
 

1  

 

New age constraints reveal moraine stabilization thousands of 1 

years after deposition during the last deglaciation of western 2 

New York, USA 3 

 4 

Karlee K. Prince1, Jason P. Briner1, Caleb K. Walcott1, Brooke M. Chase1, Andrew L. 5 

Kozlowski2, Tammy M. Rittenour3, Erica P. Yang1,4
 6 

 7 
1 Department of Geology, University at Buffalo, 126 Cooke Hall, Buffalo, NY 14260, USA 8 
2New York State Geological Survey, New York State Museum, 222 Madison Ave, Albany, NY 12230, USA 9 
3Department of Geoscience, Utah State University, 4505 Old Main Hill, Logan, UT 84322, USA 10 
4Oak Ridge Institute of Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN, 37830 USA 11 

 12 

Correspondence to: Karlee K. Prince (karleepr@buffalo.edu)  13 

mailto:karleepr@buffalo.edu


 

2  

 

Abstract. The timing of the last deglaciation of the Laurentide Ice Sheet in western New York is poorly constrained. 14 

The lack of direct chronology in the region has led to a hypothesis that the Laurentide Ice Sheet re-advanced to near 15 

its Last Glacial Maximum terminal position in western New York at ~13 ka, which challenges long-standing 16 

datasets. To address this hypothesis, we obtained new chronology from the Kent (terminal) and Lake Escarpment 17 

(first major recessional) moraines using radiocarbon ages in sediment cores from moraine kettles supplemented with 18 

two optically stimulated luminescence ages from topset beds in an ice-contact delta. The two optically stimulated 19 

luminescence ages date the Kent (terminal) position to 19.8 ± 2.6 and 20.6 ± 2.9 ka. Within the sediment cores, there 20 

is sedimentologic evidence of an unstable landscape during basin formation; radiocarbon ages from the lowest 21 

sediments in our cores are not in stratigraphic order and date from 19,350-19,600 to 14,050-14,850 cal BP. We 22 

interpret these ages as loosely minimum-limiting constraints on ice sheet retreat. Our oldest radiocarbon age of 23 

19,350-19,600 cal BP – from a rip-up clast – suggests ice-free conditions at that time. Above the lowest sediments 24 

there is organic-rich silt and radiocarbon ages in stratigraphic order. We interpret the lowest ages in these organic-25 

rich sediments as minimum-limiting constraints on kettle basin formation. The lowest radiocarbon ages from 26 

organic-rich sediments from sites on both Kent and Lake Escarpment moraines range from 15,000-15,400 to 13,600-27 

14,000 cal BP. We interpret the 5 kyr lag between the optically stimulated luminescence ages and kettle basin 28 

formation as the result of persistent buried ice in ice-cored moraines until ~15 to 14 ka. The cold conditions 29 

associated with Heinrich Stadial 1 may have enabled the survival of ice-cored moraines until after 15 ka, and in turn, 30 

climate amelioration during the Bølling Period (14.7 – 14.1 ka) may have initiated landscape stabilization. This 31 

model potentially reconciles the sedimentological and chronological evidence underpinning the re-advance 32 

hypothesis, which instead could be the result of moraine instability and sediment mobilization during the Bølling-33 

Allerød periods (14.7 – 13 ka). Age control for future work should focus on features that are not dependent on local 34 

climate.  35 

 36 

1 Introduction 37 

Much glacial research over the last century has focused on the style and timing of Laurentide Ice Sheet 38 

(LIS) recession from the Great Lakes region of North America following the Last Glacial Maximum (LGM, 26-19 39 

ka; Dalton et al., 2020; Dyke, 2004; Fairchild, 1909). Well constrained ice sheet chronologies are necessary to 40 

determine the timing of meltwater re-routing events from ice-dammed lakes that occupied the Great Lakes basins 41 

during the last deglaciation (Barth et al., 2019; Calkin and Feenstra, 1985; Leydet et al., 2018; Porreca et al., 2018; 42 

Rayburn et al., 2007), as these events are hypothesized to have had significant climatic impacts (Broecker et al., 43 

1989; Donnelly et al., 2005). Models that attempt to understand past climate change (Osman et al., 2021), ice sheet 44 

sensitivity (Briner et al., 2020), and atmospheric organization (Löfverström et al., 2014; Tulenko et al., 2020) all 45 

require paleo ice sheet configurations. Therefore, well-defined ice sheet retreat chronologies are critical for 46 

understanding dynamics and forcings within the late glacial climate system.  47 

Despite the critical need for precise chronologies of ice margin retreat of the LIS in the Great Lakes region, 48 

ice margin reconstructions in western New York lack detailed age control. Here, there are no local ages on the 49 
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terminal moraine and few from the recessional moraines (Muller and Calkin, 1993), leaving the deglacial 50 

chronology to be largely based on correlations with dated moraines and proglacial shorelines to the west in Ohio and 51 

to the east in New York (Fullerton, 1980; Ridge, 2003). These correlations suggest that the western New York Kent 52 

(terminal) and Lake Escarpment (recessional) moraines date to ~20 and 17 ka, respectively (Fig. 1). However, 53 

Young et al. (2020) recently interpreted new and existing radiocarbon ages from western New York to support a re-54 

advance of the LIS ~13 ka that overtopped the Lake Escarpment Moraine and nearly reached the Kent Moraine (Fig. 55 

1). The evidence includes the re-interpretation of several unrelated sites throughout western New York, but largely 56 

hinges on new trenched sediment sections near the Kent Moraine revealing logs in clayey diamicton, which Young 57 

et al. (2020) suggest requires glacial overriding of a forest ~13.3 to 13.0 ka. In contrast to Young et al.’s (2020) 58 

reconstruction, most literature places the LIS margin north of Lake Ontario at this time (Dalton et al., 2020; Muller 59 

and Calkin, 1993; Terasmae, 1980; and references therein), with the drainage of Glacial Lake Iroquois occurring at 60 

~13 ka (Fig. 1; Cronin et al., 2012; Lewis and Anderson, 2019; Rayburn et al., 2005). To reconcile the disagreement 61 

in timing between the hypothesized re-advance and existing chronologies, Young et al. (2020) invoke a largely 62 

floating ice mass that left minimal traces of its existence in most areas. If a re-advance of the scale hypothesized by 63 

Young et al. (2020) occurred (henceforth referred to as the ‘Allerød re-advance hypothesis’), there would be a need 64 

to revisit many regional deglaciation chronologies.  65 

To further constrain moraine ages in western New York and to test the Allerød re-advance hypothesis, we 66 

obtained 23 new macrofossil-based radiocarbon ages from five sediment cores collected on the Kent Moraine, and 67 

