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Abstract 27 

Non-methane volatile organic compounds (NMVOC), serving as crucial precursors 28 

of O3, have a significant impact on atmospheric oxidative capacity and O3 formation. 29 

However, both anthropogenic and biogenic NMVOC emissions remain subject to 30 

considerable uncertainty. Here, we extended the Regional multi-Air Pollutant 31 

Assimilation System (RAPAS) with the EnKF algorithm to optimize NMVOC 32 

emissions in China by assimilating TROPOMI HCHO retrievals. We also 33 

simultaneously optimize NOx emissions by assimilating in-situ NO2 observations to 34 

address the chemical feedback among VOC-NOx-O3. Furthermore, a process-based 35 

analysis was employed to quantify the impact of NMVOC emission changes on 36 

various chemical reactions related to O3formation and depletion. NMVOC 37 

emissions exhibited a substantial reduction of 50.2%, especially in forest-rich areas 38 

of central and southern China, revealing a prior overestimation of biogenic NMVOC 39 

emissions. Compared with the forecast with prior NMVOC emissions, the forecast 40 

with posterior emissions The RAPAS significantly improved HCHO simulations, 41 

reducing biases by 75.7%, indicating a notable decrease in posterior emission 42 

uncertainties. Moreover, Tthe forecast with posterior NMVOC emissions also 43 

effectivelysignificantly corrected the overestimation of O3 in forecast with prior 44 

emissions overestimation in O3 simulations, reducing biases by 49.3%. This can be 45 

primarily attributed to a significant decrease in the RO2 + NO reaction rate and an 46 

increase in the NO2 + OH reaction rate in the afternoon, thus limiting O3 generation. 47 

Sensitivity analyses emphasized the necessity of considering both NMVOC and NOx 48 

emissions for a comprehensive assessment of O3 chemistry. This study enhances our 49 

understanding of the effects of NMVOC emissions on O3 production and can 50 

contribute to the development of effective emission reduction policies. 51 
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1 Introduction 59 

Since the Chinese government implemented the Air Pollution Prevention and Control 60 

Action Plan in 2013, there has been a notable reduction in NOx emissions (Zheng et al., 61 

2018). However, despite these advancements, the issue of O3 pollution persists and, in 62 

certain cases, has shown signs of worsening (Ren et al., 2022). The increase in O3 63 

concentration can be attributed not only to adverse meteorological conditions but also 64 

predominantly to unbalanced joint control of non-methane volatile organic compounds 65 

(NMVOCs) and nitrogen oxides (NOx) (Li et al., 2020). NMVOCs are vital precursors 66 

of O3 and have a substantial impact on the atmospheric oxidation capacity, thereby 67 

altering the lifetimes of other pollutants. Accurately quantifying NMVOC emissions 68 

holds significant importance in investigating their impact on O3 chemistry and in 69 

formulating emission reduction policies. 70 

Anthropogenic NMVOC emissions have traditionally been estimated using a “bottom-71 

up” method. However, the accuracy and timeliness of these estimations face challenges 72 

owing to the scarcity of local measurements for emission factors, the incompleteness 73 

and unreliability of activity data, and the diverse range of species and technologies 74 

involved (Cao et al., 2018; Hong et al., 2017). Furthermore, uncertainties arise in 75 

model-ready NMVOC emissions due to spatial and temporal allocations using various 76 

“proxy” data for different source sectors (Li et al., 2017a). Li et al. (2021) reported 77 

substantial discrepancies among emission estimates in various studies, ranging 23% to 78 

56%. Biogenic NMVOC emissions are typically estimated using models like the Model 79 

of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2012) and 80 

the Biogenic Emission Inventory System (BEIS) (Pierce et al., 1998). NMVOC 81 

emissions result from the multiplication of plant-specific standard emission rates by 82 

dimensionless activity factors. Nonetheless, apart from inaccuracies in the distribution 83 

of plant functional types, empirical parameterization, especially concerning responses 84 

to temperature and drought stress, can introduce substantial uncertainties (Angot et al., 85 

2020; Seco et al., 2022; Jiang et al., 2018). Warneke et al. (2010) determined isoprene 86 

emission rates through field measurements and conducted a comparison with MEGAN 87 

and BEIS estimates, revealing a notable tendency for MEGAN to overestimate 88 

emissions, while BEIS consistently underestimated them. Similarly, Marais et al. (2014) 89 

found that MEGAN's isoprene emission estimates were 5-10 times higher than the 90 

canopy-scale flux measurements obtained from African field campaigns.  91 
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A top-down approach, utilizing observed data, has been developed for estimating VOCs 92 

emissions. For instance, based on aircraft and ground-based field measurements, the 93 

source-receptor relationships algorithm with Lagrangian particle dispersion model 94 

(Fang et al., 2016), mixed layer gradient techniques (Mo et al., 2020), eddy covariance 95 

flux measurements (Yuan et al., 2015), and box model (Wang et al., 2020) have been 96 

employed to complement or verify bottom-up results. However, these approaches do 97 

not comprehensively consider the complex nonlinear chemical reactions and transport 98 

processes that VOCs undergo in the atmosphere. Formaldehyde (HCHO) and glyoxal 99 

(CHOCHO) in the atmosphere serve as crucial oxidization intermediates for various 100 

VOCs (Hong et al., 2021; Liu et al., 2012). Satellite-based observations can readily 101 

detect their presence in the form of vertical column density (VCD) from space, making 102 

them widely utilized for estimating NMVOC emissions. A commonly used approach 103 

assumes that the observed HCHO/CHOCHO columns are locally linearly correlated 104 

with VOC emission rates (Palmer et al., 2006; Liu et al., 2012). However, this approach 105 

does not consider the spatial offset resulting from chemistry reactions and transport 106 

processes. Chaliyakunnel et al. (2019) conducted a Bayesian analysis to derive an 107 

optimal estimate of VOC emissions using HCHO measurements over the Indian 108 

subcontinent. Their results indicated that biogenic VOC emissions modeled by 109 

MEGANv2.1 were overestimated by approximately 30–60%, whereas anthropogenic 110 

VOC emissions derived from the RETRO inventory were underestimated by 13–16%. 111 

Cao et al. (2018) employed the GEOS-Chem model and its adjoint, incorporating 112 

tropospheric HCHO and CHOCHO column data from the GOME-2A and OMI 113 

satellites as constraints, to quantify Chinese NMVOC emissions. They demonstrated a 114 

low bias in the MEGAN model, in contrast to the significant overestimation shown in 115 

