dots in the upper panels indicate the sampled springs.
Geophysical surveys were carried out with a Syscal Pro georesistivimeter (Iris Instruments), using arrays of 72 (Line 1 Preghena and Line 3 Bordolona) or 48 (Line 2 Preghena) electrodes, with 3-meter electrodes spacing (Fig. 3). A dipole-dipole scheme was used, with two different skips of 0 and 4 electrodes. This configuration ensured relatively high resolution at the surface, and at the same time enough penetration depth. Measurements were carried out with a stack of 3 to 6, imposing an acceptable error threshold of 5%. To estimate a more reliable experimental error for the acquired datasets (Binley, 2015), direct and reciprocal measurements were acquired by exchanging injecting and potential dipoles for each quadrupole. To partially overcome the high contact resistances between the electrodes and boulders/debris (Hauck and Kneisell, 2008), the electrodes were inserted between the boulders using sponges soaked with saltwater (Pavoni et al., 2023). Nevertheless, at the blocky surface of the Preghena Rock Glacier the contact resistances remained steadily above 100 kΩm, due to dry environmental conditions. The organic soil at the Bordolona Rock Glacier guaranteed low contact resistances (<10 kΩm).

The inversion process of the acquired datasets has been performed with the Python-based software ResIPy (Blanchy et al., 2020), based on the Occam’s inversion method (Binley and Kemna, 2005). In each dataset, quadrupoles with a stacking error higher than 5% were removed, and the expected data error was defined using the reciprocal check (Day-Lewis et al., 2008, Pavoni et al., 2023), giving values of 20% and 5% for the Preghena and Bordolona Rock Glacier, respectively. The acquired data were of lower quality at the Preghena Rock Glacier, due to the high contact resistance.

4. Results

4.1 Spatial variability of spring-water temperature

Water temperature of the 131 springs ranged between 0.0 and 8.5 °C, with a mean of 3.6 °C and a median of 3.4°C (Table 4). The frequency distribution of the spring elevation (i.e., the minimum elevation of catchments) is symmetrical and normally distributed around a sample mean of 2384 m a.s.l. The lowermost spring was sampled at 1698 m a.s.l., and the uppermost spring was sampled at 3039 m a.s.l.

The mean elevation of spring catchments varies between 2104 and 3151 m a.s.l., whereas the maximum elevation ranges between 2241 and 3352 m a.s.l. The mean and maximum elevation average 2539 and 2694 m a.s.l., respectively. Both are also symmetrical around the sample mean and normally distributed.

The planimetric length of spring catchments varies between 83 and 2621 m, with a mean of 610 m. The skewness and kurtosis indicate that the planimetric length is right skewed and leptokurtic.
Table 4: Descriptive statistics for spring-water temperature measurements and quantitative variables relative to spring catchments (as defined in Table 3).

<table>
<thead>
<tr>
<th>N = 131</th>
<th>Median temperature (T_{Med})</th>
<th>Catchment minimum elevation (m)</th>
<th>Catchment maximum elevation (m)</th>
<th>Catchment mean elevation (m)</th>
<th>Catchment planimetric length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.0</td>
<td>1698</td>
<td>2241</td>
<td>2104</td>
<td>83</td>
</tr>
<tr>
<td>Median</td>
<td>3.4</td>
<td>2367</td>
<td>2641</td>
<td>2495</td>
<td>539</td>
</tr>
<tr>
<td>Maximum</td>
<td>8.5</td>
<td>3039</td>
<td>3352</td>
<td>3151</td>
<td>2621</td>
</tr>
<tr>
<td>Range</td>
<td>8.5</td>
<td>1341</td>
<td>1111</td>
<td>1047</td>
<td>2538</td>
</tr>
<tr>
<td>Mean</td>
<td>3.6</td>
<td>2384</td>
<td>2694</td>
<td>2539</td>
<td>610</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>0.2</td>
<td>22.6</td>
<td>21.9</td>
<td>21.0</td>
<td>34.9</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.8</td>
<td>259.2</td>
<td>251.1</td>
<td>240.8</td>
<td>399.3</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>0.500</td>
<td>0.109</td>
<td>0.093</td>
<td>0.095</td>
<td>0.655</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.392</td>
<td>0.179</td>
<td>0.446</td>
<td>0.419</td>
<td>2.070</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.261</td>
<td>-0.328</td>
<td>-0.107</td>
<td>-0.391</td>
<td>6.095</td>
</tr>
</tbody>
</table>

