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Abstract. Estimates of PM2.5 levels are crucial for monitoring air quality and studying the epidemiological impact of air

quality on the population. Currently, the most precise measurements of PM2.5 are obtained from ground stations, resulting in

limited spatial coverage. In this study, we consider satellite-based PM2.5 retrieval, which involves conversion of high-resolution

satellite retrieval of Aerosol Optical Depth (AOD) into high-resolution PM2.5 retrieval. To improve the accuracy of the AOD to

PM2.5 conversion, we employ the machine learning based post-process correction to correct the AOD-to-PM conversion ratio5

derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis model data.

The post-process correction approach utilizes a fusion and downscaling of satellite observation and retrieval data, MERRA-

2 reanalysis data, various high resolution geographical indicators, meteorological data and ground station observations for

learning a predictor for the approximation error in the AOD to PM2.5 conversion ratio. The corrected conversion ratio is then

applied to estimate PM2.5 levels given the high-resolution satellite AOD retrieval data derived from Sentinel-3 observations.10

The region of study is central Europe during the year 2019. Our model produces PM2.5 estimates with a spatial resolution of

100 meters at satellite overpass times with R2 = 0.55 and RMSE = 6.2 µg/m3. The corresponding metrics for monthly averages

are R2 = 0.72 and RMSE = 3.7 µg/m3. Additionally, we have incorporated an ensemble of neural networks to provide error

envelopes for machine learning related uncertainty in the PM2.5 estimates. The proposed approach can produce accurate high

resolution PM2.5 data that can be very useful for air quality monitoring, emission regulation and epidemiological studies.15

1 Introduction

Poor air quality is one of the most serious environmental health risks of our time. In September 2021, the World Health Organi-

zation (WHO) released Global Air Quality Guidelines, revealing clear evidence of the damage air pollution inflicts on human

health at even lower concentrations than previously understood (World Health Organization, 2021). WHO estimates that expo-

sure to air pollution causes 7 million premature deaths every year. A key indicator in monitoring air quality and epidemiological20

studies is the PM2.5 parameter, which is the dry mass concentration of fine particulate matter with an aerodynamic diameter

of less than 2.5 micrometers (micrograms of particulate matter per cubic meter of air). Fine particulate matter originates from

vehicle emissions, coal burning, and industrial emissions, among many other human and natural sources. Epidemiological

studies link long exposures to high PM2.5 levels to many severe illnesses, such as stroke and cardiovascular and respiratory
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diseases (e.g. Pope and Dockery, 2006; Cohen et al., 2017). On a global scale, the magnitude of the PM2.5 exposure-related25

risk for human health is enormous as more than 90% of the world’s population lives in areas with annual mean PM2.5 levels

exceeding the new WHO 2021 air quality guideline of 5 micrograms per cubic meter (Health Effects Institute, 2019).

While the knowledge of the health effects of pollution increases continuously, the epidemiological estimates still have

significant uncertainties due to the lack of accurate global air pollution data (Hammer et al., 2020). Networks of ground-based

observation stations produce accurate pointwise observations of PM2.5 and certain chemical components such as ozone, sulfur30

dioxide and nitrogen dioxide. These ground station measurements produce relatively accurate data, but the networks consist

of only a few thousand irregularly located observation stations, mainly in developed countries, leading to the insufficient

spatial coverage of the PM2.5 data. To better monitor and understand air quality and pollution sources near real-time global

observations of air quality are needed. The only way to get spatially resolved air quality data is to utilize satellite retrievals.

Satellite retrievals of PM2.5 are often based on satellite AOD retrievals and an AOD-to-PM conversion ratio (Health Effects35

Institute, 2019; van Donkelaar et al., 2013; Zhang and Kondragunta, 2021; Geng et al., 2015). AOD is a columnar optical

quantity, whereas PM2.5 is the mass concentration of dry aerosol particles at some single point, typically at the surface level.

