Responses to the comments of Reviewer #1:

We would like to thank the anonymous referee for his/her comprehensive review and
valuable suggestions. These suggestions help us to present our results more clearly. In
response, we have made changes according to the referee’s suggestions and replied to
all comments point by point. All the page and line number for corrections are referred
to the revised manuscript, while the page and line number from original reviews are

kept intact.

1. Accurate NMVOC emissions are essential for predicting air quality. Currently
large uncertainties exist in NMVOC emissions, both in the anthropogenic and biogenic
sources, as compared to other pollutants, such as SO2 and PM. In this study, the authors
use the RAPAS assimilation system incorporated with the EnKF assimilation algorithm
to optimize NMVOC emissions using TROPOMI HCHO retrievals. They use MEIC
2020 for anthropogenic emissions and MEGANvV2.1 for biogenic sources as the priori
NMVOC emissions. They find that NMVOC emissions are largely overestimated,
especially biogenic NMVOC emissions. They also find Oz predictions would be

lowered using the posterior NMVOC emissions.

The study seems interesting, however, [ have a few concerns about some of the key

results in this study.

First, the CMAQ model overpredicts O3 in China largely (over 20 ug/m?) in most sites
of China (Figure 4a) with the WRF-MEIC-MEGAN setups. The overpredictions are
consistent over the whole month (Figure 5). Such ‘large’ overprediction problem of Os
in CMAQ in China (or any other countries/regions) has not been reported. The
overprediction seems very consistent in space and time. The spatial distribution of VOC
emissions (in Figure 2a) also looks very uniform. More evaluation and check on the
model setups and results should be performed and provided to fully understand this
problem. Honestly, attributing such large O; predictions to VOCs emissions is

somewhat dangerous. How are the predictions on CO/ SO2/EC (the species that are less



chemically reactive)? What about the meteorology predictions?

Response: We appreciate the reviewer for his/her constructive and up-to-point
comments. Actually, it has been observed that in studies involving chemical transport
models, there is a tendency for O3 to be overestimated over China. For example, Li et
al. (2019) and Akimoto et al. (2019) conducted a model evaluation and intercomparison
of surface-level O3 in East Asia in the context of MICS-Asia Phase I1I. They discovered
that 14 state-of-the-art chemical transport models, including the WRF-CMAQ v5.0.2
model with MEIC-MEGAN emissions used in this study, widely overestimated surface
O3 over China by 10-30 ppb (20-60 ug/m?), especially in the North China Plain and the
Pearl River Delta. Liu et al. (2018), Qiao et al. (2019), and Xiong et al. (2023) also
found similar O3 overestimation (~ 20 ug/m?) in the Sichuan Basin and the Yangtze
River Delta region with the WRF-MEIC-MEGAN setups. Alternatively, in some
studies, O3 simulations have been implicitly improved by adjusting model chemical
mechanisms or adjusting precursor emissions. For example, to study the effects of
emission changes on the worsening of urban ozone pollution in China, Liu and Wang
(2020) modified the original CMAQ model to update heterogeneous reactions to

weaken the atmospheric oxidation capacity and thus inhibiting O3 formation.

To facilitate the comparison of prior and posterior NMVOC emissions, we used a
consistent legend in Figure 2. In fact, although NMVOC emissions are prevalent across
much of central and southern China, the higher emissions in Figure 2a are concentrated
in places with lush vegetation cover, such as Hunan, Jiangxi, and Zhejiang provinces,
as well as in places with intensive anthropogenic activities. Despite our optimization of
O3 precursor emissions, the posterior simulations still show some degree of
overestimation, indicating the presence of a systematic bias. We agree that the model-
data mismatch error not only originates from the emissions, but also from variations in
meteorological fields, spatial resolution, model treatments of nonlinear photochemistry
and other physical processes. We utilized surface meteorological measurements from
400 stations, including temperature at 2 m (T2), relative humidity at 2 m (RH2), and

wind speed at 10 m (WS10), and planetary boundary layer height (PBLH) measured by