Spring-water temperature is significantly correlated with the mean elevation of the catchments (Fig. 4a) for all three aspect classes defined in Table 3. Linear regressions are significant (p< 0.001) for south ($R^2 = 0.30$) and for east-west facing catchments ($R^2 = 0.35$). For the north facing catchments, there is a low significant relation ($R^2 = 0.25$, p<0.05) between water temperature and elevation. In all three cases, the low R^2 suggests that other factors should affect water temperature, as well. Similar results were obtained using spring elevation rather than mean catchment elevation (Fig. 5).
Figure 4: Relationship between spring-water temperature and a) mean catchment elevation (clustered in three classes of mean catchment aspect), b) mean catchment aspect, c) mean catchment elevation (clustered in seven classes of upslope area geomorphology), and d) upslope area geomorphology. Acronyms and their meanings are reported in Table 3. Boxes in b) and d) indicate the 25th and 75th percentile, whiskers indicate the 10th and 90th percentile, whereas the horizontal solid and dashed lines within the box mark the median and the mean, respectively. Different letters above the boxplots indicate groups with significantly different (p<0.05) water temperatures based on Dunn’s multiple comparison test (applied after the Kruskal-Wallis test).
As expected, there is a negative relationship between water temperature and elevation (Fig. 4a and 5), but also a large overlap of water temperature among the three aspect classes. NW-NE facing catchments have significantly colder springs compared to SE-SW facing catchments (p<0.05, Dunn’s multiple comparison test, applied after the Kruskal-Wallis test), whereas catchments facing NE-SE and SW-NW have water temperature that do not differ significantly from the other two classes (Fig. 4b). NW-NE facing catchments show a lower variability in spring-water temperature compared to the other two classes.

Figures 4c and 4d highlight that springs with upslope areas dominated by the presence of rock glaciers (irrespective of their activity) and bedrock outcrops are significantly colder than other springs (p<0.05, Dunn’s multiple comparison test, applied after the Kruskal-Wallis test).

4.2 Temperature of springs downslope of rock glaciers

4.2.1 Comparison between intact and relict rock glaciers

The spring-water temperature is significantly different for rock glaciers with different degrees of activity (Fig. 6a). Relict rock glaciers have a much warmer spring temperature compared to intact rock glaciers (Student’s t-test, p<0.001), and the variability of water temperature is larger for relict rock glaciers. There is a substantial overlap between the two groups, which extended between 1.2 and 3°C. This range of water temperature represents 54% of all springs downslope of rock glaciers (53% of intact rock glaciers and 54% of relict rock glaciers). Almost half of rock glaciers classified as relict has spring-water temperature similar to rock glaciers classified as intact.

The two groups of rock glaciers have significantly different minimum elevations (Fig. 6b, Student’s t-test, p<0.001), but there is a wide elevation band, comprised between 2406 and 2630 m a.s.l., where they overlap.
Figure 6: Spring-water temperature (a) and minimum elevation (b) of rock glaciers sampled in the study area. Boxes indicate the 25th and 75th percentile, whiskers indicate the 10th and 90th percentile, whereas the horizontal solid and dashed lines within the box mark the median and the mean, respectively. Maximum and minimum values are represented by dots. Sample size (n) is reported in a).

4.2.2 Spring-water temperature of relict rock glaciers

The relationship between water temperature and the mean catchment elevation is rather weak for springs fed by relict rock glaciers (Fig. 7a). The linear regression is significant (p<0.05) only for catchments facing NE-SE and SW-NW, but the relation is weak (R^2 = 0.20). At the same elevation, catchments facing NW-NE have colder springs compared to the other two aspect classes. The spring-water temperature of catchments facing north is similar to that of catchments facing east, south and west located 300-400 m above.

Relict rock glacier springs with open work deposits in their upslope areas are colder than springs without open work deposits (Fig. 7b). For the first group, the water temperature is not related to the mean catchment elevation, whereas for the second group there is a weak but significant relation (p<0.05, R^2 = 0.15). Consequently, the difference in water temperature of the two groups increase towards low elevations, which suggest that open work deposits may have a cooling effect particularly marked at elevations <2500 m a.s.l.

