
Dear Reviewer,

Thank you for your effort on review of my submission. Your comments and suggestions are

helpful for my current submission and future research. Now, I respond to your comments

item-by-item. Your comments in blue and my response in black.

1. The methodology is not described adequately. All the ML/DL models have several

hyper-parameters that need to be carefully selected to develop an optimal model. For example,

how many LSTM layers were used? How many neurons in each LSTM layer? What was the

learning rate used? There is some randomness in the training of DL models; therefore, several

models (8-10) are developed with different random seeds. Was this method adopted in the paper? I

know that randomness can be quite significant at least for LSTMs. As another example, how were

the widths determined in convolutional layers? These considerations are really important.

LSTM:

Architecture-Related Hyperparameters
Number of Channels in Convolutional Layer (128): The input convolutional layer is set to have
128 output channels. This number determines the amount of features the model can capture in the
initial processing of input data. A higher number of channels can improve the model's ability to
capture complex features.
Hidden State Size of LSTM Layer (64): The dimension of the hidden state for the LSTM layer is
set to 64. This determines the capacity of LSTM units to remember information. For complex
temporal data modeling tasks, choosing the appropriate size for the hidden state is key to
balancing model complexity and performance.
Number of LSTM Layers (3): The LSTM is configured with 3 layers. Multiple LSTM layers can
enhance the model's learning ability, especially for data with complex temporal dependencies, but
this also significantly increases the number of model parameters and the difficulty of training.
Use of Bidirectional LSTM (bidirectional=True): Employing a bidirectional LSTM allows the
model to learn both forward and backward dependencies in time series data, which has been
proven beneficial in many time series analysis tasks, particularly in scenarios requiring capture of
global temporal information.

Training-Related Hyperparameters
Dropout Ratios (0.15 and 0.3): Dropout is a regularization technique used to prevent over fitting
by randomly dropping a portion of neural network nodes during training. In this model, two
different dropout ratios are used to provide varying degrees of regularization across different
network layers.
Non-linear Activation Functions between Linear and LSTM Layers (ReLU and GELU): ReLU
and GELU activation functions are employed to introduce non-linearity, aiding the model in
learning complex function mappings. GELU, compared to ReLU, can offer smoother gradients in
certain cases, facilitating the learning process.

Loss Functions
MSELoss and SmoothL1Loss: These two loss functions are used for different outputs of the
model. MSE (Mean Squared Error) loss is highly sensitive to outliers, while Smooth L1 loss is a
combination of MSE and L1 losses, aimed at reducing the impact of outliers while maintaining

gradient stability. This combination is likely intended to balance model precision and robustness
in predictions.

GRU:

Architecture-Related Hyperparameters
Number of Channels in Convolutional Layer (128): The convolutional layer's output channels are
set to 128. This is because effective feature extraction is usually required before processing
temporal data, and a higher number of channels helps the model capture a richer set of feature
information. This is particularly important in dealing with complex turbulent heat flux data.
Hidden State Size of GRU Layer (64): The GRU (Gated Recurrent Unit) layer's hidden state size
is set to 64, which determines the GRU unit's memory capacity when processing temporal data.
Compared to LSTM, the GRU architecture is simpler and has fewer parameters but can still
effectively capture long-term dependencies in time series.
Number of GRU Layers (3): The model includes three GRU layers. A multilayer structure helps
learn more complex temporal features but also implies more parameters and a potential risk of
over fitting.
Use of Bidirectional GRU (bidirectional=True): Similar to the bidirectional LSTM, bidirectional
GRU can learn the dependencies of time series data both forward and backward, which is very
useful for understanding the full context of the time series.

Training-Related Hyperparameters
Dropout Ratios (0.15 and 0.3): Dropout regularization is applied in the model to reduce over
fitting. Different levels of dropout ratios might be to increase the model's generalization capability
while maintaining model complexity.
Non-linear Activation Functions Between Linear and GRU Layers (ReLU and GELU): The use of
these activation functions aims to increase the model's non-linear capability, allowing it to learn
more complex function mappings. GELU provides smooth gradients, aiding the optimization
process, while ReLU is widely used for its computational efficiency.