18 new macrofossil-based radiocarbon ages from two sediment cores on the Lake Escarpment Moraine. The Lake 68 

Escarpment Moraine is within the extent of the proposed re-advance, so if basal ages from sites on this moraine pre-69 

date ~13 ka, and the subsequent stratigraphy shows no evidence of a re-advance, then the evidence would refute the 70 

Allerød re-advance hypothesis. Conversely, basal radiocarbon ages that post-date ~13 ka, and/or evidence that the 71 

sediment stratigraphy is interrupted at ~13 ka, would support an Allerød re-advance. Additionally, we obtained two 72 

optically stimulated luminescence (OSL) ages from kame delta sediments associated with deposition of the Kent 73 

Moraine to provide a more complete understanding of deglaciation. Our results provide new chronological 74 

constraints in the western New York data gap, and do not support the ~13 ka re-advance proposed by Young et al. 75 

(2020). Rather, our data support a model of initial moraine deposition followed by thousands of years before kettle 76 

basin formation and final moraine stabilization.  77 
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 78 

Figure 1. Map depictions of the deglaciation of the eastern Great Lakes after the Last Glacial Maximum. Black line is the 79 
Kent Moraine, modified from Dalton et al. (2020), the ‘Pennsylvania Department of Conservation and Natural Resources 80 
Late Wisconsin Glacial Border’ (https://www.pasda.psu.edu), and the ‘Quaternary Geology 500K - Glacial Boundary of 81 
Ohio’ (https://gis.ohiodnr.gov). Dark gray line is the 17 ka ice margin from Dalton et al. (2020) which depicts the Lake 82 
Escarpment Moraine. Light gray line is the 15 ka ice margin from Dalton et al. (2020) which depicts the Marilla Moraine. 83 

https://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=2179
https://gis.ohiodnr.gov/arcgis/rest/services/DGS_Services/Quaternary_Geology_500K_AGOL/MapServer
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Glacial Lake Maumee and Whittlesey are included for general reference, and drawn with shoreline elevations (Fisher et 84 
al., 2015). White line is the 13 ka ice margin from Dalton et al. (2020) and we estimated Glacial Lake Iroquois using Bird 85 
and Kozlowski (2016). Red dashed line depicts a hypothesized ice sheet configuration to explain the hypothesis presented 86 
in Young et al. (2020). Note that the LIS would dam a pro-glacial lake in the Lake Erie basin and overrun several moraine 87 
belts, including the Lake Escarpment Moraine. Radiocarbon, cosmogenic nuclide, and OSL ages discussed in the text are 88 
shown with approximate locations. Arrows indicate study sites are off the map extent. Panel LGM: Glover et al. (2011), 89 
Corbett et al. (2017), Stanford et al. (2020), Balco et al. (2009), and Balco et al. (2002). Panel 17 ka: Fisher et al. (2015), Fritz 90 
et al. (1987), Kozlowski et al. (2018), and Ridge (2003). Panel 15 ka: Calkin and McAndrews (1980). Panels 13 ka: Lewis 91 
and Anderson (2019), Rayburn et al. (2007), Richard and Occhietti (2005), and Young et al. (2020). DEM from U.S. 92 
Geological Survey’s Center for Earth Resources Observations and Science (EROS).  93 

 94 

2 Geologic Setting 95 

The Kent Moraine in western New York is correlated to the Kent Moraine in northwest Ohio, the Olean 96 

Moraine in Pennsylvania, the Harbor Hill Moraine in New Jersey, and the Martha’s Vineyard Moraine in 97 

Massachusetts (Fig. 1; Balco et al., 2002; Fullerton, 1980; Muller and Calkin, 1993; Stanford et al., 2020). Retreat 98 

from the LGM moraine in these adjacent regions is dated to 19.8 ± 0.4 ka in Ohio (Glover et al., 2011), 25.2 ± 2.1 ka 99 

(Corbett et al., 2017) and 23,200-23,750 cal BP in New Jersey (Stanford et al., 2020), and 25.5 ± 0.4 ka in 100 

Massachusetts (Balco et al., 2009; Balco et al., 2002). Therefore, we infer that the Kent Moraine in western New 101 

York was likely deposited sometime between 25 and 20 ka. 102 

 The first major moraine belts deposited after the maximum LGM position were the Ashtabula Moraine in 103 

Ohio and northwest Pennsylvania, the Lake Escarpment Moraine in western New York, and Valley Heads moraines 104 

in central New York (Fig. 1; Fullerton, 1980; Muller and Calkin, 1993). During this ice position, Glacial Lake 105 

Maumee occupied the Lake Erie basin around 17,000 - 16,000 cal BP based on radiocarbon dating at the paleo-106 

outlet and OSL dating of strandlines (Calkin and Feenstra, 1985; Eschman and Karrow, 1985; Fisher et al., 2015). 107 

Ridge (2003) tied the outer and inner Valley Heads moraines to the New England Varve Chronology, placing these 108 

moraines at 17,200 and 16,200 cal BP, respectively. Kozlowski et al. (2018) report basal ages of 14,300-14,900 and 109 

14,200-14,850 cal BP from basins within the outer Valley Heads limit. These ages are younger than previous 110 

estimates, leading Kozlowski et al. (2018) to suggest the moraine may have been re-occupied. Fritz et al. (1987) 111 

report minimum-limiting radiocarbon ages of 13,750-15,250 cal BP from wood within lake deposits stratigraphically 112 

above outwash sands from Nichols Brook in western New York (Fig. 2). Muller and Calkin (1993) extrapolated 113 

their ages to estimate ~17,600 cal BP for the emplacement of the outwash.  114 

Following the deposition of the Lake Escarpment Moraine, Glacial Lakes Whittlesey and Warren occupied 115 

the Lake Erie basin between 16 and 14 ka (Fig. 1; Fullerton, 1980; Muller and Calkin, 1993). The lowering of 116 

Glacial Lake Whittlesey to Glacial Lake Warren is dated to 14,150-15,550 cal BP at Winter Gulf in western New 117 

York (Fig. 2; Calkin and McAndrews, 1980), and Warren strandlines in northwest Ohio have been dated to 14.2 ± 118 

1.3 ka (Higley et al., 2014) and 14.1 ± 1.0 ka in (Campbell et al., 2011). These proglacial lake chronologies provide 119 

unambiguous minimum age constraints of >15 ka for the deposition of the Lake Escarpment Moraine. 120 