Similar considerations can be done for rock glacier front characteristics (Fig. 7c) and for rock glacier vegetation cover (Fig. 7d). Relict rock glaciers with scarce and cold-adapted vegetation cover have colder springs compared to relict rock glaciers with abundant vegetation cover on their bodies and fronts. However, for all classes of rock-glacier front characteristics and vegetation cover (Table 3) there is no significant relation between water temperature and mean catchment elevation.

Despite the large overlap among the analysed classes (Fig. 7), we found a significant effect of vegetation cover (Student’s t-test, p<0.001), open work deposits (Student’s t-test, p<0.001) and front characteristics (Student’s t-test applied to classes III and IV, p<0.01) on the water temperature of springs downslope of relict rock glaciers. We did not detect any significant influence of the mean aspect of the catchment, the mean elevation of rock glaciers, their length, and the presence or absence of a subdued topography on water temperature.
Figure 7: Relationship between spring-water temperature of relict rock glaciers and mean catchment elevation clustered in a) three classes of mean catchment aspect, b) two classes of open work deposits in the spring upslope area, c) three classes of rock glacier front characteristics, and d) two classes of rock glacier vegetation cover. Classes are described in Table 3.

4.3 Geophysical investigations

Figures 8a and b show the inverted resistivity sections obtained for the investigation Lines 1 and 2 acquired on the Preghena Rock Glacier. High values of resistivity (>80 kΩm) were found in the uppermost layer, down to about 7-8 meters of depth, associated to the dry conditions during ERT soundings and to the air-filled voids among coarse debris and blocks, typical of rock glacier environments. Below this uppermost layer, the resistivity values rapidly decrease (<10 kΩm) indicating a plausible decrease of porosity and grain size in the deposit, and a possible increase in water content. This low resistivity layer develops almost continuously down to the bottom of the models. An increase in resistivity is found at the lower end of line 1 and at the upper end of line 2, in the area where they overlap and at a depth of about 12-
13 m, reaching 150-200 kΩm. This area of increased resistivity can be interpreted as a deep frozen body, providing evidence of probable permafrost inside this rock glacier. Figure 8c shows the inverted resistivity section obtained for the investigation Line 3 acquired on the Bordolona Rock Glacier. In the shallowest layers the resistivity is comprised between 5 and 10 kΩm, significantly lower than the shallow layer of the Preghena Rock Glacier, even if air-filled voids are common on this rock glacier as well. Below this layer, a sharp increase in resistivity is detected along the entire investigation line, with frequent regions exceeding 20 kΩm. The highest resistivity (about 60 kΩm) is found towards the upper end of the ERT line, where a younger rock glacier lobe overlies the main body. This high resistivity layer reaches about 15 meters of depth and can be interpreted as a frozen layer. The bottom of the high-resistivity layer, which seems discontinuous in the lower part and more continuous and thicker in the upper part of the ERT line, is highlighted by a strong decrease in resistivity, below 5 kΩm. This lowermost layer is probably unfrozen and is characterised by an increase in water content and fine sediments.
Figure 8: Inverted resistivity section of the investigation Line 1 (a) and 2 (b) on the Preghena Rock Glacier, and of the investigation line 3 (c) on the Bordolona Rock Glacier.
5. Discussion

5.1 Permafrost distribution and spring-water temperature in the study area

Measurements of spring-water temperature collected in this study outside the rock-glacier influence have a high spatial variability and do not show a significant relationship with elevation (p>0.05). Among springs outside the rock glacier influence, only those above 2800 m a.s.l. have a water temperature ≤2.2°C, which is the upper limit reported in the literature for "possible permafrost" (Carturan et al., 2016).

This result lines up well with mean annual air temperature (MAAT) indications. Indeed, based on the MAAT of -0.9°C measured between 1961 and 2010 at the Caresser Diga weather station (2605 m a.s.l., in the northern part of the Val di Sole), the theoretical lower limit of discontinuous permafrost in Val di Sole, corresponding to a MAAT of -2°C (Haeberli, 1985), should be comprised between 2700 and 2800 m a.s.l..

