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S1 MA200 devices

Table S1. Manufacturer reported mass absorption efficiencies (MAE) of Black Carbon for MA200 devices.

Wavelength  Mass AbsorgtionlEfﬁciency
(m*g™")

(nm)

375 24.069
470 19.070
528 17.070
625 14.091
880 10.120

S2 Analysis of the absorption Angstrﬁm exponent

Combustion sources such as wood burning and traffic emissions have distinct wavelength-dependent light absorption sig-
natures, particularly in the ultraviolet and lower visible range. This characteristic fingerprint allows their contribution to be
identified from the total measured absorption Zotter et al. (2017); Sandradewi et al. (2008); Massabo et al. (2015); Bernardoni
et al. (2017). The absorption Angstr(jm exponent (o) serves as a single parameter to quantify the source-specific dependence
of light absorption coefficient on wavelength. In the absence of validation measurements, the « frequency distribution can
guide the estimation of suitable « values for the source apportionment model. Figure S1 shows the probability density func-
tion of a for the hourly aggregated measurements during the two periods analysed in the main text, i.e. from 4 February to
7 March 2020 and from 26 December 2020 to 21 January 2021 at the traffic site, and from 4 February to 7 March 2020 and
from 26 December 2020 to 7 January 2021 at the background site. Data reported with light blue colour are calculated as follow:

_ log(bsso/bs7s)

O =~ Tog(880/375)

Where bggg and bs7s5 are the absorption coefficients at 880 nm and 375 nm respectively. While the data shown in grey are
obtained by fitting the absorption coefficient as a function of the five wavelengths (375, 470, 528, 625 and 880 nm) with a filter
of 72 > 0.99 to the fit. In addition, a subplot for the traffic site has been incorporated under its facet, showing a values only
for the morning rush hour (08:00 GMT time) on working days, i.e. when the traffic contribution is expected to be at its peak.
For traffic, the source-specific « value is set to 1, which corresponds to the centre of the probability density function (PDF)
distribution for the morning rush hour on working days at the traffic site. Conversely, the o value for biomass burning is set
to 2, representing the upper tail of the stringent-filtered PDF distribution for both traffic and background sites, as suggested by
Tobler et al. (2021).
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Figure S1. The absorption Angstrom exponent (a) probability density function calculated from the ratio of the 375 nm and 880 nm wave-
lengths and from the fit off all wavelengths from 375 nm to 880 nm and filtered for fit 72 > 0.99.



S3 BC speciation factors

Table S2. BC speciation factors from PMs 5 emissions.

Emission Sector Emission activity Fuel BC/(E;I\)/IQ_5
0
Energy production all liquid 56
Energy production all biomass and 6.4
agricultural residues
Energy production all CNG 4
Domestic heating open fireplaces biomass 7
Domestic heating conventional stoves burning biomass 10
Domestic heating high-efficiency stoves biomass 16
Domestic heating advanced/ecolabelled biomass 28
stoves and boilers
Domestic heating pellet stoves biomass 15
and boilers
Domestic heating all CNG 54
Industry all solid fuel 6.4
Industry all CNG 4
Industry all liquid 56
Other mobile machinery all liquid 70
Waste management incinerator all 20




S4 Model evaluation

To evaluate the performance of the models in reproducing BC concentrations and wind speed, several statistical indicators were
considered. These indicators were derived by considering M as the modelled values, O as the observations, n as the count of
model-observation pairs,

n

_ 1
M= M,

r= Z?:l(Mi*M)(Oi*O)
VI (M = M2 (0; - O)2

=

3

,§2

F AC?2 = Fraction of data where 0.5 <

Q

)
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Figure S2. Hourly time series of measured (temperature, pressure, wind direction, relative humidity, rainfall) and estimated (stability class)
meteorological parameters during the first period (4 February - 7 March 2020) at OSS station.



7_
@
6 [
. 3
' Z
47 o
3 %
P 1]
_|
(0]
*7 3
e L
=)
0 - c
@
1010 -
& 1000 8
e (%]
990 - g
(0]
980 -
300 =
>
o
, 200 5
@
100 Q
o
>
O_
100
90 - o
2 80 So
70 4 8=
60 - =1
50 -
4
£ ] B
- >3
g 2 =
14 ﬂ H\‘ -
oA A AL M
T T T T T T T T T T T T T
© [eo) (=) - (3] 0 ~ (2] -~ (s n N~ [} —
[aY) [aY) () o o o o o -~ -~ -~ -~ -~ [aV)
Q Q Q c c c c c c c c c c c
[ [ [ © © © © © © © © © © ©