sounding from 84 stations to evaluate the performance of WRF simulations (Figure S9
and Text S2). The results showed that the WRF model satisfactorily reproduced T2,
RH2, WS10, and PBLH, with small biases of -0.5 °C, -5.3%, 0.3 m/s, and -42.4 m,
respectively. The underestimated PBLH may lead to an overestimation of O3, but the
overestimated WS10 somewhat compensates for this overestimation. Additionally, due
to the relatively coarse spatial resolution, NO titration effects in urban areas may not be
well represented in the model, leading to an overestimation of O3 in these areas. Model
inherent errors arising from the model structure, parameterization, and the
simplification or lack of chemical mechanisms inevitably affect O3 simulations (Li et
al., 2020). For example, Li et al. (2018) reported that heterogeneous reactions of
nitrogen compounds could reduce surface Oz concentration by 10-20 ppb for the
polluted regions over China. These reactions have not been fully incorporated in
CMAQ chemical mechanisms. However, there is still a lack of reasonable and effective
algorithms to solve the model error in atmospheric data assimilation (Houtekamer and

Zhang, 2016).

Due to inconvenient access to EC observation data, we only show the mean bias (BIAS),
root mean square error (RMSE), and correlation coefficient (CORR) for simulated CO
and SO concentrations in the CEP and VEP experiments (Figures R1 and R2). There
is a significant underestimation of CO in the CEP with prior emissions. However, a
notable underestimation of prior CO emissions (MEIC) of about 100% has been
confirmed by inversion estimations (Feng et al., 2020; Tang et al., 2013; Wu et al., 2020)
and model evaluations (Kong et al., 2019) in previous studies. The BIAS of SO, is
relatively small. Overall, after optimization, the BIAS and RMSE of CO were reduced
from -0.27and 0.36 to -0.09 mg/m? and 0.21 mg/m?, respectively, and the BIAS and
RMSE of SO» were reduced from -0.36 and 7.0 ug/m? to -0.35 and 3.34 pg/m?,

respectively.

We have added following discussions in the revised manuscript. See lines 545-568,

pages 25-26.

“O3 simulations over China have a tendency to be overestimated in studies involving



chemical transport modeling. For example, by intercomparing 14 state-of-the-art CTMs
with O3 observations within the framework of the MICS-Asia III, Li et al. (2019)
identified a substantial overestimation of annual surface O3 in East Asia, ranging from
20 to 60 pg m>. Notably, the NCP exhibited substantial overestimations, with most
models overestimating O3 by 100-200% during May—October. Despite our
optimization of O3 precursor emissions, the posterior simulations still exhibit some
degree of overestimation (Figure 4), suggesting that there may indeed be an effect of
systematic bias, such as meteorological fields, spatial resolution, model treatments of
nonlinear photochemistry and other physical processes. The WRF can generally
reproduce meteorological conditions sufficiently in terms of their temporal variation
and magnitude over China (Figure S9), with small biases of -0.5 °C, -5.3%, 0.3 m/s,
and -42.4 m for temperature at 2 m, relative humidity at 2 m, and wind speed at 10 m,
and planetary boundary layer height, respectively. However, due to the relatively coarse
spatial resolution, NO titration effects in urban areas may not be well represented in the
model, which can lead to an overestimation of O3 in these areas. Additionally, model
inherent errors arising from the model structure, parameterization, and the
simplification or lack of chemical mechanisms inevitably affect the O3 simulations. For
example, Li et al. (2018) reported that heterogeneous reactions of nitrogen compounds
could weaken the atmospheric oxidation capacity and thus reduce surface O;
concentration by 20-40 pug m for the polluted regions over China. These reactions
have not been fully incorporated in CMAQ chemical mechanisms. However, there is
still a lack of reasonable and effective algorithms for addressing model errors through

assimilation (Houtekamer and Zhang, 2016).”
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Figure R1. Spatial distribution of mean bias (BIAS, a and b), root mean square error
(RMSE, ¢ and d), and correlation coefficient (CORR, e and f) for simulated CO using
prior (left, CEP) and posterior (right, VEP) emissions, respectively, against

observations.
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2. Figure 4a and Figure 6a seem not consistent, the difference in south China in Figure
6a looks not as significant as the north. Also the observations look no significant spatial
variation on Figure 6a, and MDAS8 O3 in August is most in blue-green color (~110

ug/m3).