The LIS continued its northward retreat and formed Glacial Lake Iroquois from 14.7 to 13.0 ka in the Lake 121 

Ontario basin (Fig. 1; Muller and Calkin, 1993; Muller and Prest, 1985; Teller, 2003). The switch of the Glacial 122 
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Lake Iroquois spillway from the Mohawk River valley to the lower outlet at Covey Hill is constrained between 123 

13,200 and 13,000 cal BP by numerous radiocarbon constraints from the pre- and post-flood histories of Lake 124 

Vermont and Lake Iroquois (Lewis and Anderson, 2019; Rayburn et al., 2007; Richard and Occhietti, 2005). 125 

Similarly, the formation of the Champlain Sea occurred between 13,100 and 12,700 cal BP, which post-dates the 126 

final draining of Glacial Lake Iroquois and requires an ice margin north of the Lake Ontario outlet (Cronin et al., 127 

2012; Rayburn et al., 2011). Collectively, this ice recession chronology is at odds with the Allerød re-advance 128 

hypothesis, with its LIS advance across the Lake Ontario basin and to near the terminal moraine in western New 129 

York ~13 ka (Fig. 1; Young et al., 2020). 130 

 131 

Figure 2. Study sites in relation to previously published work. Black and gray lines are the same as in Fig. 1. Squares 1 and 132 
2 depict hypothesized sites overrun by the Allerød re-advance at 13 ka (Young et al., 2020). Circles A-D are our sites on the 133 
Kent Moraine. Circles E and F are our sites on the Lake Escarpment Moraine. Squares 3-6 are Winter Gulf and Nichols 134 
Brook (Calkin and McAndrews, 1980), and Houghton and Protection Bog (Miller, 1973). The two black boxes show the 135 
extent of the maps in Fig. 3. DEM from U.S. Geological Survey’s Center for Earth Resources Observations and Science 136 
(EROS).  137 

 138 
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3 Methods 139 

3. 1 Sediment cores 140 

Our primary approach for constraining the timing of deglaciation and testing the Allerød re-advance 141 

hypothesis was obtaining basal sediment ages from kettles within the Kent and Lake Escarpment Moraines. Newly 142 

available light detection and ranging (LiDAR)-based bare-Earth 1-m digital elevation models (DEMs) enabled us to 143 

identify natural kettle basins (Fig. 3). Typically, moraines in western New York have both single ridges where the 144 

ice sheet abutted higher topography, and hummocky moraine belts that contain numerous kettle basins. Kame deltas 145 

exist in places where the ice sheet dammed adjacent river valleys. The hummocky nature of most moraines indicates 146 

that the moraines were ice-rich when deposited (Fig. 3). 147 

We collected sediment cores from kettles that presently range from bogs to wetlands. We cored five sites 148 

on the Kent Moraine referred to as the Vincent-1 (core name: 20VIN1), Vincent-3 (20VIN3), Vincent-4 (20VIN4), 149 

Songster (21SONG1), and Allenberg (15ABB7) sites (Table 1, Fig. 3), and two sites on the Lake Escarpment 150 

Moraine referred to as the Little Protection (21LPB1) and Dragonfly (13DFK1) sites (Table 1, Fig. 3). All sites are 151 

within hummocky moraine. 152 

We determined basin depocenters using thin steel rods to measure the depth of the organic sediment infill. 153 

In the depocenter, we used Livingstone- and Russian Peat-style corers to collect organic-rich sediment infill, and a 154 

manual percussion GeoProbe system to collect the underlying stiff, minerogenic sediments. From some sites, our 155 

sediment cores extended from the present surface to mineral-rich sediments below the organic-sediment infill; from 156 

others, our sediment cores began and ended at depth, spanning the organic-to-mineral sediment contact and 157 

downward until we penetrated coarse deposits (Table 1). We returned and cored the Vincent-1 and -4 sites multiple 158 

times to collect the entire sequence.  159 

We split, imaged, and generated downcore data on all sediment cores at the University at Buffalo. We 160 

measured magnetic susceptibility in contiguous 1 cm intervals using a Bartington MS2E High Resolution Surface 161 

Scanning Sensor scanner connected to a Bartington MS2 Magnetic Susceptibility Meter to assess the minerogenic 162 

content. We calculated loss-on-ignition (LOI) percent by burning ~1 cm3 of sediment in a Thermolyne Muffle 163 

Furnace at successively higher temperatures for water (105°C), organic carbon (550°C), and carbonate (950°C) 164 

content to help characterize the sediment units and depositional setting (Heiri et al., 2001; Last and Smol, 2001). To 165 

calculate composite core length, we spliced together overlapping sediment sections using visual lithologic changes 166 

and magnetic susceptibility measurements. We volumetrically sampled portions of the Little Protection sediment 167 

cores to determine sediment bulk density; these data are used to check for overcompaction during an Allerød re-168 

advance. The data are only from Little Protection because Dragonfly data creation took place previous to Young et 169 

al. (2020) and we did not measure bulk density.    170 

We use radiocarbon dating of macrofossils for age control (Table 2). The sediments are organic-rich in the 171 

upper portions of the cores and are organic-poor in the lower sections. Where available, we picked full plant 172 

macrofossils. We picked macrofossils that were from the center of the sediment core and demonstrably in-situ. In 173 

macrofossil-devoid sections, we wet sieved sediment with deionized water to isolate and combine the largest 174 
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macrofossil fragments for dating. We attempted to identify macrofossils, but some macrofossil fragments were small 175 

and unidentifiable (Table 2). We rinsed samples with deionized water, freeze-dried them, and sent samples to the 176 

National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) or the Keck Lab at the University of 177 

California Irvine (KCCAMS) for radiocarbon analysis. The facilities conducted acid-base-acid (ABA) 178 

pretreatments, converted samples to graphite, and ran them on the AMS (Elder et al., 2019; Olsson, 1986; Pearson et 179 

al., 1997; Shah Walter et al., 2015; Vogel et al., 1984).  180 

In Table 2, we report the 2σ age range and round ages according to Stuiver and Polach (1977). We 181 

calibrated all the radiocarbon results using Calib8.1 with the IntCal20 dataset (Reimer et al., 2020; Stuiver and 182 

Reimer, 1993). All radiocarbon ages in the text were recalibrated with IntCal20. δ13C measurements were measured 183 

on a split of the CO2 gas generated from each sample on an isotope-ratio mass spectrometer. Uncertainties in the 184 

