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Abstract 27 

Non-methane volatile organic compounds (NMVOC), serving as crucial precursors 28 

of O3, have a significant impact on atmospheric oxidative capacity and O3 formation. 29 

However, both anthropogenic and biogenic NMVOC emissions remain subject to 30 

considerable uncertainty. Here, we extended the Regional multi-Air Pollutant 31 

Assimilation System (RAPAS) with the EnKF algorithm to optimize NMVOC 32 

emissions in China by assimilating TROPOMI HCHO retrievals. We also 33 

simultaneously optimize NOx emissions by assimilating in-situ NO2 observations to 34 

address the chemical feedback among VOC-NOx-O3. Furthermore, a process-based 35 

analysis was employed to quantify the impact of NMVOC emission changes on 36 

various chemical reactions related to O3formation and depletion. NMVOC 37 

emissions exhibited a substantial reduction of 50.2%, especially in forest-rich areas 38 

of central and southern China, revealing a prior overestimation of biogenic NMVOC 39 

emissions. Compared with the forecast with prior NMVOC emissions, the forecast 40 

with posterior emissions significantly improved HCHO simulations, reducing biases 41 

by 75.7%, indicating a notable decrease in posterior emission uncertainties. The 42 

forecast with posterior emissions also effectively corrected the overestimation of O3 43 

in forecast with prior emissions, reducing biases by 49.3%. This can be primarily 44 

attributed to a significant decrease in the RO2 + NO reaction rate and an increase in 45 

the NO2 + OH reaction rate in the afternoon, thus limiting O3 generation. Sensitivity 46 

analyses emphasized the necessity of considering both NMVOC and NOx emissions 47 

for a comprehensive assessment of O3 chemistry. This study enhances our 48 

understanding of the effects of NMVOC emissions on O3 production and can 49 

contribute to the development of effective emission reduction policies. 50 
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1 Introduction 58 

Since the Chinese government implemented the Air Pollution Prevention and Control 59 

Action Plan in 2013, there has been a notable reduction in NOx emissions (Zheng et al., 60 

2018). However, despite these advancements, the issue of O3 pollution persists and, in 61 

certain cases, has shown signs of worsening (Ren et al., 2022). The increase in O3 62 

concentration can be attributed not only to adverse meteorological conditions but also 63 

predominantly to unbalanced joint control of non-methane volatile organic compounds 64 

(NMVOCs) and nitrogen oxides (NOx) (Li et al., 2020). NMVOCs are vital precursors 65 

of O3 and have a substantial impact on the atmospheric oxidation capacity, thereby 66 

altering the lifetimes of other pollutants. Accurately quantifying NMVOC emissions 67 

holds significant importance in investigating their impact on O3 chemistry and in 68 

formulating emission reduction policies. 69 

Anthropogenic NMVOC emissions have traditionally been estimated using a “bottom-70 

up” method. However, the accuracy and timeliness of these estimations face challenges 71 

owing to the scarcity of local measurements for emission factors, the incompleteness 72 

and unreliability of activity data, and the diverse range of species and technologies 73 

involved (Cao et al., 2018; Hong et al., 2017). Furthermore, uncertainties arise in 74 

model-ready NMVOC emissions due to spatial and temporal allocations using various 75 

“proxy” data for different source sectors (Li et al., 2017a). Li et al. (2021) reported 76 

substantial discrepancies among emission estimates in various studies, ranging 23% to 77 

56%. Biogenic NMVOC emissions are typically estimated using models like the Model 78 

of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2012) and 79 

the Biogenic Emission Inventory System (BEIS) (Pierce et al., 1998). NMVOC 80 

emissions result from the multiplication of plant-specific standard emission rates by 81 

dimensionless activity factors. Nonetheless, apart from inaccuracies in the distribution 82 

of plant functional types, empirical parameterization, especially concerning responses 83 

to temperature and drought stress, can introduce substantial uncertainties (Angot et al., 84 

2020; Seco et al., 2022; Jiang et al., 2018). Warneke et al. (2010) determined isoprene 85 

emission rates through field measurements and conducted a comparison with MEGAN 86 

and BEIS estimates, revealing a notable tendency for MEGAN to overestimate 87 

emissions, while BEIS consistently underestimated them. Similarly, Marais et al. (2014) 88 

found that MEGAN's isoprene emission estimates were 5-10 times higher than the 89 

canopy-scale flux measurements obtained from African field campaigns.  90 
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A top-down approach, utilizing observed data, has been developed for estimating VOCs 91 

emissions. For instance, based on aircraft and ground-based field measurements, the 92 

source-receptor relationships algorithm with Lagrangian particle dispersion model 93 

(Fang et al., 2016), mixed layer gradient techniques (Mo et al., 2020), eddy covariance 94 

flux measurements (Yuan et al., 2015), and box model (Wang et al., 2020) have been 95 

employed to complement or verify bottom-up results. However, these approaches do 96 

not comprehensively consider the complex nonlinear chemical reactions and transport 97 

processes that VOCs undergo in the atmosphere. Formaldehyde (HCHO) and glyoxal 98 

(CHOCHO) in the atmosphere serve as crucial oxidization intermediates for various 99 

VOCs (Hong et al., 2021; Liu et al., 2012). Satellite-based observations can readily 100 

detect their presence in the form of vertical column density (VCD) from space, making 101 

them widely utilized for estimating NMVOC emissions. A commonly used approach 102 

assumes that the observed HCHO/CHOCHO columns are locally linearly correlated 103 

with VOC emission rates (Palmer et al., 2006; Liu et al., 2012). However, this approach 104 

does not consider the spatial offset resulting from chemistry reactions and transport 105 

processes. Chaliyakunnel et al. (2019) conducted a Bayesian analysis to derive an 106 

optimal estimate of VOC emissions using HCHO measurements over the Indian 107 

subcontinent. Their results indicated that biogenic VOC emissions modeled by 108 

MEGANv2.1 were overestimated by approximately 30–60%, whereas anthropogenic 109 

VOC emissions derived from the RETRO inventory were underestimated by 13–16%. 110 

Cao et al. (2018) employed the GEOS-Chem model and its adjoint, incorporating 111 

tropospheric HCHO and CHOCHO column data from the GOME-2A and OMI 112 

satellites as constraints, to quantify Chinese NMVOC emissions. They demonstrated a 113 

low bias in the MEGAN model, in contrast to the significant overestimation shown in 114 

Bauwens et al. (2016), especially in southern China. 115 

Several investigations have been conducted to explore the implications of inverted 116 

VOC emissions on surface O3. For instance, using the Eulerian box model, Zhou et al. 117 

(2023) employed concurrent VOC measurements to constrain anthropogenic VOC 118 

emissions. This led to improved simulations of VOCs and O3, with a reduction in high 119 

emissions by 15%–36% in the Pearl River Delta (PRD) region. Local model biases in 120 

simulating the oxidation of NMVOCs and O3 are closed related to uncertainties in NOx 121 

emissions (Wolfe et al., 2016; Chan Miller et al., 2017). To tackle these critical 122 

questions, Kaiser et al. (2018) applied an adjoint algorithm to estimate isoprene 123 
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emission over the southeast US by downwardly adjusting anthropogenic NOx emissions 124 

by 50% to rectify NO2 simulations. Their findings indicated that isoprene emissions 125 

from MEGAN v2.1 were overestimated by an average of 40%, slightly lower than the 126 

50% reduction in Bauwens et al. (2016). Souri et al. (2020) simultaneously optimized 127 

NMVOC and NOx emissions utilizing OMPS-NM HCHO and OMI NO2 retrievals in 128 

East Asia. They found that predominantly anthropogenic NMVOC emissions from 129 

MIX-Asia 2010 increased over the North China Plain (NCP), whereas predominantly 130 

biogenic NMVOC emissions from MEGAN v2.1 decreased over southern China after 131 

the adjustment. Unfortunately, the posterior simulations exacerbated the overestimation 132 

of O3 levels in northern China. 133 

Most studies regarding the inversion of NMVOC emissions or its impact on O3 134 

neglected the uncertainties associated with NOx-dependent production or loss of 135 

NMVOC oxidation and O3. An iteratively nonlinear joint inversion of NOx and 136 

NMVOCs using multi-species observations is expected to minimize the uncertainties 137 

in their emissions and is well-suited to address the intricate relationship among VOC-138 

NOx-O3. In this study, we extended the Regional multi-Air Pollutant Assimilation 139 