Response: Thanks for your comments. Figure 4a shows the BIAS of simulated O;
throughout the entire phase in the CEP1, while Figure 6a shows a comparison between
simulated and observed values for MDAS&. Figure R3 shows the BIAS of MDAS
simulated in the CEP1 experiment, i.e., simulated minus observed in Figure 6a. A

spatial and magnitude resemblance can be observed between Figure R3 and Figure 4a.

The original Figure 6a indeed did not show significant spatial variations. We have

readjusted the legend (Figure R4), please refer to Figure 6 in the revised manuscript.
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Figure R3. Spatial distribution of BIAS for simulated maximum daily 8-hour average

(MDAZS) O3 concentrations in the CEP1 experiment.
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Figure R4. Comparisons of (a, b) simulated maximum daily 8-hour average (MDAS)
Os concentrations, (c, d) net reaction rates, (e, f) and differences in production and loss
rates between CEP1 and VEP experiments at the surface. Surface MDAS O3 values
(circles) from the national control air quality stations were overlaid (Figure 6 in the

revised manuscript)

3. What do different symbols/colors in Figure 1 mean?

Response: Thanks for this comment. In Figure 1, black squares denote surface
meteorological measurement sites; navy triangles indicate sounding sites, and red and

blue dots represent air pollution measurement sites, where red dots are used for



assimilation and blue dots for independent evaluation.

We have added a legend in Figure 1, and supplemented the explanation in the caption.

See lines 286-287, page 11.
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Figure 1. Model domain and observation network (a) and data amount of TROPOMI
HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates
the CMAQ computational domain; black squares denote surface meteorological
measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue
dots represent air pollution measurement sites, where red dots are used for assimilation

and blue dots for independent evaluation.



4. Why not choose 2020 as the study year if you have 2020 MEIC emissions?

Response: Thanks for this comment. Yes, we chose 2020 MEIC inventory as the prior
emission, and selected August 2022 as the research stage. On one hand, the publicly
available MEIC inventory has a lag, currently updated only until 2020. However, our
system adopts a ‘two-step’ inversion strategy, allowing for the timely correction of
residual errors from the previous assimilation window in the current window, thus
ensuring that the RAPAS system has a relatively low dependence on prior emissions,
which has been proven in (Feng et al., 2023). On the other hand, in the summer of 2022,
the eastern part of China experienced the strongest and longest-lasting heatwave since
1961 (Wang et al., 2023). High temperatures and drought significantly affect vegetation
growth and NMVOC emissions, which also impact O3 production. Such a complex

weather system provides a good test for the assimilation capability of our system.

We have added following discussions in the revised manuscript. See lines 321-325,

page 12.

“During the summer of 2022, southern China experienced severe heatwave conditions.
The combination of high temperatures and drought had a pronounced effect on
vegetation growth and NMVOC emissions, thereby influencing O3 production (Wang
et al., 2023). Consequently, we opted to focus on August 2022, as it presented an ideal
period for testing the assimilation capabilities of our system. Before implementing the

emission inversion,... ...

5. BVOC:s is greatly overestimation by MEGAN (over 50%). Have any other studies
reported similar findings with MEGAN in any regions? If no, please explain why such
problem occurs in China? Why previous modeling studies in China with CMAQ have

not encountered such problems (also the O3 overprediction problem)?

Response: Thanks for this comment. The estimation of BVOC emissions by MEGAN
is not consistently overestimated. For example, Bauwens et al. (2016) optimized global