δ13C from both labs are <0.1‰. We report δ13C values as ‰ VPDB.  185 

 186 

 187 
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 188 

Figure 3. Site maps of the sediment core locations. 1-m bare-Earth DEM hillshade from https://data.gis.ny.gov/ with the 189 
Kent (black) and Lake Escarpment (gray) moraines. Open yellow circles depict study site location and yellow lines associate 190 
each site location with a site map. Figure 4 contains the site map for the open yellow circle with no associated site map. The 191 

https://data.gis.ny.gov/
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filled circles indicate the type of coring device used in each site and the coring location. The filled yellow circles depict where 192 
we used a Livingstone. The filled red circles depict where we used a Russian Peat Corer. The filled semi-circles indicate 193 
where we used a Livingston or Russian Peat Corer in the soft sediment infill and then used the GeoProbe in the stiff 194 
minerogenic sediment.  195 

 196 

3.2 Optically stimulated luminescence dating 197 

We collected sediment samples for OSL dating from topset beds within an ice-contact delta deposit 198 

associated with the Kent Moraine to determine when the LIS was present at this location (Fig. 3 & 4). Our sample 199 

location was Corbett Hill Gravel Quarry, an active aggregate quarry that exposes large sedimentary sequences 200 

indicative of a proglacial delta. The sediments consisted of cobble-rich foreset beds overlain by ~3 m of near-201 

horizontal topset beds. We collected sand samples for OSL dating from the topset sequence ~2.1 m below the delta 202 

surface. We created a fresh exposure of the topset beds with an excavator, exposing alternating layers of gravels and 203 

coarse sands, with lenses of medium/fine-sand and silt. We collected two samples for OSL dating in fine-sand lenses 204 

in 5.1 x 25.4 cm (2 x 10 inch) aluminum tubes after clearing back outer sediments (Fig. 4). Samples for water 205 

content and dose rate determination were collected from surrounding sediments.  206 

We processed the samples at the Utah State University Luminescence Laboratory for small aliquot OSL 207 

dating of fine-grained quartz sand (Table 3, Table S1). First, we purified samples to 150-250 μm quartz sand using 208 

wet sieving, and chemical treatment with 10% hydrochloric acid to remove carbonates, 5% peroxide to remove 209 

organics, 2.72 g/cm3 sodium polytungstate to remove heavy minerals and 48% hydrofluoric acid to remove feldspars 210 

and etch the quartz grains. We analyzed small aliquots of quartz (0.4 to 1 mm diameter of sand mounted on disk, 211 

~10-20 grains) on Risø DA-20 readers, using the single-aliquot regenerative-dose (SAR) protocol (Murray and 212 

Wintle, 2000). We analyzed 42 aliquots for sample 21SICK-01 and 37 for sample 21SICK-02, of which we used 21 213 

and 23 aliquots for age calculations, respectively (Fig. 4 & S7). Aliquots were rejected from age calculation if they 214 

showed signal depletion with infrared stimulation indicating feldspar contamination (0-12 aliquots), poor recycling 215 

of a repeat point (greater than 80% difference between repeat points, 7-8 aliquots), high recuperation of a zero-dose 216 

point ( >10% of the Natural signal, 0-6 aliquots), extrapolation of the equivalent dose beyond the dose-response 217 

curve (0-2 aliquots) and poor dose-response curve fit (0-3 of aliquots). We applied a minimum age model (MAM) to 218 

the samples to calculate our equivalent does (DE; Grays; Gy, Fig. 4 & S7), as used by similar studies on LIS 219 

glaciofluvial terraces elsewhere in the northern United States (Rittenour et al., 2015). MAMs are useful in these 220 

glaciofluvial environments because of the increased potential for incomplete bleaching from subglacial or turbid 221 

water sediment transport.  222 

We determined the dose rate for OSL age calculation based on U, Th, K, and Rb concentrations from the 223 

surrounding sediments using inductively coupled plasma-mass spectrometry and atomic emission spectrometry. 224 

Using the conversion factors of Guérin et al. (2011), we converted elemental concentrations to dose rate. The 225 

contribution of cosmic radiation was based on sample depth, elevation and latitude following Prescott and Hutton 226 

(1994). We also determined water content by measuring the mass of the samples before and after desiccation. With 227 

these three factors, we were able to calculate environmental dose rates (Gy/kyr). Our reported OSL ages are simply 228 
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the DE (determined with the MAM) divided by the dose rate with 1σ standard error (Table 3). We report ages with 229 

1σ uncertainty (Table 3). 230 

 231 

Figure 4. Panel A) is a schematic of the kame delta creation. The LIS dammed a lake and deposited the delta outboard of 232 
the Kent Moraine. B) is a 1-m DEM hillshade showing the kame delta outboard of the Kent Moraine (within the open yellow 233 
circle in Fig. 3). Red dashed line depicts the extent of the Kent Moraine. Red arrows depict the sediment source for the 234 
delta. Blue line and shading depicts the delta deposit. Yellow star on the side of the active quarry shows our sampling site. 235 
C) shows a stratigraphic column of the topset beds. We use the FGDC Digital Cartographic Standard for Geologic Map 236 
Symbolization (U.S. Geological Survey). Yellow stars show our sampling location. D) Equivalent dose (DE) distributions for 237 
the luminescence samples collected from the kame delta associated with an ice-margin position near the Kent moraine.  238 
MAM = minimum age model of Galbraith and Roberts (2012) fit to the DE data (gray shaded region). OD = overdispersion, 239 
a metric of DE scatter beyond instrumental error, where OD > 30% is interpreted to be due to partial bleaching due to 240 
incomplete solar resetting of the luminescence signals in the quartz grains.  241 

 242 
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4 Results 243 

4.1 Stratigraphy and Radiocarbon Results  244 

Vincent-1 (Kent Moraine) 245 

 The bottom 2.5 m is a gray massive pebbly diamicton with a silty matrix that we call Unit 1. We only 246 

recovered Unit 1 at this study site and collected it with the Geoprobe system (Fig. 5). There is a sharp contact with 247 

layered gray sand and silt that grades to alternating massive brown and gray silt with sparse macrofossils. We call 248 

this Unit 2. There is a sharp contact with massive dark brown organic-rich silt that we call Lower Unit 3. In the 249 

initial sediments of Lower Unit 3, there are three layers of gray silt and an inclusion of gray clay that are identical to 250 

the sediment of Unit 2. There is a sharp contact with peat which continues to the top of the core that we call Upper 251 

Unit 3. Broadly, this sediment progression is found in the other six sediment cores from both moraines, so we use 252 