System (RAPAS) upon the ensemble Kalman filter (EnKF) assimilation algorithm to 140 

enhance the optimization of NMVOC emissions over China, utilizing the 141 

TROPOspheric Monitoring Instrument (TROPOMI) HCHO retrievals with high spatial 142 

coverage and resolution. To more accurately quantify the impact of NMVOC emissions 143 

on O3, NOx emissions were simultaneously adjusted using nationwide in-situ NO2 144 

observations. Process analysis was subsequently employed to quantify various 145 

chemical pathways associated with O3 formation and loss. Through a top-down 146 

constraint on both emissions, this study aims to offer a more scientific insight into the 147 

consequences of optimizing NMVOC emissions on O3 and contribute to the 148 

development of appropriate emission reduction policies. 149 

2 Data and Methods 150 

2.1 Data Assimilation System 151 

The RAPAS system (Feng et al., 2023) has been developed based on a regional 152 

chemical transport model (CTM) and ensemble square root filter (EnSRF) assimilation 153 

modules (Whitaker and Hamill, 2002), which are employed for simulating atmospheric 154 

compositions and inferring anthropogenic emissions by assimilating surface 155 
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observations, respectively (Feng et al., 2022; Feng et al., 2020). The inversion process 156 

follows a two-step procedure within each inversion window, in which the emissions are 157 

inferred first and then input into the CMAQ model to simulate initial conditions of the 158 

next window. Meanwhile, the optimized emissions are transferred to the next window 159 

as prior emissions. The two-step inversion strategy facilitates error propagation and 160 

iterative emission optimization, which have proven the superiority and robustness of 161 

our system in estimating emissions (Feng et al., 2023). In this study, we extended the 162 

data frame to include the assimilation of TROPOMI HCHO retrievals for optimizing 163 

NMVOC emissions. Concise descriptions of the forecast model, data assimilation 164 

approach, and experimental settings follow. 165 

2.1.1 Atmospheric Transport Model 166 

The Weather Research and Forecast (WRF v4.0) model (Skamarock and Klemp, 2008) 167 

and the Community Multiscale Air Quality Modeling System (CMAQ v5.0.2) (Byun 168 

and Schere, 2006) were applied to simulate meteorological conditions and atmospheric 169 

chemistry, respectively. WRF simulations were conducted with a 27-km horizontal 170 

resolution, covering the entire mainland China on a grid of 225 × 165 cells (Figure 1). 171 

The CMAQ model was run over the same domain, but with a removal of three grid cells 172 

on each side of the WRF domain. The vertical settings in WRF and CMAQ was the 173 

same as Feng et al. (2020). To account for the rapid expansion of urbanization, we 174 

updated underlying surface information for urban and built-up land using the MODIS 175 

Land Cover Type Product (MCD12C1) Version 6.1 of 2022. Chemical lateral boundary 176 

conditions for NO, NO2, HCHO, and O3 were extracted from the output of the global 177 

CTM (i.e., the Whole Atmosphere Community Climate Model, WACCM) with a 178 

resolution of 0.9° × 1.25° at 6-hour intervals (Marsh et al., 2013). Meanwhile, boundary 179 

conditions for the other NMVOCs were obtained directly from background profiles. In 180 

the first data assimilation (DA) window, chemical initial conditions (excluding 181 

NMVOCs) were also derived from the WACCM outputs, whereas in subsequent 182 

windows, they were derived through forward simulation using optimized emissions 183 

from the previous window. Table S1 lists the detailed physical and chemical 184 

configurations. To assess the impact of updated NMVOC emissions on O3 production 185 

efficiency, we further decoupled the contribution of the primary chemical processes to 186 

the O3 levels using the CMAQ Integrated Reaction Rate (IRR) analysis.  187 

 188 
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2.1.2 EnKF Assimilation Algorithm 189 

The emissions are constrained using the Ensemble Square Root Filter (EnSRF) 190 

algorithm introduced by Whitaker and Hamill (2002). This approach fully accounts for 191 

temporal and geographical variations in both the transportation and chemical reactions 192 

within the emission estimates. During the forecast step, the background ensembles are 193 

derived by applying perturbation to the prior emissions. The perturbed samples are 194 

typically drawn from Gaussian distributions with a mean of zero and a standard 195 

deviation equal to the prior emission uncertainty in each grid cell. Ensemble runs of the 196 

CMAQ model were subsequently performed to propagate the background errors with 197 

each ensemble sample of state vectors.  198 

In the analysis step, the ensemble mean �� of the analyzed state is regarded as the best 199 

estimate of emissions, which is obtained by updating the background ensemble mean 200 

through the following equations: 201 

 �� = �� + �(� − ���)  (1) 202 

 � = ����(����� + �)��  (2) 203 

where y is the observational vector; � represents the observation operator mapping 204 

model space to observation space; The expression � − ��� quantifies the disparities 205 

between simulated and observed concentrations; ���� illustrates how uncertainties in 206 

emissions relate to uncertainties in simulated concentrations; The Kalman gain matrix 207 

K, dependent on background error covariance �� and observation error covariance �, 208 

determines the relative contributions to the updated analysis.  209 

State variables for emissions include NOx and NMVOCs. To reduce the degree of 210 

freedom in the analysis and avoid the difficulty associated with estimating spatio-211 

temporal variations in background errors for individual species, we focus on optimizing 212 

the lumped total NMVOC emissions. During the forecast step, we differentiate 213 

individual NMVOC species emissions from the total NMVOC emissions using bottom-214 

up statistical information. For a consistent comparison between simulations and 215 

observations, model-simulated NO2 were diagnosed at the time and location of surface 216 

NO2 measurements, whereas model-simulated HCHO was horizontally sampled to 217 

align with TROPOMI HCHO VCD retrievals, and subsequently integrated vertically. 218 
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In this study, the DA window was set to one day and daily TROPOMI HCHO columns 219 

were utilized as observational constraints in our inversion framework. The ensemble 220 

size was set to 50 to strike a balance between computational cost and inversion accuracy. 221 

To reduce the impact of unrealistic long-distance error correlations, the Gaspari and 222 

Cohn function (Gaspari and Cohn, 1999) was utilized as covariance localization to 223 

ensure the meaningful influence of observations on state variables within a specified 224 

cutoff radius, while mitigating their negative impacts on distant state variables. The 225 

optimal localization scale is interconnected with factors such as the assimilation 226 

window, the dynamic system, and the lifetime of chemical species. Given the average 227 

wind speed of 2.8 m/s (Table S2) and a DA window of 1 day, the localization scales for 228 

NO2 and HCHO, both characterized as highly reactive species with lifespans of just a 229 

few hours, were set to 150 km and 100 km, respectively.  230 

2.2 Observation Data and Errors 231 

Considering the availability of HCHO data, we utilized daily offline retrievals of 232 

tropospheric HCHO columns from Sentinel-5P (S5P) L3 TROPOMI data obtained 233 

through Google Earth Engine (De Smedt et al., 2018). The S5P satellite follows a near-234 

polar sun-synchronous orbit at an altitude of 824 km with a 17-day repeating cycle. It 235 

crosses the Equator at 13:30 local solar time (LST) on the ascending node. The spatial 236 

resolution at nadir was refined to 3.5 × 5.5 km2 on 6 August 2019. Following the 237 

recommendations in the S5P HCHO product user manual, we filtered the source data 238 

to exclude pixels with qa_value less than 0.5 for HCHO column number density and 239 

0.8 for aerosol index (AER_AI). The remaining high-quality pixels with minimal 240 

snow/ice or cloud interference are averaged to 27-km grids. Figure 1b illustrates the 241 

coverage and data amount of TROPOMI HCHO retrievals in August 2022 after 242 

processing. Although the distribution of filtered data exhibits spatial non-uniformity, 243 

most grid cells have observational coverage for over half of the time, particularly in the 244 

southern region of China where NMVOC emissions are higher. Based on validation 245 

against a global network of 25 ground-based Fourier transform infrared (FTIR) column 246 

measurements (Vigouroux et al., 2020), TROPOMI HCHO overestimates by 25% 247 

(<2.5×1015 molec cm-2) in clean regions and underestimates by 30% (>=8×1015 molec 248 

cm-2) in polluted regions. Therefore, we set the measurement error to 30%. To evaluate 249 

the effect of observational data retrieval errors on emission estimates, we conducted a 250 

sensitivity experiment in which HCHO columns were empirically bias-corrected 251 
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according to the error characteristics described above (Figure S1). The posterior 252 

emissions increased by 12.8% compared to those in the base experiment (EMDA), 253 

indicating that the existing retrieval error in HCHO measurements likely exerts an 254 

influence on the estimation of NMVOC emissions. The representation error can be 255 

disregarded because the model's resolution significantly surpasses that of the 256 

