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Abstract

Non-methane volatile organic compounds (NMVOC), serving as crucial precursors
of O3, have a significant impact on atmospheric oxidative capacity and O3 formation.
However, both anthropogenic and biogenic NMVOC emissions remain subject to
considerable uncertainty. Here, we extended the Regional multi-Air Pollutant
Assimilation System (RAPAS) with the EnKF algorithm to optimize NMVOC
emissions in China in August 2022 by assimilating TROPOMI HCHO retrievals.

We also simultaneously optimize NO, emissions by assimilating in-situ NO:
observations to address the chemical feedback among VOC-NO,-Os. Furthermore,
a process-based analysis was employed to quantify the impact of NMVOC emission
changes on various chemical reactions related to Os; formation and depletion.
NMVOC emissions exhibited a substantial reduction of 50.2%, especially in forest-
rich-areas-ofcentral-and southern Chinathe middle and lower reaches of the Yangtze

River, revealing a prior overestimation of biogenic NMVOC emissions_due to

extreme heatwave. Compared with the forecast with prior NMVOC emissions, the

forecast with posterior emissions significantly improved HCHO simulations,
reducing biases by 75.7%, indicating a notable decrease in posterior emission
uncertainties. The forecast with posterior emissions also effectively corrected the
overestimation of O3 in forecast with prior emissions, reducing biases by 49.3%.
This can be primarily attributed to a significant decrease in the RO, + NO reaction
rate and an increase in the NO; + OH reaction rate in the afternoon, thus limiting O3
generation. Sensitivity analyses emphasized the necessity of considering both
NMVOC and NO, emissions for a comprehensive assessment of O3 chemistry. This
study enhances our understanding of the effects of NMVOC emissions on O3
production and can contribute to the development of effective emission reduction

policies.

Keywords

NMVOC emissions, Oz pollution, Emission inversion, HCHO column retrievals, Data

assimilation
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1 Introduction

Since the Chinese government implemented the Air Pollution Prevention and Control
Action Plan in 2013, there has been a notable reduction in NO, emissions (Zheng et al.,
2018). However, despite these advancements, the issue of O3z pollution persists and, in
certain cases, has shown signs of worsening (Ren et al., 2022). The increase in O3
concentration can be attributed not only to adverse meteorological conditions but also
predominantly to unbalanced joint control of non-methane volatile organic compounds
(NMVOCs) and nitrogen oxides (NO,) (Li et al., 2020). NMVOC:s are vital precursors
of Oz and have a substantial impact on the atmospheric oxidation capacity, thereby
altering the lifetimes of other pollutants. Accurately quantifying NMVOC emissions
holds significant importance in investigating their impact on O3 chemistry and in

formulating emission reduction policies.

Anthropogenic NMVOC emissions have traditionally been estimated using a “bottom-
up” method. However, the accuracy and timeliness of these estimations face challenges
owing to the scarcity of local measurements for emission factors, the incompleteness
and unreliability of activity data, and the diverse range of species and technologies
involved (Cao et al., 2018; Hong et al., 2017). Furthermore, uncertainties arise in
model-ready NMVOC emissions due to spatial and temporal allocations using various
“proxy” data for different source sectors (Li et al., 2017a). Li et al. (2021) reported
substantial discrepancies among emission estimates in various studies, ranging 23% to
56%. Biogenic NMVOC emissions are typically estimated using models like the Model
of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2012) and
the Biogenic Emission Inventory System (BEIS) (Pierce et al., 1998). NMVOC
emissions result from the multiplication of plant-specific standard emission rates by
dimensionless activity factors. Nonetheless, apart from inaccuracies in the distribution
of plant functional types, empirical parameterization, especially concerning responses
to temperature and drought stress, can introduce substantial uncertainties (Angot et al.,
2020; Seco et al., 2022; Jiang et al., 2018). Warneke et al. (2010) determined isoprene
emission rates through field measurements and conducted a comparison with MEGAN
and BEIS estimates, revealing a notable tendency for MEGAN to overestimate
emissions, while BEIS consistently underestimated them. Similarly, Marais et al. (2014)
found that MEGAN's isoprene emission estimates were 5-10 times higher than the

canopy-scale flux measurements obtained from African field campaigns.
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A top-down approach, utilizing observed data, has been developed for estimating VOCs
emissions. For instance, based on aircraft and ground-based field measurements, the
source-receptor relationships algorithm with Lagrangian particle dispersion model
(Fang et al., 2016), mixed layer gradient techniques (Mo et al., 2020), eddy covariance
flux measurements (Yuan et al., 2015), and box model (Wang et al., 2020) have been
employed to complement or verify bottom-up results. However, these approaches do
not comprehensively consider the complex nonlinear chemical reactions and transport
processes that VOCs undergo in the atmosphere. Formaldehyde (HCHO) and glyoxal
(CHOCHO) in the atmosphere serve as crucial oxidization intermediates for various
VOCs (Hong et al., 2021; Liu et al., 2012). Satellite-based observations can readily
detect their presence in the form of vertical column density (VCD) from space, making
them widely utilized for estimating NMVOC emissions. A commonly used approach
assumes that the observed HCHO/CHOCHO columns are locally linearly correlated
with VOC emission rates (Palmer et al., 2006; Liu et al., 2012). However, this approach
does not consider the spatial offset resulting from chemistry reactions and transport
processes. Chaliyakunnel et al. (2019) conducted a Bayesian analysis to derive an
optimal estimate of VOC emissions using HCHO measurements over the Indian
subcontinent. Their results indicated that biogenic VOC emissions modeled by
MEGANV2.1 were overestimated by approximately 30-60%, whereas anthropogenic
VOC emissions derived from the RETRO inventory were underestimated by 13—16%.
Cao et al. (2018) employed the GEOS-Chem model and its adjoint, incorporating
tropospheric HCHO and CHOCHO column data from the GOME-2A and OMI
satellites as constraints, to quantify Chinese NMVOC emissions. They demonstrated a
low bias in the MEGAN model, in contrast to the significant overestimation shown in

Bauwens et al. (2016), especially in southern China.