BVOC emissions using source inversion of OMI HCHO observations and found that



MEGAN tends to overestimate BVOCs in low-latitude regions while underestimating
them in high-latitude areas. Research on the inverse estimation of BVOC emissions in
China remains limited. For China, Bauwens et al. (2016) showed that the greatest
overestimation of BVOC emissions occurred in southern China, up to 45%. The
overestimation of BVOC emissions simulated by MEGAN in China is further validated
by model evaluation studies (Kim et al., 2017; Kim et al., 2024). In other regions,
Marais et al. (2014) found that MEGAN's isoprene emissions were 5-10 times higher
than the canopy-scale flux measurements obtained from African field campaigns in
equatorial forest and woody savannas. Warneke et al. (2010) found that MEGAN
overestimated BVOC emissions by up to a factor of two when compared to estimates
based on airborne measurements over Texas. Millet et al. (2008) compared isoprene
emissions derived using satellite-observed HCHO columns with MEGAN emissions
for North America, noting an average overestimation of BVOC emissions by a factor
of 2, reaching up to a factor of 5 in certain locations. Similarly, Wang et al. (2017)
observed a significant overestimation of BVOC emissions by MEGAN, averaging a
factor of 3 in the United States. Kaiser et al. (2018) applied an adjoint algorithm to
estimate isoprene emission over the southeast US, revealing an average overestimation
of MEGAN-derived BVOC emissions by 40%, slightly lower than the 50%
overestimations reported by Bauwens et al. (2016). Additionally, Chaliyakunnel et al.
(2019) found the modeled BVOC emissions using MEGAN were overestimated by
approximately 30-60% for most locations and seasons. Therefore, there is indeed a

possibility of significant uncertainty in MEGAN.

The significant decrease in BVOC emissions observed in this study may also be
influenced by other factors. Apart from inaccuracies in the distribution of plant
functional types, empirical parameterization, especially concerning responses to
temperature and drought stress, can introduce substantial uncertainties (Angot et al.,
2020; Jiang et al., 2018). Zhang et al. (2021) highlighted that the temperature-dependent
activity factor increases evidently with rising temperatures in the MEGAN model.

Additionally, Wang et al. (2021) pointed out that the missing of a drought scheme is



one of the factors causing the isoprene overestimation in the MEGAN model. Wang et
al. (2022) applied new drought stress algorithms to simulate the impact of drought on
isoprene emission and found that drought can decrease isoprene emission globally by
11%. During the summer of 2022, southern China experienced severe heatwave
conditions. The MEGAN model may not effectively capture the impacts of high
temperatures and drought on vegetation, leading to significant uncertainties in BVOC
emissions.

It has been widely observed in existing studies that there is a trend of overestimation of
Os in China, which is similar to the overestimation found in this study. Please refer to
Comment 1 for further details.

We have added the following discussions. See lines 374-390, page 15.

“Additionally, uncertainties in MEGAN parameterization have significant implications
for NMVOC emission estimations, particularly concerning the responses of vegetation
in MEGAN to temperature and drought stress (Angot et al., 2020; Jiang et al., 2018).
Zhang et al. (2021) highlighted that the temperature-dependent activity factor
noticeably increases with rising temperatures in MEGAN. Wang et al. (2021b) pointed
out that the missing of a drought scheme is one of the factors causing the overestimation
of isoprene emissions in MEGAN. Opacka et al. (2022) optimized the empirical
parameter in the MEGANV2.1 soil moisture stress algorithm, resulting in significant
reductions in isoprene emissions and providing better agreement between modelled and
observed HCHO temporal variability in the central U.S. During the study period, China
experienced severe heatwave conditions, which may further hinder the MEGAN's
ability to effectively capture the impacts of high temperatures and drought on
vegetation, thus resulting in significant overestimation in NMVOC emissions (Wang et
al., 2022). Nevertheless, the large magnitude of emission reductions of 50.2% in our
inversion is comparable to studies in southern China (Bauwens et al., 2016; Zhou et al.,
2023), southeastern US (Kaiser et al., 2018), Africa (Marais et al., 2014), India
(Chaliyakunnel et al., 2019), Amazonia (Bauwens et al., 2016), and parts of Europe
(Curci et al., 2010), but opposite to the large-scale emission increase over China in Cao

et al. (2018). For NOy (Figure S4), ... ... ”?
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Responses to the comments of Reviewer #2:

We would like to thank the anonymous referee for his/her comprehensive review and
valuable suggestions. These suggestions help us to present our results more clearly. In
response, we have made changes according to the referee’s suggestions and replied to
all comments point by point. All the page and line number for corrections are referred
to the revised manuscript, while the page and line number from original reviews are

kept intact.