TROPOMI pixels. 257 

To address the chemical feedback among VOC-NOx-O3, we also simultaneously 258 

optimized NOx emissions by assimilating in-situ NO2 observations. The extensively 259 

covered and high-precision monitoring network can provide sufficient constraints for 260 

emission inversion (Figure 1a). Hourly averaged surface NO2 observations from 261 

national control air quality stations obtained from the Ministry of Ecology and 262 

Environment of the People’s Republic of China (http://106.37.208.228:8082/, last 263 

access: 5 May 2023). In case where multiple stations are located within the same grid, 264 

a random site is chosen for validation, while the remaining sites are averaged to mitigate 265 

the impact of error correlation (Houtekamer and Zhang, 2016) for assimilation. In total, 266 

1276 stations were chosen for assimilation and an additional 425 independent stations 267 

were selected for verification (Figure 1a). The observation error covariance matrix � 268 

incorporates contributions from both measurement and representation errors. The 269 

measurement error is defined as �� = 1.0 + 0.005 × Π� , where Π�  represents the 270 

observed NO2 concentration. Following the approach of Elbern et al. (2007) and Feng 271 

et al. (2018), the representative error is defined as �� = ����Δ� �⁄ , where γ is a tunable 272 

parameter (here, γ=0.5), Δ� is the grid spacing (27 km), and � is the radius (here, �=0.5) 273 

of the observation’s influence area. The total observation error (�) was defined as � =274 

���
� + ��

� . The observation errors are assumed to be uncorrelated so that �  is a 275 

diagonal matrix. 276 

 277 
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 278 

Figure 1. Model domain and observation network (a) and data amount of TROPOMI 279 

HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates 280 

the CMAQ computational domain; black squares denote surface meteorological 281 

measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue 282 

dots represent air pollution measurement sites, where red dots are used for assimilation 283 

and blue dots for independent evaluation. 284 

2.3 Prior Emissions and Uncertainties 285 

The prior anthropogenic NOx and NMVOC emissions for China were obtained from 286 

the most recent Multi-resolution Emission Inventory for China of 2020 (MEIC, 287 

http://www.meicmodel.org/, last access: 8 May 2023) (Zhang et al., 2009). For 288 

anthropogenic emissions outside China, we utilized the mosaic Asian anthropogenic 289 
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emission inventory (MIX) for the base year of 2010 (Li et al., 2017b). The daily 290 

emission inventory, which was arithmetically averaged from the combined monthly 291 

emission inventory, was employed as the first guess. Ship emissions were derived from 292 

the shipping emission inventory model (SEIM) for 2017, which was calculated based 293 

on the observed vessel automatic identification system (Liu et al., 2017). Biomass 294 

burning emissions were retrieved from the Global Fire Emissions Database version 4.1 295 

(GFEDv4, https://www.globalfiredata.org/, last access: 8 May 2023) (van der Werf et 296 

al., 2017; Mu et al., 2011). Biogenic NOx and NMVOC emissions were calculated using 297 

the Model of Emissions of Gases and Aerosols from Nature (MEGAN) developed by 298 

Guenther et al. (2012). 299 

As previously mentioned, the optimized emissions are transferred to the next DA 300 

window as prior emissions for iterative inversion. For biogenic emissions, it is 301 

decomposed into hourly scales based on the daily varying temporal profiles in MEGAN 302 

as model inputs. Daily emission variations will largely dominate the uncertainty in 303 

emissions. Taking into account compensating for model errors and avoiding filter 304 

divergence, we consistently applied an uncertainty of 25% to each model grid of NOx 305 

emissions at each DA window, as in Feng et al. (2020). NMVOC emissions typically 306 

exhibit greater uncertainties compared to NOx emissions (Li et al., 2017b). Based on 307 

model evaluation, the uncertainty of NMVOC emissions was set to 40% (Kaiser et al., 308 

2018; Souri et al., 2020; Cao et al., 2018). A sensitivity experiment involving a doubling 309 

of the prior uncertainty (80%) revealed that the differences in posterior NMVOC 310 

emissions amounted to a mere 0.2% (Figure S2). The implementation of a ‘two-step’ 311 

inversion strategy allows for the timely correction of residual errors from the previous 312 

assimilation window in the current window, thus ensuring that the RAPAS system has 313 

a relatively low dependence on prior uncertainty settings. This study also addresses 314 

uncertainties in emissions for CO, SO2, primary PM2.5, and coarse PM10 to consider the 315 

chemical feedback between different species following Feng et al. (2023).  316 

3 Experimental Design 317 

During the summer of 2022, southern China experienced severe heatwave conditions. 318 

The combination of high temperatures and drought had a pronounced effect on 319 

vegetation growth and NMVOC emissions, thereby influencing O3 production (Wang 320 

et al., 2023). Consequently, we opted to focus on August 2022, as it presented an ideal 321 

period for testing the capabilities of our DA system. Before implementing the emission 322 
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inversion, a relatively perfect initial field is generated at 0000 UTC on August 1 2022 323 

through conducting a 5-day simulation with 6-hour interval 3D-Var data assimilation. 324 

Subsequently, daily emissions are continuously updated over the entire month of 325 

August (EMDA). Additionally, we designed a sensitivity experiment (EMS) to illustrate 326 

the significance of optimizing NOx emissions in quantifying VOC-O3 chemical 327 

reactions. In this experiment, NOx emissions were not optimized. To validate the 328 

posterior emissions of NOx and NMVOCs in EMDA, we compared two parallel 329 

forward simulation experiments, denoted as CEP and VEP, corresponding to prior and 330 

posterior emission scenarios, respectively, against NO2 and HCHO measurements. To 331 

investigate the impact of optimizing NMVOC emissions on the secondary production 332 

and loss of surface O3, a forward simulation experiment (CEP1) was conducted with 333 

the prior NMVOC emissions and the posterior NOx emissions. Another forward 334 

modelling experiment (CEP2) used the posterior emissions of EMS to evaluate its 335 

performance. All experiments employ identical meteorological fields, as well as the 336 

same gas-phase and aerosol modules. Table 1 summarizes the different emission 337 

inversion and validation experiments conducted in this study. 338 

Table 1. The assimilation, sensitivity, and validation experiments conducted in this 339 

study. 340 

Exp.Type Exp. Name NMVOC emissions NOx emissions 

Assimilation EMDA 

MEIC 2020 and MEGAN for 

August (the first DA window), 

optimized emissions of the previous 

window (other DA windows) 

MEIC 2020 and MEGAN for 

August (the first DA 

window), optimized 

emissions of the previous 

window (other DA windows) 

Sensitivity EMS Same as EMDA 
MEIC 2020 and MEGAN for 

August 

Validation 

CEP 
MEIC 2020 and MEGAN for 

August 

MEIC 2020 and MEGAN for 

August 

VEP Posterior emissions of EMDA 
Posterior emissions of 

EMDA 

CEP1 Same as CEP 
Posterior emissions of 

EMDA 

CEP2 Posterior emissions of EMS Same as CEP 

 341 

 342 
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4 Results 343 

4.1 Inverted Emissions  344 

Figure 2 shows the spatial distribution of temporally averaged prior and posterior 345 

NMVOC emissions, along with their differences, in NMVOC emissions. Hotspots of 346 

prior NMVOC emissions were prevalent across much of central and southern China. 347 

However, posterior NMVOC emissions were predominantly concentrated in the NCP, 348 

Yangtze River Delta (YRD), PRD, and Sichuan Basin (SCB), characterized by high 349 

levels of anthropogenic activity. High emissions are also located in parts of central and 350 

southern China with warm climate favorable for emitting biogenic NMVOCs. 351 

Employing TROPOMI HCHO observations as constraints led to widespread decreases 352 

of approximately 60–70% over these areas, indicating a large substantial of biogenic 353 

NMVOC emissions. In northwestern China, there was a moderate increase in NMVOC 354 

emissions. A potential significant TROPOMI retrieval errors in polluted regions could 355 

exacerbate the emission decreases (Text S2). Additionally, uncertainties in MEGAN 356 

parameterization have significant implications for NMVOC emission estimations, 357 

particularly concerning the responses of vegetation in MEGAN to temperature and 358 

drought stress (Angot et al., 2020; Jiang et al., 2018). Zhang et al. (2021) highlighted 359 

that the temperature-dependent activity factor noticeably increases with rising 360 

temperatures in MEGAN. Wang et al. (2021b) pointed out that the missing of a drought 361 

scheme is one of the factors causing the overestimation of isoprene emissions in 362 