Similarly, the alpine permafrost index map (APIM, Boeckli et al., 2012) indicates a lower limit of "permafrost mostly in cold conditions" ranging between 2500 and 2900 m outside rock glaciers and coarse-block deposits, varying upon terrain aspect and averaging 2700 m a.s.l. Based on the mean elevation of intact rock glaciers in the study area, Seppi et al. (2012) calculated a present-day lower limit of permafrost at 2720 m a.s.l.

As expected, springs draining north-facing catchments are significantly colder compared to springs draining south-facing catchments. On average, there is a difference of about 3°C between springs draining catchments at similar elevation and with opposite aspect. On average, the same spring temperature is found 500-600 m higher on south-facing catchments than on north-facing ones (Fig. 5). This result quantifies the influence of terrain exposure on the ground temperature regime and permafrost distribution in the study area, which are direct consequences of shortwave radiation inputs and related effects on snow cover and surface albedo (Boeckli et al., 2012).

In our study, at all elevations, springs draining rock glaciers are the coldest, irrespective of the rock glacier activity state (Fig. 4c). This is in agreement with findings of studies in the European Alps and in other mountain chains reporting rock-glacier spring-water temperatures, regardless of their activity state. For example, in the Canadian Rockies, spring-water temperature from an inactive rock glacier hosting small portions of permafrost reached a maximum of 2.2°C, exercising a substantial cooling effect on the creek downstream (Harrington et al., 2018). Interestingly, cold conditions and high daily variability in spring-water temperature in summertime has been recorded in a rock glacier in Norway that shows characteristics favourable to the presence of permafrost, but with minor ice bodies (Liljestroen et al., 2022). In the Austrian Alps, spring-water from a relict rock glacier was monitored for 6 years, showing a mean temperature of 2.2°C, with small seasonal variation (between 1.9 and 2.5 °C) and a decrease of the water temperature after precipitation events, attributed to the potential presence of ice lenses in the lower part of the rock glacier (Winkler et al., 2016).

Our results align as well with those of studies reconstructing permafrost distribution by empirical modelling in the Alps and at other mountain locations worldwide. A logistic regression model used in the Dry Andes of Argentina accounting for mean annual air temperature, terrain ruggedness, and potential incoming solar radiation suggests that permafrost may occur in several types of coarse blocky deposits, including rock glaciers, even under unfavourable climatic conditions (Tapia Baldis and Trombott-Liaudat, 2020). A similar empirical-statistical model applied in the Austrian Alps shows that permafrost can be expected above 2500 m a.s.l. in northerly exposed slopes and above 3000 m a.s.l. in southerly exposed slopes (Schrott et al., 2012), providing an elevation difference of about 500 m between south and north exposures, which agrees well with our spring-water temperature results.
5.2 Rock glacier classification based on spring-water temperature

Although springs draining intact rock glaciers are significantly colder than springs draining relict rock glaciers, there is a remarkable ~50% overlap in the water temperature range of the two rock glacier groups (Fig. 6a). Based on published thresholds (Haeberli, 1975; Frauenfelder et al., 1998; Scapozza, 2009, Carturan et al., 2016), 12 out of the 52 relict rock glaciers sampled in Val di Sole (23%) can be included in the 'possible permafrost' category (water temperature between 1±0.2 and 2±0.2 °C), and none of them in the 'probable permafrost' category (water temperature < 1±0.2 °C). However, the relatively warm water temperature measured downstream of intact rock glaciers (maximum = 3°C, 90th percentile = 2.4°C), and downstream of areas with permafrost evidence (maximum = 3.5°C, 90th percentile = 2.2°C), suggest that the upper limit for possible permafrost may be higher. Here, the 90th percentile accounts for possible misclassification of intact rock glaciers and other issues affecting spring-water temperature measurements (Sect. 5.3).

Assuming a (rounded) upper limit of 2.5°C for spring-water temperature with possible permafrost influence leads to include 19 (38%) relict rock glaciers in the possible permafrost category. This estimate looks more conservative than the ~50% obtained by a mere comparison of water temperature ranges of intact and relict rock glaciers (Fig. 6a). These findings might suggest that permafrost in rock glaciers classified as relict is widespread in Val di Sole, and that a large fraction of them is actually pseudo-relict, or transitional landforms, containing patches of permafrost and reaching an elevation below the tree line (2000-2200 m a.s.l.).