Several investigations have been conducted to explore the implications of inverted
VOC emissions on surface Os. For instance, using the Eulerian box model, Zhou et al.
(2023) employed concurrent VOC measurements to constrain anthropogenic VOC
emissions. This led to improved simulations of VOCs and O3, with a reduction in high
emissions by 15%-36% in the Pearl River Delta (PRD) region. Local model biases in
simulating the oxidation of NMVOCs and Os are closed related to uncertainties in NO,
emissions (Wolfe et al., 2016; Chan Miller et al., 2017). To tackle these critical

questions, Kaiser et al. (2018) applied an adjoint algorithm to estimate isoprene



125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

152

153
154
155
156

emission over the southeast US by downwardly adjusting anthropogenic NO, emissions
by 50% to rectify NO; simulations. Their findings indicated that isoprene emissions
from MEGAN v2.1 were overestimated by an average of 40%, slightly lower than the
50% reduction in Bauwens et al. (2016). Souri et al. (2020) simultaneously optimized
NMVOC and NOy emissions utilizing OMPS-NM HCHO and OMI NO; retrievals in
East Asia. They found that predominantly anthropogenic NMVOC emissions from
MIX-Asia 2010 increased over the North China Plain (NCP), whereas predominantly
biogenic NMVOC emissions from MEGAN v2.1 decreased over southern China after
the adjustment. Unfortunately, the posterior simulations exacerbated the overestimation

of O3 levels in northern China.

Most studies regarding the inversion of NMVOC emissions or its impact on Os
neglected the uncertainties associated with NO,-dependent production or loss of
NMVOC oxidation and Os. An iteratively nonlinear joint inversion of NO, and
NMVOCs using multi-species observations is expected to minimize the uncertainties
in their emissions and is well-suited to address the intricate relationship among VOC-
NO,-Os. In this study, we extended the Regional multi-Air Pollutant Assimilation
System (RAPAS) upon the ensemble Kalman filter (EnKF) assimilation algorithm to
enhance the optimization of NMVOC emissions over China, utilizing the
TROPOspheric Monitoring Instrument (TROPOMI) HCHO retrievals with high spatial
coverage and resolution. To more accurately quantify the impact of NMVOC emissions
on O3, NO, emissions were simultaneously adjusted using nationwide in-situ NO»
observations. Process analysis was subsequently employed to quantify various
chemical pathways associated with O; formation and loss. Through a top-down
constraint on both emissions, this study aims to offer a more scientific insight into the
consequences of optimizing NMVOC emissions on Oz and contribute to the

development of appropriate emission reduction policies.
2 Data and Methods

2.1 Data Assimilation System

The RAPAS system (Feng et al., 2023) has been developed based on a regional
chemical transport model (CTM) and ensemble square root filter (EnSRF) assimilation
modules (Whitaker and Hamill, 2002), which are employed for simulating atmospheric

compositions and inferring anthropogenic emissions by assimilating surface
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observations, respectively (Feng et al., 2022; Feng et al., 2020). The inversion process
follows a two-step procedure within each inversion window, in which the emissions are
inferred first and then input into the CMAQ model to simulate initial conditions of the
next window. Meanwhile, the optimized emissions are transferred to the next window
as prior emissions. The two-step inversion strategy facilitates error propagation and
iterative emission optimization, which have proven the superiority and robustness of
our system in estimating emissions (Feng et al., 2023). In this study, we extended the
data frame to include the assimilation of TROPOMI HCHO retrievals for optimizing
NMVOC emissions. Concise descriptions of the forecast model, data assimilation

approach, and experimental settings follow.
2.1.1 Atmospheric Transport Model

The Weather Research and Forecast (WRF v4.0) model (Skamarock and Klemp, 2008)
and the Community Multiscale Air Quality Modeling System (CMAQ v5.0.2) (Byun
and Schere, 2006) were applied to simulate meteorological conditions and atmospheric
chemistry, respectively. WRF simulations were conducted with a 27-km horizontal
resolution, covering the entire mainland China on a grid of 225 x 165 cells (Figure 1).
The CMAQ model was run over the same domain, but with a removal of three grid cells
on each side of the WRF domain. The vertical settings in WRF and CMAQ was the
same as Feng et al. (2020). To account for the rapid expansion of urbanization, we
updated underlying surface information for urban and built-up land using the MODIS
Land Cover Type Product (MCD12C1) Version 6.1 of 2022. Chemical lateral boundary
conditions for NO, NO2, HCHO, and O; were extracted from the output of the global
CTM (i.e., the Whole Atmosphere Community Climate Model, WACCM) with a
resolution of 0.9° x 1.25° at 6-hour intervals (Marsh et al., 2013). Meanwhile, boundary
conditions for the other NMVOCs were obtained directly from background profiles. In
the first data assimilation (DA) window, chemical initial conditions (excluding
NMVOCs) were also derived from the WACCM outputs, whereas in subsequent
windows, they were derived through forward simulation using optimized emissions
from the previous window. Table S1 lists the detailed physical and chemical
configurations. To assess the impact of updated NMVOC emissions on O3 production
efficiency, we further decoupled the contribution of the primary chemical processes to

the O3 levels using the CMAQ Integrated Reaction Rate (IRR) analysis.
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2.1.2 EnKF Assimilation Algorithm