Loss Functions
MSELoss and SmoothL1Loss: These are used to assess the difference between the model's outputs
and the target values. MSE loss is very sensitive to outliers, while Smooth L1 loss attempts to find
a balance between the robustness of L1 loss and the efficiency of MSE loss. This combination is
likely aimed at improving the model's accuracy and robustness in predicting turbulent heat flux
data.

Transformer:

Architecture-Related Hyperparameters
Output Channels of Convolutional Layer (128): This parameter determines the number of features
that the convolutional layer can capture. For simulating complex physical processes like turbulent
heat flux, choosing a higher number of channels helps the model capture a richer set of feature
information.

Transformer Block Configuration:
Dimension (128): The dimension of the Transformer directly impacts the model's capacity to
process information. Higher dimensions mean that the model can store and process more
information internally, which is crucial for complex problems.
Dropout Rates (0.1, 0.25, and 0.5): Using different dropout rates in the Transformer module helps
prevent over fitting while maintaining the model's ability to generalize data. Different dropout
rates may be used to explore the model's performance under varying degrees of regularization.
Use of Layer Normalization (True): Layer normalization helps stabilize the training process and
accelerate convergence, a common practice in Transformer models.

Linear Layer Configuration:
Input and Output Dimensions (128 to 128): These linear layers are used within the model to
further process and transform features. Maintaining the same dimensions helps preserve the
density of information flow, aiding in capturing complex relationships.

Training-Related Hyperparameters
Dropout Ratios (0.15, 0.3): Different levels of dropout ratios help the model mitigate the risk of
over fitting while maintaining complexity. Selecting different rates might be based on
experimental outcomes or aimed at adjusting the model's fit to the training data.

Use of Loss Functions:
MSELoss and SmoothL1Loss: These two loss functions are used for different outputs, aimed at
balancing sensitivity to outliers and the smoothness of predictions. Using weighted loss functions
can further adjust the model's focus on different types of samples.

The initial learning rate utilized in this study is set to 0.0005, configured at the beginning of the
training loop as the lr variable. Subsequently, the paper employs a learning rate decay strategy to
facilitate faster convergence and enhanced accuracy, whereby if epoch % 6 == 0 and lr >=
0.000025, the learning rate is reduced by half. This implies that every six epochs, provided the
current learning rate is greater than or equal to 0.000025, the learning rate will be updated to half
its present value, thus implementing learning rate decay.

Regarding the treatment of randomness, measures have indeed been implemented within the code
to establish a random seed, thereby ensuring the reproducibility of experiments. Specifically, the
random seed is set using the setup_seed(seed) function, affecting the randomness in PyTorch,
Numpy, and CUDA. Setting a random seed guarantees that each execution of the code will
consistently result in identical outcomes for random operations such as initial weight initialization
and dataset splitting.

In the early stages of model development, the selection of convolutional kernels was informed by
the 2020 article "Character-Level Translation with Self-attention," which explores the effects of
integrating convolution operations within a Transformer for character-level neural translation.
Inspired by this study, this paper considers employing kernels of sizes 3, 5, and 7 to capture
multi-scale features. In the simulation of turbulent heat flux, turbulence phenomena display
distinct characteristics at various spatial scales. Smaller kernels (such as 3) can capture more
localized features, while larger kernels (such as 5 and 7) are able to cover a wider area, capturing
more global features. This combination enables the model to concurrently learn features across
different scales, thereby enhancing the model’s understanding and predictive capacity regarding
changes in turbulent heat flux.

2. RF has been used for feature selection. Why? If there are some redundant features, those

would be taken care of by the ML/DL algorithms except the KNN method. Also, why not include

RF as one of the ML algorithms to impute the H and L values? RF is surely better than the KNN

method. Also, note that RF can be thought of as an adaptive KNN so it seems better to used RF

than KNN.