Bauwens et al. (2016), especially in southern China. 116 

Several investigations have been conducted to explore the implications of inverted 117 

VOC emissions on surface O3. For instance, using the Eulerian box model, Zhou et al. 118 

(2023) employed concurrent VOC measurements to constrain anthropogenic VOC 119 

emissions. This led to improved simulations of VOCs and O3, with a reduction in high 120 

emissions by 15%–36% in the Pearl River Delta (PRD) region. Local model biases in 121 

simulating the oxidation of NMVOCs and O3 are closed related to uncertainties in NOx 122 

emissions (Wolfe et al., 2016; Chan Miller et al., 2017). To tackle these critical 123 

questions, Kaiser et al. (2018) applied an adjoint algorithm to estimate isoprene 124 
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emission over the southeast US by downwardly adjusting anthropogenic NOx emissions 125 

by 50% to rectify NO2 simulations. Their findings indicated that isoprene emissions 126 

from MEGAN v2.1 were overestimated by an average of 40%, slightly lower than the 127 

50% reduction in Bauwens et al. (2016). Souri et al. (2020) simultaneously optimized 128 

NMVOC and NOx emissions utilizing OMPS-NM HCHO and OMI NO2 retrievals in 129 

East Asia. They found that predominantly anthropogenic NMVOC emissions from 130 

MIX-Asia 2010 increased over the North China Plain (NCP), whereas predominantly 131 

biogenic NMVOC emissions from MEGAN v2.1 decreased over southern China after 132 

the adjustment. Unfortunately, the posterior simulations exacerbated the overestimation 133 

of O3 levels in northern China. 134 

Most studies regarding the inversion of NMVOC emissions or its impact on O3 135 

neglected the uncertainties associated with NOx-dependent production or loss of 136 

NMVOC oxidation and O3. An iteratively nonlinear joint inversion of NOx and 137 

NMVOCs using multi-species observations is expected to minimize the uncertainties 138 

in their emissions and is well-suited to address the intricate relationship among VOC-139 

NOx-O3. In this study, we extended the Regional multi-Air Pollutant Assimilation 140 

System (RAPAS) upon the ensemble Kalman filter (EnKF) assimilation algorithm to 141 

enhance the optimization of NMVOC emissions over China, utilizing the 142 

TROPOspheric Monitoring Instrument (TROPOMI) HCHO retrievals with high spatial 143 

coverage and resolution. To more accurately quantify the impact of NMVOC emissions 144 

on O3, NOx emissions were simultaneously adjusted using nationwide in-situ NO2 145 

observations. Process analysis was subsequently employed to quantify various 146 

chemical pathways associated with O3 formation and loss. Through a top-down 147 

constraint on both emissions, this study aims to offer a more scientific insight into the 148 

consequences of optimizing NMVOC emissions on O3 and contribute to the 149 

development of appropriate emission reduction policies. 150 

2 Data and Methods 151 

2.1 Data Assimilation System 152 

The RAPAS system (Feng et al., 2023) has been developed based on a regional 153 

chemical transport model (CTM) and ensemble square root filter (EnSRF) assimilation 154 

modules (Whitaker and Hamill, 2002), which are employed for simulating atmospheric 155 

compositions and inferring anthropogenic emissions by assimilating surface 156 
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observations, respectively (Feng et al., 2022; Feng et al., 2020). The inversion process 157 

follows a two-step procedure within each inversion window, in which the emissions are 158 

inferred first and then input into the CMAQ model to simulate initial conditions of the 159 

next window. Meanwhile, the optimized emissions are transferred to the next window 160 

as prior emissions. . The two-step inversion strategy facilitates error propagation and 161 

iterative emission optimization, which have proven the superiority and robustness of 162 

our system in estimating emissions (Feng et al., 2023). In this study, we extended the 163 

data frame to include the assimilation of TROPOMI HCHO retrievals for optimizing 164 

NMVOC emissions. Concise descriptions of the forecast model, data assimilation 165 

approach, and experimental settings follow. 166 

2.1.1 Atmospheric Transport Model 167 

The Weather Research and Forecast (WRF v4.0) model (Skamarock and Klemp, 2008) 168 

and the Community Multiscale Air Quality Modeling System (CMAQ v5.0.2) (Byun 169 

and Schere, 2006) were applied to simulate meteorological conditions and atmospheric 170 

chemistry, respectively. WRF simulations were conducted with a 27-km horizontal 171 

resolution, covering the entire mainland China on a grid of 225 × 165 cells (Figure 1). 172 

The CMAQ model was run over the same domain, but with a removal of three grid cells 173 

on each side of the WRF domain. The vertical settings in WRF and CMAQ was the 174 

same as Feng et al. (2020). To account for the rapid expansion of urbanization, we 175 

updated underlying surface information for urban and built-up land using the MODIS 176 

Land Cover Type Product (MCD12C1) Version 6.1 of 2022. Chemical lateral boundary 177 

conditions for NO, NO2, HCHO, and O3 were extracted from the output of the global 178 

CTM (i.e., the Whole Atmosphere Community Climate Model, (WACCM) with a 179 

resolution of 0.9° × 1.25° at 6-hour intervals (Marsh et al., 2013). Meanwhile, boundary 180 

conditions for the other NMVOCs were obtained directly from background profiles. In 181 

the first data assimilation (DA) window, chemical initial conditions (excluding 182 

NMVOCs) were also derivedoriginated from the WACCM outputs, whereas in 183 

subsequent windows, they were derived through forward simulation using optimized 184 

emissions from the previous window. Table S1 lists the detailed physical and chemical 185 

configurations. To assess the impact of updated NMVOC emissions on O3 production 186 

efficiency, we further decoupled the contribution of the primary chemical processes to 187 

the O3 levels using the CMAQ Integrated Reaction Rate (IRR) analysis.  188 

 189 
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2.1.2 EnKF Assimilation Algorithm 190 

The emissions are constrained using the Ensemble Square Root Filter (EnSRF) 191 

algorithm introduced by Whitaker and Hamill (2002). This approach fully accounts for 192 

temporal and geographical variations in both the transportation and chemical reactions 193 

within the emission estimates. During the forecast step, the background ensembles are 194 

derived by applying perturbation to the prior emissions. The perturbed samples are 195 

typically drawn from Gaussian distributions with a mean of zero and a standard 196 

deviation equal to the prior emission uncertainty in each grid cell. Ensemble runs of the 197 