MEGAN. Opacka et al. (2022) optimized the empirical parameter in the MEGANv2.1 363 

soil moisture stress algorithm, resulting in significant reductions in isoprene emissions 364 

and providing better agreement between modelled and observed HCHO temporal 365 

variability in the central U.S. During the study period, China experienced severe 366 

heatwave conditions, which may further hinder the MEGAN's ability to effectively 367 

capture the impacts of high temperatures and drought on vegetation, thus resulting in 368 

significant overestimation in NMVOC emissions (Wang et al., 2022). Nevertheless, the 369 

large magnitude of emission reductions of 50.2% in our inversion is comparable to 370 

studies in southern China (Bauwens et al., 2016; Zhou et al., 2023), southeastern US 371 

(Kaiser et al., 2018), Africa (Marais et al., 2014), India (Chaliyakunnel et al., 2019), 372 

Amazonia (Bauwens et al., 2016), and parts of Europe (Curci et al., 2010), but opposite 373 

to the large-scale emission increase over China in Cao et al. (2018). For NOx (Figure 374 

S3), the nationwide total emissions decreased by 10.2%, with the main reductions 375 
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concentrated in the NCP, YRD, parts of Central China, and most key urban areas. 376 

 377 

Figure 2. Spatial distribution of the time-averaged (a) prior emissions (MEIC 2020 + 378 

MEGAN), (b) posterior emissions, (c) absolute difference (posterior minus prior), and 379 

(d) relative difference of NMVOCs over China. 380 

Table 2 shows the changes in emissions of biogenic NMVOCs across different land 381 

cover types (Figure S4) after inversion. The most significant reduction in biogenic 382 

emissions occurred within woody savannas, accounting for 26.9% of the overall 383 

reduction, followed by savannas and croplands, accounting for 21.2% and 17.2% 384 

respectively. Among all vegetation types, the broadleaf evergreen forests, recognized 385 

as the primary source of isoprene emission (Wang et al., 2021a), presented the greatest 386 

uncertainty, with NMVOC emissions experiencing a significant reduction of 66.2%. 387 

Standard emission rates in MEGAN are derived from leaf- or canopy-scale flux 388 

measurements and extrapolated globally across regions sharing similar landcover 389 

characteristics, based on very limited observations (Guenther et al., 1995). This 390 

methodology introduces biases due to the large variability in emission rates among 391 
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plant species.  392 

Table 2. Prior and posterior biogenic NMVOC emissions, as well as their differences 393 

for different land cover types. 394 

Land cover type 
Prior 

Mmol/month 

Posterior 

Mmol/month 

Difference 

Mmol/month (%) 

Evergreen needleleaf forests 955.7 549.3 -406.4 (-42.5) 

Evergreen broadleaf forests 13985.1 4728.2 -9256.8 (-66.2) 

Deciduous needleleaf forests 46.6 48.8 2.2 (4.7) 

Deciduous broadleaf forests 8335.5 3487.4 -4848.1 (-58.2) 

Mixed forests 8731.0 3961.7 -4769.4 (-54.6) 

Closed shrublands 9.7 3.7 -6.0 (-61.5) 

Open shrublands 21.3 8.6 -12.8 (-59.8) 

Woody savannas 39327.2 16925.2 -22402.0 (-57.0) 

Savannas 28319.7 10629.4 -17690.3 (-62.5) 

Grasslands 16912.7 14269.6 -2643.1 (-15.6) 

Permanent wetlands 286.1 115.4 -170.8 (-59.7) 

Croplands 25537.8 11215.5 -14322.2 (-56.1) 

Cropland-natural vegetation 

mosaics 
10894.7 4289.8 -6605.0 (-60.6) 

Sparsely vegetated 1814.7 1644.0 -170.6 (-9.4) 

4.2 Evaluations for Posterior Emissions 395 

The NOx emissions were first evaluated by indirectly comparing the forward simulated 396 

NO2 concentrations with measurements. As shown in Figure S5, the CEP with prior 397 

emissions exhibited positive biases in eastern China and negative biases in western 398 

China. However, when posterior emissions were used in the VEP, a substantial 399 

improvement in simulation performance was observed. Biases were limited to within 400 

±3 μg m−3, and correlation coefficients exceeded 0.7 across the entire region. Figure 3 401 

presents the simulated HCHO VCDs using prior and posterior NMVOCs emissions, 402 

along with their associated biases. Both experiments showed high VCDs over central 403 

and eastern China, especially in the YRD and SCB. However, the CEP displayed 404 

substantial overestimation across most of mainland China, with the largest bias 405 
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reaching 12 × 1015 molec cm-2 in Central China. Conversely, the VEP demonstrated 406 

notable improvements in both the magnitude and spatial distribution of simulated 407 

HCHO columns after the inversion compared to TROPOMI retrievals. More than 84% 408 

of the areas exhibited biases of less than 1 × 1015 molec cm-2, and no significant spatial 409 

variation was observed. Overall, the biases in simulated HCHO VCDs decreased by 410 

75.7% after the inversion. These results emphasize the efficiency of our system in 411 

reducing uncertainty in both NOx and NMVOC emissions. 412 

 413 

Figure 3. Simulated HCHO vertical column densities using prior (a) and posterior (b) 414 

NMVOC emissions, along with their biases (c and d) against TROPOMI measurement. 415 

All model results were sampled at TROPOMI overpass time. 416 

4.3 Implications for Surface O3 417 

Figure 4 shows the spatial distribution of the mean bias (BIAS), root mean square error 418 

(RMSE), and correlation coefficient (CORR) for simulated O3 concentrations in the 419 

CEP1 and VEP experiments compared to assimilated observations. Beyond the 420 

northwestern region of China, the CEP1 exhibited significant overestimation 421 
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throughout the entire area, with a BIAS of 20.5 μg m−3. In the VEP, the modeled O3 422 

chemical production were alleviated, especially in the southern regions of China where 423 

NMVOC emissions had significantly decreased. Overall, observation-constrained 424 

NMVOC emissions resulted in a 49.3% decrease in the BIAS, bringing it down to 10.4 425 

μg m−3. Additionally, the RMSE showed noticeable improvement due to the 426 

assimilation of HCHO observation, reducing the value from 30.9 to 23.3 μg m−3. 427 

Despite a significant reduction in NMVOC emissions after inversion, notable 428 

overestimations persisted in northern provinces such as Liaoning, Hebei, Shanxi, and 429 

Shaanxi. This may be attributed to limited NMVOC constraints resulting from 430 

insufficient observations during the study period (Figures 1b and 3d). The remaining 431 

discrepancies between simulations and observations can be attributed to the combined 432 

results of intricate urban-rural sensitivity regimes and O3 photochemistry reactions, 433 

which may not be comprehensively represented by CMAQ model, masking any 434 

potential improvement expected from the constrained emissions (See Sect. 4.4). The 435 

CORR was comparable between the CEP1 and VEP experiments, reflecting that the 436 

CMAQ model effectively simulated the temporal variation of O3 concentrations. The 437 

biases at the independent sites were similar to those at the assimilated sites (Figure S6). 438 

In comparison to CEP1, the decreasing ratios in BIAS and RMSE in VEP were 46.7% 439 

and 23.4%, respectively. 440 
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 441 

Figure 4. Spatial distribution of mean bias (BIAS, a and b), root mean square error 442 

(RMSE, c and d), and correlation coefficient (CORR, e and f) for simulated O3 using 443 

prior (left, CEP1) and posterior (right, VEP) emissions, respectively, against 444 

assimilated observations. 445 

Figure 5 shows the time series of simulated and observed hourly O3 concentrations and 446 

their RMSEs, verified against surface monitoring sites. The VEP achieved better 447 

representations of diurnal O3 variations compared with those in the CEP1, especially 448 

excelling in reproducing elevated O3 concentrations at noon. Constraining the NMVOC 449 

emissions also led to better model simulations in terms of RMSE throughout the entire 450 

study period. Overall, the assimilation of HCHO column observations effectively 451 

reduced NMVOC emission uncertainties and consequently improved simulations of 452 
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HCHO and O3. These improvements hold promise for further research into the 453 

implications of emission optimizations on regional O3 photochemistry. 454 

  455 

Figure 5. Time series comparison of hourly surface O3 concentrations (μg m-3) and 456 