Many factors affect the AOD-to-PM conversion ratio, including the aerosol vertical extinction profile, aerosol type and size

distribution, and relative humidity. These factors are typically unavailable from a single data source, such as data provided by

the instruments onboard a satellite, so a simulation-model-based AOD-to-PM ratio is often used. The simulation-model-based40

AOD-to-PM conversion ratio is typically computed based on meteorology, chemical transport models (CTM) and auxiliary

satellite data such as lidar-based aerosol vertical profiles. The PM2.5 retrieval at a given location and time is then calculated

as a product of the retrieved satellite AOD and the AOD to PM2.5 ratio. The current state-of-the-art PM2.5 retrieval algorithm

also contains a post-processing step where the retrieved spatial PM2.5 estimate is fitted to the ground-based PM2.5 station data

by a linear geographically weighted regression (van Donkelaar et al., 2016).45

Many previous studies use machine learning techniques to convert AOD to PM2.5 levels. In particular, (Ibrahim et al., 2022)

used a variant of Random Forest called Extremely Randomised Trees (ET) to estimate PM2.5 across Europe. (Stafoggia et al.,

2019; Schneider et al., 2020) used Random Forest regressors in a multi-stage approach to estimate PM2.5 at ground stations

when only PM10 measurements were available, to impute AOD values when not accessible and to finally predict PM2.5 values

across Italy and Great Britain. (Handschuh et al., 2023) considered multiple Random Forest models to evaluate PM2.5 levels50

across Germany using 4 different AOD datasets.

In this paper, we propose a novel approach for high-resolution satellite-based retrieval of PM2.5. While the previous studies

use machine learning to learn the AOD to PM2.5 conversion directly, we take a novel approach where we train the model to

predict the approximation error in the geophysical model based conversion ratio. Our approach retrieves PM2.5 at a spatial res-

olution of 100 m. It is based on the machine learning post-process correction approach, which we developed for the correction55

of approximation errors in satellite retrievals (Lipponen et al., 2021) and employed for high-resolution spectral aerosol optical

depth (AOD) retrieval (POPCORN AOD) from SENTINEL-3 SYNERGY data (Lipponen et al., 2022). In our algorithm devel-

opment work, we take the spectral, high-resolution Sentinel-3 POPCORN AOD (Lipponen et al., 2022) as the starting point.

Our PM2.5 retrieval is based on the AOD-to-PM2.5 conversion ratio applied to the POPCORN AOD. The AOD-to-PM2.5 ratio
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is estimated by machine learning techniques utilizing a fusion of collocated ground station-based in-situ PM2.5 data, MERRA-60

2 reanalysis model AOD and PM2.5 data, spectral AERONET AOD, satellite-observed spectral top-of-atmosphere reflectances,

meteorology data and various high-resolution geographical indicators representing, for example, population density and land

surface elevation. Utilizing these data, we employ the post-process correction approach to the estimation of the AOD-to-PM2.5

ratio (Lipponen et al., 2021, 2022; Taskinen et al., 2022) and then the high-resolution PM2.5 retrieval is obtained as the product

of the post-process corrected AOD-to-PM2.5 ratio and POPCORN AOD. By using an ensemble of neural networks, we can65

also provide error envelopes for the machine learning related uncertainty in the PM2.5 estimates. The approach is tested with

Sentinel-3 data from central Europe in 2019.

2 Data

We use various input data variables in computing the estimate for the surface PM2.5. We use satellite observation data and

retrievals, in-situ observations, and reanalysis model data. This section lists all the variables and data sources used in our work.70

2.1 Sentinel-3 POPCORN AOD

The Sentinel-3 POPCORN AOD product is based on the post-process corrected Sentinel-3 SYNERGY land AOD product. It

offers a spatial resolution of 300 meters and is currently accessible for Sentinel-3A and 3B overpasses, covering five regions of

interest for the year 2019: Central Europe, Eastern USA, Western USA, Southern Africa, and India. Two Sentinel-3 satellites

currently flying provide revisit times of less than two days for OLCI and less than one day for the SLSTR instrument at equator.75

Swath width of the OLCI instrument is 1270 km. SLSTR swath width is 1420 km for the nadir view and 750 km for the oblique

view.

The post-process correction is based on a feed forward neural network that was trained to predict the bias in Sentinel-3

Synergy AOD. Sentinel-3-AERONET-collocated data was used as the training data for the neural network and the trained

neural network was then used for bias correction and superresolution of the Sentinel-3 AOD (land) data. The idea for post-80

process correction of satellite AOD retrievals was introduced in Lipponen et al. (2021). For the technical details and accuracy

metrics of Sentinel-3 SYNERGY land POPCORN AOD, and related openly available code and data, see Lipponen et al. (2022).