CMAQ model were subsequently performed to propagate the background errors with 198 

each ensemble sample of state vectors.  199 

In the analysis step, the ensemble mean �� of the analyzed state is regarded as the best 200 

estimate of emissions, which is obtained by updating the background ensemble mean 201 

through the following equations: 202 

 �� = �� + �(� − ���)  (1) 203 

 � = ����(����� + �)��  (2) 204 

where y is the observational vector; � represents the observation operator mapping 205 

model space to observation space; The expression � − ��� quantifies the disparities 206 

between simulated and observed concentrations; ���� illustrates how uncertainties in 207 

emissions relate to uncertainties in simulated concentrations; The Kalman gain matrix 208 

K, dependent on background error covariance �� and observation error covariance �, 209 

determines the relative contributions to the updated analysis.  210 

State variables for emissions include NOx and NMVOCs. To reduce the degree of 211 

freedom in the analysis and avoid the difficulty associated with estimating spatio-212 

temporal variations in background errors for individual species, we focus on optimizing 213 

the lumped total NMVOC emissions. During the forecast step, we differentiate 214 

individual NMVOC species emissions from the total NMVOC emissions using bottom-215 

up statistical information. For a consistent comparison between simulations and 216 

observations, model-simulated NO2 were diagnosed at the time and location of surface 217 

NO2 measurements, whereas model-simulated HCHO was horizontally sampled to 218 

align with TROPOMI HCHO VCD retrievals, and subsequently integrated vertically. 219 
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In this study, the DA window was set to one day and daily TROPOMI HCHO columns 220 

were utilized as observational constraints in our inversion framework. The ensemble 221 

size was set to 50 to strike a balance between computational cost and inversion accuracy. 222 

To reduce the impact of unrealistic long-distance error correlations, the Gaspari and 223 

Cohn function (Gaspari and Cohn, 1999) was utilized as covariance localization to 224 

ensure the meaningful influence of observations on state variables within a specified 225 

cutoff radius, while mitigating their negative impacts on distant state variables. The 226 

optimal localization scale is interconnected with factors such as the assimilation 227 

window, the dynamic system, and the lifetime of chemical species. Given the average 228 

wind speed of 2.8 m/s (Table S2) and a DA window of 1 day, the localization scales for 229 

NO2 and HCHO, both characterized as highly reactive species with lifespans of just a 230 

few hours, were set to 150 km and 100 km, respectively.  231 

2.2 Observation Data and Errors 232 

Considering the availability of HCHO data, we utilized daily offline retrievals of 233 

tropospheric HCHO columns from Sentinel-5P (S5P) L3 TROPOMI data obtained 234 

through Google Earth Engine (De Smedt et al., 2018). The S5P satellite follows a near-235 

polar sun-synchronous orbit at an altitude of 824 km with a 17-day repeating cycle. It 236 

crosses the Equator at 13:30 local solar time (LST) on the ascending node. The spatial 237 

resolution at nadir was refined to 3.5 × 5.5 km2 on 6 August 2019. Following the 238 

recommendations in the S5P HCHO product user manual, we filtered the source data 239 

to exclude pixels with qa_value less than 0.5 for HCHO column number density and 240 

0.8 for aerosol index (AER_AI). The remaining high-quality pixels with minimal 241 

snow/ice or cloud interference are averaged to 27-km grids. Figure 1b illustrates the 242 

coverage and data amount of TROPOMI HCHO retrievals in August 2022 after 243 

processing. Although the distribution of filtered data exhibits spatial non-uniformity, 244 

most grid cells have observational coverage for over half of the time, particularly in the 245 

southern region of China where NMVOC emissions are higher. We assigned 246 

measurement errors of 30% to TROPOMI HCHO columns bBased on validation 247 

against a global network of 25 ground-based Fourier transform infrared (FTIR) column 248 

measurements (Vigouroux et al., 2020), TROPOMI HCHO overestimates by 25% 249 

(<2.5×1015 molec cm-2) in clean regions and underestimates by 30% (>=8×1015 molec 250 

cm-2) in polluted regions. Therefore, we set the measurement error to 30%. To evaluate 251 

the effect of observational data retrieval errors on emission estimates, we conducted a 252 
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sensitivity experiment in which HCHO columns were empirically bias-corrected 253 

according to the error characteristics described above (Figure S1). The posterior 254 

emissions increased by 12.8% compared to those in the base experiment (EMDA), 255 

indicating that the existing retrieval error in HCHO measurements likely exerts an 256 

influence on the estimation of NMVOC emissions. . The representation error can be 257 

disregarded because the model's resolution significantly surpasses that of the 258 

TROPOMI pixels. 259 

To address the chemical feedback among VOC-NOx-O3, we also simultaneously 260 

optimized NOx emissions by assimilating in-situ NO2 observations. The extensively 261 

covered and high-precision monitoring network can provide sufficient constraints for 262 

emission inversion (Figure 1a). Hourly averaged surface NO2 observations from 263 

national control air quality stations obtained from the Ministry of Ecology and 264 

Environment of the People’s Republic of China (http://106.37.208.228:8082/, last 265 

access: 5 May 2023). In case where multiple stations are located within the same grid, 266 

a random site is chosen for validation, while the remaining sites are averaged to mitigate 267 

the impact of error correlation (Houtekamer and Zhang, 2016) for assimilation. In total, 268 

1276 stations were chosen for assimilation and an additional 425 independent stations 269 

were selected for verification (Figure 1a). The observation error covariance matrix � 270 

incorporates contributions from both measurement and representation errors. The 271 

measurement error is defined as �� = 1.0 + 0.005 × Π� , where Π�  represents the 272 

observed NO2 concentration. Following the approach of Elbern et al. (2007) and Feng 273 

et al. (2018), the representative error is defined as �� = ����Δ� �⁄ , where γ is a tunable 274 

parameter (here, γ=0.5), Δ� is the grid spacing (27 km), and � is the radius (here, �=0.5) 275 

of the observation’s influence area. The total observation error (�) was defined as � =276 

���
� + ��

� . The observation errors are assumed to be uncorrelated so that �  is a 277 

diagonal matrix. 278 

 279 
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 281 

Figure 1. Model domain and observation network (a) and data amount of TROPOMI 282 

HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates 283 

the CMAQ computational domain; black squares denote surface meteorological 284 

measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue 285 

dots represent air pollution measurement sites, where red dots are used for assimilation 286 

and blue dots for independent evaluation. 287 

2.3 Prior Emissions and Uncertainties 288 

The prior anthropogenic NOx and NMVOC emissions for China were obtained from 289 

the most recent Multi-resolution Emission Inventory for China of 2020 (MEIC, 290 

http://www.meicmodel.org/, last access: 8 May 2023) (Zhang et al., 2009). For 291 

anthropogenic emissions outside China, we utilized the mosaic Asian anthropogenic 292 

emission inventory (MIX) for the base year of 2010 (Li et al., 2017b). The daily 293 
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emission inventory, which was arithmetically averaged from the combined monthly 294 

emission inventory, was employed as the first guess. Ship emissions were derived from 295 

the shipping emission inventory model (SEIM) for 2017, which was calculated based 296 

on the observed vessel automatic identification system (Liu et al., 2017). Biomass 297 

burning emissions were retrieved from the Global Fire Emissions Database version 4.1 298 

(GFEDv4, https://www.globalfiredata.org/, last access: 8 May 2023) (van der Werf et 299 

al., 2017; Mu et al., 2011). Biogenic NOx and NMVOC emissions were calculated using 300 

the Model of Emissions of Gases and Aerosols from Nature (MEGAN) developed by 301 

Guenther et al. (2012). 302 

As previously mentioned, the optimized emissions are transferred to the next DA 303 

window as prior emissions for iterative inversion. For biogenic emissions, it is 304 

decomposed into hourly scales based on the daily varying temporal profiles in MEGAN 305 

as model inputs. Daily emission variations will largely dominate the uncertainty in 306 

emissions. Taking into account compensating for model errors and avoiding filter 307 

divergence, we consistently applied an uncertainty of 25% to each model grid of NOx 308 

emissions at each DA window, as in Feng et al. (2020). NMVOC emissions typically 309 

exhibit greater uncertainties compared to NOx emissions (Li et al., 2017b). Based on 310 

model evaluation, the uncertainty of NMVOC emissions was set to 40% (Kaiser et al., 311 

2018; Souri et al., 2020; Cao et al., 2018). A sensitivity experiment involving a doubling 312 

of the prior uncertainty (80%) revealed that the differences in posterior NMVOC 313 

emissions amounted to a mere 0.2% (Figure S2). The implementation of a ‘two-step’ 314 

inversion strategy allows for the timely correction of residual errors from the previous 315 

assimilation window in the current window, thus ensuring that the RAPAS system has 316 

a relatively low dependence on prior uncertainty settings. This study also addresses 317 

uncertainties in emissions for CO, SO2, primary PM2.5, and coarse PM10 to consider the 318 

chemical feedback between different species following Feng et al. (2023).  319 

3 Experimental Design 320 

During the summer of 2022, southern China experienced severe heatwave conditions. 321 

The combination of high temperatures and drought had a pronounced effect on 322 

vegetation growth and NMVOC emissions, thereby influencing O3 production (Wang 323 

et al., 2023). Consequently, we opted to focus on August 2022, as it presented an ideal 324 

period for testing the capabilities of our DA system. Before implementing the emission 325 

inversion, a relatively perfect initial field is generated at 0000 UTC on August 01 2022 326 
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through conducting a 5-day simulation with 6-hour interval 3D-Var data assimilation. 327 

Subsequently, daily emissions are continuously updated over the entire month of 328 

August (EMDA). Additionally, we designed a sensitivity experiment (EMS) to illustrate 329 

the significance of optimizing NOx emissions in quantifying VOC-O3 chemical 330 

reactions. In this experiment, NOx emissions were not optimized. To validate the 331 

posterior emissions of NOx and NMVOCs in EMDA, we compared two parallel 332 

forward simulation experiments with NO2 and HCHO measurements, denoted as CEP 333 

and VEP, corresponding to prior and posterior emission scenarios, respectively, against 334 

NO2 and HCHO measurements. To investigate the impact of optimizing NMVOC 335 

emissions on the secondary production and loss of surface O3, a forward simulation 336 

experiment (CEP1) was conducted with the prior NMVOC emissions and the posterior 337 

NOx emissions. Additionally, we designed three sensitivity experiments to investigate 338 

the robustness of the constrained NMVOC emissions. EMS1 involved doubling the 339 

background error from 40% to 80% to investigate the influence of background error 340 

settings. EMS2 aimed to evaluate the effect of observational data retrieval errors on 341 

emission estimates, in which HCHO columns were empirically bias-corrected based on 342 

error characteristics (Souri et al., 2021). EMS3 aimed to illustrate the significance of 343 

optimizing NOx emission in quantifying VOC-O3 chemical reactions. In this 344 

experiment, NOx emissions were not optimized. Two Another forward modelling 345 

experiments (CEP2 and CEP3) were also performed usingused the posterior emissions 346 

of EMS2 and EMS3 to evaluate their its performance. All experiments employ identical 347 

meteorological fields, as well as the same gas-phase and aerosol modules. Table 1 348 

summarizes the different emission inversion and validation experiments conducted in 349 

this study. 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 
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Table 1. The assimilation, sensitivity, and validation experiments conducted in this 359 

study. 360 

Exp.Type Exp. Name NMVOC emissions NOx emissions Assimilated HCHO retrievals 

Assimilation EMDA 

MEIC 2020 and MEGAN for 

August (the first DA window), 

optimized emissions of the 

previous window (other DA 

windows) 

MEIC 2020 and MEGAN 

for August (the first DA 

window), optimized 

emissions of the previous 

window (other DA 

windows) 

Default 

Sensitivity 

EMS1 
Same as EMDA but with doubled 

default uncertainty 
Same as EMDA Default 

EMS2 Same as EMDA Same as EMDA 

Reduce by 25% in regions 

with observations < 2.5×1015 

molec cm-2 and increase by 

30% in regions with 

observations > 8×1015 molec 

cm-2 

EMS3 Same as EMDA 
MEIC 2020 and MEGAN 

for August 
Default 

Validation 

CEP 
MEIC 2020 and MEGAN for 

August 

MEIC 2020 and MEGAN 

for August 
\ 

VEP Posterior emissions of EMDA 
Posterior emissions of 

EMDA 
\ 

CEP1 Same as CEP 
Posterior emissions of 

EMDA 
\ 

CEP2 Posterior emissions of EMS2 Posterior emissions of EMS2 \ 

CEP3CEP23 Posterior emissions of EMS3 Same as CEP \ 

4 Results 361 

4.1 Inverted Emissions  362 

Figure 2 shows the spatial distribution of temporally averaged prior and posterior 363 