RMSE (μg m-3) from CEP1 and VEP experiments against all observations. 457 

As crucial O3 precursors, the abundance of NMVOCs plays a significant role in 458 

modulating O3 production. Here we employed the IRRs to elucidate changes related to 459 

O3 production and loss at the surface, stemming from constrained NOx and NMVOC 460 

emissions. Figure 6 illustrates comparisons of the simulated maximum daily 8-hour 461 

average (MDA8) surface O3 levels and net reaction rates before and after the inversion. 462 

The CEP1 exhibited an overestimation of O3 levels, with a BIAS of 22.6% compared 463 

to observed O3 concentrations. This overestimation corresponded to the high net 464 

chemical rates of O3 in these areas (Figure S7). After inversion, O3 net rates mitigated 465 

in most regions. Consequently, the VEP experiment yielded results that closely aligned 466 

with observations, with a BIAS of 9.2%. Referring to Figure 6e and 6f, differences in 467 

production rates of O3 closely track the changes in the NMVOC emissions (Figure 2). 468 

The discrepancies in specific regions may be attributed to the complex nonlinear 469 
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relationships associated with O3 and its precursors, which depend on prevailing 470 

chemical regimes and regional transport. Additionally, changes in O3 production 471 

predominantly drive the overall decrease in O3 concentrations, outweighing changes in 472 

O3 loss. 473 

  474 

Figure 6. Comparisons of (a, b) simulated maximum daily 8-hour average (MDA8) O3 475 

concentrations, (c, d) net reaction rates, (e, f) and differences in production and loss 476 

rates between CEP1 and VEP experiments at the surface. Surface MDA8 O3 values 477 

(circles) from the national control air quality stations were overlaid 478 

Figure 7 shows the differences in the six principal pathways responsible for O3 loss and 479 

formation, when comparing simulations employing prior and posterior emissions. The 480 

reactions of HO2 + NO and RO2 + NO are treated as the pathways leading to O3 481 

formation, whereas O3 loss involves reactions including NO2 + OH, O3 + HO2, O3 + 482 
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NMVOCs, and O1D + H2O (Wang et al., 2019). Our analysis was focused on the time 483 

frame from 12:00 to 18:00 according to China standard time (CST). The differences 484 

were computed by subtracting the simulation with posterior emissions from those with 485 

prior emissions. Following the emission of NMVOCs, they undergo rapid oxidation by 486 

atmospheric hydroxyl (OH) radicals. Due to the substantial decrease in NMVOC 487 

emissions, there was a reduction in the production of hydroperoxy radicals (HO2) and 488 

organic peroxy radicals (RO2) (Figure S8). Consequently, this reduction in HO2/RO2 489 

levels, coupled with their reaction with NO, resulted in diminished O3 production 490 

(Figures 7a and 7b). A strong correlation was observed between changes in O3 491 

production via the RO2 + NO reaction and NMVOC emissions (Figure 2), consistent 492 

with the findings of Souri et al. (2020). Typically, in NMVOC-rich environments, a 493 

decrease in NMVOC emissions boosts OH concentrations. Consequently, we noted an 494 

enhancement in the NO2 + OH reaction in the eastern and central regions of China. In 495 

response to heightened HOx concentrations over these areas, an increased O3 loss 496 

through the O3 + HOx pathway was observed. Furthermore, we detected a substantial 497 

decrease in O3 loss through reactions with NMVOCs, especially in the southern China, 498 

where substantial isoprene emissions are prevalent. This reduction was primarily 499 

attributable to the decrease in NMVOC and O3 levels. While the NMVOC + O3 reaction 500 

proceeds at a substantially slower rate NMVOC + OH, this specific chemical pathway 501 

remains significant in oxidizing NMVOC and forming HOx in forests areas (Paulson 502 

and Orlando, 1996). The difference in O1D + H2O is primarily driven by the decrease 503 

of O3 photolysis. Although the rate of O3 loss decreases in some chemical pathways, 504 

overall, the rate of O3 production dominates the changes in O3 concentration. 505 
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 506 

Figure 7. Differences in six major pathways of O3 production and loss between CEP1 507 

and VEP experiments at the surface. Time period: August 2022, 12:00–18:00 CST. PO3 508 

and LO3 represent the pathways of O3 formation and loss, respectively. 509 

4.4 Discussions 510 

O3 simulations over China have a tendency to be overestimated in studies involving 511 

chemical transport modeling. For example, by intercomparing 14 state-of-the-art CTMs 512 

with O3 observations within the framework of the MICS-Asia III, Li et al. (2019) 513 

identified a substantial overestimation of annual surface O3 in East Asia, ranging from 514 

20 to 60 μg m−3. Notably, the NCP exhibited substantial overestimations, with most 515 

models overestimating O3 by 100–200% during May–October. Despite our 516 
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optimization of O3 precursor emissions, the posterior simulations still exhibit some 517 

degree of overestimation (Figure 4), suggesting that there may indeed be an effect of 518 

systematic bias, such as meteorological fields, spatial resolution, model treatments of 519 

nonlinear photochemistry and other physical processes. The WRF can generally 520 

reproduce meteorological conditions sufficiently in terms of their temporal variation 521 

and magnitude over China (Figure S9), with small biases of -0.5 °C, -5.3%, 0.3 m/s, 522 

and -42.4 m for temperature at 2 m, relative humidity at 2 m, and wind speed at 10 m, 523 

and planetary boundary layer height, respectively. However, due to the relatively coarse 524 

spatial resolution, NO titration effects in urban areas may not be well represented in the 525 

model, which can lead to an overestimation of O3 in these areas. Additionally, model 526 

inherent errors arising from the model structure, parameterization, and the 527 

simplification or lack of chemical mechanisms inevitably affect the O3 simulations. For 528 

example, Li et al. (2018) reported that heterogeneous reactions of nitrogen compounds 529 

could weaken the atmospheric oxidation capacity and thus reduce surface O3 530 

concentration by 20–40 μg m-3 for the polluted regions over China. These reactions 531 

have not been fully incorporated in CMAQ chemical mechanisms. However, there is 532 

still a lack of reasonable and effective algorithms for addressing model errors through 533 

assimilation (Houtekamer and Zhang, 2016).O3 concentration and NOx (VOC) 534 

emissions are positively correlated in the NOx (VOC)-limited region and negatively 535 

correlated in the VOC (NOx)-limited region (Tang et al., 2011). Therefore, the 536 

uncertainty in NOx emissions can affect the model's diagnosis of O3-NOx-VOC 537 

sensitivity, thereby introducing substantial model errors in the HCHO yield from VOC 538 

oxidation. In the base inversion experiment (EMDA), we simultaneously assimilated 539 

NO2 and HCHO observations to optimize NOx and NMVOC emissions. To evaluate the 540 

impact of optimized NOx emissions on O3-VOC chemistry, EMS disregarded the 541 

uncertainty of NOx and focused on optimizing NMVOC emissions. Compared to the 542 

EMDA, in areas where NOx is significantly overestimated, NMVOC emissions in the 543 

EMS have correspondingly decreased (Figure 8b). This might be due to under high-544 

NOx conditions, HCHO production occurs promptly, thereby compensating for the 545 

substantial amount of HCHO already present in the atmosphere by reducing emissions 546 

(Chan Miller et al., 2017). Figure S10 shows comparisons of concentrations and RMSE 547 

between the simulations using posterior emissions from EMS and EMDA experiments. 548 

Compared to VEP, CEP2 showed a larger RMSE, highlighting the necessity for 549 

simultaneous optimization of NOx emissions when evaluating the impact of NMVOC 550 
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emission optimization on O3. Additionally, CEP2 using prior NOx emissions exhibited 551 

lower O3 levels over parts of NCP and YRD, as well as some urban areas (Figure 8c), 552 

but with larger biases and RMSEs (Figure 8d). The reduction in NMVOC emissions 553 

contributed to a partial decrease in O3 concentration. More significantly, these areas 554 

typically align with VOC-limited mechanisms (Wang et al., 2019; Wang et al., 2021c). 555 

Therefore, the overestimation of NOx emissions (Figure S3) excessively inhibits O3 556 

accumulation due to the titration effect, thereby disrupting the evaluation of NMVOC 557 

contributions to O3. This substantial disparity also seriously affects O3 source 558 

apportionment, precursor-sensitive area delineation, and emissions reduction policy 559 

formulation. 560 

 561 

Figure 8. Spatial distribution of (a) posterior emissions in the EMS experiment, (b) 562 

differences in posterior emissions between EMS and EMDA, and differences in 563 

simulated (c) O3 concentrations and (d) RMSE between CEP2 and VEP experiments. 564 