Examples of spring-water temperature downstream of rock glaciers in Val di Sole are shown in Fig. 9. Cold springs draining rock glaciers classified as relict are associated to the presence of open work deposits and scarce vegetation cover (Fig. 7 and 9). These two explaining variables are often correlated, because vegetation tend to be scarce over coarse deposits without fine infill among blocks, and vice versa. The relationship between cold spring temperature (as permafrost evidence) and these two surface characteristics was expected in our case study, based on the existing literature (e.g., Guglielmin, 1997, and references therein). This relationship is statistically significant only for rock glaciers classified as relict, whereas for intact rock glaciers sampled in the study area it does not exist (Fig. A1).
Figure 9: Examples of spring-water temperature downstream of rock glaciers in Val di Sole: a) intact (active) rock glacier with cold spring at 2950 m a.s.l.; b) intact (inactive) rock glacier with relatively warm spring at 2727 m a.s.l.; c) relict rock glacier with cold spring at 2304 m a.s.l., whose surface is open-work and presents scarce vegetation cover; d) relict rock glacier with warm spring at 2266 m a.s.l., whose surface is entirely covered by vegetation.

The long-term preservation of permafrost within open work blocky deposits results from overcooling and thermal decoupling of the frozen core from the external climate (Harris and Pedersen, 1998; Morard et al., 2008; Jones et al., 2019). The low thermal conductivity in coarse open work deposits brings to lower ground temperatures compared to fine-grain material (Juliussen and Humlum, 2008; Jones et al., 2019). Soil development over the surficial blocks and boulders can prevent these cooling effects (Ikeda and Matsuoka, 2002). However, if fine-grain infilling does not occur, ground cooling effect goes undisturbed. In central Europe, these processes enable the existence of permafrost much below its regional limit and reaching elevations lower than 1000 m a.s.l. (Gude et al., 2003; Delaloye et al., 2003). According to Delaloye and Lambiel (2005), thousand-year-old permafrost might be potentially preserved in these types of deposits.

Open work deposits and/or scarce vegetation cover can be potentially employed to distinguish rock glaciers with or without permafrost, as both can be mapped based on remote-sensing imagery. However, open work deposits and vegetation cover do not enable a full distinction of ‘cold’ and ‘warm’ springs affected by relict rock glaciers (Fig. 7b, c and d). Individual non-open-work rock glaciers widely covered by vegetation can have spring-water temperature as low as 1.4°, and rock glaciers almost free of vegetation with blocky surface can have spring-water temperature up to 3.9°C.

Other variables considered in this study, such as aspect, elevation, size and the presence or absence of a subdued topography on rock glaciers (Delaloye et al., 2003; Delaloye, 2004), are not related to spring-water temperature. Figure 7 suggests the existence of a group of cold springs at low elevations on north-facing catchments, even though water...
temperature is not significantly different from the temperatures of springs in the other two aspect classes. This result might be due to the small sample size of the NW-NE aspect class.

5.3 Limitations and uncertainties in the spring-water temperature approach

The results of this study might be affected by limitations in the experimental design, assumptions, and uncertainties. First, the main assumption of this study is that spring-water temperature provides indication of permafrost occurrence at investigated rock glaciers and spring upslope areas, and can be used as a stand-alone pilot method to rapidly explore the activity state of rock glaciers in a wide area. This approach applies spring-water temperature to the catchment scale, beyond its general use as an ancillary method to other techniques such as InSAR analyses, ground surface temperature measurements and/or geophysics.

We base our assumption on previously published work and well-known temperature thresholds for permafrost probability categories (e.g., Haeberli, 1975; Frauenfelder et al., 1998; Scapozza, 2009) and on our first successful application at the catchment scale (Carturan et al., 2016). Data collected in Val di Sole are in line with literature thresholds, provided that the 10% largest spring-water temperature values are excluded (Sect. 5.2). Including these extreme values leads to about 1.5°C larger temperature thresholds for possible permafrost compared to literature.

The reason behind this discrepancy lies in the uncertainty in the classification of rock glacier activity, which was based on vegetation and geomorphological characteristics, assessed mainly from remote-sensing images (Seppi et al., 2012). In the wide elevation band where intact and relict rock glaciers coexist (minimum elevation between 2406 and 2630 m), landforms with similar vegetation cover and surface geomorphology have been classified based on the authors’ experience and judgement, implying a certain degree of subjectivity.

