
Responses to the comments of Reviewer #1: 

We would like to thank the anonymous referee for his/her comprehensive review and 

valuable suggestions. These suggestions help us to present our results more clearly. In 

response, we have made changes according to the referee’s suggestions and replied to 

all comments point by point. All the page and line number for corrections are referred 

to the revised manuscript, while the page and line number from original reviews are 

kept intact. 

 

 

1. Accurate NMVOC emissions are essential for predicting air quality. Currently 

large uncertainties exist in NMVOC emissions, both in the anthropogenic and biogenic 

sources, as compared to other pollutants, such as SO2 and PM. In this study, the authors 

use the RAPAS assimilation system incorporated with the EnKF assimilation algorithm 

to optimize NMVOC emissions using TROPOMI HCHO retrievals. They use MEIC 

2020 for anthropogenic emissions and MEGANv2.1 for biogenic sources as the priori 

NMVOC emissions. They find that NMVOC emissions are largely overestimated, 

especially biogenic NMVOC emissions. They also find O3 predictions would be 

lowered using the posterior NMVOC emissions. 

The study seems interesting, however, I have a few concerns about some of the key 

results in this study. 

First, the CMAQ model overpredicts O3 in China largely (over 20 ug/m3) in most sites 

of China (Figure 4a) with the WRF-MEIC-MEGAN setups. The overpredictions are 

consistent over the whole month (Figure 5). Such ‘large’ overprediction problem of O3 

in CMAQ in China (or any other countries/regions) has not been reported. The 

overprediction seems very consistent in space and time. The spatial distribution of VOC 

emissions (in Figure 2a) also looks very uniform. More evaluation and check on the 

model setups and results should be performed and provided to fully understand this 

problem. Honestly, attributing such large O3 predictions to VOCs emissions is 

somewhat dangerous. How are the predictions on CO/ SO2/EC (the species that are less 



chemically reactive)? What about the meteorology predictions? 

Response: We appreciate the reviewer for his/her constructive and up-to-point 

comments. Actually, it has been observed that in studies involving chemical transport 

models, there is a tendency for O3 to be overestimated over China. For example, Li et 

al. (2019) and Akimoto et al. (2019) conducted a model evaluation and intercomparison 

of surface-level O3 in East Asia in the context of MICS-Asia Phase III. They discovered 

that 14 state-of-the-art chemical transport models, including the WRF-CMAQ v5.0.2 

model with MEIC-MEGAN emissions used in this study, widely overestimated surface 

O3 over China by 10-30 ppb (20-60 μg/m3), especially in the North China Plain and the 

Pearl River Delta. Liu et al. (2018), Qiao et al. (2019), and Xiong et al. (2023) also 

found similar O3 overestimation (~ 20 μg/m3) in the Sichuan Basin and the Yangtze 

River Delta region with the WRF-MEIC-MEGAN setups. Alternatively, in some 

studies, O3 simulations have been implicitly improved by adjusting model chemical 

mechanisms or adjusting precursor emissions. For example, to study the effects of 

emission changes on the worsening of urban ozone pollution in China, Liu and Wang 

(2020) modified the original CMAQ model to update heterogeneous reactions to 

weaken the atmospheric oxidation capacity and thus inhibiting O3 formation. 

To facilitate the comparison of prior and posterior NMVOC emissions, we used a 

consistent legend in Figure 2. In fact, although NMVOC emissions are prevalent across 

much of central and southern China, the higher emissions in Figure 2a are concentrated 

in places with lush vegetation cover, such as Hunan, Jiangxi, and Zhejiang provinces, 

as well as in places with intensive anthropogenic activities. Despite our optimization of 

O3 precursor emissions, the posterior simulations still show some degree of 

overestimation, indicating the presence of a systematic bias. We agree that the model-

data mismatch error not only originates from the emissions, but also from variations in 

meteorological fields, spatial resolution, model treatments of nonlinear photochemistry 

and other physical processes. We utilized surface meteorological measurements from 

400 stations, including temperature at 2 m (T2), relative humidity at 2 m (RH2), and 

wind speed at 10 m (WS10), and planetary boundary layer height (PBLH) measured by 



sounding from 84 stations to evaluate the performance of WRF simulations (Figure S9 

and Text S2). The results showed that the WRF model satisfactorily reproduced T2, 