The emissions are constrained using the Ensemble Square Root Filter (EnSRF)
algorithm introduced by Whitaker and Hamill (2002). This approach fully accounts for
temporal and geographical variations in both the transportation and chemical reactions
within the emission estimates. During the forecast step, the background ensembles are
derived by applying perturbation to the prior emissions. The perturbed samples are
typically drawn from Gaussian distributions with a mean of zero and a standard
deviation equal to the prior emission uncertainty in each grid cell. Ensemble runs of the
CMAQ model were subsequently performed to propagate the background errors with

each ensemble sample of state vectors.

In the analysis step, the ensemble mean X of the analyzed state is regarded as the best

estimate of emissions, which is obtained by updating the background ensemble mean

through the following equations:
X@ = XP + K(y — HX") (1)
K = PPHT"(HP’H" + R)™! )
where y is the observational vector; H represents the observation operator mapping

model space to observation space; The expression y — HX? quantifies the disparities
between simulated and observed concentrations; PPHT illustrates how uncertainties in
emissions relate to uncertainties in simulated concentrations; The Kalman gain matrix
K, dependent on background error covariance P and observation error covariance R,

determines the relative contributions to the updated analysis.

State variables for emissions include NO, and NMVOCs. To reduce the degree of
freedom in the analysis and avoid the difficulty associated with estimating spatio-
temporal variations in background errors for individual species, we focus on optimizing
the lumped total NMVOC emissions. During the forecast step, we differentiate
individual NMVOC species emissions from the total NMVOC emissions using bottom-
up statistical information. For a consistent comparison between simulations and
observations, model-simulated NO> were diagnosed at the time and location of surface
NO; measurements, whereas model-simulated HCHO was horizontally sampled to

align with TROPOMI HCHO VCD retrievals, and subsequently integrated vertically.
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In this study, the DA window was set to one day and daily TROPOMI HCHO columns
were utilized as observational constraints in our inversion framework. The ensemble
size was set to 50 to strike a balance between computational cost and inversion accuracy.
To reduce the impact of unrealistic long-distance error correlations, the Gaspari and
Cohn function (Gaspari and Cohn, 1999) was utilized as covariance localization to
ensure the meaningful influence of observations on state variables within a specified
cutoff radius, while mitigating their negative impacts on distant state variables. The
optimal localization scale is interconnected with factors such as the assimilation
window, the dynamic system, and the lifetime of chemical species. Given the average
wind speed of 2.8 m/s (Table S2) and a DA window of 1 day, the localization scales for
NO2 and HCHO, both characterized as highly reactive species with lifespans of just a

few hours, were set to 150 km and 100 km, respectively.
2.2 Observation Data and Errors

Considering the availability of HCHO data, we utilized daily offline retrievals of
tropospheric HCHO columns from Sentinel-5P (S5P) L3 TROPOMI data obtained
through Google Earth Engine (De Smedt et al., 2018). The S5P satellite follows a near-
polar sun-synchronous orbit at an altitude of 824 km with a 17-day repeating cycle. It
crosses the Equator at 13:30 local solar time (LST) on the ascending node. The spatial
resolution at nadir was refined to 3.5 x5.5km? on 6 August 2019. Following the
recommendations in the SSP HCHO product user manual, we filtered the source data
to exclude pixels with ga value less than 0.5 for HCHO column number density and
0.8 for aerosol index (AER_AI). The remaining high-quality pixels with minimal
snow/ice or cloud interference are averaged to 27-km grids. Figure 1b illustrates the
coverage and data amount of TROPOMI HCHO retrievals in August 2022 after
processing. Although the distribution of filtered data exhibits spatial non-uniformity,
most grid cells have observational coverage for over half of the time, particularly in the
southern region of China where NMVOC emissions are higher. Based on validation
against a global network of 25 ground-based Fourier transform infrared (FTIR) column
measurements (Vigouroux et al., 2020), TROPOMI HCHO overestimates by 25%
(<2.5%10" molec cm™?) in clean regions and underestimates by 30% (>=8x10'> molec
cm?) in polluted regions. Therefore, we set the measurement error to 30%. To evaluate
the effect of observational data retrieval errors on emission estimates, we conducted a

sensitivity experiment in which HCHO columns were empirically bias-corrected
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according to the error characteristics described above (Figure S1). The posterior
emissions increased by 12.8% compared to those in the base experiment (EMDA),
indicating that the existing retrieval error in HCHO measurements likely exerts an
influence on the estimation of NMVOC emissions. The representation error can be
disregarded because the model's resolution significantly surpasses that of the

TROPOMI pixels.