NMVOC emissions, along with their differences, in NMVOC emissions. Hotspots of 364 

prior NMVOC emissions were prevalent across much of central and southern China. 365 

However, posterior NMVOC emissions were predominantly concentrated in the NCP, 366 

Yangtze River Delta (YRD), PRD, and Sichuan Basin (SCB), characterized by high 367 

levels of anthropogenic activity. High emissions are also located in parts of central and 368 

southern China with warm climate favorable for emitting biogenic NMVOCs. 369 

Employing TROPOMI HCHO observations as constraints led to widespread decreases 370 
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of approximately 60–70% over these areas, indicating a large substantial of biogenic 371 

NMVOC emissions. In northwestern China, there was a moderate increase in NMVOC 372 

emissions. A potential significant TROPOMI retrieval errorsbias in polluted regions 373 

could exacerbate the emission reductiondecreases (Text S2). Additionally, uncertainties 374 

in MEGAN parameterization have significant implications for NMVOC emission 375 

estimations, particularly concerning the responses of vegetation in MEGAN to 376 

temperature and drought stress (Angot et al., 2020; Jiang et al., 2018). Zhang et al. 377 

(2021) highlighted that the temperature-dependent activity factor noticeably increases 378 

with rising temperatures in MEGAN. Wang et al. (2021b) pointed out that the missing 379 

of a drought scheme is one of the factors causing the overestimation of isoprene 380 

emissions in MEGAN. Opacka et al. (2022) optimized the empirical parameter in the 381 

MEGANv2.1 soil moisture stress algorithm, resulting in significant reductions in 382 

isoprene emissions and providing better agreement between modelled and observed 383 

HCHO temporal variability in the central U.S. These findings demonstrate that 384 

uncertainties in MEGAN parameterization also have significant implications for 385 

NMVOC emission modeling. 386 

During the study period, China experienced severe heatwave conditions, which may 387 

further hinder the MEGAN's ability to effectively capture the impacts of high 388 

temperatures and drought on vegetation, thus resulting in significant overestimation in 389 

NMVOC emissions (Wang et al., 2022). Nevertheless, the large magnitude of emission 390 

reductions of 50.2% in our inversion is comparable to studies in southern China 391 

(Bauwens et al., 2016; Zhou et al., 2023), southeastern US (Kaiser et al., 2018), Africa 392 

(Marais et al., 2014), India (Chaliyakunnel et al., 2019), Amazonia (Bauwens et al., 393 

2016), and parts of Europe (Curci et al., 2010), but opposite to the large-scale emission 394 

increase over China in Cao et al. (2018). For NOx (Figure S31), the nationwide total 395 

emissions decreased by 10.2%, with the main reductions concentrated in the NCP, YRD, 396 

parts of Central China, and most key urban areas. 397 

 398 
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 399 

Figure 2. Spatial distribution of the time-averaged (a) prior emissions (MEIC 2020 + 400 

MEEMGAN), (b) posterior emissions, (c) absolute difference (posterior minus prior), 401 

and (d) relative difference of NMVOCs over China. 402 

Table 2 shows the changes in emissions of biogenic NMVOCs across different land 403 

cover types (Figure S42) after inversion. The most significant reduction in biogenic 404 

emissions occurred within woody savannas, accounting for 26.9% of the overall 405 

reduction, followed by savannas and croplands, accounting for 21.2% and 17.2% 406 

respectively. Among all vegetation types, the broadleaf evergreen forests, recognized 407 

as the primary source of isoprene emission (Wang et al., 2021a), presented the greatest 408 

uncertainty, with NMVOC emissions experiencing a significant reduction of 66.2%. 409 

Standard emission rates in MEGAN are derived from leaf- or canopy-scale flux 410 

measurements and extrapolated globally across regions sharing similar landcover 411 

characteristics, based on very limited observations (Guenther et al., 1995). This 412 

methodology introduces biases due to the large variability in emission rates among 413 

plant species. Opacka et al. (2022) optimized the empirical parameter in the 414 
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MEGANv2.1 soil moisture stress algorithm, resulting in significant reductions in 415 

isoprene emissions and providing better agreement between modelled and observed 416 

HCHO temporal variability in the central U.S. These findings demonstrate that 417 

uncertainties in MEGAN parameterization also have significant implications for 418 

NMVOC emission modeling. 419 

Table 2. Prior and posterior biogenic NMVOC emissions, as well as their differences 420 

for different land cover types. 421 

Land cover type 
Prior 

Mmol/month 

Posterior 

Mmol/month 

Difference 

Mmol/month (%) 

Evergreen needleleaf forests 955.7 549.3 -406.4 (-42.5) 

Evergreen broadleaf forests 13985.1 4728.2 -9256.8 (-66.2) 

Deciduous needleleaf forests 46.6 48.8 2.2 (4.7) 

Deciduous broadleaf forests 8335.5 3487.4 -4848.1 (-58.2) 

Mixed forests 8731.0 3961.7 -4769.4 (-54.6) 

Closed shrublands 9.7 3.7 -6.0 (-61.5) 

Open shrublands 21.3 8.6 -12.8 (-59.8) 

Woody savannas 39327.2 16925.2 -22402.0 (-57.0) 

Savannas 28319.7 10629.4 -17690.3 (-62.5) 

Grasslands 16912.7 14269.6 -2643.1 (-15.6) 

Permanent wetlands 286.1 115.4 -170.8 (-59.7) 

Croplands 25537.8 11215.5 -14322.2 (-56.1) 

Cropland-natural vegetation 

mosaics 
10894.7 4289.8 -6605.0 (-60.6) 

Sparsely vegetated 1814.7 1644.0 -170.6 (-9.4) 

4.2 Evaluations for Posterior Emissions 422 

The NOx emissions were first evaluated by indirectly comparing the forward simulated 423 

NO2 concentrations with measurements. As shown in Figure S53, the CEP with prior 424 

emissions exhibited positive biases in eastern China and negative biases in western 425 

China. However, when posterior emissions were used in the VEP, a substantial 426 

improvement in simulation performance was observed. Biases were limited to within 427 