In the simulation of turbulent heat flux within deep learning models, employing Random Forest
for feature selection is grounded in its capacity to efficiently reduce dimensionality and enhance
model training efficiency. Random Forest assesses the importance of features, pinpointing those
that most significantly affect model performance, thereby decreasing the quantity of features the
model must process and boosting training velocity. Simultaneously, by removing insignificant or
redundant features, Random Forest aids in alleviating the risk of model over fitting and

strengthens the model's generalization ability on unseen data. Moreover, it not only facilitates
feature selection but also quantifies the contribution of each feature to the model's predictive
performance, deepening our comprehension of the model's decision-making process. Therefore,
although machine learning and deep learning algorithms can handle a degree of feature
redundancy, the application of Random Forest in feature selection remains an effective and
beneficial strategy, optimizing model input features, enhancing performance, and interpretability.
Given that this paper principally aims to investigate the imputation effects of deep learning
techniques on turbulent heat flux, it does not encompass all machine learning methods. If
necessary, this methodology could be supplemented in subsequent research.

3. The driving variables in this study also had missing values which were imputed using the KNN

method. First of all, the accuracy of the KNN method in imputing these driving variables need to

be established. Second, why not try other methods such as random forest for imputing the driving

variables? Also, why select 3 nearest neighbors? Were other combinations tried? The method to

compute distance in the KNN approach has not been described either.

This study opts to employ the K-Nearest Neighbors (K-NN) method for imputing missing data in
environmental drivers, with one significant advantage of K-NN being its distance-based weighting
mechanism. This allows observations closer in feature space to exert a greater influence on the
imputation outcome, enabling more accurate prediction of missing values—an advantage not
shared by Random Forest. The choice of 3 as the number of neighbors is grounded in the fact that
a smaller number of neighbors can reduce computational complexity and enhance the efficiency of
imputation while maintaining accuracy. This method strikes a balance between imputation quality
and computational efficiency of the algorithm, making it both practical and efficient for handling
missing environmental driver data.

Various distance calculation methods are available within the K-NN algorithm, commonly
including:
Euclidean Distance: The most frequently used distance metric, calculated as the square root of the
sum of the squared differences between dimensions. It is suitable for numerical data.
Manhattan Distance: Calculates the sum of the absolute differences between points in a standard
coordinate system. It is applicable to grid layout path planning and scenarios where differences in
each dimension are equally important.
Chebyshev Distance: The distance between two points is defined as the maximum value among
their coordinate differences. It is suitable for situations where the most extreme difference needs
to be considered.

The choice of distance metric in K-NN depends on the data type and application context. For
environmental drivers of turbulent heat flux measured over time scales, and where the primary
concern is the distance between time points, Euclidean distance is an apt choice.

In this study, by setting the weights="distance" parameter, the KNN imputation (KNNImputer)
utilizes a weighted Euclidean distance formula for calculation. This means that for each missing
value, the algorithm identifies the nearest "n_neighbors" (3 neighbors) and uses their values,
weighting them by the inverse of their distances to the point of imputation to estimate missing
values.

The weighted Euclidean distance formula is used to calculate the distance between two points,
taking into account the importance or weight of each dimension. Given two points P = (p1, p2, ...,
pn) and Q = (q1, q2, ... , qn), along with weights for each dimension W = (w1, w2, ... , wn), the
weighted Euclidean distance dw(P,Q) is defined as:

dw(P, Q) = w1(p1 − q1)2 + w2(p2 − q2)2 + . . . + wn(pn−qn)2

When using the weights="distance" parameter in KNNImputer, weights are calculated based on
the inverse of the distance between points. Here, Wi represents the weight for the ith dimension. In
the context of time series imputation with KNN, weighting typically refers to weighting each
neighbor's contribution according to the distance, rather than applying weights directly in the
distance formula. For each missing value, the imputed value is calculated based on the values of
the nearest neighbors, where the contribution of each neighbor is weighted by the inverse of their
distance to the missing data point, meaning shorter distances contribute more heavily. This
indicates that specific weights are dynamically calculated based on the actual distances between
data points, rather than being pre-specified.

4. The methodology for testing the different DL/ML methods is not rigorous enough. A total of 10

years of data are used where 9 years of the data are used for training and 1 year (year 2012) is

used for testing. This methodology should be repeated for each year as the testing year in iteration.

Basically, use the data from 2007 as the test data and rest of the data for training. Then, used 2008

as testing year and rest as training, and so on.