To address the chemical feedback among VOC-NO,-Os, we also simultaneously
optimized NOy emissions by assimilating in-situ NO; observations. The extensively
covered and high-precision monitoring network can provide sufficient constraints for
emission inversion (Figure la). Hourly averaged surface NO: observations from
national control air quality stations obtained from the Ministry of Ecology and
Environment of the People’s Republic of China (http://106.37.208.228:8082/, last
access: 5 May 2023). In case where multiple stations are located within the same grid,
arandom site is chosen for validation, while the remaining sites are averaged to mitigate
the impact of error correlation (Houtekamer and Zhang, 2016) for assimilation. In total,
1276 stations were chosen for assimilation and an additional 425 independent stations
were selected for verification (Figure 1a). The observation error covariance matrix R
incorporates contributions from both measurement and representation errors. The
measurement error is defined as g, = 1.0 + 0.005 X Iy, where II, represents the

observed NO; concentration. Following the approach of Elbern et al. (2007) and Feng
et al. (2018), the representative error is defined as €, = yeom, where v is a tunable
parameter (here, y=0.5), Al is the grid spacing (27 km), and L is the radius (here, L=0.5)
of the observation’s influence area. The total observation error () was defined as r =

€02 + &.2. The observation errors are assumed to be uncorrelated so that R is a

diagonal matrix.
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Figure 1. Model domain and observation network (a) and data amount of TROPOMI
HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates
the CMAQ computational domain; black squares denote surface meteorological
measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue
dots represent air pollution measurement sites, where red dots are used for assimilation

and blue dots for independent evaluation.
2.3 Prior Emissions and Uncertainties

The prior anthropogenic NO, and NMVOC emissions for China were obtained from
the most recent Multi-resolution Emission Inventory for China of 2020 (MEIC,
http://www.meicmodel.org/, last access: 8 May 2023) (Zhang et al., 2009). For

anthropogenic emissions outside China, we utilized the mosaic Asian anthropogenic

10



291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318

319
320
321
322
323

emission inventory (MIX) for the base year of 2010 (Li et al., 2017b). The daily
emission inventory, which was arithmetically averaged from the combined monthly
emission inventory, was employed as the first guess. Ship emissions were derived from
the shipping emission inventory model (SEIM) for 2017, which was calculated based
on the observed vessel automatic identification system (Liu et al., 2017). Biomass
burning emissions were retrieved from the Global Fire Emissions Database version 4.1
(GFEDvA4, https://www.globalfiredata.org/, last access: 8 May 2023) (van der Werf et
al.,2017; Muetal., 2011). Biogenic NO, and NMVOC emissions were calculated using
the Model of Emissions of Gases and Aerosols from Nature (MEGAN) developed by
Guenther et al. (2012).

As previously mentioned, the optimized emissions are transferred to the next DA
window as prior emissions for iterative inversion. For biogenic emissions, it is
decomposed into hourly scales based on the daily varying temporal profiles in MEGAN
as model inputs. Daily emission variations will largely dominate the uncertainty in
emissions. Taking into account compensating for model errors and avoiding filter
divergence, we consistently applied an uncertainty of 25% to each model grid of NO,
emissions at each DA window, as in Feng et al. (2020). NMVOC emissions typically
exhibit greater uncertainties compared to NO, emissions (Li et al., 2017b). Based on
model evaluation, the uncertainty of NMVOC emissions was set to 40% (Kaiser et al.,
2018; Souri et al., 2020; Cao et al., 2018). A sensitivity experiment involving a doubling
of the prior uncertainty (80%) revealed that the differences in posterior NMVOC
emissions amounted to a mere 0.2% (Figure S2). The implementation of a ‘two-step’
inversion strategy allows for the timely correction of residual errors from the previous
assimilation window in the current window, thus ensuring that the RAPAS system has
a relatively low dependence on prior uncertainty settings. This study also addresses
uncertainties in emissions for CO, SO, primary PM; 5, and coarse PM to consider the

chemical feedback between different species following Feng et al. (2023).
3 Experimental Design

During the summer of 2022, southern China experienced severe heatwave conditions.
The combination of high temperatures and drought had a pronounced effect on
vegetation growth and NMVOC emissions, thereby influencing O3 production (Wang
et al., 2023). Consequently, we opted to focus on August 2022, as it presented an ideal

period for testing the capabilities of our DA system. Before implementing the emission

11
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inversion, a relatively perfect initial field is generated at 0000 UTC on August 1 2022
through conducting a 5-day simulation with 6-hour interval 3D-Var data assimilation.
Subsequently, daily emissions are continuously updated over the entire month of
August (EMDA). Additionally, we designed a sensitivity experiment (EMS) to illustrate
the significance of optimizing NO, emissions in quantifying VOC-O3; chemical
reactions. In this experiment, NO, emissions were not optimized. To validate the
posterior emissions of NO, and NMVOCs in EMDA, we compared two parallel
forward simulation experiments, denoted as CEP and VEP, corresponding to prior and
posterior emission scenarios, respectively, against NO> and HCHO measurements. To
investigate the impact of optimizing NMVOC emissions on the secondary production
and loss of surface O3, a forward simulation experiment (CEP1) was conducted with
the prior NMVOC emissions and the posterior NO, emissions. Another forward
modelling experiment (CEP2) used the posterior emissions of EMS to evaluate its
performance. All experiments employ identical meteorological fields, as well as the
same gas-phase and aerosol modules. Table 1 summarizes the different emission
inversion and validation experiments conducted in this study.