±3 μg m−3, and correlation coefficients exceeded 0.7 across the entire region. Figure 3 428 
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presents the simulated HCHO VCDs using prior and posterior NMVOCs emissions, 429 

along with their associated biases. Both experiments showed high VCDs over central 430 

and eastern China, especially in the YRD and SCB. However, the CEP displayed 431 

substantial overestimation across most of mainland China, with the largest bias 432 

reaching 12 × 1015 molec cm-2 in Central China. Conversely, the VEP demonstrated 433 

notable improvements in both the magnitude and spatial distribution of simulated 434 

HCHO columns after the inversion compared to TROPOMI retrievals. More than 84% 435 

of the areas exhibited biases of less than 1 × 1015 molec cm-2, and no significant spatial 436 

variation was observed. Overall, the biases in simulated HCHO VCDs decreased by 437 

75.7% after the inversion. These results emphasize the efficiency of our system in 438 

reducing uncertainty in both NOx and NMVOC emissions. 439 

 440 

Figure 3. Simulated HCHO vertical column densities using prior (a) and posterior (b) 441 

NMVOC emissions, along with their biases (c and d) against TROPOMI measurement. 442 

All model results were sampled at TROPOMI overpass time. 443 

4.3 Implications for Surface O3 444 
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Figure 4 shows the spatial distribution of the mean bias (BIAS), root mean square error 445 

(RMSE), and correlation coefficient (CORR) for simulated O3 concentrations in the 446 

CEP1 and VEP experiments compared to assimilated observations. Beyond the 447 

northwestern region of China, the CEP1 exhibited significant overestimation 448 

throughout the entire area, with a BIAS of 20.5 μg m−3. By intercomparing 14 state-of-449 

the-art CTMs with O3 observations within the framework of the MICS-Asia III, Li et 450 

al. (2019) identified a substantial overestimation of annual surface O3 in East Asia, 451 

ranging from 20 to 60 μg m−3. Notably, the NCP exhibited substantial overestimations, 452 

with most models overestimating O3 by 100–200% during May–October. In the VEP, 453 

the modeled O3 chemical production were alleviated, especially in the southern regions 454 

of China where NMVOC emissions had significantly decreased. Overall, observation-455 

constrained NMVOC emissions resulted in a 49.3% decrease in the BIAS, bringing it 456 

down to 10.4 μg m−3. Additionally, the RMSE showed noticeable improvement due to 457 

the assimilation of HCHO observation, reducing the value from 30.9 to 23.3 μg m−3. 458 

Despite a significant reduction in NMVOC emissions after inversion, notable 459 

overestimations persisted in northern provinces such as Liaoning, Hebei, Shanxi, and 460 

Shaanxi. This may be attributed to limited NMVOC constraints resulting from 461 

insufficient observations during the study period (Figures 1b and 3d). The remaining 462 

discrepancies between simulations and observations can be attributed to the combined 463 

results of intricate urban-rural sensitivity regimes and O3 photochemistry reactions, 464 

which may not be comprehensively represented by CMAQ model, masking any 465 

potential improvement expected from the constrained emissions (See Sect. 4.4). The 466 

CORR was comparable between the CEP1 and VEP experiments, reflecting that the 467 

CMAQ model effectively simulated the temporal variation of O3 concentrations. The 468 

biases at the independent sites were similar to those at the assimilated sites (Figure S64). 469 

In comparison to CEP1, the decreasing ratios in BIAS and RMSE in VEP were 46.7% 470 

and 23.4%, respectively. 471 

 472 
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 473 

Figure 4. Spatial distribution of mean bias (BIAS, a and b), root mean square error 474 

(RMSE, c and d), and correlation coefficient (CORR, e and f) for simulated O3 using 475 

prior (left, CEP1) and posterior (right, VEP) emissions, respectively, against 476 

assimilated observations. 477 

Figure 5 shows the time series of simulated and observed hourly O3 concentrations and 478 

their RMSEs, verified against surface monitoring sites. The VEP achieved better 479 

representations of diurnal O3 variations compared with those in the CEP1, especially 480 

excelling in reproducing elevated O3 concentrations at noon. Constraining the NMVOC 481 

emissions also led to better model simulations in terms of RMSE throughout the entire 482 

study period. Overall, the assimilation of HCHO column observations effectively 483 

reduced NMVOC emission uncertainties and consequently improved simulations of 484 
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HCHO and O3. These improvements hold promise for further research into the 485 

implications of emission optimizations on regional O3 photochemistry. 486 

 487 

 488 

Figure 5. Time series comparison of hourly surface O3 concentrations (μg m-3) and 489 

RMSE (μg m-3) from CEP1 and VEP experiments against all observations. 490 
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As crucial O3 precursors, the abundance of NMVOCs plays a significant role in 491 

modulating O3 production. Here we employed the IRRs to elucidate changes related to 492 

O3 production and loss at the surface, stemming from constrained NOx and NMVOC 493 

emissions. Figure 6 illustrates comparisons of the simulated maximum daily 8-hour 494 

average (MDA8) surface O3 levels and net reaction rates before and after the inversion. 495 

The CEP1 exhibited an overestimation of O3 levels, with a BIAS of 22.6% compared 496 

to observed O3 concentrations. This overestimation corresponded to the high net 497 

chemical rates of O3 in these areas (Figure S75). After inversion, O3 net rates mitigated 498 

in most regions. Consequently, the VEP experiment yielded results that closely aligned 499 

with observations, with a BIAS of 9.2%. Referring to Figure 6e and 6f, differences in 500 

production rates of O3 closely track the changes in the NMVOC emissions (Figure 2). 501 

The discrepancies in specific regions may be attributed to the complex nonlinear 502 

relationships associated with O3 and its precursors, which depend on prevailing 503 

chemical regimes and regional transport. Additionally, changes in O3 production 504 

predominantly drive the overall decrease in O3 concentrations, outweighing changes in 505 

O3 loss. 506 

 507 
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 508 

Figure 6. Comparisons of (a, b) simulated maximum daily 8-hour average (MDA8) O3 509 

concentrations, (c, d) net reaction rates, (e, f) and differences in production and loss 510 

rates between CEP1 and VEP experiments at the surface. Surface MDA8 O3 values 511 

(circles) from the national control air quality stations were overlaid 512 

Figure 7 shows the differences in the six principal pathways responsible for O3 loss and 513 

formation, when comparing simulations employing prior and posterior emissions. The 514 

reactions of HO2 + NO and RO2 + NO are treated as the pathways leading to O3 515 

formation, whereas O3 loss involves reactions including NO2 + OH, O3 + HO2, O3 + 516 