General comments:

As the key precursors of Ozone (O3), Non-methane volatile organic compounds
(NMVOC) have an important influence on the formation of photochemical, secondary
organic aerosols and organic acids, harming human health. It is important and challenge
to accurate estimate the spatiotemporal distribution of NMVOC emissions. This study
presents the NMVOC emissions over China based on EnKF method by assimilating
TROPOMI HCHO retrievals. Authors also optimize NOx emissions to reduce the
influence of VOC-NOx-O3 chemical feedback. The results showed that the forecast
experiment with posterior NMVOC emissions reduced the uncertainty of HCHO and
concentrations simulation. And the impact on surface O3 simulation with prior and
posterior NMVOC emissions was analyzed. The results will help to improve model
forecasts of HCHO, NOx, and O3 concentrations and contribute to design suitable
emission reduction policies.

However, the structure of the article should be revised. Authors conducted four set of
DA experiments and five set of forecast experiments. They discuss the influence of
background error and observation error on the effect of optimizing HCHO emissions.
And They also analyzed the impact on surface O3 simulation with prior and posterior
NMVOC emissions. Thus, there are too many goals in the study, and it is difficult for
readers to remember the setting of these nine experiments. I suggested to delete the
discussion about the influence of background error (B) and observation error (R) on the

effect of optimizing HCHO emissions in the section 4.4. It would be nice to discuss the



influence of the B and R when introducing the EnKF method and explain why authors
design the B and R to optimize NMVOC emissions in this study.

Response: We appreciate the reviewer for his/her constructive and up-to-point
comments. We have further elaborated on the rationale behind the selection of
observational and background error settings. We also briefly discussed the influence of
TROPOMI retrieval errors and background errors on optimizing HCHO emissions in
Section 2.2 and 2.3, respectively. We also deleted the aforementioned discussion in
Section 4.4. Correspondingly, we removed the EMS1, EMS2, and CEP2 experiments
from the original manuscript, and renamed the EMS3 experiment to EMS, and renamed
the CEP3 experiment to CEP2 in the revised manuscript.

See lines 249-257, pages 8-9.

“Based on validation against a global network of 25 ground-based Fourier transform
infrared (FTIR) column measurements (Vigouroux et al., 2020), TROPOMI HCHO
overestimates by 25% (<2.5x10'> molec cm) in clean regions and underestimates by
30% (>=8x10" molec cm) in polluted regions. Therefore, we set the measurement
error to 30%. To evaluate the effect of observational data retrieval errors on emission
estimates, we conducted a sensitivity experiment in which HCHO columns were
empirically bias-corrected according to the error characteristics described above
(Figure S1). The posterior emissions increased by 12.8% compared to those in the base
experiment (EMDA), indicating that the existing retrieval error in HCHO
measurements likely exerts an influence on the estimation of NMVOC emissions.”

See lines 312-317, page 12.

...... Based on model evaluation, the uncertainty of NMVOC emissions was set to 40%
(Kaiser et al., 2018; Souri et al., 2020; Cao et al., 2018). A sensitivity experiment
involving a doubling of the prior uncertainty (80%) revealed that the differences in
posterior NMVOC emissions amounted to a mere 0.2% (Figure S2). The
implementation of a ‘two-step’ inversion strategy allows for the timely correction of
residual errors from the previous assimilation window in the current window, thus

ensuring that the RAPAS system has a relatively low dependence on prior uncertainty



settings. This study also addresses uncertainties... ...
See lines 329-347, page 13.

...... Additionally, we designed a sensitivity experiment (EMS) to illustrate the
significance of optimizing NO, emissions in quantifying VOC-O; chemical reactions.
In this experiment, NO, emissions were not optimized. To validate the posterior
emissions of NO, and NMVOCs in EMDA, we compared two parallel forward
simulation experiments, denoted as CEP and VEP, corresponding to prior and posterior
emission scenarios, respectively, against NO, and HCHO measurements. To investigate
the impact of optimizing NMVOC emissions on the secondary production and loss of
surface O3, a forward simulation experiment (CEP1) was conducted with the prior
NMVOC emissions and the posterior NO, emissions. Another forward modelling
experiment (CEP2) used the posterior emissions of EMS to evaluate its
performance..... ...
See lines 359-360, page 14.