Figure S3. Hourly time series of measured (temperature, pressure, wind direction, relative humidity, rainfall) and estimated (stability class)
meteorological parameters during the second period (26 December 2020 - 21 January 2021) at OSS station.
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S6 Analysis of specific pollution episodes

During the second period of this study (between 26 December 2020 and 21 January 2021), favourable meteorological con-
ditions for the accumulation of pollutants were observed in Modena and the surrounding area, such as predominantly calm
episodes, exacerbated by high pressure systems and persistent temperature inversions in the first layers of the atmosphere.
Looking more closely at certain days, namely 3, 13-14 and 18-19 January 2021, significant peaks in BC levels were observed.
At the traffic site the peak concentrations on these days were 14.1 ygm~3, 18.5 uygm =2 and 16.3 uygm~3. It is worth noting
that the episode on 3 January was observed exclusively at the traffic site, while the total PM;y and PM5 5 concentrations
recorded at the same two locations of the MA200 observations were typical for the period, without notable peaks (Figure S4).
Specifically, PMq levels were 31 uyg m~2 and 25 ug m 2 at the traffic and background stations respectively, while PM; 5 was
14 uygm~? at the background station. Furthermore, the meteorological conditions on this particular day were not particularly
conducive to the accumulation of pollutants. This can be seen from the vertical temperature profile derived from soundings
at 00:00 and 12:00 GMT at SPC, Figure S5. A shallow inversion layer is present only in the first 40 m above the ground,
then the temperature gradually decreases with height following a profile similar to dry adiabats at both 00:00 and 12:00 GMT.
In addition, other meteorological parameters measured at OSS were not consistent with conditions favourable for a specific
episode (see Fig. S2). A plausible explanation for this peak could be the presence of high-emitting vehicles passing close to
the station along the busy road or vehicles idling in nearby car parks, the latter phenomenon also reported in a previous study
focused on the same area (Ghermandi et al., 2019). To further support this hypothesis, it is worth highlighting that this particu-
lar episode had a remarkably short duration, lasting only a single hour (Figure 5 in the main text). After this short interval, BC
concentrations returned to levels characteristic of the traffic site.

When analysing the other two periods, namely 13-14 and 18-19 January 2021, the dynamics were different. While direct BC
data at the background site are not available for this period, the total PM;g and PMs 5 concentrations (Figure S4) confirmed
the presence of meteorological and emission conditions conducive to pollutant accumulation. Figure S2 shows a significant
increase in atmospheric pressure at OSS, suggesting the possible establishment of a high pressure system in the area. This
atmospheric scenario was accompanied by calm and stable meteorological conditions, with an average wind speed of less than
2.5ms™!, as shown in Figure 3 (panel b). Furthermore, these conditions contributed to the formation of temperature inversions
not only during the night hours, but also during the day, as shown in Figures S6 and S7. Taken together, these conditions proba-
bly facilitated the accumulation of pollutants close to the ground, thereby limiting both their vertical and horizontal dispersion.
Comparable meteorological conditions were also observed on 16 January 2021, in contrast to the previously analysed days,
which fall on a Saturday and typically have reduced anthropogenic emissions from traffic and industrial activities compared to
weekdays. Consequently, the BC and PM concentrations on this particular day were lower than those recorded on 13-14 and
18-19 January 2021.
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Figure S6. Skew-T Log-P plot from S. Pietro Capofiume station on 3 January 2021 at 00:00 GMT, on the left, and at 12:00 GMT on the
right.
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Figure S7. Skew-T Log-P plot from S. Pietro Capofiume station on 13 January 2021 on the first row and on 14 January 2021 on the second
row, at 00:00 GMT on the left, and at 12:00 GMT on the right.
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Figure S8. Skew-T Log-P plot from S. Pietro Capofiume station on 18 January 2021 on the first row and on 19 January 2021 on the second
row, at 00:00 GMT on the left, and at 12:00 GMT on the right.
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Figure S9. Hourly time series of modelled Planetary Boundary Layer height by GRAL over the urban area of Modena for the second period.
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S7 Daily emission modulations
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Figure S10. Daily modulation profile of BC emission sources on working days (on the left) and holidays (on the right).
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S8 Fleet composition and BC traffic emission factors
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Figure S11. Local Fleet Composition. The number of registered vehicles is normalised taking into account the estimated total kilometres
travelled by each vehicle category per year.
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Figure S12. BC emission factors (EF) of diesel and petrol passenger cars as a function of travelling speed, as implemented in the VERT R
package used in this study to estimate exhaust vehicle emissions. EF function for Petrol Conventional and Euro 1 overlaps with that of Euro

2. The same is for the curves of Petrol Euro 3 and Euro 4.
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