NMVOCs, and O1D + H2O (Wang et al., 2019). Our analysis was focused on the time 517 

frame from 12:00 to 18:00 according to China standard time (CST). The differences 518 

were computed by subtracting the simulation with posterior emissions from those with 519 

prior emissions. Following the emission of NMVOCs, they undergo rapid oxidation by 520 
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atmospheric hydroxyl (OH) radicals. Due to the substantial decrease in NMVOC 521 

emissions, there was a reduction in the production of hydroperoxy radicals (HO2) and 522 

organic peroxy radicals (RO2) (Figure S86). Consequently, this reduction in HO2/RO2 523 

levels, coupled with their reaction with NO, resulted in diminished O3 production 524 

(Figures 7a and 7b). A strong correlation was observed between changes in O3 525 

production via the RO2 + NO reaction and NMVOC emissions (Figure 2), consistent 526 

with the findings of Souri et al. (2020). Typically, in NMVOC-rich environments, a 527 

decrease in NMVOC emissions boosts OH concentrations. Consequently, we noted an 528 

enhancement in the NO2 + OH reaction in the eastern and central regions of China. In 529 

response to heightened HOx concentrations over these areas, an increased O3 loss 530 

through the O3 + HOx pathway was observed. Furthermore, we detected a substantial 531 

decrease in O3 loss through reactions with NMVOCs, especially in the southern China, 532 

where substantial isoprene emissions are prevalent. This reduction was primarily 533 

attributable to the decrease in NMVOC and O3 levels. While the NMVOC + O3 reaction 534 

proceeds at a substantially slower rate NMVOC + OH, this specific chemical pathway 535 

remains significant in oxidizing NMVOC and forming HOx in forests areas (Paulson 536 

and Orlando, 1996). The difference in O1D + H2O is primarily driven by the decrease 537 

of O3 photolysis. Although the rate of O3 loss decreases in some chemical pathways, 538 

overall, the rate of O3 production dominates the changes in O3 concentration. 539 
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 540 

Figure 7. Differences in six major pathways of O3 production and loss between CEP1 541 

and VEP experiments at the surface. Time period: August 2022, 12:00–18:00 CST. PO3 542 

and LO3 represent the pathways of O3 formation and loss, respectively. 543 

4.4 Discussions 544 

O3 simulations over China have a tendency to be overestimated in studies involving 545 

chemical transport modeling. For example, by intercomparing 14 state-of-the-art CTMs 546 

with O3 observations within the framework of the MICS-Asia III, Li et al. (2019) 547 

identified a substantial overestimation of annual surface O3 in East Asia, ranging from 548 

20 to 60 μg m−3. Notably, the NCP exhibited substantial overestimations, with most 549 

models overestimating O3 by 100–200% during May–October. Despite our 550 
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optimization of O3 precursor emissions, the posterior simulations still exhibit some 551 

degree of overestimation (Figure 4), suggesting that there may indeed be an effect of 552 

systematic bias, such as meteorological fields, spatial resolution, model treatments of 553 

nonlinear photochemistry and other physical processes. The WRF can generally 554 

reproduce meteorological conditions sufficiently in terms of their temporal variation 555 

and magnitude over China (Figure S9), with small biases of -0.5 °C, -5.3%, 0.3 m/s, 556 

and -42.4 m for temperature at 2 m, relative humidity at 2 m, and wind speed at 10 m, 557 

and planetary boundary layer height, respectively. However, due to the relatively coarse 558 

spatial resolution, NO titration effects in urban areas may not be well represented in the 559 

model, which can lead to an overestimation of O3 in these areas. Additionally, model 560 

inherent errors arising from the model structure, parameterization, and the 561 

simplification or lack of chemical mechanisms inevitably affect the O3 simulations. For 562 

example, Li et al. (2018) reported that heterogeneous reactions of nitrogen compounds 563 

could weaken the atmospheric oxidation capacity and thus reduce surface O3 564 

concentration by 20–40 μg m-3 for the polluted regions over China. These reactions 565 

have not been fully incorporated in CMAQ chemical mechanisms. However, there is 566 

still a lack of reasonable and effective algorithms for addressing model errors through 567 

assimilation (Houtekamer and Zhang, 2016). 568 

The prior NMVOC emissions were found to be overestimated relative to the top-down 569 

constraints from TROPOMI HCHO retrievals. The results of the top-down inversion 570 

may be susceptible to uncertainties related to the inversion configuration and 571 

observational data. Particularly, background error settings affect the relative weighting 572 

of prior and observation to posterior emissions, which may potentially introduce 573 

considerable uncertainty into the spatial patterns and magnitudes of the NMVOC 574 

emission inversion. Another critical concern pertains to HCHO retrieval errors. 575 

Correcting the low TROPOMI HCHO column biases would result in elevated posterior 576 

emissions, while the opposite holds true. To investigate the impact of background error 577 

on emission inversion, a sensitivity test (EMS1) was conducted, doubling the 578 

background error to 80%. Compared with the base inversion, the sensitivity test 579 

produced a noticeable increase in posterior NMVOC emissions in southwestern China, 580 

especially in Tibet. In contrast, emissions in eastern China exhibited a slight decrease 581 

(Figure S7). This can be expected, as the inversion is more inclined to deviate from the 582 

a priori due to decreased confidence. However, at a national scale, the difference 583 
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between the two posterior emissions was nearly negligible. The substantial disparities 584 

over the Tibetan Plateau between the two inversions can be attributed to the horizontal 585 

HCHO inhomogeneity caused by mountain terrain and the relatively low signal-to-586 

noise ratio in the TROPOMI satellite data in the background atmosphere (Cheng et al., 587 

2023), resulting in the inclusion of more outliers in the inversion (Su et al., 2020). 588 

Nevertheless, the discrepancies in NMVOC emission estimates amounted to a mere 589 