First and foremost, I would like to express my sincere gratitude for your insightful comments and
suggestions regarding our manuscript. Your recommendation to iteratively use each year as the
test set, thereby ensuring that each year from 2007 to 2016 serves once as the test data with the
remaining years allocated for training, is indeed recognized as a rolling forecasting origin or time
series cross-validation. This approach provides a comprehensive understanding of the model's
performance over time and its generalizability across different temporal conditions. However, I
wish to explain the constraints that led to our initial methodological choice. The primary reason
for not adopting the suggested iterative annual testing approach from the outset was the substantial
increase in computational load it entails, which also contributed to the slower response time. We
have now completed the iterative validation of simulating turbulent heat flux data over a decade.

The results indicate that, except for underperforming slightly in comparison to the Transformer
model in 2016, the Transformer_CNN model emerged as the best model for simulating turbulent
heat flux in all other years, further validating the effectiveness of Transformer_CNN as a viable
tool for imputing turbulent heat flux data.
2007

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 20.61 2.521 24.88 3.443 27.68 4.145 26.32 3.093 21.12 3.174 19.98 3.693

KNN 22.37 3.546 24.20 3.864 30.67 4.421 18.49 2.961 19.55 2.377 20.91 3.315

XGBoost 28.64 4.644 29.85 4.841 31.28 4.929 19.85 3.044 20.77 3.087 25.13 3.944

LSTM 23.18 3.451 25.99 4.018 29.17 4.547 17.98 3.348 21.47 3.571 24.22 3.816

GRU 22.15 3.051 22.57 3.244 26.37 3.968 17.55 2.257 20.91 2.753 23.35 3.646

2008

2009

2010

Transformer 19.53 2.848 20.07 3.056 23.29 3.433 18.67 2.978 19.37 3.145 19.24 3.118

Transformer_CNN 15.67 2.476 17.57 3.168 20.87 3.355 17.62 2.946 18.39 2.876 18.95 2.993

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 20.46 2.942 21.69 3.056 27.89 3.662 26.88 3.461 29.15 3.841 30.75 4.025

KNN 21.44 3.018 22.87 3.246 26.35 3.428 23.18 3.143 24.85 3.386 28.54 3.757

XGBoost 21.38 3.007 24.91 3.582 27.16 3.659 23.55 3.277 25.55 3.568 29.33 3.954

LSTM 22.63 3.144 25.75 3.458 28.33 3.881 20.86 3.155 23.91 3.347 25.88 3.552

GRU 20.44 2.988 23.24 3.528 26.99 3.699 19.71 3.048 23.45 3.257 24.13 3.848

Transformer 15.77 2.544 18.62 2.876 23.47 3.258 19.15 2.883 19.10 3.079 19.57 3.130

Transformer_CNN 14.84 2.668 17.88 2.759 21.83 2.954 18.18 2.784 20.25 3.092 18.47 2.836

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 19.71 3.456 20.29 3.60 27.49 3.955 24.89 3.062 25.76 3.284 29.24 3.856

KNN 21.75 3.701 26.15 3.641 32.12 4.112 25.34 3.277 28.62 3.577 30.65 3.888

XGBoost 26.39 3.666 25.22 4.419 29.18 4.906 23.51 2.983 24.57 3.147 28.36 3.743

LSTM 25.77 3.451 25.43 4.183 29.10 4.752 24.19 3.248 26.47 3.335 29.09 3.842

GRU 22.16 3.091 22.62 4.017 28.24 4.218 22.64 2.889 24.81 3.053 27.55 3.257

Transformer 17.25 2.973 18.22 3.279 24.87 3.495 19.80 2.459 23.51 3.018 24.87 3.266

Transformer_CNN 18.77 3.025 19.24 3.246 23.16 3.357 20.54 2.687 22.76 2.928 21.38 3.006

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 22.68 2.951 23.95 3.681 25.44 3.870 24.18 4.196 25.20 4.174 26.23 4.451

2011

2013

2014

KNN 18.29 2.981 20.01 3.665 21.03 3.882 23.23 3.941 24.35 4.267 26.11 4.440

XGBoost 16.33 3.227 19.43 3.970 21.51 3.940 19.35 2.946 23.14 3.781 25.49 4.002

LSTM 19.84 2.904 20.86 3.696 23.31 3.373 22.94 3.761 23.71 3.928 27.09 4.927

GRU 18.26 3.621 19.81 3.340 22.14 3.400 18.26 2.843 20.95 3.039 24.01 3.588

Transformer 17.37 3.047 19.37 3.641 20.26 3.944 19.16 3.038 21.75 3.254 22.64 3.337