The distinction between intact and relict rock glaciers is a theoretical concept, and there is a continuum between (true) intact and (true) relict rock glaciers, with the existence of transitional landforms (Kääb, 2013). In absence of other evidence, this continuum hampers to distinguish unambiguously intact and relict landforms, in particular if they have similar surface characteristics. In addition, the mentioned transition is a dynamic concept, which depends on the characteristics of individual landforms, their topo-climatic setting, and their response to climatic variations (Kääb, 2013).

Another source of uncertainty is related to the distance between the permafrost body and the measured springs. Water temperature is a non-conservative tracer, and if the main permafrost body is distant (e.g., tens of meters) from the rock glacier front, water temperature can significantly increase along the flow paths before reaching the spring, due to the contact with unfrozen sediments and/or mixing with other water sources (e.g., Kellerer-Pirklbauer et al., 2017). This is the case of the Bordolona Rock Glacier (Fig. 8c), where the rather warm spring-water temperature (3.5-3.7°C) would have led to exclude the occurrence of permafrost in absence of geophysical evidence.

Several authors are cautious when discussing about cold springs downslope of relict rock glaciers. For example, Winkler et al. (2016) do not exclude the presence of remaining ice lenses inside the relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), as a possible explanation for the rapid cooling of the spring water after recharge events, during summertime. However, the authors mention the cold thermal regime beneath coarse blocky materials as a possible explanation, which does not necessarily imply permafrost occurrence, and conclude that additional research is required for the identification of the cooling source.

We agree that additional research is required to confirm inference from spring-water temperature. With this study we add that spring-water temperature can be as high as 1.8°C for rock glaciers where permafrost occurrence is confirmed by
geophysics or ground surface temperature measurements, and can exceed 3.5°C where the permafrost body is far from
the rock glacier front and spring, such as at the Bordolona Rock Glacier. Even if the collected data seem to suggest that
temperature thresholds might be slightly higher than those reported in the literature, further investigations are necessary
for better constraining them and for defining their range of uncertainty.

A last source of uncertainty is represented by the sampling design adopted for Val di Sole, with its particular topographic
and geological characteristics. The dominant southward aspect of the investigated rock glaciers, and their spatial
clustering, can explain the lack of correlation between water temperature and the aspect of rock glaciers. We tried to
minimise the spatial clustering of measured springs, visiting as many headwater catchments as possible, and taking
measurements at the largest number of springs on each catchment. However, due to logistic constraints and inherent
characteristics of the study area, a certain degree of spatial clustering was unavoidable. For this reason, the role of terrain
aspect as a possible controlling factor on spring-water temperature requires additional investigation.

5.4 Geophysics

The inverted resistivity sections obtained for the Preghena Rock Glacier (Fig. 8a and b) show results compatible with the
presence of permafrost patches. Even considering the high contact resistance due to the dry weather conditions preceding
the survey, and the location of the high resistivity body in the areas known to be the least sensitive of the model (the bed
and margins, Binley, 2015), we observe that the obtained resistivity values are typical of frozen materials (Hauck and
Kneisel, 2008). This result agrees with the low temperature of the Preghena Rock Glacier spring, which fluctuates between
1.6 and 1.8°C throughout summer, and it suggests that this rock glacier should be classified as a pseudo-relict rock glacier.

In the Bordolona Rock Glacier (Fig. 8c), the frozen layer looks discontinuous in the lower section of the ERT Line, and
more continuous and thicker in the upper part, where a younger lobe superposes the main body of the rock glacier. The
derivative resistivity detected in the lower and upper sections of the ERT line can be related to a different percent ice
content in the frozen layers, and/or a different temperature of the ice (Hilbich et al., 2008). These results suggest the
probable presence of permafrost also inside the Bordolona Rock Glacier, which was considered a ‘true’ relict rock glacier
due to its abundant vegetation cover, spring-water temperature above 3°C, and low mean elevation. Based on geophysical
investigations, the Bordolona Rock Glacier too should be classified as a pseudo-relict rock glacier.