Unit 2 and 3 terminologies for them as well. Figures 5a and 5b depict the downcore data. For all seven sediment 253 

cores, magnetic susceptibility values are higher in Unit 2 than Unit 3, water and organic carbon content values are 254 

lowest in Unit 2, rise in Lower Unit 3, and are highest in Upper Unit 3, and calcium carbonate remains below 8% in 255 

all sediment cores so it is not plotted in Fig. 5.  256 

Figure 5 and Supplementary Figure 1 show the ten radiocarbon ages from 20VIN1. The seven ages in Unit 257 

2 are from combined macrofossils and have little stratigraphic order. The three ages in Unit 3, from single 258 

macrofossils, are in stratigraphic order. 20VIN1 has an age of 15,050-15,550 cal BP from the bottom of Unit 2, yet 259 

is stratigraphically below older ages from Unit 2 of 15,650-15,900, 15,800-16,150, and 16,050-16,300 cal BP. There 260 

is an inclusion of macrofossils at the Unit 2/3 contact that was dated twice and yields two radiocarbon ages from 261 

combined macrofossils of 19,350-19,600 and 14,050-14,850 cal BP; combined macrofossils from the surrounding 262 

sediment produce an age of 14,300-15,050 cal BP. Picea seeds from the top of Lower Unit 3 are 13,650-14,050 cal 263 

BP. There are two ages in the Upper Unit 3; a twig that dates to 13,150-13,300 and wood that dates to 8,390-8,520 264 

cal BP.  265 

Vincent-3 (Kent Moraine) 266 

             In 20VIN3, Unit 2 begins as gray silt, transitions to a light brown silt, and is topped by gray clay. The 267 

contact with Unit 3 is sharp. Unit 3 is massive organic-rich silt. There is a layer of gray silt in the base of Unit 3. 268 

There are two radiocarbon ages from 20VIN3 (Fig. 5; Fig. S2). The one age in Unit 2 is from combined macrofossils 269 

that date to 14,350 – 15,150 cal BP. The one age at the base of Unit 3 is from combined macrofossils and dates to 270 

15,350 – 15,650 cal BP. 271 

Vincent-4 (Kent Moraine) 272 

 In 20VIN4, Unit 2 contains alternating layers of pebbly diamicton (with some clasts up to 5 cm long) and 273 

silty clay. The contacts between the layers are sharp and one is undulating. Unit 3 is a massive organic-rich silt. 274 
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There are four radiocarbon ages from Unit 2 (Fig. 5; Fig. S3). The lowest age is from a piece of wood that dates to 275 

14,250 – 15,000 cal BP. Then the next three ages are from combined macrofossils and date to 14,150 – 14,850, 276 

14,300 – 14,900, and 14,300 – 14,900 cal BP. 277 

Songster (Kent Moraine) 278 

         In 21SONG1, Unit 2 is silty clay with pebbles. The contact with Unit 3 is sharp. Unit 3 begins with 279 

organic-rich silt with some sand and pebbles. Large macrofossils are common. This grades into organic-rich silt. 280 

One radiocarbon age from a piece of wood in the bottom of Unit 3 dates to 14,350 – 15,050 cal BP (Fig. 5). 281 

Allenberg (Kent Moraine) 282 

 In 15ABB7, we did not collect Unit 2. Lower Unit 3 is an organic-rich silt and Upper Unit 3 is peat. There 283 

are four ages from Unit 3 (Fig. 5; Fig. S4). These samples were not identified at the time of dating. The lowest age is 284 

13,800 – 14,050 cal BP. The next 3 ages are in stratigraphic order and range from 12,700 – 12,850 to 795 – 920 cal 285 

BP. 286 

Little Protection (Lake Escarpment Moraine) 287 

In 21LPB1, Unit 2 begins with 2 cm of gray silty gravel before a sharp contact with massive, oxidized sand 288 

and gravel. Above this is a sharp transition to alternating layers of gray silt, silty gravel, and sand; these layers have 289 

sharp and sometimes undulating contacts. That is overlain by massive gray clay. The contact with Unit 3 is gradual 290 

over 3 cm. Lower Unit 3 is an organic-rich silt and Upper Unit 3 is peat. There is one radiocarbon age from Unit 2 291 

on a fish bone that dates to 16,650 – 17,350 cal BP. There are eight radiocarbon ages from Unit 3 (Fig. 5; Fig. S6). 292 

The lowest age is from a piece of wood that dates to 13,600 – 14,000 cal BP. The next seven are in stratigraphic 293 

order and range from 13,350 – 13,600 to 5,580 – 5,650 cal BP. To address the Allerød re-advance hypothesis and 294 

seek evidence of whether the coring sites were overridden, we measured dry bulk density at 1-cm-resolution through 295 

the time interval of hypothesized re-advance. The bulk density decreases from 1.55 g/cm3 to 0.42 g/cm3 in the 296 

transition from Unit 2 to 3. (Fig. 5) The density decreases due to the transition from minerogenic silt to organic-rich 297 

silt and remains below 0.42 g/cm3 into Unit 3. 298 

Dragonfly (Lake Escarpment Moraine) 299 

          In 13DFK1, Unit 2 is gray silt. The contact with Unit 3 is sharp. Lower Unit 3 is an organic-rich silt and 300 

Upper Unit 3 is peat. There are nine radiocarbon ages from Unit 3 (Fig. 5; Fig. S5). The lowest age is from grass and 301 

dates to 15,000 – 15,400 cal BP. The next eight radiocarbon ages are in stratigraphic order and range from 13,800 – 302 

14,000 to 4,420 – 4,800 cal BP. 303 

 304 
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 306 

 307 

Figure 5. Panel A) has the sediment core stratigraphy from the Kent Moraine sites, and B) has the sediment 308 
core stratigraphy from the Lake Escarpment Moraine sites. We show sediment texture next to the core images 309 
using the FGDC Digital Cartographic Standard for Geologic Map Symbolization (U.S. Geological Survey). We 310 
plot magnetic susceptibility (CGS; black line), water content (weight %; blue line), and organic content (weight 311 
%, green line) by composite depth (cm). The colored line next to the stratigraphic column depicts if we used 312 
the Russian Peat Corer (red), Livingstone Corer (yellow), or GeoProbe (blue). Stars indicate single macrofossils 313 
and circles indicate when we combined macrofossils. The yellow filling indicates the sample is terrestrial and 314 
blue indicates the sample has aquatic macrofossils within it. Radiocarbon ages presented as the full 2σ range 315 
in cal BP. We used gray text and italics for radiocarbon ages we suspect have hardwater contamination. C) is 316 
a close-up image of the inferred gray clay and macrofossil-rich rip-up clasts in the transition from Unit 2 to 3 317 
in 20VIN1 (shown in red box). The black box has post-sieve macrofossils from the rip-up clast in the red box.  318 
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 328 