Transformer_CNN 17.56 3.108 18.84 3.884 19.38 3.250 18.42 2.925 19.59 3.004 20.68 3.209

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 19.39 3.764 20.366 3.900 26.14 4.142 21.21 3.441 21.96 3.682 22.45 3.870

KNN 21.48 3.634 25.95 3.788 31.49 4.189 20.28 3.367 23.87 4.061 25.03 3.880

XGBoost 26.30 4.089 25.83 3.912 29.49 4.498 16.33 3.227 19.43 3.870 17.35 3.594

LSTM 25.96 3.102 24.68 4.266 29.33 4.553 19.84 2.900 20.87 3.196 21.31 3.373

GRU 22.60 3.593 21.77 3.447 27.24 4.513 18.27 2.862 22.43 4.057 20.47 4.115

Transformer 17.53 2.887 19.07 3.817 24.71 4.016 18.75 3.620 19.81 3.340 20.68 3.644

Transformer_CNN 17.13 2.519 18.74 3.625 24.66 3.778 18.50 3.312 19.52 2.921 19.35 3.267

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 18.27 2.736 20.15 3.043 26.89 3.746 23.67 2.754 24.76 3.062 19.79 3.124

KNN 19.61 3.034 22.14 3.176 25.73 3.519 24.16 2.972 27.43 5.265 29.27 5.477

XGBoost 21.23 3.248 23.86 3.394 25.16 4.061 18.29 3.014 19.27 3.091 19.04 2.943

LSTM 23.34 3.432 23.97 3.609 27.38 4.483 23.14 3.207 24.12 3.346 26.47 4.573

GRU 22.18 3.374 22.94 3.457 24.93 3.685 19.25 3.216 19.99 3.265 21.84 3.597

Transformer 17.43 2.831 18.47 2.929 20.48 3.462 16.08 2.462 18.24 2.857 17.49 2.963

Transformer_CNN 14.25 2.472 16.88 2.746 18.43 3.154 17.76 2.564 18.09 2.681 17.35 2.869

2015

2016

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 19.84 3.519 21.65 3.735 25.36 4.357 23.17 3.493 24.64 3.874 28.14 4.637

KNN 22.38 4.357 24.66 4.561 31.48 6.05 24.38 3.627 26.07 4.036 29.21 5.143

XGBoost 23.32 4.534 25.49 4.851 28.28 5.568 20.64 3.183 21.28 3.436 24.24 4.324

LSTM 23.83 4.647 25.26 4.435 27.73 4.969 24.37 3.846 25.72 4.041 26.37 4.235

GRU 23.08 4.342 23.75 4.624 26.87 4.867 20.34 3.068 21.26 3.264 25.84 4.027

Transformer 17.48 2.531 17.68 2.634 22.43 3.267 16.24 2.637 18.68 2.943 21.36 3.489

Transformer_CNN 17.17 2.343 17.50 2.353 22.41 2.999 15.96 2.426 18.53 2.554 21.02 3.224

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 19.32 2.784 19.98 2.949 26.61 3.155 25.09 4.215 26.24 4.342 28.69 4.524

KNN 23.16 3.075 26.78 4.211 32.52 4.517 20.56 3.192 22.75 3.487 26.71 4.365

XGBoost 24.38 3.227 25.07 3.439 28.14 3.958 19.27 3.062 23.54 3.679 24.75 3.934

LSTM 24.26 3.106 25.17 3.548 29.57 4.352 24.43 2.859 24.57 4.254 28.76 3.942

GRU 22.10 3.081 23.54 3.349 27.53 4.254 21.59 2.818 21.76 3.857 25.49 3.751

Transformer 17.75 2.719 19.34 2.964 25.48 3.867 19.34 2.963 21.27 3.685 22.57 3.841

Transformer_CNN 16.34 2.951 18.61 3.735 24.43 3.741 18.68 3.461 19.75 3.424 20.56 3.689