More conclusive results should be obtained by repeating the geophysical surveys under moister conditions, especially at
the Preghena Rock Glacier, and possibly coupling ERT to seismic refraction measurements in order to obtain a reliable
estimate of the percent ice content inside these rock glaciers (Hauck et al., 2011, Wagner et al., 2019, Pavoni et al. 2023).

5.5 Ice storage in the rock glaciers and glaciers of Val di Sole

Given the very different response time of glaciers and rock glaciers to projected atmospheric warming, their relative
importance has relevant implications for the current and future hydrological cycle. In the study area, glaciers are shrinking
fast, and in 2022 they covered 7.18 km², which is 59% of the 2003 area (area loss rate = 2.6% y⁻¹). For these reasons, and
in light of the results of this work, it is interesting to estimate and compare the ice content of rock glaciers and glaciers in
Val di Sole, similarly to what was done, for example, by Bolch and Marchenko (2009) in the Northern Tien Shan.
For glaciers, we estimated residual volumes in 2022 starting from the ice thickness estimates provided for each glacier in the study area by Farinotti et al., (2019). We first calculated the bedrock topography subtracting the ice thickness from the glacier surface DEM (Farinotti et al., 2019). Then we calculated the 2002 glacier thickness subtracting the bedrock topography from a glacier surface DEM surveyed in September 2022 by the Province of Trento. We finally obtained the glacier volumes multiplying the average thickness by the glacier area, and converted the ice volume into the water volume equivalent using a mean ice density of 900 kg m\(^{-3}\).

For rock glaciers, we calculated the total rock glacier volume multiplying their area \(A\) by the average thickness provided by the Brenning (2005b) formulation:

\[T = cA^\gamma \]

where \(T\) is the average thickness of rock glaciers, and \(c\) and \(\gamma\) are constants equal to 50 and 0.2, respectively. To account for the different geometry of intact and relict rock glaciers, we assumed that the volumetric ice content of intact rock glaciers averages 50\% (Jones et al., 2018, and references therein), and therefore that \(T\) for (true) relict rock glaciers is half of that of intact rock glaciers (i.e., they are composed only of debris and all the ice melted away). For pseudo-relict rock glaciers we tested various hypotheses of percent ice content, calculating the average thickness \(T_{\text{pr}}\) as follows:

\[T_{\text{pr}} = T_\gamma + T_{\text{ice}} \]

where \(T_\gamma\) is the average ice thickness, calculated in function of the volumetric percent ice content \(\%_{\text{ice}}\) as:

\[T_{\text{ice}} = \frac{\%_{\text{ice}}T_\gamma}{(1-\%_{\text{ice}})} \]

A total glacier ice volume of 251 x 10\(^6\) m\(^3\), and a corresponding 226 x 10\(^6\) m\(^3\) water volume equivalent was calculated for Val di Sole in 2022. In comparison, the water volume equivalent of intact rock glaciers is 42.7 x 10\(^6\) m\(^3\). A water volume equivalent between 3.7 and 17.7 x 10\(^6\) m\(^3\), averaging 10.7 x 10\(^6\) m\(^3\), can be estimated assuming that 38\% of the total area of relict rock glaciers contains permafrost, and that the average ice content ranges between 5\% and 20\% in volume. This range is a first hypothesis based on the few geophysical data available at pseudo-relict rock glaciers (Delaloye, 2004; Colucci et al., 2019; Pavoni et al., 2023; this work). To our knowledge, the amount of ice in pseudo-relict rock glaciers has yet to be quantified.

Even if preliminary and affected by significant uncertainty, these estimates provide an order of magnitude of water stored as ice in the rock glaciers of Val di Sole. The water equivalent ratio for rock glacier ice versus glacier ice averages 1:4.2 and ranges between 1:3.7 and 1:4.9, considering minimum and maximum estimates reported above. Importantly, based on these calculations, 20\% of the total rock glacier water volume would be stored inside pseudo-relict rock glaciers. Even assuming the lower bound of percent ice content (5\%), pseudo-relict rock glaciers would contribute to a significant 8\% of the total rock glacier water volume.