RH2, WS10, and PBLH, with small biases of -0.5 °C, -5.3%, 0.3 m/s, and -42.4 m, 

respectively. The underestimated PBLH may lead to an overestimation of O3, but the 

overestimated WS10 somewhat compensates for this overestimation. Additionally, due 

to the relatively coarse spatial resolution, NO titration effects in urban areas may not be 

well represented in the model, leading to an overestimation of O3 in these areas. Model 

inherent errors arising from the model structure, parameterization, and the 

simplification or lack of chemical mechanisms inevitably affect O3 simulations (Li et 

al., 2020). For example, Li et al. (2018) reported that heterogeneous reactions of 

nitrogen compounds could reduce surface O3 concentration by 10–20 ppb for the 

polluted regions over China. These reactions have not been fully incorporated in 

CMAQ chemical mechanisms. However, there is still a lack of reasonable and effective 

algorithms to solve the model error in atmospheric data assimilation (Houtekamer and 

Zhang, 2016). 

Due to inconvenient access to EC observation data, we only show the mean bias (BIAS), 

root mean square error (RMSE), and correlation coefficient (CORR) for simulated CO 

and SO2 concentrations in the CEP and VEP experiments (Figures R1 and R2). There 

is a significant underestimation of CO in the CEP with prior emissions. However, a 

notable underestimation of prior CO emissions (MEIC) of about 100% has been 

confirmed by inversion estimations (Feng et al., 2020; Tang et al., 2013; Wu et al., 2020) 

and model evaluations (Kong et al., 2019) in previous studies. The BIAS of SO2 is 

relatively small. Overall, after optimization, the BIAS and RMSE of CO were reduced 

from -0.27and 0.36 to -0.09 mg/m3 and 0.21 mg/m3, respectively, and the BIAS and 

RMSE of SO2 were reduced from -0.36 and 7.0 μg/m3 to -0.35 and 3.34 μg/m3, 

respectively.  

We have added following discussions in the revised manuscript. See lines 545-568, 

pages 25-26. 

“O3 simulations over China have a tendency to be overestimated in studies involving 



chemical transport modeling. For example, by intercomparing 14 state-of-the-art CTMs 

with O3 observations within the framework of the MICS-Asia III, Li et al. (2019) 

identified a substantial overestimation of annual surface O3 in East Asia, ranging from 

20 to 60 μg m−3. Notably, the NCP exhibited substantial overestimations, with most 

models overestimating O3 by 100–200% during May–October. Despite our 

optimization of O3 precursor emissions, the posterior simulations still exhibit some 

degree of overestimation (Figure 4), suggesting that there may indeed be an effect of 

systematic bias, such as meteorological fields, spatial resolution, model treatments of 

nonlinear photochemistry and other physical processes. The WRF can generally 

reproduce meteorological conditions sufficiently in terms of their temporal variation 

and magnitude over China (Figure S9), with small biases of -0.5 °C, -5.3%, 0.3 m/s, 

and -42.4 m for temperature at 2 m, relative humidity at 2 m, and wind speed at 10 m, 

and planetary boundary layer height, respectively. However, due to the relatively coarse 

spatial resolution, NO titration effects in urban areas may not be well represented in the 

model, which can lead to an overestimation of O3 in these areas. Additionally, model 

inherent errors arising from the model structure, parameterization, and the 

simplification or lack of chemical mechanisms inevitably affect the O3 simulations. For 

example, Li et al. (2018) reported that heterogeneous reactions of nitrogen compounds 

could weaken the atmospheric oxidation capacity and thus reduce surface O3 

concentration by 20–40 μg m-3 for the polluted regions over China. These reactions 

have not been fully incorporated in CMAQ chemical mechanisms. However, there is 

still a lack of reasonable and effective algorithms for addressing model errors through 

assimilation (Houtekamer and Zhang, 2016).” 

 

 



 

Figure R1. Spatial distribution of mean bias (BIAS, a and b), root mean square error 

(RMSE, c and d), and correlation coefficient (CORR, e and f) for simulated CO using 

prior (left, CEP) and posterior (right, VEP) emissions, respectively, against 

observations.  



 

Figure R2. Same as Figure R1, but for SO2. 

 

 

 

 

 

 

 

 



2. Figure 4a and Figure 6a seem not consistent, the difference in south China in Figure 

6a looks not as significant as the north. Also the observations look no significant spatial 

variation on Figure 6a, and MDA8 O3 in August is most in blue-green color (~110 

ug/m3). 