H LE

Sets Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE

SVM 20.79 2.853 20.35 2.724 25.22 3.682 24.47 2.991 21.01 3.156 19.49 3.344

KNN 19.83 2.867 26.43 3.876 30.99 3.957 23.41 2.816 25.16 3.864 24.16 3.761

XGBoost 25.79 3.894 27.07 3.989 30.34 4.488 27.26 3.416 26.47 3.165 24.39 3.678

LSTM 23.24 3.381 24.49 3.514 29.45 4.085 23.91 2.924 24.46 3.644 25.62 3.927

5. The generalizability of the results is unclear. Mainly several different meteorological variables

are used as driving variables. Would these variables be available for other sites also? If no, the

method cannot be generalized. It would be nice to see the model performance with different sets of

predictor variables Say, if only surface temperature data are available as driving variable, how

good would be the imputation?

These variables are applicable to other sites, though relying solely on surface temperature as the
driving variable for imputation may not yield optimal results. However, it is uncommon for a
site to have only surface temperature as the available variable. Below are the imputation results
using Transformer_CNN at the QOMS and SETORS sites (with the year 2012 as the test set),
employing basic meteorological elements. These elements include single-layer air temperature,
pressure, single-layer air humidity, single-layer wind speed, single-layer wind direction, site
hourly average precipitation, ground net radiation, single-layer soil temperature, and single-layer
soil moisture content.

Other specific comments
72-73
Certainly, other machine learning methods (such as Random Forest) do not perform as well as
deep learning techniques when dealing with complex time series data.

Reference:
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for
time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917-963. DOI:
10.1007/s10618-019-00619-1

79-80
Reference

GRU 22.37 3.513 23.53 3.155 29.61 3.796 19.73 2.916 21.49 3.661 21.18 3.498

Transformer 15.36 2.486 16.54 2.665 23.26 2.966 17.69 2.851 18.68 2.973 19.06 2.982

Transformer_CNN 15.32 2.458 17.19 2.749 22.60 2.894 18.13 3.221 19.71 3.208 20.12 3.092

QOMS SETORS

Sets H LE H LE

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Transformer 34.76 4.36 0.74 37.58 4.77 0.69 39.96 5.28 0.70 42.48 4.79 0.67

Transformer_CNN 29.34 3.44 0.83 30.25 3.93 0.78 31.66 4.83 0.80 34.22 4.61 0.79

Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., &
Polosukhin, I. (2017). Attention is All you Need. Neural Information Processing Systems.

149-150
Given that this study focuses on the imputation effects regarding turbulent heat flux, we have
limited our presentation to the missing rates of sensible and latent heat fluxes. Should there be a
necessity, further supplementation can be conducted in subsequent research.

156
Given that this study focuses on the imputation effects regarding turbulent heat flux, we have
limited our presentation to the missing rates of sensible and latent heat fluxes. Should there be a
necessity, further supplementation can be provided in subsequent revisions.

160

Gap_filling value =
�=1
3 ��

��
�

�=1
3 1

��
�

167
"Fit_transform" is a function in Python.

170
Thank you for your valuable comments on my manuscript. My expression was not as clear and
precise as it could have been, but the essence of what I intended to convey aligns with your
understanding. Essentially, the K-NN imputation method leverages the proximity of data points
in space or time to predict missing values, under the assumption that points closer to each other
are more similar than those further apart. This approach is particularly suited for datasets
characterized by local consistency, or when the data exhibit patterns that persist over short
distances or time frames. This coincides with your observation that KNN is applicable when the
correlation length scale is significantly larger than the distance between missing and available
points, closely matching the scenario you described. We will make the necessary corrections in
the revised version of our manuscript to clarify this point.

184

This was a clerical error in my manuscript, for which I sincerely apologize. I intend to correct
this oversight in the revised submission

199
The objective is to use other meteorological elements as environmental drivers to impute these
missing data, forming a complete heat flux dataset.

216
This was an error in my expression, for which I sincerely apologize. Please allow me the
opportunity to make the following modification:

The Support Vector Machine (SVM) is versatile and can be applied not only as a linear classifier
but also for non-linear classification through the use of kernel functions. Moreover, beyond its
capability for classification, SVM can be adapted for regression tasks—known as Support Vector
Regression (SVR). This approach aims to find an optimal hyperplane in a high-dimensional space
that best fits the data points, thereby ensuring optimal regression performance. This versatility
allows SVM to address both classification and regression problems effectively (Cortes and Vapnik,
1995).