0.2%, suggesting that the posterior emission estimates were not largely affected by the 590 

background error setting. This can be primarily attributed to the superiority of the ‘two-591 

step’ inversion strategy employed within the RAPAS system.  592 

Due to the spatiotemporal variability in retrieval errors, directly incorporating 593 

observations into an inversion system remains a challenging task. Based on the biases 594 

outlined in Vigouroux et al. (2020), another sensitivity test (EMS2) addressed the 595 

existing biases in TROPOMI HCHO by reducing measurements by 25% (<2.5×1015 596 

molec cm-2) in clean regions and increasing them by 30% (>=8×1015 molec cm-2) in 597 

polluted regions. Figure 8 shows that bias-corrected HCHO columns resulted in a slight 598 

decrease in NMVOC emissions in the low-pollution regions of western China, whereas 599 

emissions increased in the high-pollution regions of eastern and central China, 600 

particularly in the SCB and the vicinity of the YRD. In comparison to the EMDA 601 

experiment, the posterior emissions from EMS1 increased by 12.8% (decreased by 43.9% 602 

compared to prior emissions), indicating that the existing retrieval error in HCHO 603 

measurements likely exerts an influence on the estimation of NMVOC emissions, 604 

especially in heavily polluted regions. The results highlight the significance of a 605 

thorough data validation for the HCHO column product. However, the emissions 606 

increase in the EMS2 experiment has slightly deteriorated the performance of O3 607 

simulations in the CEP2. 608 
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 609 

Figure 8. Spatial distribution of (a) differences in posterior emissions between EMS2 610 

and EMDA, and differences in (b) RMSE between CEP2 and VEP experiments. 611 

Compared with EMDA, EMS2 reduced the TROPOMI HCHO measurements by 25% 612 

(< 2.5×1015 molec cm-2) in clean regions and increased them by 30% (> 8×1015 molec 613 

cm-2) in polluted regions. 614 

O3 concentration and NOx (VOC) emissions are positively correlated in the NOx 615 

(VOC)-limited region and negatively correlated in the VOC (NOx)-limited region (Tang 616 

et al., 2011). Therefore, the uncertainty in NOx emissions can affect the model's 617 

diagnosis of O3-NOx-VOC sensitivity, thereby introducing substantial model errors in 618 

the HCHO yield from VOC oxidation. In the base inversion experiment (EMDA), we 619 

simultaneously assimilated NO2 and HCHO observations to optimize NOx and 620 

NMVOC emissions. To evaluate the impact of optimized NOx emissions on O3-VOC 621 

chemistry, EMS3 disregarded the uncertainty of NOx and focused on optimizing 622 

NMVOC emissions. Compared to the EMDA, in areas where NOx is significantly 623 

overestimated, NMVOC emissions in the EMS3 have correspondingly decreased 624 

(Figure 8b). This might be due to under high-NOx conditions, HCHO production occurs 625 

promptly, thereby compensating for the substantial amount of HCHO already present 626 

in the atmosphere by reducing emissions (Chan Miller et al., 2017). Figure S108 shows 627 

comparisons of concentrations and RMSE between the simulations using posterior 628 

emissions from EMS3 and EMDA experiments. Compared to VEP, CEP3 CEP2 629 

showed a larger RMSE, highlighting the necessity for simultaneous optimization of 630 

NOx emissions when evaluating the impact of NMVOC emission optimization on O3. 631 

Additionally, CEP2 using prior NOx emissions exhibited lower O3 levels over parts of 632 

NCP and YRD, as well as some urban areas (Figure 8c), but with larger biases and 633 
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RMSEs (Figure 8d). The reduction in NMVOC emissions contributed to a partial 634 

decrease in O3 concentration. More significantly, these areas typically align with VOC-635 

limited mechanisms (Wang et al., 2019; Wang et al., 2021c). Therefore, the 636 

overestimation of NOx emissions (Figure S31) excessively inhibits O3 accumulation 637 

due to the titration effect, thereby disrupting the evaluation of NMVOC contributions 638 

to O3. This substantial disparity also seriously affects O3 source apportionment, 639 

precursor-sensitive area delineation, and emissions reduction policy formulation. 640 

  641 
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 642 

Figure 8. Spatial distribution of (a) posterior emissions in the EMS3 experiment, (b) 643 

differences in posterior emissions between EMS3 and EMDA, and differences in 644 

simulated (c) O3 concentrations and (d) RMSE between CEP23 and VEP experiments. 645 

EMS3 did not optimize NOx emissions compared to EMDA. 646 

5 Summary and Conclusions 647 

In this study, we extended the RAPAS assimilation system with the EnKF assimilation 648 

algorithm to optimize NMVOC emissions using the TROPOMI HCHO retrievals. 649 

Taking the MEIC 2020 for anthropogenic emissions and MEGANv2.1 output for 650 

biogenic sources as a priori, NMVOC emissions over China in August 2022 were 651 

inferred. Importantly, we implicitly took the chemical feedback among VOC-NOx-O3 652 

into account by simultaneously adjusting NOx emissions using nationwide in-situ NO2 653 

observations. Furthermore, we quantified the impact of NMVOC emission inversion on 654 

surface O3 pollution using the CMAQ-IRR model. 655 

The application of TROPOMI HCHO observations as constraints led to a substantial 656 

reduction of 50.2% compared to the prior emissions for NMVOCs. A domain-wide 657 
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significant decrease was found over central and southern China with abundant forests, 658 

especially for the broadleaf evergreen forests, implying a considerable overestimation 659 

of biogenic NMVOC emissions. Observation-constrained emissions significantly 660 

improved the performance of surface NO2 and HCHO column simulations, reducing 661 

biases by 97.4% and 75.7%, respectively. This highlights the effectiveness of the 662 

RAPAS in reducing uncertainty in NOx and NMVOC emissions. Isolating the impact 663 

of NOx emission changes, the posterior NMVOC emissions significantly mitigated the 664 

overestimation in prior O3 simulations, resulting in a 49.3% decrease in surface O3 665 

biases. This is mainly attributed to a substantial decrease in the RO2 + NO reaction rate 666 

(a major pathway for O3 production) and an increase NO2 + OH reaction rate (a major 667 

pathway for O3 loss) during the afternoon, resulting in a decrease in the simulated 668 

MDA8 surface O3 concentrations by approximately 15 μg m-3. 669 

Sensitivity inversions demonstrate the robustness of top-down emissions to variations 670 

in prior uncertainty settings, yet they are sensitive to HCHO column biases, 671 

highlighting the importance of comprehensive validation studies utilizing available 672 

remote-sensing data and, if possible, airborne validation campaigns. Moreover, we 673 

found that, in comparison to optimizing NMVOC emissions alone, the joint 674 

optimization of NMVOC and NOx emissions can significantly improve the overall 675 

performance of O3 simulations. Ignoring errors in NOx emissions introduces uncertainty 676 

in quantifying the impact of NMVOC emissions on surface O3, especially in areas 677 

where overestimated NOx emissions can unrealistically amplify titration effects, 678 

highlighting the necessity of simultaneous optimization of NOx emissions. 679 
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