Table 1. The assimilation, sensitivity, and validation experiments conducted in this

study.

Exp.
Exp.Type P NMVOC emissions NOx emissions

Name

MEIC 2020 and
MEGAN for August (the
first DA  window),

optimized emissions of

MEIC 2020 and MEGAN for
August (the first DA window),
Assimilation =~ EMDA  optimized emissions of the

previous window (other DA ) )
the previous window

ind.
windows) (other DA windows)
e MEIC 2020 and
Sensitivity EMS Same as EMDA
MEGAN for August
CEP MEIC 2020 and MEGAN for MEIC 2020 and
August MEGAN for August

. .. Posterior emissions of
o VEP Posterior emissions of EMDA
Validation EMDA

Posterior emissions of

CEP1 Same as CEP
EMDA

CEP2 Posterior emissions of EMS Same as CEP




Specific comments:

1. Line 40: It should be “Compared with the forecast experiment with prior emission,
the forecast with posterior ...”. The statement should be revised.

Response: Thank you for your comment. We have changed the statement. See lines 40-
41, page 2.

“Compared with the forecast with prior emissions, the forecast with posterior emissions
significantly improved HCHO simulations, reducing biases by 75.7%, indicating a

2

notable decrease in posterior emission uncertainties.

2. Line 42: “Moreover” should be deleted. And the statement also should be revised
Response: We have deleted the “Moreover” and enhanced the English expression. See
lines 43-45, page 2.

“The forecast with posterior emissions also effectively corrected the overestimation of

O3 in forecast with prior emissions, reducing biases by 49.3%.”

3. Line 176: What did you consider about the boundary condition of NMVOC and
NOx?

Response: Thank you for this comment. In this study, the boundary conditions for NO,
(including NO and NO3), O3, and HCHO were extracted from the outputs of the Whole
Atmosphere Community Climate Model (WACCM). For the other components of
NMVOCs, since most NMVOC components have a short atmospheric lifetime
(Gaubert et al., 2020; Li et al., 2020). For instance, isoprene, which is the primary
component of NMVOC:s, has a lifetime of approximately 1 h (Bates and Jacob, 2019).
Consequently, the chemical lateral boundary conditions for NMVOCs were just derived
from background profiles.

We have added relevant descriptions. See lines 178-183, page 6.

“Chemical lateral boundary conditions for NO, NO,, HCHO, and O3 were extracted
from the output of the global CTM (i.e., the Whole Atmosphere Community Climate
Model, WACCM) with a resolution of 0.9° x 1.25° at 6-hour intervals (Marsh et al.,

2013). Meanwhile, boundary conditions for the other NMVOCs were obtained directly



from background profiles. In the first data assimilation (DA) window, chemical initial
conditions (excluding NMVOCs) were also derived from the WACCM outputs,

whereas ... ...

4. Line 204~207: Did author consider about the correction of NOx and NMVOCs in
the DA system?
Response: Yes, NOx and NMVOCs emissions were corrected simultaneously in DA

systems. See lines 140-145, page 5.

5. Line 209~210: As NO2 is a kind of short lifetime gas, the concentration of surface
NO2 measurements not only present NO2, but also may include NOx. What did you
consider about the influence of NO2 observation uncertain on optimizing NOx
emissions?

Response: Thank you for this comment. Actually, the perturbed samples of NOx
emission in this study are divided to NO, and NO with a fixed NO2/NO ratio of 1/9
(Zhang et al., 2007). The process of NO being oxidized to NO> during transport from
sources to observation sites is fully taken into account by atmospheric transport models.

Therefore, we can directly assimilate NO> observations to optimize NOx emissions.