6. Concluding remarks

We have surveyed spring-water temperature in an area of 795 km\(^2\) in Val di Sole, to understand the influence of topographic and geomorphological factors, and to test if it can be used to preliminary differentiate intact and relict rock glaciers. Spring-water temperature measurements enabled to characterise a large number of rock glaciers, and to provide a first estimate of the frequency of pseudo-relict rock glaciers in this area. Overall, our results point to a significant
hydrological importance of rock glaciers classified as relict in the study area, which is expected to increase in the future due to atmospheric warming.

In general, we have found that the spatial variability of spring-water temperature is controlled by elevation, aspect and the presence of rock glaciers in the upslope area. Compared to other landforms in the upslope area, rock glaciers have colder springs, irrespective of their activity state.

The spring-water temperature of rock glaciers classified so far as relict is higher and with larger spatial variability compared to intact rock glaciers. However, there is a remarkable ~50% (38% excluding extremes) overlap in the spring temperature range of the two rock glacier groups. Relict rock glaciers tend to have colder springs if their surface is blocky and scarcely covered by (cold-adapted) vegetation.

The spring-water temperature data suggest that one third of rock glaciers classified as relict might be actually pseudo-relict, thus containing permafrost. The exact percentage cannot be derived unambiguously from spring-water temperature because i) other evidence is required to confirm inference from water temperature, ii) there is uncertainty in the classification of the activity state of rock glaciers, iii) there is geophysical evidence that rock glaciers containing permafrost may have ‘warm’ springs (up to 3.7°C), and consequently iv) there is uncertainty in the definition of the thresholds for differentiate among absent/possible/probable permafrost categories. Despite these uncertainties, our study shows that rock-glacier spring-water temperature can provide a pilot approach to estimate the spatial distribution of permafrost in vast areas, and an auxiliary element to the classification of rock glaciers, whose permafrost content might otherwise go underestimated.

Geophysics applied to two rock glaciers classified as relict enabled to detect the presence of permafrost. While the blocky Preghena Rock Glacier, whose spring temperature was < 1.8°C throughout the summer, was expected to contain permafrost, its occurrence in the Bordolona Rock Glacier was not expected, because it is entirely covered by dense vegetation and its spring temperature reached 3.7°C in late summer.

Preliminary calculations of water resources stored as ice inside the rock glaciers of Val di Sole reveal that they amount to ~24% of the water volume equivalent stored in glaciers, which are disappearing very fast. Remarkably, 20% of the total rock glacier water volume is stored inside rock glaciers classified as relict.

This study highlights the need for additional investigations and improved understanding of these periglacial landforms. In particular, the possible presence of permafrost in a large fraction of rock glaciers classified as relict poses critical questions regarding the origin, preservation, current behaviour, seasonal dynamics, and future evolution of this permafrost. Thorough study of pseudo-relict rock glaciers is required for understanding the transition between intact and relict landforms, which is important in view of current and projected climate change.
Appendix A

Figure A1: Spring-water temperature for intact rock glaciers with and without open work deposits on their surface. Boxes indicate the 25th and 75th percentile, whiskers indicate the 10th and 90th percentile, whereas the horizontal solid and dashed lines within the box mark the median and the mean, respectively. Maximum and minimum values are represented by dots. Sample size (n) is reported above the boxplots.

Data availability

Data are available from the corresponding author upon reasonable request.

Author contributions

LC designed the methodological approach and carried out the sampling campaigns with the support of AA, RS, MT, TZ and GZ. MP and JB carried out the geophysical surveys in cooperation with LC, CM and MZ and interpreted the results. GZ, LC and AA performed the statistical analyses of the dataset. LC prepared the first draft of the manuscript with contributions from GZ, MP and CM. All authors contributed to the editing of the manuscript.

Competing interests

The contact author has declared that none of the authors has any competing interests.

Acknowledgments

The authors acknowledge the editor and reviewers for their comments and suggestions.
Financial support

This study was carried out within the RETURN Extended Partnership and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan – NRRP, Mission 4, Component 2, Investment 1.3 – D.D. 2023/2/8/2022, PE0000005). LC, GZ and RS also acknowledge the support of the project PRIN 2022 “SUBSURFACE – Ecohydrological and environmental significance of subsurface ice in alpine catchments” (code: 2022AL7WKC) (National Recovery and Resilience Plan – NRRP, Mission 4, Component 2, Investment 1.1 – D. D. 104 2/2/2022).

References