EMS did not optimize NOx emissions compared to EMDA. 565 

 566 
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5 Summary and Conclusions 567 

In this study, we extended the RAPAS assimilation system with the EnKF assimilation 568 

algorithm to optimize NMVOC emissions using the TROPOMI HCHO retrievals. 569 

Taking the MEIC 2020 for anthropogenic emissions and MEGANv2.1 output for 570 

biogenic sources as a priori, NMVOC emissions over China in August 2022 were 571 

inferred. Importantly, we implicitly took the chemical feedback among VOC-NOx-O3 572 

into account by simultaneously adjusting NOx emissions using nationwide in-situ NO2 573 

observations. Furthermore, we quantified the impact of NMVOC emission inversion on 574 

surface O3 pollution using the CMAQ-IRR model. 575 

The application of TROPOMI HCHO observations as constraints led to a substantial 576 

reduction of 50.2% compared to the prior emissions for NMVOCs. A domain-wide 577 

significant decrease was found over central and southern China with abundant forests, 578 

especially for the broadleaf evergreen forests, implying a considerable overestimation 579 

of biogenic NMVOC emissions. Observation-constrained emissions significantly 580 

improved the performance of surface NO2 and HCHO column simulations, reducing 581 

biases by 97.4% and 75.7%, respectively. This highlights the effectiveness of the 582 

RAPAS in reducing uncertainty in NOx and NMVOC emissions. Isolating the impact 583 

of NOx emission changes, the posterior NMVOC emissions significantly mitigated the 584 

overestimation in prior O3 simulations, resulting in a 49.3% decrease in surface O3 585 

biases. This is mainly attributed to a substantial decrease in the RO2 + NO reaction rate 586 

(a major pathway for O3 production) and an increase NO2 + OH reaction rate (a major 587 

pathway for O3 loss) during the afternoon, resulting in a decrease in the simulated 588 

MDA8 surface O3 concentrations by approximately 15 μg m-3. 589 

Sensitivity inversions demonstrate the robustness of top-down emissions to variations 590 

in prior uncertainty settings, yet they are sensitive to HCHO column biases, 591 

highlighting the importance of comprehensive validation studies utilizing available 592 

remote-sensing data and, if possible, airborne validation campaigns. Moreover, we 593 

found that, in comparison to optimizing NMVOC emissions alone, the joint 594 

optimization of NMVOC and NOx emissions can significantly improve the overall 595 

performance of O3 simulations. Ignoring errors in NOx emissions introduces uncertainty 596 

in quantifying the impact of NMVOC emissions on surface O3, especially in areas 597 

where overestimated NOx emissions can unrealistically amplify titration effects, 598 
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highlighting the necessity of simultaneous optimization of NOx emissions. 599 

 600 

Data availability 601 

The observations used for assimilation and the optimized emissions in this study can be 602 

accessed at https://doi.org/10.5281/zenodo.10079006 (Feng and Jiang, 2023). 603 

 604 

Author contribution 605 

SF and FJ conceived and designed the research. SF developed the data assimilation 606 

code, analyzed data, and prepared the paper with contributions from all co-authors. FJ 607 

supervised and assisted in conceptualization and writing. TQ, NW, MJ, SZ, JC, FY, and 608 

WJ reviewed and commented on the paper. 609 

 610 

Competing interests 611 

The authors declare that they have no conflict of interest. 612 

 613 

Acknowledgements 614 

This work is supported by the National Key R&D Program of China (Grant No. 615 

2022YFB3904801), the National Natural Science Foundation of China (Grant No: 616 

42305116 and 42377102), the Natural Science Foundation of Jiangsu Province of China 617 

(Grant No: BK20230801), and the Hangzhou Agricultural and Social Development 618 

Scientific Research Project (Grant No: 202203B29). The authors also gratefully 619 

acknowledge the High-Performance Computing Center (HPCC) of Nanjing University 620 

for doing the numerical calculations in this paper on its blade cluster system. 621 

 622 

References 623 

Angot, H., McErlean, K., Hu, L., Millet, D. B., Hueber, J., Cui, K., Moss, J., Wielgasz, C., Milligan, 624 

T., Ketcherside, D., Bret-Harte, M. S., and Helmig, D.: Biogenic volatile organic compound 625 

ambient mixing ratios and emission rates in the Alaskan Arctic tundra, Biogeosciences, 17, 626 

6219-6236, 10.5194/bg-17-6219-2020, 2020. 627 

Bauwens, M., Stavrakou, T., Müller, J. F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., 628 

Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., and Guenther, A.: Nine years of global 629 

hydrocarbon emissions based on source inversion of OMI formaldehyde observations, Atmos. 630 

Chem. Phys., 16, 10133-10158, 10.5194/acp-16-10133-2016, 2016. 631 



27 

 

Byun, D., and Schere, K. L.: Review of the governing equations, computational algorithms, and 632 

other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling 633 

system, Applied Mechanics Reviews, 59, 51-77, 10.1115/1.2128636, 2006. 634 

Cao, H., Fu, T. M., Zhang, L., Henze, D. K., Miller, C. C., Lerot, C., Abad, G. G., De Smedt, I., 635 

Zhang, Q., van Roozendael, M., Hendrick, F., Chance, K., Li, J., Zheng, J., and Zhao, Y.: 636 

Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-637 

based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017-15046, 638 

10.5194/acp-18-15017-2018, 2018. 639 

Chaliyakunnel, S., Millet, D. B., and Chen, X.: Constraining Emissions of Volatile Organic 640 

Compounds Over the Indian Subcontinent Using Space-Based Formaldehyde Measurements, 641 

Journal of Geophysical Research: Atmospheres, 124, 10525-10545, 10.1029/2019JD031262, 642 

2019. 643 

Chan Miller, C., Jacob, D. J., Marais, E. A., Yu, K., Travis, K. R., Kim, P. S., Fisher, J. A., Zhu, L., 644 

Wolfe, G. M., Hanisco, T. F., Keutsch, F. N., Kaiser, J., Min, K. E., Brown, S. S., Washenfelder, 645 

R. A., González Abad, G., and Chance, K.: Glyoxal yield from isoprene oxidation and relation 646 

to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and 647 

interpretation of OMI satellite data, Atmos. Chem. Phys., 17, 8725-8738, 10.5194/acp-17-648 

8725-2017, 2017. 649 

Cheng, S., Cheng, X., Ma, J., Xu, X., Zhang, W., Lv, J., Bai, G., Chen, B., Ma, S., Ziegler, S., Donner, 650 

S., and Wagner, T.: Mobile MAX-DOAS observations of tropospheric NO2 and HCHO during 651 

summer over the Three Rivers' Source region in China, Atmos. Chem. Phys., 23, 3655-3677, 652 

10.5194/acp-23-3655-2023, 2023. 653 

Curci, G., Palmer, P. I., Kurosu, T. P., Chance, K., and Visconti, G.: Estimating European volatile 654 

organic compound emissions using satellite observations of formaldehyde from the Ozone 655 

Monitoring Instrument, Atmos. Chem. Phys., 10, 11501-11517, 10.5194/acp-10-11501-2010, 656 

2010. 657 

De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., 658 

Richter, A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, 659 

H., van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theoretical baseline for 660 

formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project, Atmos. Meas. 661 

Tech., 11, 2395-2426, 10.5194/amt-11-2395-2018, 2018. 662 

Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation 663 

by 4-dimensional variational inversion, Atmospheric Chemistry and Physics, 7, 3749-3769, 664 

10.5194/acp-7-3749-2007, 2007. 665 

Fang, X., Shao, M., Stohl, A., Zhang, Q., Zheng, J., Guo, H., Wang, C., Wang, M., Ou, J., Thompson, 666 

R. L., and Prinn, R. G.: Top-down estimates of benzene and toluene emissions in the Pearl 667 

River Delta and Hong Kong, China, Atmos. Chem. Phys., 16, 3369-3382, 10.5194/acp-16-668 

3369-2016, 2016. 669 

Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact of 3DVAR assimilation of 670 

surface PM2.5 observations on PM2.5 forecasts over China during wintertime, Atmospheric 671 

Environment, 187, 34-49, 10.1016/j.atmosenv.2018.05.049, 2018. 672 

Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., Shen, Y., Zheng, Y., Wu, Z., and Ding, A.: NOx 673 

Emission Changes Over China During the COVID-19 Epidemic Inferred From Surface NO2 674 