4.2 Optically stimulated luminescence dating 329 

Our small-aliquot De results from both 21SICK-01 and -02 show evidence of partial bleaching, as expected 330 

in a glaciofluvial environment (Table 3; Fig. 4 & S7; Rittenour et al., 2015). De results from the two samples are 331 

considerably scattered, positively skewed, and have overdispersion values between ~30 and ~60%, all indicative of 332 

incomplete bleaching and justify the use of the MAM (e.g., Olley et al. (1999)). Our two OSL MAM ages are 19.8 ± 333 

2.6 and 20.6 ± 2.9 ka. The two samples are from within 10 cm of each other and yield statistically indistinguishable 334 

ages.  335 

 336 

 337 

5 Discussion 338 

5.1 Stratigraphy  339 

We interpret Unit 1 as the primary till that comprises the Kent Moraine. At the Vincent-1 (20VIN1) site we 340 

cored from 4.1 to 6.6 m below the wetland surface (2.5 m), but only recovered 1.2 m due to compaction with the 341 

GeoProbe system. We assume we reached below the post-glacial infill and into the primary glacial deposit since this 342 

unit spans 2.5 m and we found no changes in stratigraphy (Fig. 5).  343 

Given the hummocky nature of the moraines (Fig. 3), the complex stratigraphy within Unit 2 (Fig. 5), and 344 

the similarity between Unit 2 from all sediment cores, we interpret this unit to record the transition from an ice-345 

cored moraine to the modern kettled topography for both moraines. The most striking feature of Unit 2 are the 346 

numerous transitions between fine- and coarse-grained deposition. We interpret Unit 2 silt and clay as being settled 347 

out of suspension in lacustrine conditions, indicating that all seven basins likely held small kettle lakes of shifting 348 

dimension during this period. We propose that the alternating clay and diamicton sediments captured in 20VIN4, on 349 

the Kent Moraine, are slumps of primary till into the kettle lake with otherwise clay-rich sedimentation; these 350 

slumps potentially occurred as buried glacial ice melted and destabilized the basin’s slopes. The stratigraphy of Unit 351 

2 in 21LPB1, on the Lake Escarpment Moraine, is likely the result of similar processes.  352 

The transition in sediment type between Units 2 and 3 likely reflects a shift to more vegetation growing in 353 

the lake and landscape, in concert with increased stabilization of the surrounding moraine. We infer the minerogenic 354 
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sediments in the transition zone (inclusions of gray clay and brown silty macrofossils in 20VIN1) are rip-up clasts 355 

by their clast-like appearance and stark contrast to the surrounding sediment (Fig 5; Panel C). They were potentially 356 

frozen during the time of deposition. This suggests the presence of reworked material near the Unit 2/3 transition. 357 

The subsequent transition from lacustrine organic-rich silt to peat (Lower and Upper Unit 3, respectively) records 358 

the shift from lake to bog/wetland due to the filling of the basin, shallowing of the lake, and encroachment of the 359 

shoreline. 360 

 361 

5.2 Chronology  362 

 The OSL samples are from 2 m below the surface of the ~70 m thick kame delta. The sample location 363 

within the topset beds of a short-lived ice-contact delta suggests that our OSL samples constrain the time just before 364 

the ice sheet retreated and ceased building the delta 19.8 ± 2.6 – 20.6 ± 2.9 ka. The OSL ages support the estimated 365 

age of 25 – 20 ka for the Kent Moraine from prior literature and affirms our confidence in the age assignments using 366 

correlations of dated features elsewhere (Balco et al., 2009; Balco et al., 2002; Corbett et al., 2017; Glover et al., 367 

2011; Stanford et al., 2020). 368 

We have identified spores and seeds of aquatic plants Chara and Potamogeton (O. Bennike, personal 369 

communication) among the macrofossils from samples dating to 15,800 - 16,150, 16,050-16,300 and 15,650-15,900 370 

cal BP from 20VIN1 and the sample dating to 15,350-16,650 cal BP from 20VIN3. These macrofossil samples also 371 

have enriched δ13C values, suggesting they contained aquatic material (except 15,800 - 16,150, which was too small 372 

for a δ13C measurement; Deuser and Degens, 1967; Oana and Deevey, 1960; Wang and Wooller, 2006). Our sites lie 373 

within calcareous tills that overlie sedimentary bedrock (LaFleur, 1979; MacClintock and Apfel, 1944), which can 374 

add aged carbon to the lake water. Aquatic plants derive their carbon from lake water, so radiocarbon ages from 375 

aquatic plants could produce radiocarbon ages that overestimate the age of the material (the 'hardwater effect'; 376 

Deevey et al., 1954; Keeley and Sandquist, 1992). The lowest sample in 21LPB1 is from a fish bone (16,650 - 377 

17,350 cal BP); a fish could be susceptible to the same hardwater effect as aquatic vegetation, and thus we do not 378 

use it in our evaluation. We move forward using samples assumed to be terrestrial from a lack of identifiable aquatic 379 

macrofossils and supported by δ13C values.  380 

The Unit 2 ages are trustworthy as minimum-limiting constraints on moraine abandonment, but we find the 381 

evidence for slumps and rip-up clasts in Unit 2, plus the stratigraphic discordance in radiocarbon ages, reason to 382 

doubt the reliability of the radiocarbon ages to reflect the age of the sediment they are within. Our oldest minimum-383 

limiting constraint from Unit 2 is from the macrofossil-rich rip-up clast in 20VIN1 on the Kent Moraine, which 384 

holds evidence for two important interpretations: 1) the landscape was ice-free and at least sparsely vegetated as 385 

early as 19,350-19,600 cal BP, consistent with our OSL ages suggesting ice sheet retreat by 19.8 ± 2.6 – 20.6 ± 2.9 386 

ka, and 2) the landscape stored this long-dead vegetation for thousands of years before it was re-deposited. This age 387 

also bolsters our confidence that the MAM is working well in our study area.  388 

We use the lowest ages in Unit 3 as minimum limits on the timing of kettle formation and moraine 389 

stabilization. The lowest ages from Unit 3 from the Kent Moraine range from 13,650 - 14,050 (20VIN1) to 14,350 - 390 
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15,050 (21SONG1) cal BP. The lowest ages from Unit 3 from the Lake Escarpment Moraine are 13,600 - 14,000 391 