In this work, we use POPCORN AODs at 440, 500, 550, 675, and 870 nm, and the Angstrom exponent derived using

AODs at these wavelengths as inputs for the AOD-to-PM2.5 ratio model. POPCORN AODs are the data that bring the accurate

AERONET AOD information to the AOD-to-PM2.5 conversion.85

2.2 OpenAQ

OpenAQ (https://openaq.org/) is an open database for air quality data. In this work, we use OpenAQ as our data source for

surface in-situ PM2.5 observations. OpenAQ provides pointwise air quality measurement data for thousands of stations. The

temporal resolution of the data provided varies by station, 1-hour and daily observations are commonly available. See Figure 1

for a map of OpenAQ stations providing hourly data in our region of intrest.90
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Some OpenAQ stations report 24 hour average PM2.5 every hour.

In this work, we used the 24 hour averages given every hour to estimate hourly PM2.5. This was done station-by-station

using a Tikhonov regularized (with regularization parameter value 0.05) least-squares fit to unfold the time integrated data into

hourly estimates.

In practice, the hourly PM2.5 estimates were computed using the formula95

PM2.5,1h =
(
ATA+αI

)−1
AT b, (1)

where
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24
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PM2.5,1h =
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...

PM2.5,1h,N

 , (4)

and α is the regularization parameter. PM2.5,1h,N and PM2.5,24h,N denote the 1 hour and 24 hour average PM2.5 at timestep

N , respectively.

2.3 MERRA-2105

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is NASA’s reanalysis model

(Randles et al., 2017). MERRA-2 provides us meteorological variables, such as wind fields and temperatures. Furthermore,

MERRA-2 reanalysis also has the necessary aerosol and air quality information to compute an estimate for the surface PM2.5.

MERRA-2 has a spatial resolution of 0.5◦ x 0.625◦. This is roughly 50 km in Central Europe region. The time-varying

MERRA-2 variables we use have the temporal resolution of 1 hour and both instantaneous values or time-averaged values are110

given depending on the variable and data product. We also use some MERRA-2 constant variables as inputs for our AOD-

to-PM2.5 model. See the Appendix A for a list of all variables we have used as inputs in our models from the MERRA-2

re-analysis.
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In addition to MERRA-2 provided variables, the following variables are derived using the MERRA-2 meteorology and

aerosol-related variables and used in our models as inputs:115

– Relative humidity (RH) at the surface. Equation based on the Clausius-Clapeyron equation (see e.g. Michaelides

et al., 2019):

RH= 0.263 ·PS ·QLML/exp((17.67 · (T2M− 273.15))/(T2M− 29.65))

– Wind direction (WD10M) at 10 meters:

WD10M= arctan(−V10M/U10M)120

– Wind speed (WS10M) at 10 meters:

WS10M=
√
U10M2 +V10M2

– PM2.5 at surface: (Buchard et al. (2016))

PM2.5 = (1.375 ·SO4SMASS+1.4 ·OCSMASS+BCSMASS+DUSMASS25+SSSMASS25) · 109

– AOD-to-PM2.5 ratio η:125

η =
PM2.5

TOTEXTTAU

2.4 CALIOP aerosol vertical profile climatology

We use the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Lidar Level-3 Tropospheric Aerosol

Profiles, Cloud Free Data, Standard Version 4-20 data product as one of our input data source (NASA, 2022; Winker et al.,

2010). This level-3 climatology data product has spatial resolution of 2.5 deg x 2 deg and temporal resolution of 1 month. We130

use daytime variables and in the case of missing data, we use the nearest value found in the dataset. We use two variables from

this dataset: AOD 63 Percent Below and AOD 90 Percent Below. These variables indicate the vertical height below which

63 and 90 percent of AOD is located on average. This gives us information about the vertical distribution of aerosols in the

atmosphere.