Table 1. The assimilation, sensitivity, and validation experiments conducted in this

study.
Exp.Type  Exp. Name NMVOC emissions NOx emissions
MEIC 2020 and MEGAN fi
MEIC 2020 and MEGAN for o "
August (the first DA window) August  (the first = DA
Assimilation EMDA g " window), optimized

optimized emissions of the previous .. .
indow (other DA windows) emissions of the previous
window (other windows . .
window (other DA windows)

MEIC 2020 and MEGAN f¢
Sensitivity EMS Same as EMDA August an or
ugu
CEP MEIC 2020 and MEGAN for MEIC 2020 and MEGAN for
August August

Posterior  emissions of
EMDA

VEP Posterior emissions of EMDA
Validation

Posterior  emissions of
EMDA

CEP1 Same as CEP

CEP2 Posterior emissions of EMS Same as CEP

12
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4 Results

4.1 Inverted Emissions

Figure 2 shows the spatial distribution of temporally averaged prior and posterior
NMVOC emissions, along with their differences, in NMVOC emissions. Hotspots of
prior NMVOC emissions were prevalent across much of central and southern China.
However, posterior NMVOC emissions were predominantly concentrated in the NCP,
Yangtze River Delta (YRD), PRD, and Sichuan Basin (SCB), characterized by high
levels of anthropogenic activity. High emissions are also located in parts of central and
southern China with warm climate favorable for emitting biogenic NMVOCs.
Employing TROPOMI HCHO observations as constraints led to widespread decreases
of approximately 60—-70% over these areas, indicating a large substantial of biogenic
NMVOC emissions. In northwestern China, there was a moderate increase in NMVOC

emissions.

A potential significant TROPOMI retrieval errors in polluted regions could exacerbate
the emission decreases (Text S2). Additionally, uncertainties in MEGAN
parameterization have significant implications for NMVOC emission estimations,
particularly concerning the responses of vegetation in MEGAN to temperature and
drought stress (Angot et al., 2020; Jiang et al., 2018). Zhang et al. (2021) highlighted
that the temperature-dependent activity factor noticeably increases with rising
temperatures in MEGAN. Wang et al. (2021b) pointed out that the missing of a drought
scheme is one of the factors causing the overestimation of isoprene emissions in
MEGAN. Opacka et al. (2022) optimized the empirical parameter in the MEGANvV2.1
soil moisture stress algorithm, resulting in significant reductions in isoprene emissions
and providing better agreement between modelled and observed HCHO temporal
variability in the central U.S. During the study period, China experienced severe
heatwave conditions, which may further hinder the MEGAN's ability to effectively
capture the impacts of high temperatures and drought on vegetation, thus resulting in
significant overestimation in NMVOC emissions (Wang et al., 2022). Ultimately, the
biogenic NMVOC emissions decreased by 53.7%, which was higher than the 43.4%
decrease in anthropogenic NMVOC emissions (Figure S3). NeverthelessOverall, the

large magnitude of emission_—reduetionsdecrease of 50.2% in our inversion is
comparable to studies in southern China (Bauwens et al., 2016; Zhou et al., 2023),
southeastern US (Kaiser et al., 2018), Africa (Marais et al., 2014), India (Chaliyakunnel

13
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etal., 2019), Amazonia (Bauwens et al., 2016), and parts of Europe (Curci et al., 2010),
but opposite to the large-scale emission increase over China in Cao et al. (2018). For
NOy (Figure S43), the nationwide total emissions decreased by 10.2%, with the main
reductions concentrated in the NCP, YRD, parts of Central China, and most key urban
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Figure 2. Spatial distribution of the time-averaged (a) prior emissions (MEIC 2020 +
MEGAN), (b) posterior emissions, (c) absolute difference (posterior minus prior), and

(d) relative difference of NMVOCs over China.

Table 2 shows the changes in emissions of biogenic NMVOCs across different land
cover types (Figure S54) after inversion. The most significant reduction in biogenic
emissions occurred within woody savannas, accounting for 26.9% of the overall
reduction, followed by savannas and croplands, accounting for 21.2% and 17.2%
respectively. Among all vegetation types, the broadleaf evergreen forests, recognized
as the primary source of isoprene emission (Wang et al., 2021a), presented the greatest

uncertainty, with NMVOC emissions experiencing a significant reduction of 66.2%.
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Standard emission rates in MEGAN are derived from leaf- or canopy-scale flux
measurements and extrapolated globally across regions sharing similar landcover
characteristics, based on very limited observations (Guenther et al., 1995). This
methodology introduces biases due to the large variability in emission rates among

plant species.

Table 2. Prior and posterior biogenic NMVOC emissions, as well as their differences

for different land cover types.

Prior Posterior Difference
Land cover type
Mmol/month Mmol/month Mmol/month (%)

Evergreen needleleaf forests 955.7 549.3 -406.4 (-42.5)
Evergreen broadleaf forests  13985.1 4728.2 -9256.8 (-66.2)
Deciduous needleleaf forests 46.6 48.8 2.2(4.7)
Deciduous broadleaf forests  8335.5 3487.4 -4848.1 (-58.2)
Mixed forests 8731.0 3961.7 -4769.4 (-54.6)
Closed shrublands 9.7 3.7 -6.0 (-61.5)
Open shrublands 21.3 8.6 -12.8 (-59.8)
Woody savannas 39327.2 16925.2 -22402.0 (-57.0)
Savannas 28319.7 10629.4 -17690.3 (-62.5)
Grasslands 16912.7 14269.6 -2643.1 (-15.6)
Permanent wetlands 286.1 115.4 -170.8 (-59.7)
Croplands 25537.8 11215.5 -14322.2 (-56.1)
Cropland-natural vegetation 0, 5 4289.8 -6605.0 (-60.6)
mosaics
Sparsely vegetated 1814.7 1644.0 -170.6 (-9.4)

4.2 Evaluations for Posterior Emissions

The NOy emissions were first evaluated by indirectly comparing the forward simulated
NO: concentrations with measurements. As shown in Figure S65, the CEP with prior
emissions exhibited positive biases in eastern China and negative biases in western
China. However, when posterior emissions were used in the VEP, a substantial
improvement in simulation performance was observed. Biases were limited to within