(21LPB1) to 15,000 - 15,400 (13DFK1) cal BP. The range of ages shows the kettles formed through the interval of 392 

13,600 to 15,400 cal BP, reflecting the time the moraines stabilized. This shows both moraines stabilized at the same 393 

time, even though they are likely several thousand years different in age. Using our OSL ages and minimum-limiting 394 

radiocarbon age from Unit 2 to estimate the deposition of the Kent Moraine before 19,350 - 19,600 cal BP, there 395 

appears to be a 5 kyr lag time between moraine deposition and stabilization.  396 

  397 

5.3 A model for kettle basin formation  398 

We propose the following post-glacial history in western New York (Fig. 6). The deposition of the Kent 399 

Moraine occurred at least 19.8 ± 2.6 – 20.6 ± 2.9 ka and the landform remained ice-cored for the ensuing 5 – 6 kyr. 400 

The deposition of the Lake Escarpment Moraine took place around 17 ka and likewise remained ice-cored for the 401 

next 2 – 3 kyr. The hummocky nature of the moraines indicate that they were ice-cored, and we suggest that 402 

persistent buried glacial ice prohibited stabilization until well after deposition. Our interpretation is that after ~15 ka 403 

buried ice began to melt, and morainal topography – including kettle basins – began to evolve more rapidly (Fig. 6 404 

& 7). During the earliest stages of kettle basin formation, there was increased mobilization of sediments from within 405 

the uneven ice-rich topography. These initial sediments contained both re-worked and contemporary organic matter 406 

from the catchment and were deposited in our study sites as Unit 2. According to this interpretation, our radiocarbon 407 

ages from Unit 2 could reflect plant death anytime between moraine deposition and kettle basin stabilization. The 408 

13,750 - 15,250 cal BP wood age from basal lake sediments in Nichols Brook is likely another example of delayed 409 

kettle formation in this area (Fritz et al., 1987).  410 

Moraines can remain ice-cored for thousands of years after deposition due to sediment cover that insulates 411 

and preserves the buried ice (Florin and Wright, 1969). If the region is cold enough to support permafrost it may 412 

extend the duration that the moraine remains ice-cored (Clayton et al., 2001; Henriksen et al., 2003; Schomacker, 413 

2008). Given that the kettles appear to have formed within ~1 kyr of each other, and their formation coincided with 414 

the warm Bølling/Allerød period, this suggests the climate during Heinrich Stadial 1 may have been cold enough to 415 

help preserve the ice.  416 

 417 
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 418 

Figure 6. Conceptual model of kettle basin formation of the Kent Moraine in western New York building on Florin and 419 
Wright (1969). The same model applies to the Lake Escarpment moraine, except the timeline begins ~17 ka. First, the LIS 420 
deposited the ice-cored Kent Moraine. It remained ice-cored, perhaps influenced by permafrost, while tundra vegetation 421 
grew atop the moraine and stored carbon in the soil. Next, during climate amelioration in the Bølling-Allerød periods, the 422 
ice in the moraine melted. This led to the formation of basins that filled with both contemporaneous and reworked 423 
sediments. This is also likely the time when trees and other organic material could be slumped and formed deposits that 424 
placed primary tills adjacent to younger material. Finally, organic-rich sediment deposition dominates after ~13.8 ka. 425 

 426 

5.4 Implications for the climate in western New York 427 

 The climate of western New York between 20 and 15 ka is poorly known, but records from Ontario, Ohio, 428 

and New England suggest the climate events of the North Atlantic influenced the northeastern U.S. These terrestrial 429 

climate reconstructions depict a cold Heinrich Stadial 1 (~18 to ~14.7 ka), a shift to warmer temperatures during the 430 

Bølling-Allerød, and a cool Younger Dryas (Gill et al., 2012; Gonzales and Grimm, 2009; Grigg et al., 2021; 431 

Shuman et al., 2002; Watson et al., 2018; Yu, 2007; Yu and Eicher, 1998). A stable Heinrich Stadial 1 and shift to 432 

warmer temperatures during the Bølling-Allerød is shown by Watson et al. (2018), who used biomarkers (branched-433 



 

23  

 

GDGTs) to report that mean annual temperature in central Ohio varied between –2.0 and -0.5 °C from 17.0 to 14.5 434 

ka before warming 5°C between 14.5 and 13.0 ka.  435 

 The rate of LIS retreat offers additional insight into the climate in the northeast US. Barth et al. (2019) used 436 

cosmogenic nuclide dating of glacially-transported boulders to estimate LIS thinning in the Adirondack Mountains 437 

and showed increased thinning between 15.4 ± 1.0 and 13.9 ± 0.9 ka, generally coincident with the Bølling. The 438 

New England Varve Chronology shows a relatively steady net retreat rate of the LIS through the Hudson Valley 439 

between 18 and 14.7 ka; during the Bølling the net retreat rate tripled, implying that New England experienced 440 

elevated warmth at that time (Ridge et al., 2012). 441 

Ice-wedge casts can be used to identify areas that experienced past permafrost and constrain past 442 

temperature because their formation requires mean annual temperatures between -6 to -8°C (French, 2007; French 443 

and Miller, 2014). Ice-wedge casts are preserved in southern Ontario that were deposited 18-15 ka based on regional 444 

correlations (Dalton et al., 2020; Gao, 2005; Morgan et al., 1982). This suggests that the mean annual air 445 

temperature was low enough near our study site during Heinrich Stadial 1 to support permafrost. While this 446 

temperature depression is larger than reported by Watson et al. (2018), it's likely there was a strong temperature 447 

gradient between Ohio and western New York during deglaciation, with the latter remaining within 100 km of the 448 

ice margin until 14 ka (Dalton et al., 2020). This proximity to the ice sheet from the LGM to 14 ka may have been a 449 

driver of the cold climate that persisted in western New York. There are no reports of relict permafrost features 450 

within the LGM limit in western New York, but their presence south of the LGM extent suggest the likelihood of 451 

permafrost within the limit as well (French and Millar, 2014).  452 

Finally, there are seven local pollen records from Miller (1973), Calkin and McAndrews (1980), and 453 

Doody (2018) that describe the initial deglacial vegetation in western New York. Only the Allenberg Bog (Miller, 454 