Response: Thanks for your comments. Figure 4a shows the BIAS of simulated O3 

throughout the entire phase in the CEP1, while Figure 6a shows a comparison between 

simulated and observed values for MDA8. Figure R3 shows the BIAS of MDA8 

simulated in the CEP1 experiment, i.e., simulated minus observed in Figure 6a. A 

spatial and magnitude resemblance can be observed between Figure R3 and Figure 4a. 

The original Figure 6a indeed did not show significant spatial variations. We have 

readjusted the legend (Figure R4), please refer to Figure 6 in the revised manuscript. 

 

Figure R3. Spatial distribution of BIAS for simulated maximum daily 8-hour average 

(MDA8) O3 concentrations in the CEP1 experiment. 

 



 

Figure R4. Comparisons of (a, b) simulated maximum daily 8-hour average (MDA8) 

O3 concentrations, (c, d) net reaction rates, (e, f) and differences in production and loss 

rates between CEP1 and VEP experiments at the surface. Surface MDA8 O3 values 

(circles) from the national control air quality stations were overlaid (Figure 6 in the 

revised manuscript) 

 

3. What do different symbols/colors in Figure 1 mean? 

Response: Thanks for this comment. In Figure 1, black squares denote surface 

meteorological measurement sites; navy triangles indicate sounding sites, and red and 

blue dots represent air pollution measurement sites, where red dots are used for 



assimilation and blue dots for independent evaluation.  

We have added a legend in Figure 1, and supplemented the explanation in the caption. 

See lines 286-287, page 11. 

 

Figure 1. Model domain and observation network (a) and data amount of TROPOMI 

HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates 

the CMAQ computational domain; black squares denote surface meteorological 

measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue 

dots represent air pollution measurement sites, where red dots are used for assimilation 

and blue dots for independent evaluation. 



4. Why not choose 2020 as the study year if you have 2020 MEIC emissions? 

Response: Thanks for this comment. Yes, we chose 2020 MEIC inventory as the prior 

emission, and selected August 2022 as the research stage. On one hand, the publicly 

available MEIC inventory has a lag, currently updated only until 2020. However, our 

system adopts a ‘two-step’ inversion strategy, allowing for the timely correction of 

residual errors from the previous assimilation window in the current window, thus 

ensuring that the RAPAS system has a relatively low dependence on prior emissions, 

which has been proven in (Feng et al., 2023). On the other hand, in the summer of 2022, 

the eastern part of China experienced the strongest and longest-lasting heatwave since 

1961 (Wang et al., 2023). High temperatures and drought significantly affect vegetation 

growth and NMVOC emissions, which also impact O3 production. Such a complex 

weather system provides a good test for the assimilation capability of our system. 

We have added following discussions in the revised manuscript. See lines 321-325, 

page 12. 

“During the summer of 2022, southern China experienced severe heatwave conditions. 

The combination of high temperatures and drought had a pronounced effect on 

vegetation growth and NMVOC emissions, thereby influencing O3 production (Wang 

et al., 2023). Consequently, we opted to focus on August 2022, as it presented an ideal 

period for testing the assimilation capabilities of our system. Before implementing the 

emission inversion,… …” 

 

5. BVOCs is greatly overestimation by MEGAN (over 50%). Have any other studies 

reported similar findings with MEGAN in any regions? If no, please explain why such 

problem occurs in China? Why previous modeling studies in China with CMAQ have 

not encountered such problems (also the O3 overprediction problem)? 

Response: Thanks for this comment. The estimation of BVOC emissions by MEGAN 

is not consistently overestimated. For example, Bauwens et al. (2016) optimized global 

BVOC emissions using source inversion of OMI HCHO observations and found that 



MEGAN tends to overestimate BVOCs in low-latitude regions while underestimating 

them in high-latitude areas. Research on the inverse estimation of BVOC emissions in 

China remains limited. For China, Bauwens et al. (2016) showed that the greatest 

overestimation of BVOC emissions occurred in southern China, up to 45%. The 

overestimation of BVOC emissions simulated by MEGAN in China is further validated 

by model evaluation studies (Kim et al., 2017; Kim et al., 2024). In other regions, 