+3 pug m3, and correlation coefficients exceeded 0.7 across the entire region. Figure 3
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407  presents the simulated HCHO VCDs using prior and posterior NMVOCs emissions,
408  along with their associated biases. Both experiments showed high VCDs over central
409  and eastern China, especially in the YRD and SCB. However, the CEP displayed
410  substantial overestimation across most of mainland China, with the largest bias
411  reaching 12 x 10'5 molec cm™ in Central China. Conversely, the VEP demonstrated
412  notable improvements in both the magnitude and spatial distribution of simulated
413  HCHO columns after the inversion compared to TROPOMI retrievals. More than 84%
414 of the areas exhibited biases of less than 1 x 10'> molec cm™, and no significant spatial
415  variation was observed. Overall, the biases in simulated HCHO VCDs decreased by
416  75.7% after the inversion. These results emphasize the efficiency of our system in

417  reducing uncertainty in both NO, and NMVOC emissions.

45°N 45°N |

40°N | 40°N |
35°N | 35°N |
30°N | 30°N |

25°N | 25°N |

90°E 100°E 110°E 120°E 90°E 100°E 110°E 120°E

Vertical column density [10'® molecules cm™] Vertical column density [10'® molecules cm™]
] - I I W
2 6 10 14 18 22 26 2 6 10 14 18 22 26

«n | () CEP-TROPOMI s~ | (d) VEP-TROPOMI

. O’/“

/

T T = T T T - T
90°E 100°E 110°E 120°E 90°E 100°E 110°E 120°E

Vertical column density [10'® molecules cm?] Vertical column density [10'® molecules cm?]
- . [ D
-12 -8 -4 0 4 8 12 -12 -8 -4 0 4 8 12

418

419  Figure 3. Simulated HCHO vertical column densities using prior (a) and posterior (b)
420  NMVOC emissions, along with their biases (c and d) against TROPOMI measurement.
421 All model results were sampled at TROPOMI overpass time.

422
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4.3 Implications for Surface O3

Figure 4 shows the spatial distribution of the mean bias (BIAS), root mean square error
(RMSE), and correlation coefficient (CORR) for simulated O3 concentrations in the
CEP1 and VEP experiments compared to assimilated observations. Beyond the
northwestern region of China, the CEP1 exhibited significant overestimation
throughout the entire area, with a BIAS of 20.5 pg m™. In the VEP, the modeled O3
chemical production were alleviated, especially in the southern regions of China where
NMVOC emissions had significantly decreased. Overall, observation-constrained
NMVOC emissions resulted in a 49.3% decrease in the BIAS, bringing it down to 10.4
ug m3. Additionally, the RMSE showed noticeable improvement due to the
assimilation of HCHO observation, reducing the value from 30.9 to 23.3 pg m™.
Despite a significant reduction in NMVOC emissions after inversion, notable
overestimations persisted in northern provinces such as Liaoning, Hebei, Shanxi, and
Shaanxi. This may be attributed to limited NMVOC constraints resulting from
insufficient observations during the study period (Figures 1b and 3d). The remaining
discrepancies between simulations and observations can be attributed to the combined
results of intricate urban-rural sensitivity regimes and Oz photochemistry reactions,
which may not be comprehensively represented by CMAQ model, masking any
potential improvement expected from the constrained emissions (See Sect. 4.4). The
CORR was comparable between the CEP1 and VEP experiments, reflecting that the
CMAQ model effectively simulated the temporal variation of O3 concentrations. The
biases at the independent sites were similar to those at the assimilated sites (Figure S76).
In comparison to CEP1, the decreasing ratios in BIAS and RMSE in VEP were 46.7%
and 23.4%, respectively.
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Figure 4. Spatial distribution of mean bias (BIAS, a and b), root mean square error
(RMSE, ¢ and d), and correlation coefficient (CORR, e and f) for simulated O3 using
prior (left, CEP1) and posterior (right, VEP) emissions, respectively, against

assimilated observations.

Figure 5 shows the time series of simulated and observed hourly O3 concentrations and
their RMSEs, verified against surface monitoring sites. The VEP achieved better
representations of diurnal O3 variations compared with those in the CEP1, especially
excelling in reproducing elevated O3 concentrations at noon. Constraining the NMVOC
emissions also led to better model simulations in terms of RMSE throughout the entire

study period. Time-averaged BIAS and RMSE decreased from 20.6 and 37.3 ug m3 to

10.6 and 31.0 pg m 3, respectively. We also evaluated the simulation results for seven

key cities (i.e., Beijing, Shanghai, Guangzhou, Wuhan, Chongqging, Yinchuan, and
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Changchun, which represent key cities in North, East. South, Central, Southwest,

Northwest, and Northeast China, respectively), and the biases in the VEP with posterior

emissions all showed a significant reduction (Figure S8). Overall, the assimilation of

HCHO column observations effectively reduced NMVOC emission uncertainties and

consequently improved simulations of HCHO and O;. These improvements hold

promise for further research into the implications of emission optimizations on regional

O3 photochemistry.

0O, CONC (ug m?)

RMSE (ug m?®)

180

150

120

90

60

30

1
Aug

60

50 —

20%

16
Aug Aug
37.3 31.0

- MW«LI bl

‘\ \\\\ M

1
Aug

\
16

Aug Aug

19



468

469
470
471
472

473
474
475
476
477
478
479
480
481
482
483
484
485

180

150

120

90

O, CONC (ug m?)