1973) and Dragonfly Kettle (Doody, 2018) pollen records captured a ‘tundra’ zone at the base, although the 455 

presence of both arctic and temperate vegetation complicates their interpretation. The tundra zone is overlain by an 456 

interval with high spruce and pine pollen; this is the lowest unit found in the other five records (Miller, 1973; Calkin 457 

and McAndrews, 1980). This is likely reflecting the new forest biome associated with warmer temperatures. Given 458 

our results, we believe the ‘tundra’ pollen zone captured both the tundra vegetation that was growing on the moraine 459 

prior to basin formation and the more temperate vegetation as spruce and pine moved in during the Bølling. 460 

Unfortunately, the pollen records may be unreliable before 14 ka due to the same reworking problems as our 461 

radiocarbon dating, but this remains site specific.  462 

Altogether, there is evidence that the lag time between ice sheet retreat and kettle basin stabilization may be 463 

attributable to sustained permafrost in western New York due to cold North Atlantic conditions during Heinrich 464 

Stadial 1 (Fig. 7). The warming at the Bølling onset at ~14.7 ka may have increased regional temperatures, causing 465 

the melting of buried ice, initiating a phase of rapid landscape evolution and the formation of kettle basins, and 466 

eventually stabilizing the morainal topography. Numerous studies discuss the role of permafrost in the lag time 467 

between moraine ages and basal macrofossils along the south-central LIS margin, including Indiana and Illinois 468 

(Curry et al., 2018; Fisher et al., 2020), Michigan (Yansa et al., 2020), and Wisconsin (Clayton et al., 2008).  469 
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Our findings support the observations and conclusions from numerous studies that radiocarbon dates can be 470 

extreme minimum age constraints on deglaciation (Curry et al., 2018; Fisher et al., 2020; Florin and Wright, 1969; 471 

Halsted et al., 2023; Yansa et al., 2020). In New England, minimum-limiting radiocarbon ages may be the reason for 472 

the discrepancy between the timing of moraine deposition as recorded by 10Be exposure dating (e.g., Balco et al., 473 

2002; Corbett et al., 2017) and radiocarbon ages of basal macrofossils in lakes and bogs (e.g., Peteet et al., 2012). 474 

The younger than expected radiocarbon ages from the Valley Heads Moraine from Kozlowski et al. (2018) may be 475 

afflicted by similar processes. Permafrost during Heinrich Stadial 1 may have minimized landscape evolution in 476 

New England and central New York as well and could help explain the offset.  477 

 478 

Figure 7. Comparison of radiocarbon ages from the Kent and Lake Escarpment moraine and Young et al. (2020) in the 479 
context of North Atlantic deglacial climate changes. Black line is the GISP2 δ18O record (Grootes and Stuiver, 1999). Dark 480 
blue and light blue fading is the estimated deposition of the Kent Moraine and Lake Escarpment Moraine, respectively. 481 
Dark blue and light blue triangles are Unit 2 and the lowest Unit 3 radiocarbon ages from the Kent and Lake Escarpment 482 
Moraine sediment cores, respectively. Gray triangles are radiocarbon ages that we suspect have hardwater contamination. 483 
Pink diamonds are OSL ages and 2σ errors from the kame delta outboard the Kent Moraine. Green triangles are ages from 484 
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Young et al. (2020) interpreted by them to be maximum-limiting constraints on the 13 ka re-advance. Errors for all 485 
radiocarbon dates are not plotted because their width is smaller than the symbols.  486 

 487 

5.5 Allerød re-advance hypothesis 488 

The stratigraphically lowest radiocarbon ages from Unit 3 in the Lake Escarpment Moraine kettle basins, 489 

which are 15,000-15,400 and 13,600-14,000 cal BP, pre-date the ~13.1 ka re-advance suggested by Young et al. 490 

(2020) (Fig. 5 & 7). Chronologically constrained organic-rich sedimentation, with no stratigraphic evidence of 491 

interruption, ensued from at least 13,600-14,000 cal BP and well into the Holocene. Furthermore, there is no 492 

evidence of over-compaction in our bulk density measurements in 21LPB1 during this interval of time (Fig. 5). 493 

Thus, we do not find evidence that a ~13.1 ka LIS advance created or overran the Lake Escarpment Moraine as 494 

hypothesized by Young et al. (2020). Rather, we suggest that the landscape was unstable during its transition from a 495 

permafrost-dominated landscape to one with evolving and then stabilizing morainal topography. This landscape 496 

instability with reworking of glacial sediments may have led to the stratigraphy interpreted by Young et al. (2020) as 497 

primary tills in contact with logs dating to 13 ka (Fig. 7). Both the Dragonfly and Little Protection sites have 498 

intervals with increased wood deposition between 14 and 13 ka and future work could investigate the source of these 499 

woody intervals to further investigate the results from Young et al. (2020).  500 

 501 

6 Conclusion 502 

 We present 41 new macrofossil-based radiocarbon ages from kettle basin infills in western New York. We 503 

find that the lowest radiocarbon ages from Unit 3 (15,000-15,400 and 13,600-14,000 cal BP) are 5 kyr younger than 504 

our OSL age constraints on moraine deposition of 19.8 ± 2.6 – 20.6 ± 2.9 ka and the oldest radiocarbon age from 505 

Unit 2 of 19,350-19,600 cal BP from the Kent Moraine. The lowest Unit 3 ages are 2 kyr younger than our estimated 506 

age of Lake Escarpment Moraine deposition from moraine correlations. We interpret this offset to be due to a cold 507 

climate in western New York during Heinrich Stadial 1 supporting persistent buried ice which inhibited kettle basin 508 

formation until regional warming that took place during the Bølling. Our results do not support a re-advance of the 509 

LIS over the Lake Escarpment Moraine ~13 ka (c.f. Young et al., 2020). The lag time between ice sheet retreat and 510 

moraine stabilization in western New York may present an alternate explanation for inconsistencies between basal 511 

ages in sediment cores and other dating methods in central New York (Kozlowski et al., 2018) and eastern New 512 

York (Peteet et al., 2012). 513 

Future work could target features that are stable during ice retreat even where permafrost is present, such as 514 

outcrops of pro-glacial and ice-walled lake plane deposits (e.g., Curry et al., 2018), or perhaps moraines that are not 515 

hummocky in nature. This limitation may not be as necessary in environments where climate more quickly 516 

ameliorated, such as appears to have been the case in southern Ohio (Glover et al., 2011). Additionally, it may be 517 

important to consider the coring equipment. The GeoProbe coring device enabled us to collect stiff mineral-rich 518 

sediments lower than otherwise possible with the Livingstone and Russian Peat coring devices. This meant that our 519 
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coring did not stop at first contact with stiff minerogenic sediment that could mistakenly be interpreted as primary 520 

glacial in origin. 521 

 522 
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