Observations, Geophysical Research Letters, 47, 10.1029/2020gl090080, 2020. 675 



28 

 

Feng, S., Jiang, F., Wang, H., Shen, Y., Zheng, Y., Zhang, L., Lou, C., and Ju, W.: Anthropogenic 676 

emissions estimated using surface observations and their impacts on PM2.5 source 677 

apportionment over the Yangtze River Delta, China, Science of The Total Environment, 828, 678 

154522, 10.1016/j.scitotenv.2022.154522, 2022. 679 

Feng, S., Jiang, F., Wu, Z., Wang, H., He, W., Shen, Y., Zhang, L., Zheng, Y., Lou, C., Jiang, Z., and 680 

Ju, W.: A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for emission 681 

estimates: system development and application, Geosci. Model Dev., 16, 5949-5977, 682 

10.5194/gmd-16-5949-2023, 2023. 683 

Gaspari, G., and Cohn, S. E.: Construction of correlation functions in two and three dimensions, 684 

Quarterly Journal of the Royal Meteorological Society, 125, 723-757, 10.1256/smsqj.55416, 685 

1999. 686 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, 687 

X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an 688 

extended and updated framework for modeling biogenic emissions, Geoscientific Model 689 

Development, 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012. 690 

Hong, C., Zhang, Q., He, K., Guan, D., Li, M., Liu, F., and Zheng, B.: Variations of China's emission 691 

estimates: response to uncertainties in energy statistics, Atmos. Chem. Phys., 17, 1227-1239, 692 

10.5194/acp-17-1227-2017, 2017. 693 

Hong, Q., Liu, C., Hu, Q., Zhang, Y., Xing, C., Su, W., Ji, X., and Xiao, S.: Evaluating the feasibility 694 

of formaldehyde derived from hyperspectral remote sensing as a proxy for volatile organic 695 

compounds, Atmospheric Research, 264, 105777, 10.1016/j.atmosres.2021.105777, 2021. 696 

Houtekamer, P. L., and Zhang, F.: Review of the Ensemble Kalman Filter for Atmospheric Data 697 

Assimilation, Monthly Weather Review, 144, 4489-4532, 10.1175/mwr-d-15-0440.1, 2016. 698 

Jiang, X., Guenther, A., Potosnak, M., Geron, C., Seco, R., Karl, T., Kim, S., Gu, L., and Pallardy, 699 

S.: Isoprene emission response to drought and the impact on global atmospheric chemistry, 700 

Atmospheric Environment, 183, 69-83, 10.1016/j.atmosenv.2018.01.026, 2018. 701 

Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G., Zhang, L., Zhang, 702 

X., Fried, A., Crounse, J. D., St. Clair, J. M., and Wisthaler, A.: High-resolution inversion of 703 

OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: 704 

application to the southeast US, Atmos. Chem. Phys., 18, 5483-5497, 10.5194/acp-18-5483-705 

2018, 2018. 706 

Li, B., Ho, S. S. H., Li, X., Guo, L., Chen, A., Hu, L., Yang, Y., Chen, D., Lin, A., and Fang, X.: A 707 

comprehensive review on anthropogenic volatile organic compounds (VOCs) emission 708 

estimates in China: Comparison and outlook, Environment International, 156, 106710, 709 

10.1016/j.envint.2021.106710, 2021. 710 

Li, J., Chen, X., Wang, Z., Du, H., Yang, W., Sun, Y., Hu, B., Li, J., Wang, W., Wang, T., Fu, P., and 711 

Huang, H.: Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic 712 

aerosols over East Asia, Science of The Total Environment, 622-623, 1327-1342, 713 

10.1016/j.scitotenv.2017.12.041, 2018. 714 

Li, J., Nagashima, T., Kong, L., Ge, B., Yamaji, K., Fu, J. S., Wang, X., Fan, Q., Itahashi, S., Lee, 715 

H. J., Kim, C. H., Lin, C. Y., Zhang, M., Tao, Z., Kajino, M., Liao, H., Li, M., Woo, J. H., 716 

Kurokawa, J., Wang, Z., Wu, Q., Akimoto, H., Carmichael, G. R., and Wang, Z.: Model 717 

evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the 718 



29 

 

context of MICS-Asia Phase III – Part 1: Overview, Atmos. Chem. Phys., 19, 12993-13015, 719 

10.5194/acp-19-12993-2019, 2019. 720 

Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution 721 

in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem. 722 

Phys., 20, 11423-11433, 10.5194/acp-20-11423-2020, 2020. 723 

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, 724 

Q., and He, K.: Anthropogenic emission inventories in China: a review, National Science 725 

Review, 4, 834-866, 10.1093/nsr/nwx150, 2017a. 726 

Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 727 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 728 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international 729 

collaboration framework of the MICS-Asia and HTAP, Atmospheric Chemistry And Physics, 730 

17, 935-963, 10.5194/acp-17-935-2017, 2017b. 731 

Liu, H., Liu, Z., and Lu, F.: A Systematic Comparison of Particle Filter and EnKF in Assimilating 732 

Time-Averaged Observations, Journal of Geophysical Research-Atmospheres, 122, 13155-733 

13173, 10.1002/2017jd026798, 2017. 734 

Liu, Z., Wang, Y., Vrekoussis, M., Richter, A., Wittrock, F., Burrows, J. P., Shao, M., Chang, C.-C., 735 

Liu, S.-C., Wang, H., and Chen, C.: Exploring the missing source of glyoxal (CHOCHO) over 736 

China, Geophysical Research Letters, 39, 10.1029/2012GL051645, 2012. 737 

Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., Reeves, C. E., 738 

and Pye, H. O. T.: Improved model of isoprene emissions in Africa using Ozone Monitoring 739 

Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and 740 

particulate matter, Atmos. Chem. Phys., 14, 7693-7703, 10.5194/acp-14-7693-2014, 2014. 741 

Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L. M.: Climate 742 

Change from 1850 to 2005 Simulated in CESM1(WACCM), Journal of Climate, 26, 7372-743 

7391, 10.1175/JCLI-D-12-00558.1, 2013. 744 

Mo, Z., Huang, S., Yuan, B., Pei, C., Song, Q., Qi, J., Wang, M., Wang, B., Wang, C., Li, M., Zhang, 745 

Q., and Shao, M.: Deriving emission fluxes of volatile organic compounds from tower 746 

observation in the Pearl River Delta, China, Science of The Total Environment, 741, 139763, 747 

10.1016/j.scitotenv.2020.139763, 2020. 748 

Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasibhatla, P., Morton, D., Collatz, G. J., 749 

DeFries, R. S., Hyer, E. J., Prins, E. M., Griffith, D. W. T., Wunch, D., Toon, G. C., Sherlock, 750 

V., and Wennberg, P. O.: Daily and 3-hourly variability in global fire emissions and 751 

consequences for atmospheric model predictions of carbon monoxide, Journal of Geophysical 752 

Research-Atmospheres, 116, 10.1029/2011jd016245, 2011. 753 

Opacka, B., Müller, J.-F., Stavrakou, T., Miralles, D. G., Koppa, A., Pagán, B. R., Potosnak, M. J., 754 

Seco, R., De Smedt, I., and Guenther, A. B.: Impact of Drought on Isoprene Fluxes Assessed 755 

Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI, 756 

Remote Sensing, 14, 2021, 2022. 757 

Palmer, P. I., Abbot, D. S., Fu, T.-M., Jacob, D. J., Chance, K., Kurosu, T. P., Guenther, A., 758 

Wiedinmyer, C., Stanton, J. C., Pilling, M. J., Pressley, S. N., Lamb, B., and Sumner, A. L.: 759 

Quantifying the seasonal and interannual variability of North American isoprene emissions 760 

using satellite observations of the formaldehyde column, Journal of Geophysical Research: 761 



30 

 

Atmospheres, 111, 10.1029/2005JD006689, 2006. 762 

Paulson, S. E., and Orlando, J. J.: The reactions of ozone with alkenes: An important source of HOx 763 

in the boundary layer, Geophysical Research Letters, 23, 3727-3730, 10.1029/96GL03477, 764 

1996. 765 

Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., and Guenther, A.: Influence of increased 766 

isoprene emissions on regional ozone modeling, Journal of Geophysical Research: 767 

Atmospheres, 103, 25611-25629, 10.1029/98JD01804, 1998. 768 

Ren, J., Guo, F., and Xie, S.: Diagnosing ozone–NOx–VOC sensitivity and revealing causes of 769 

ozone increases in China based on 2013–2021 satellite retrievals, Atmos. Chem. Phys., 22, 770 