Marais et al. (2014) found that MEGAN's isoprene emissions were 5-10 times higher 

than the canopy-scale flux measurements obtained from African field campaigns in 

equatorial forest and woody savannas. Warneke et al. (2010) found that MEGAN 

overestimated BVOC emissions by up to a factor of two when compared to estimates 

based on airborne measurements over Texas. Millet et al. (2008) compared isoprene 

emissions derived using satellite-observed HCHO columns with MEGAN emissions 

for North America, noting an average overestimation of BVOC emissions by a factor 

of 2, reaching up to a factor of 5 in certain locations. Similarly, Wang et al. (2017) 

observed a significant overestimation of BVOC emissions by MEGAN, averaging a 

factor of 3 in the United States. Kaiser et al. (2018) applied an adjoint algorithm to 

estimate isoprene emission over the southeast US, revealing an average overestimation 

of MEGAN-derived BVOC emissions by 40%, slightly lower than the 50% 

overestimations reported by Bauwens et al. (2016). Additionally, Chaliyakunnel et al. 

(2019) found the modeled BVOC emissions using MEGAN were overestimated by 

approximately 30–60% for most locations and seasons. Therefore, there is indeed a 

possibility of significant uncertainty in MEGAN. 

The significant decrease in BVOC emissions observed in this study may also be 

influenced by other factors. Apart from inaccuracies in the distribution of plant 

functional types, empirical parameterization, especially concerning responses to 

temperature and drought stress, can introduce substantial uncertainties (Angot et al., 

2020; Jiang et al., 2018). Zhang et al. (2021) highlighted that the temperature-dependent 

activity factor increases evidently with rising temperatures in the MEGAN model. 

Additionally, Wang et al. (2021) pointed out that the missing of a drought scheme is 



one of the factors causing the isoprene overestimation in the MEGAN model. Wang et 

al. (2022) applied new drought stress algorithms to simulate the impact of drought on 

isoprene emission and found that drought can decrease isoprene emission globally by 

11%. During the summer of 2022, southern China experienced severe heatwave 

conditions. The MEGAN model may not effectively capture the impacts of high 

temperatures and drought on vegetation, leading to significant uncertainties in BVOC 

emissions. 

It has been widely observed in existing studies that there is a trend of overestimation of 

O3 in China, which is similar to the overestimation found in this study. Please refer to 

Comment 1 for further details. 

We have added the following discussions. See lines 374-390, page 15. 

“Additionally, uncertainties in MEGAN parameterization have significant implications 

for NMVOC emission estimations, particularly concerning the responses of vegetation 

in MEGAN to temperature and drought stress (Angot et al., 2020; Jiang et al., 2018). 

Zhang et al. (2021) highlighted that the temperature-dependent activity factor 

noticeably increases with rising temperatures in MEGAN. Wang et al. (2021b) pointed 

out that the missing of a drought scheme is one of the factors causing the overestimation 

of isoprene emissions in MEGAN. Opacka et al. (2022) optimized the empirical 

parameter in the MEGANv2.1 soil moisture stress algorithm, resulting in significant 

reductions in isoprene emissions and providing better agreement between modelled and 

observed HCHO temporal variability in the central U.S. During the study period, China 

experienced severe heatwave conditions, which may further hinder the MEGAN's 

ability to effectively capture the impacts of high temperatures and drought on 

vegetation, thus resulting in significant overestimation in NMVOC emissions (Wang et 

al., 2022). Nevertheless, the large magnitude of emission reductions of 50.2% in our 

inversion is comparable to studies in southern China (Bauwens et al., 2016; Zhou et al., 

2023), southeastern US (Kaiser et al., 2018), Africa (Marais et al., 2014), India 

(Chaliyakunnel et al., 2019), Amazonia (Bauwens et al., 2016), and parts of Europe 

(Curci et al., 2010), but opposite to the large-scale emission increase over China in Cao 

et al. (2018). For NOx (Figure S4), … …” 
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Responses to the comments of Reviewer #2: 

We would like to thank the anonymous referee for his/her comprehensive review and 

valuable suggestions. These suggestions help us to present our results more clearly. In 

response, we have made changes according to the referee’s suggestions and replied to 

all comments point by point. All the page and line number for corrections are referred 

to the revised manuscript, while the page and line number from original reviews are 

kept intact. 