60

30

1 6 11 16 21 26 31
Aug Aug Aug Aug Aug Aug Aug

60 —

50

| il L‘{MAMLI&"‘LWJ;_MI"‘ "

20

RMSE (ug m?®)
o

! ! ! = T ] 7]
1 6 11 16 21 26 31
Aug Aug Aug Aug Aug Aug Aug

Figure 5. Time series comparison of hourly surface Oz concentrations (ug m) and
RMSE (ug m) from CEP1 and VEP experiments against all observations: at 1701

monitoring sites. The blue and red values on the graph represent the time-averaged

statistics in the CEP1 and VEP experiments, respectively.

As crucial O3 precursors, the abundance of NMVOCs plays a significant role in
modulating O3 production. Here we employed the IRRs to elucidate changes related to
Os production and loss at the surface, stemming from constrained NO, and NMVOC
emissions. Figure 6 illustrates comparisons of the simulated maximum daily 8-hour
average (MDAR) surface Os levels and net reaction rates before and after the inversion.
The CEP1 exhibited an overestimation of O3 levels, with a BIAS of 22.6% compared
to observed O3 concentrations. This overestimation corresponded to the high net
chemical rates of O3 in these areas (Figure S97). After inversion, O3 net rates mitigated
in most regions. Consequently, the VEP experiment yielded results that closely aligned
with observations, with a BIAS of 9.2%. Referring to Figure 6e and 6f, differences in
production rates of O3 closely track the changes in the NMVOC emissions (Figure 2).
The discrepancies in specific regions may be attributed to the complex nonlinear

relationships associated with Oz and its precursors, which depend on prevailing
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chemical regimes and regional transport. Additionally, changes in O3 production

predominantly drive the overall decrease in O3 concentrations, outweighing changes in

O3 loss.
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Figure 6. Comparisons of (a, b) simulated maximum daily 8-hour average (MDAS) O;

concentrations, (c, d) net reaction rates, (e, f) and differences in production and loss

rates between CEP1 and VEP experiments at the surface. Surface MDAS8 O3 values

(circles) from the national control air quality stations were overlaid

Figure 7 shows the differences in the six principal pathways responsible for O3 loss and

formation, when comparing simulations employing prior and posterior emissions. The

reactions of HO,+NO and RO;+NO are treated as the pathways leading to O3

formation, whereas O3 loss involves reactions including NO2 + OH, O3 + HO., O3 +

NMVOCs, and O1D + H>O (Wang et al., 2019). Our analysis was focused on the time
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frame from 12:00 to 18:00 according to China standard time (CST). The differences
were computed by subtracting the simulation with posterior emissions from those with
prior emissions. Following the emission of NMVOCs, they undergo rapid oxidation by
atmospheric hydroxyl (OH) radicals. Due to the substantial decrease in NMVOC
emissions, there was a reduction in the production of hydroperoxy radicals (HO) and
organic peroxy radicals (ROy) (Figure S108). Consequently, this reduction in HO2/RO»
levels, coupled with their reaction with NO, resulted in diminished O3 production
(Figures 7a and 7b). A strong correlation was observed between changes in O;
production via the RO> + NO reaction and NMVOC emissions (Figure 2), consistent
with the findings of Souri et al. (2020). Typically, in NMVOC-rich environments, a
decrease in NMVOC emissions boosts OH concentrations. Consequently, we noted an
enhancement in the NO> + OH reaction in the eastern and central regions of China. In
response to heightened HOx concentrations over these areas, an increased O3 loss
through the O3 + HOx pathway was observed. Furthermore, we detected a substantial
decrease in O; loss through reactions with NMVOC:s, especially in the southern China,
where substantial isoprene emissions are prevalent. This reduction was primarily
attributable to the decrease in NMVOC and O3 levels. While the NMVOC + O3 reaction
proceeds at a substantially slower rate NMVOC + OH, this specific chemical pathway
remains significant in oxidizing NMVOC and forming HOx in forests areas (Paulson
and Orlando, 1996). The difference in O1D + H»>O is primarily driven by the decrease
of O3 photolysis. Although the rate of O3z loss decreases in some chemical pathways,

overall, the rate of O3 production dominates the changes in O3 concentration.
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Figure 7. Differences in six major pathways of O3 production and loss between CEP1
and VEP experiments at the surface. Time period: August 2022, 12:00-18:00 CST. POs

and LO; represent the pathways of O3 formation and loss, respectively.
4.4 Discussions