15035-15047, 10.5194/acp-22-15035-2022, 2022. 771 

Seco, R., Holst, T., Davie-Martin, C. L., Simin, T., Guenther, A., Pirk, N., Rinne, J., and Rinnan, R.: 772 

Strong isoprene emission response to temperature in tundra vegetation, Proceedings of the 773 

National Academy of Sciences, 119, e2118014119, doi:10.1073/pnas.2118014119, 2022. 774 

Skamarock, W. C., and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather 775 

research and forecasting applications, Journal Of Computational Physics, 227, 3465-3485, 776 

10.1016/j.jcp.2007.01.037, 2008. 777 

Souri, A. H., Nowlan, C. R., González Abad, G., Zhu, L., Blake, D. R., Fried, A., Weinheimer, A. J., 778 

Wisthaler, A., Woo, J. H., Zhang, Q., Chan Miller, C. E., Liu, X., and Chance, K.: An inversion 779 

of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite 780 

observations during the KORUS-AQ campaign and implications for surface ozone over East 781 

Asia, Atmos. Chem. Phys., 20, 9837-9854, 10.5194/acp-20-9837-2020, 2020. 782 

Souri, A. H., Chance, K., Bak, J., Nowlan, C. R., González Abad, G., Jung, Y., Wong, D. C., Mao, 783 

J., and Liu, X.: Unraveling pathways of elevated ozone induced by the 2020 lockdown in 784 

Europe by an observationally constrained regional model using TROPOMI, Atmos. Chem. 785 

Phys., 21, 18227-18245, 10.5194/acp-21-18227-2021, 2021. 786 

Su, W., Liu, C., Chan, K. L., Hu, Q., Liu, H., Ji, X., Zhu, Y., Liu, T., Zhang, C., Chen, Y., and Liu, 787 

J.: An improved TROPOMI tropospheric HCHO retrieval over China, Atmos. Meas. Tech., 13, 788 

6271-6292, 10.5194/amt-13-6271-2020, 2020. 789 

Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based 790 

on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions, 791 

Atmospheric Chemistry And Physics, 11, 12901-12916, 10.5194/acp-11-12901-2011, 2011. 792 

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, 793 

M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: 794 

Global fire emissions estimates during 1997-2016, Earth System Science Data, 9, 697-720, 795 

10.5194/essd-9-697-2017, 2017. 796 

Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., 797 

De Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, 798 

E., Makarova, M., Metzger, J. M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., 799 

Palm, M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., 800 

van Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–Sentinel-5 Precursor 801 

formaldehyde validation using an extensive network of ground-based Fourier-transform 802 

infrared stations, Atmos. Meas. Tech., 13, 3751-3767, 10.5194/amt-13-3751-2020, 2020. 803 

Wang, H., Lu, X., Seco, R., Stavrakou, T., Karl, T., Jiang, X., Gu, L., and Guenther, A. B.: Modeling 804 



31 

 

Isoprene Emission Response to Drought and Heatwaves Within MEGAN Using 805 

Evapotranspiration Data and by Coupling With the Community Land Model, Journal of 806 

Advances in Modeling Earth Systems, 14, e2022MS003174, 10.1029/2022MS003174, 2022. 807 

Wang, H., Yan, R., Xu, T., Wang, Y., Wang, Q., Zhang, T., An, J., Huang, C., Gao, Y., Gao, Y., Li, 808 

X., Yu, C., Jing, S., Qiao, L., Lou, S., Tao, S., and Li, Y.: Observation Constrained Aromatic 809 

Emissions in Shanghai, China, Journal of Geophysical Research: Atmospheres, 125, 810 

e2019JD031815, 10.1029/2019JD031815, 2020. 811 

Wang, H., Wu, Q., Guenther, A. B., Yang, X., Wang, L., Xiao, T., Li, J., Feng, J., Xu, Q., and Cheng, 812 

H.: A long-term estimation of biogenic volatile organic compound (BVOC) emission in China 813 

from 2001–2016: the roles of land cover change and climate variability, Atmos. Chem. Phys., 814 

21, 4825-4848, 10.5194/acp-21-4825-2021, 2021a. 815 

Wang, J., Yan, R., Wu, G., Liu, Y., Wang, M., Zeng, N., Jiang, F., Wang, H., He, W., Wu, M., Ju, W., 816 

and Chen, J. M.: Unprecedented decline in photosynthesis caused by summer 2022 record-817 

breaking compound drought-heatwave over Yangtze River Basin, Science Bulletin, 68, 2160-818 

2163, 10.1016/j.scib.2023.08.011, 2023. 819 

Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating O3 pollution due to 820 

NOx emission control in eastern China, Science of The Total Environment, 677, 732-744, 821 

10.1016/j.scitotenv.2019.04.388, 2019. 822 

Wang, P., Liu, Y., Dai, J., Fu, X., Wang, X., Guenther, A., and Wang, T.: Isoprene Emissions 823 

Response to Drought and the Impacts on Ozone and SOA in China, Journal of Geophysical 824 

Research: Atmospheres, 126, e2020JD033263, 10.1029/2020JD033263, 2021b. 825 

Wang, W., van der A, R., Ding, J., van Weele, M., and Cheng, T.: Spatial and temporal changes of 826 

the ozone sensitivity in China based on satellite and ground-based observations, Atmos. Chem. 827 

Phys., 21, 7253-7269, 10.5194/acp-21-7253-2021, 2021c. 828 

Warneke, C., de Gouw, J. A., Del Negro, L., Brioude, J., McKeen, S., Stark, H., Kuster, W. C., 829 

Goldan, P. D., Trainer, M., Fehsenfeld, F. C., Wiedinmyer, C., Guenther, A. B., Hansel, A., 830 

Wisthaler, A., Atlas, E., Holloway, J. S., Ryerson, T. B., Peischl, J., Huey, L. G., and Hanks, A. 831 

T. C.: Biogenic emission measurement and inventories determination of biogenic emissions in 832 

the eastern United States and Texas and comparison with biogenic emission inventories, 833 

Journal of Geophysical Research: Atmospheres, 115, 10.1029/2009JD012445, 2010. 834 

Whitaker, J. S., and Hamill, T. M.: Ensemble data assimilation without perturbed observations, 835 

Monthly Weather Review, 130, 1913-1924, 10.1175/1520-836 

0493(2002)130<1913:Edawpo>2.0.Co;2, 2002. 837 

Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B., Graus, M., 838 

Hatch, C. D., Holloway, J., Horowitz, L. W., Lee, B. H., Lerner, B. M., Lopez-Hilifiker, F., 839 

Mao, J., Marvin, M. R., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Thornton, J. 840 

A., Veres, P. R., and Warneke, C.: Formaldehyde production from isoprene oxidation 841 

across NOx regimes, Atmos. Chem. Phys., 16, 2597-2610, 10.5194/acp-16-2597-2016, 2016. 842 

Yuan, B., Kaser, L., Karl, T., Graus, M., Peischl, J., Campos, T. L., Shertz, S., Apel, E. C., Hornbrook, 843 

R. S., Hills, A., Gilman, J. B., Lerner, B. M., Warneke, C., Flocke, F. M., Ryerson, T. B., 844 

Guenther, A. B., and de Gouw, J. A.: Airborne flux measurements of methane and volatile 845 

organic compounds over the Haynesville and Marcellus shale gas production regions, Journal 846 

of Geophysical Research: Atmospheres, 120, 6271-6289, 10.1002/2015JD023242, 2015. 847 



32 

 

Zhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., Lin, S., Gu, D., Su, W., and Liu, C.: Modeling 848 

sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem 849 

(v3.6) and its impacts over eastern China, Geosci. Model Dev., 14, 6155-6175, 10.5194/gmd-850 

14-6155-2021, 2021. 851 

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. 852 

S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions 853 

in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, 10.5194/acp-9-854 

5131-2009, 2009. 855 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., 856 

Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic 857 

emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry And 858 

Physics, 18, 14095-14111, 10.5194/acp-18-14095-2018, 2018. 859 

Zhou, B., Guo, H., Zeren, Y., Wang, Y., Lyu, X., Wang, B., and Wang, H.: An Observational 860 

Constraint of VOC Emissions for Air Quality Modeling Study in the Pearl River Delta Region, 861 

Journal of Geophysical Research: Atmospheres, 128, e2022JD038122, 862 

10.1029/2022JD038122, 2023. 863 

 864 