 

General comments: 

As the key precursors of Ozone (O3), Non-methane volatile organic compounds 

(NMVOC) have an important influence on the formation of photochemical, secondary 

organic aerosols and organic acids, harming human health. It is important and challenge 

to accurate estimate the spatiotemporal distribution of NMVOC emissions. This study 

presents the NMVOC emissions over China based on EnKF method by assimilating 

TROPOMI HCHO retrievals. Authors also optimize NOx emissions to reduce the 

influence of VOC-NOx-O3 chemical feedback. The results showed that the forecast 

experiment with posterior NMVOC emissions reduced the uncertainty of HCHO and 

concentrations simulation. And the impact on surface O3 simulation with prior and 

posterior NMVOC emissions was analyzed. The results will help to improve model 

forecasts of HCHO, NOx, and O3 concentrations and contribute to design suitable 

emission reduction policies.  

However, the structure of the article should be revised. Authors conducted four set of 

DA experiments and five set of forecast experiments. They discuss the influence of 

background error and observation error on the effect of optimizing HCHO emissions. 

And They also analyzed the impact on surface O3 simulation with prior and posterior 

NMVOC emissions. Thus, there are too many goals in the study, and it is difficult for 

readers to remember the setting of these nine experiments. I suggested to delete the 

discussion about the influence of background error (B) and observation error (R) on the 

effect of optimizing HCHO emissions in the section 4.4. It would be nice to discuss the 



influence of the B and R when introducing the EnKF method and explain why authors 

design the B and R to optimize NMVOC emissions in this study. 

Response: We appreciate the reviewer for his/her constructive and up-to-point 

comments. We have further elaborated on the rationale behind the selection of 

observational and background error settings. We also briefly discussed the influence of 

TROPOMI retrieval errors and background errors on optimizing HCHO emissions in 

Section 2.2 and 2.3, respectively. We also deleted the aforementioned discussion in 

Section 4.4. Correspondingly, we removed the EMS1, EMS2, and CEP2 experiments 

from the original manuscript, and renamed the EMS3 experiment to EMS, and renamed 

the CEP3 experiment to CEP2 in the revised manuscript. 

See lines 249-257, pages 8-9. 

“Based on validation against a global network of 25 ground-based Fourier transform 

infrared (FTIR) column measurements (Vigouroux et al., 2020), TROPOMI HCHO 

overestimates by 25% (<2.5×1015 molec cm-2) in clean regions and underestimates by 

30% (>=8×1015 molec cm-2) in polluted regions. Therefore, we set the measurement 

error to 30%. To evaluate the effect of observational data retrieval errors on emission 

estimates, we conducted a sensitivity experiment in which HCHO columns were 

empirically bias-corrected according to the error characteristics described above 

(Figure S1). The posterior emissions increased by 12.8% compared to those in the base 

experiment (EMDA), indicating that the existing retrieval error in HCHO 

measurements likely exerts an influence on the estimation of NMVOC emissions.” 

See lines 312-317, page 12. 

“… …Based on model evaluation, the uncertainty of NMVOC emissions was set to 40% 

(Kaiser et al., 2018; Souri et al., 2020; Cao et al., 2018). A sensitivity experiment 

involving a doubling of the prior uncertainty (80%) revealed that the differences in 

posterior NMVOC emissions amounted to a mere 0.2% (Figure S2). The 

implementation of a ‘two-step’ inversion strategy allows for the timely correction of 

residual errors from the previous assimilation window in the current window, thus 

ensuring that the RAPAS system has a relatively low dependence on prior uncertainty 



settings. This study also addresses uncertainties… …” 

See lines 329-347, page 13. 

“… …Additionally, we designed a sensitivity experiment (EMS) to illustrate the 

significance of optimizing NOx emissions in quantifying VOC-O3 chemical reactions. 

In this experiment, NOx emissions were not optimized. To validate the posterior 

emissions of NOx and NMVOCs in EMDA, we compared two parallel forward 

simulation experiments, denoted as CEP and VEP, corresponding to prior and posterior 

emission scenarios, respectively, against NO2 and HCHO measurements. To investigate 

the impact of optimizing NMVOC emissions on the secondary production and loss of 

surface O3, a forward simulation experiment (CEP1) was conducted with the prior 

NMVOC emissions and the posterior NOx emissions. Another forward modelling 

experiment (CEP2) used the posterior emissions of EMS to evaluate its 

performance.…. …” 

See lines 359-360, page 14. 