Os simulations over China have a tendency to be overestimated in studies involving
chemical transport modeling. For example, by intercomparing 14 state-of-the-art CTMs
with O3 observations within the framework of the MICS-Asia III, Li et al. (2019)
identified a substantial overestimation of annual surface O3 in East Asia, ranging from
20 to 60 pg m3. Notably, the NCP exhibited substantial overestimations, with most
models overestimating O3 by 100-200% during May—October. Despite our
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optimization of O3 precursor emissions, the posterior simulations still exhibit some
degree of overestimation (Figure 4), suggesting that there may indeed be an effect of
systematic bias, such as meteorological fields, spatial resolution, model treatments of
nonlinear photochemistry and other physical processes. The WRF can generally
reproduce meteorological conditions sufficiently in terms of their temporal variation
and magnitude over China (Figure S119), with small biases of -0.5 °C, -5.3%, 0.3 m/s,
and -42.4 m for temperature at 2 m, relative humidity at 2 m, and wind speed at 10 m,
and planetary boundary layer height, respectively. However, due to the relatively coarse
spatial resolution, NO titration effects in urban areas may not be well represented in the
model, which can lead to an overestimation of O3 in these areas. Additionally, model
inherent errors arising from the model structure, parameterization, and the
simplification or lack of chemical mechanisms inevitably affect the O3 simulations. For
example, Li et al. (2018) reported that heterogeneous reactions of nitrogen compounds
could weaken the atmospheric oxidation capacity and thus reduce surface O;
concentration by 20-40 pug m for the polluted regions over China. These reactions
have not been fully incorporated in CMAQ chemical mechanisms. However, there is
still a lack of reasonable and effective algorithms for addressing model errors through
assimilation (Houtekamer and Zhang, 2016).0; concentration and NO, (VOC)
emissions are positively correlated in the NO, (VOC)-limited region and negatively
correlated in the VOC (NOy)-limited region (Tang et al., 2011). Therefore, the
uncertainty in NO, emissions can affect the model's diagnosis of O3-NO,-VOC
sensitivity, thereby introducing substantial model errors in the HCHO yield from VOC
oxidation. In the base inversion experiment (EMDA), we simultaneously assimilated
NO2 and HCHO observations to optimize NO, and NMVOC emissions. To evaluate the
impact of optimized NO, emissions on O3-VOC chemistry, EMS disregarded the
uncertainty of NO, and focused on optimizing NMVOC emissions. Compared to the
EMDA, in areas where NOx is significantly overestimated, NMVOC emissions in the
EMS have correspondingly decreased (Figure 8b). This might be due to under high-
NOx conditions, HCHO production occurs promptly, thereby compensating for the
substantial amount of HCHO already present in the atmosphere by reducing emissions
(Chan Miller et al., 2017). Figure S120 shows comparisons of concentrations and
RMSE between the simulations using posterior emissions from EMS and EMDA
experiments. Compared to VEP, CEP2 showed a larger RMSE, highlighting the

necessity for simultaneous optimization of NOx emissions when evaluating the impact
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of NMVOC emission optimization on Osz. Additionally, CEP2 using prior NOx

emissions exhibited lower O3 levels over parts of NCP and YRD, as well as some urban

areas (Figure 8c), but with larger biases and RMSEs (Figure 8d). The reduction in

NMVOC emissions contributed to a partial decrease in Oz concentration. More

significantly, these areas typically align with VOC-limited mechanisms (Wang et al.,

2019; Wang et al., 2021c¢). Therefore, the overestimation of NO, emissions (Figure S43)

excessively inhibits O3 accumulation due to the titration effect, thereby disrupting the

evaluation of NMVOC contributions to Os. This substantial disparity also seriously

affects O3 source apportionment, precursor-sensitive area delineation, and emissions

reduction policy formulation.
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Figure 8. Spatial distribution of (a) posterior emissions in the EMS experiment, (b)

differences in posterior emissions between EMS and EMDA, and differences in

simulated (c) Oz concentrations and (d) RMSE between CEP2 and VEP experiments.

EMS did not optimize NO, emissions compared to EMDA.
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5 Summary and Conclusions

In this study, we extended the RAPAS assimilation system with the EnKF assimilation
algorithm to optimize NMVOC emissions using the TROPOMI HCHO retrievals.
Taking the MEIC 2020 for anthropogenic emissions and MEGANv2.1 output for
biogenic sources as a priori, NMVOC emissions over China in August 2022 were
inferred. Importantly, we implicitly took the chemical feedback among VOC-NO,-O3
into account by simultaneously adjusting NO, emissions using nationwide in-situ NO»
observations. Furthermore, we quantified the impact of NMVOC emission inversion on

surface O3 pollution using the CMAQ-IRR model.

The application of TROPOMI HCHO observations as constraints led to a substantial
reduction of 50.2% compared to the prior emissions for NMVOCs_in August 2022. A

domain-wide significant decrease was found over central and southern China with
abundant forests, especially for the broadleaf evergreen forests, implying a considerable
overestimation of biogenic NMVOC emissions. Observation-constrained emissions
significantly improved the performance of surface NO, and HCHO column simulations,
reducing biases by 97.4% and 75.7%, respectively. This highlights the effectiveness of
the RAPAS in reducing uncertainty in NO, and NMVOC emissions. Isolating the
impact of NO, emission changes, the posterior NMVOC emissions significantly
mitigated the overestimation in prior O3 simulations, resulting in a 49.3% decrease in
surface O3 biases. This is mainly attributed to a substantial decrease in the RO2 + NO
reaction rate (a major pathway for O; production) and an increase NO> + OH reaction
rate (a major pathway for O3 loss) during the afternoon, resulting in a decrease in the

simulated MDAS surface O3 concentrations by approximately 15 pg m,

Sensitivity inversions demonstrate the robustness of top-down emissions to variations
in prior uncertainty settings, yet they are sensitive to HCHO column biases,
highlighting the importance of comprehensive validation studies utilizing available
remote-sensing data and, if possible, airborne validation campaigns. Moreover, we
found that, in comparison to optimizing NMVOC emissions alone, the joint
optimization of NMVOC and NOx emissions can significantly improve the overall
performance of O3 simulations. Ignoring errors in NO, emissions introduces uncertainty
in quantifying the impact of NMVOC emissions on surface Os, especially in areas

where overestimated NO, emissions can unrealistically amplify titration effects,
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highlighting the necessity of simultaneous optimization of NO, emissions.
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