225
Reference

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

228
Reference
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735-1780.

230
Reference
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 1724-1734.

240
Reference
Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. X., & Yan, X. (2019). Enhancing the
Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting.
Advances in Neural Information Processing Systems (NeurIPS 2019).

242
Reference
Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep Transformer Models for Time Series
Forecasting: The Influenza Prevalence Case. arXiv preprint arXiv:2001.08317.

244
Reference
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019).
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems (NeurIPS 2019).

245
This part is represented in the Feed-Forward section of the figure

249-251
This part is answered in major comment

255
In the Transformer_CNN model, the initialization of weights and biases is designed to ensure

the stability and efficiency of the model training process. Specifically, we adopted a variant of
the He initialization method, a scientific approach to weight initialization frequently employed in
deep learning models to improve convergence speed and stability during training.

The core idea of He initialization is to adjust the initial standard deviation of weights based
on the number of nodes in the previous layer (i.e., fan_in). This initialization method is
particularly crucial for the training of deep neural networks as it helps prevent issues of vanishing
or exploding gradients, which often occur when traditional random weight initialization methods
are used.

In the code, for each nn. Linear and nn. Conv1d layer, we first calculate fan_in and fan_out,
then set the standard deviation of the weights based on the geometric mean of these two
parameters:

Moreover, if a bias is present, we initialize it to zero to avoid introducing additional bias at
the beginning of training:

This approach ensures that the initial values of the model weights are neither too large nor
too small, facilitating faster convergence during the training process and enhancing the overall
performance of the model.

265
This means that three different machine learning methods are applied to the three distinct sets of
samples mentioned above (training set, validation set, and test set).

267
Yes, here we use B-O to select the parameters of the model to determine the best model.

269-272
The term "128 channels" refers to the dimension of the feature maps outputted by each
convolutional layer. Here, "channel" does not denote the number of neurons, but rather a term
commonly used in Convolutional Neural Networks (CNNs) to describe the depth or dimension of
the output data at each layer.
Conv1d layers in the model are designed to process one-dimensional sequence data. These
convolutional layers transform the input sequence into a series of feature maps, each representing
a feature learned from the input data. The parameter in_channels=1 indicates that the input data
has a single channel (e.g., time series data), while out_channels=128 signifies that these
convolutional layers will generate 128 distinct feature maps. Each feature map represents a
different feature or attribute of the input data. Together, these feature maps constitute the input
for subsequent processing steps in the model. By increasing the number of output channels, the
model is able to extract a richer and more diverse set of features from the original input, thereby
enhancing its learning and representational capacity.
In my research, the mention of "128" actually refers to the 128 output channels obtained through
the transformation by the model's initial convolutional layers. The purpose of this step is not to
directly increase the amount of information in the original data—I fully concur with the viewpoint
based on the data processing inequality, which states that it is impossible to create more
information in the process. Instead, the aim of this transformation is to reorganize and extract
useful information from the original data. Through the feature mappings generated by these
convolutional layers, the model can more effectively recognize and utilize this information for
subsequent learning and prediction tasks.

281
I experimented with various methods to optimize Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) models. Regrettably, their performance in data imputation was inferior to
that of the Transformer model and even fell short compared to some traditional machine learning
approaches. Consequently, I did not include their results in Figure 8. Based on these observations,
I subsequently opted to employ the Transformer model, which demonstrated superior performance
in data imputation tasks. This model was thus chosen as the foundation for our integrated model
architecture.

295
RMSE and MAE are shown in Table 4.

358
The observed phenomenon is believed to stem from the concentration of values within the dataset,
which predisposes the model, during training, to favor values with higher occurrences while
neglecting periodic fluctuations inherent within the dataset. The integration of CNN with the
Transformer architecture, on the other hand, accentuates the importance of periodic variations in
the data, effectively mitigating this bias.

Once again, we sincerely appreciate your insightful comments, which have undoubtedly
strengthened the quality of our work. We have made the necessary revisions based on your
suggestions, and the improved manuscript now better meets the journal's requirements.

Best regards,

Sincerely

Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu

March 30, 2024