Table 1. The assimilation, sensitivity, and validation experiments conducted in this 

study. 

Exp.Type 
Exp. 

Name 
NMVOC emissions NOx emissions 

Assimilation EMDA 

MEIC 2020 and MEGAN for 

August (the first DA window), 

optimized emissions of the 

previous window (other DA 

windows) 

MEIC 2020 and 

MEGAN for August (the 

first DA window), 

optimized emissions of 

the previous window 

(other DA windows) 

Sensitivity EMS Same as EMDA 
MEIC 2020 and 

MEGAN for August 

Validation 

CEP 
MEIC 2020 and MEGAN for 

August 

MEIC 2020 and 

MEGAN for August 

VEP Posterior emissions of EMDA 
Posterior emissions of 

EMDA 

CEP1 Same as CEP 
Posterior emissions of 

EMDA 

CEP2 Posterior emissions of EMS Same as CEP 

 



Specific comments: 

1. Line 40: It should be “Compared with the forecast experiment with prior emission, 

the forecast with posterior ...”. The statement should be revised. 

Response: Thank you for your comment. We have changed the statement. See lines 40-

41, page 2. 

“Compared with the forecast with prior emissions, the forecast with posterior emissions 

significantly improved HCHO simulations, reducing biases by 75.7%, indicating a 

notable decrease in posterior emission uncertainties.  … …”. 

 

2. Line 42: “Moreover” should be deleted. And the statement also should be revised 

Response: We have deleted the “Moreover” and enhanced the English expression. See 

lines 43-45, page 2. 

“The forecast with posterior emissions also effectively corrected the overestimation of 

O3 in forecast with prior emissions, reducing biases by 49.3%.” 

 

3. Line 176: What did you consider about the boundary condition of NMVOC and 

NOx? 

Response: Thank you for this comment. In this study, the boundary conditions for NOx 

(including NO and NO2), O3, and HCHO were extracted from the outputs of the Whole 

Atmosphere Community Climate Model (WACCM). For the other components of 

NMVOCs, since most NMVOC components have a short atmospheric lifetime 

(Gaubert et al., 2020; Li et al., 2020). For instance, isoprene, which is the primary 

component of NMVOCs, has a lifetime of approximately 1 h (Bates and Jacob, 2019). 

Consequently, the chemical lateral boundary conditions for NMVOCs were just derived 

from background profiles.  

We have added relevant descriptions. See lines 178-183, page 6. 

“Chemical lateral boundary conditions for NO, NO2, HCHO, and O3 were extracted 

from the output of the global CTM (i.e., the Whole Atmosphere Community Climate 

Model, WACCM) with a resolution of 0.9° × 1.25° at 6-hour intervals (Marsh et al., 

2013). Meanwhile, boundary conditions for the other NMVOCs were obtained directly 



from background profiles. In the first data assimilation (DA) window, chemical initial 

conditions (excluding NMVOCs) were also derived from the WACCM outputs, 

whereas … …” 

 

4. Line 204~207: Did author consider about the correction of NOx and NMVOCs in 

the DA system? 

Response: Yes, NOx and NMVOCs emissions were corrected simultaneously in DA 

systems. See lines 140-145, page 5. 

 

5. Line 209~210: As NO2 is a kind of short lifetime gas, the concentration of surface 

NO2 measurements not only present NO2, but also may include NOx. What did you 

consider about the influence of NO2 observation uncertain on optimizing NOx 

emissions? 

Response: Thank you for this comment. Actually, the perturbed samples of NOx 

emission in this study are divided to NO2 and NO with a fixed NO2/NO ratio of 1/9 

(Zhang et al., 2007). The process of NO being oxidized to NO2 during transport from 

sources to observation sites is fully taken into account by atmospheric transport models. 

Therefore, we can directly assimilate NO2 observations to optimize NOx emissions.  

 

 

 

 

 

 

 

 

 

 

 

 



6. Line 265: It would be better to use mosaic diagram to present the data amount of 

TROPOMI HCHO. 

Response: Thank you for your suggestion. We have used mosaic diagram to present 

the data amount of TROPOMI HCHO. See Figure 1 in the revised manuscript. 