6. Line 265: It would be better to use mosaic diagram to present the data amount of
TROPOMI HCHO.
Response: Thank you for your suggestion. We have used mosaic diagram to present

the data amount of TROPOMI HCHO. See Figure 1 in the revised manuscript.
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Figure R1. Model domain and observation network (a) and data amount of TROPOMI
HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates
the CMAQ computational domain; black squares denote surface meteorological
measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue
dots represent air pollution measurement sites, where red dots are used for assimilation

and blue dots for independent evaluation. (Figure 1 in the revised manuscript)



7. Line 299: Please added the year of the study period.

Response: Thanks. We have added the year of the study period. See line 326, page 12.
“Before implementing the emission inversion, a relatively perfect initial field is
generated at 0000 UTC on August 1, 2022 through conducting a 5-day simulation with

6-hour interval 3D-Var data assimilation.”

8. Line 307~314: The background error covariance is implicitly expressed in the
EnKF method. How did author implement EMS1 experiment in the DA system? And it
would be better to introduce EMS1-3 experiment follow the EMDA, making the text
description consistent with the Tablel.

Response: Thank you for this suggestion. Yes, in the EnKF method, the background
error covariance is computed implicitly. However, prior emission uncertainty needs to
be provided before implementing the DA system. Specifically, in the EMS1 experiment,
we increased the prior uncertainty from 40% to 80%. We have revised this sentence for
clarity and precision. See line 313 page 12.

Additionally, we have adjusted the introduction order of those experiments in Section
3, while also removing the EMS1 and EMS2 experiments (See General comments).
“A sensitivity experiment involving a doubling of the prior uncertainty (80%) revealed

that the differences in posterior NMVOC emissions... ...

9. Line 324 and 351: “prior and posterior emissions” should be “prior and posterior
NMVOC emissions”, and “EMGAN” should be “MEGAN”.

Response: Corrected. Thanks.

See line 364, page 14.

“Figure 2 shows the spatial distribution of temporally averaged prior and posterior
NMVOC emissions, along with ... ... ”?

See line 401, page 16.

“Figure 2. Spatial distribution of the time-averaged (a) prior emissions (MEIC

2020 + MEGAN), (b) posterior emissions ... ... ”



10. Line 440-441, Figure 5: It is difficult for readers to remember the setting of
experiments. And I think that “CEP3” should be “CEP1” in the Fig. 5a?
Response: Thank you for bringing this oversight to our attention. We have corrected

the error. Additionally, we have removed the EMS1, EMS2, and CEP2 experiments

from the original manuscript (See General comments).
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Figure R2. Time series comparison of hourly surface O3 concentrations (ug m) and

RMSE (ug m) from CEP1 and VEP experiments against all observations. (Figure 5

in the revised manuscript)



11. Line 515-518: The background errors and observation errors play an important role
in the DA system. It would be better to give a detailed explanation of why the difference
in two posterior NMVOC emissions was small by using ‘two-step’ inversion strategy
in the DA system.

Response: Thank you for this suggestion. In this study, we innovatively used a “two-
step” optimization strategy, in which the emissions are inferred first and then input into
the CMAQ model to simulate initial conditions of the next window. That is, the residual
error of the current window is reflected in the initial conditions of the next window.
Meanwhile, the optimized emissions are transferred to the next window as prior
emissions. Therefore, the residual errors from the current assimilation window will be
promptly corrected in the next window. This cyclic iteration inversion ensures that the
RAPAS system has a relatively low dependence on prior uncertainty settings (Feng et
al., 2023). We have included the following discussion in the revised manuscript.

Lines 158-161, page 6.

“The inversion process follows a two-step procedure within each inversion window, in
which the emissions are inferred first and then input into the CMAQ model to simulate
initial conditions of the next window. Meanwhile, the optimized emissions are
transferred to the next window as prior emissions. The two-step inversion strategy

facilitates error propagation and iterative emission optimization, which have... ...
Lines 314-317, page 12.

“A sensitivity experiment involving a doubling of the prior uncertainty (80%)
revealed that the differences in posterior NMVOC emissions amounted to a mere
0.2% (Figure S2). The implementation of a ‘two-step’ inversion strategy allows for
the timely correction of residual errors from the previous assimilation window in
the current window, thus ensuring that the RAPAS system has a relatively low

dependence on prior uncertainty settings.”
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