 

Figure R1. Model domain and observation network (a) and data amount of TROPOMI 

HCHO retrievals during August 2022 in each grid (b). The red dashed frame delineates 

the CMAQ computational domain; black squares denote surface meteorological 

measurement sites; navy triangles indicate sounding sites (Text S1), and red and blue 

dots represent air pollution measurement sites, where red dots are used for assimilation 

and blue dots for independent evaluation. (Figure 1 in the revised manuscript) 



7. Line 299: Please added the year of the study period. 

Response: Thanks. We have added the year of the study period. See line 326, page 12. 

“Before implementing the emission inversion, a relatively perfect initial field is 

generated at 0000 UTC on August 1, 2022 through conducting a 5-day simulation with 

6-hour interval 3D-Var data assimilation.” 

 

8. Line 307~314: The background error covariance is implicitly expressed in the 

EnKF method. How did author implement EMS1 experiment in the DA system? And it 

would be better to introduce EMS1-3 experiment follow the EMDA, making the text 

description consistent with the Table1. 

Response: Thank you for this suggestion. Yes, in the EnKF method, the background 

error covariance is computed implicitly. However, prior emission uncertainty needs to 

be provided before implementing the DA system. Specifically, in the EMS1 experiment, 

we increased the prior uncertainty from 40% to 80%. We have revised this sentence for 

clarity and precision. See line 313 page 12. 

Additionally, we have adjusted the introduction order of those experiments in Section 

3, while also removing the EMS1 and EMS2 experiments (See General comments). 

“A sensitivity experiment involving a doubling of the prior uncertainty (80%) revealed 

that the differences in posterior NMVOC emissions… …” 

 

9. Line 324 and 351: “prior and posterior emissions” should be “prior and posterior 

NMVOC emissions”, and “EMGAN” should be “MEGAN”. 

Response: Corrected. Thanks. 

See line 364, page 14. 

“Figure 2 shows the spatial distribution of temporally averaged prior and posterior 

NMVOC emissions, along with … …” 

See line 401, page 16. 

“Figure 2. Spatial distribution of the time-averaged (a) prior emissions (MEIC 

2020 + MEGAN), (b) posterior emissions … …” 

 



10. Line 440-441, Figure 5: It is difficult for readers to remember the setting of 

experiments. And I think that “CEP3” should be “CEP1” in the Fig. 5a? 

Response: Thank you for bringing this oversight to our attention. We have corrected 

the error. Additionally, we have removed the EMS1, EMS2, and CEP2 experiments 

from the original manuscript (See General comments).  

 

Figure R2. Time series comparison of hourly surface O3 concentrations (μg m-3) and 

RMSE (μg m-3) from CEP1 and VEP experiments against all observations. (Figure 5 

in the revised manuscript) 

 

 

 

 



11. Line 515-518: The background errors and observation errors play an important role 

in the DA system. It would be better to give a detailed explanation of why the difference 

in two posterior NMVOC emissions was small by using ‘two-step’ inversion strategy 

in the DA system. 

Response: Thank you for this suggestion. In this study, we innovatively used a “two-

step” optimization strategy, in which the emissions are inferred first and then input into 

the CMAQ model to simulate initial conditions of the next window. That is, the residual 

error of the current window is reflected in the initial conditions of the next window. 

Meanwhile, the optimized emissions are transferred to the next window as prior 

emissions. Therefore, the residual errors from the current assimilation window will be 

promptly corrected in the next window. This cyclic iteration inversion ensures that the 

RAPAS system has a relatively low dependence on prior uncertainty settings (Feng et 

al., 2023). We have included the following discussion in the revised manuscript. 

Lines 158-161, page 6.  

“The inversion process follows a two-step procedure within each inversion window, in 

which the emissions are inferred first and then input into the CMAQ model to simulate 

initial conditions of the next window. Meanwhile, the optimized emissions are 

transferred to the next window as prior emissions. The two-step inversion strategy 

facilitates error propagation and iterative emission optimization, which have… …” 

Lines 314-317, page 12.  

“A sensitivity experiment involving a doubling of the prior uncertainty (80%) 

revealed that the differences in posterior NMVOC emissions amounted to a mere 

0.2% (Figure S2). The implementation of a ‘two-step’ inversion strategy allows for 

the timely correction of residual errors from the previous assimilation window in 

the current window, thus ensuring that the RAPAS system has a relatively low 

dependence on prior uncertainty settings.” 
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