2.5 Time variables135

Information about the time of day and year are given as inputs for the model. Both the yearly and daily fractions from the

beginning of the year and day until the end of year and day, respectively, are mapped to a unit circle and the x and y coordinates

of the unit circle points are used as inputs for the model. With this approach, we get very similar values for the end and

beginning of the year and day.
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2.6 High-resolution geographical indicators140

2.6.1 OpenStreetMap roads

OpenStreetMap is an open map project and it contains map data with high spatial resolution. We use OpenStreetMap roads

as a data source for our model inputs. We compute the distance to the nearest street or highway and use this distance as an

input. We use a 100 meter resolution grid for the distances. The paths, streets and highways are all classified as ’highways’ in

OpenStreetMap and we use only the following sub-classes to only accept roads and highways with car traffic and thus potential145

PM2.5 sources (information from (OpenStreetMap, 2023)). See Appendix A for all the OpenStreetMap road types used to

compute the distance to the closest road.

2.6.2 NASA Black Marble Night Lights

NASA’s Black Marble is a night light product based on Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band

(DNB) radiances measured at nighttime. DNB is highly sensitive to light and can therefore detect even very low intensity lights150

on Earth surface at night. Most of the nighttime lights seen on Earth’s surface are due to human activities. As human footprint

is well seen in the night lights, we use the NASA Black Marble Night Lights as a proxy variable for the population density and

use it as one input for our models. We use Night Light data at spatial resolution of 500 meter as our input based on the yearly

data product VNP46A4 (Wang et al., 2020).

2.6.3 MODIS land cover type155

We use MODIS MCD12Q1 (Sulla-Menashe and Friedl, 2018) land cover type data product to derive input variables that contain

distances to the closest International Geosphere Biosphere Programme (IGBP) land cover types (Loveland and Belward, 1997;

Belward et al., 1999). The spatial resolution of the MODIS MCD12Q1 data product is 500 meters. For the list of IGBP land

cover types, see Appendix A.

2.6.4 Digital Elevation Model160

We use the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM)

to describe the land surface elevation (Fujisada et al., 2011, 2012; NASA/METI/AIST/Japan Spacesystems, and US/Japan

ASTER Science Team, 2019). ASTER DEM has a spatial resolution of 1 arcsecond corresponding to about 30 meters.
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Figure 1. Map of stations in the region of interest.

3 Methods

3.1 AOD-to-PM2.5 conversion165

Similarly as, for example, in van Donkelaar et al. (2021), we model the dependency between the PM2.5 at the surface level and

AOD using the following model

PM2.5 = η ·AOD, (5)

where η = η(r, t) is the AOD-to-PM2.5 conversion coefficient that is function of both time t and space r.

3.2 Post-process correction approach170

Let y ∈ Rm denote an accurate satellite retrieval

y = f(x), (6)

where vector y contains the output of the satellite retrieval algorithm, f : Rn 7→ Rm is an accurate retrieval algorithm and

x ∈ Rn contains all the algorithm inputs including the observation geometry and level 1 satellite observation data such as the

top-of-atmosphere reflectances. The retrieval y can consist, for example, of surface PM2.5 at a given point in space and time.175

In practice, due to uncertainties in the auxiliary parameters of the underlying forward model, extensive computational di-

mension of the problems and processing time limitations, it is not possible to construct an accurate retrieval algorithm f but an
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approximate retrieval algorithm

ỹ ≈ f̃(x) (7)

has to be employed instead. The approximate retrieval f̃ is typically based on physically simplified and computationally180

reduced approximate forward models that are used due to the huge dimensionality of the retrieval problems and the need for

computational efficiency. The utilization of the approximate retrieval algorithm leads to an approximation error

e(x) = f(x)− f̃(x) (8)

in the retrival parameters.

The core idea of the model enforced post-process correction model is to improve the accuracy of the approximate retrieval185

(7) by machine learning techniques. By Equations (6)-(8), the accurate retrieval can be written as

y = f(x)

= f̃(x)+
[
f(x)− f̃(x)

]
= f̃(x)+ e(x). (9)

To obtain the corrected retrieval, Equation (9) is used to combine the conventional (physics-based) retrieval algorithm f̃(x) and190

a machine learning based model ê(x) to predict the realization of the approximation error e(x) to obtain an corrected retrieval

y ≈ f̃(x)+ ê(x). (10)

Note that this approach is different from a conventional fully learned machine learning model in which the aim is to emulate

the accurate retrieval algorithm f(x) with a machine learning model

y ≈ f̂(x) (11)195

that is trained to predict the retrieval y directly from the satellite observation and geometry data x.

3.3 Correction of AOD-to-PM2.5 conversion factor η

In our work, we use the post-process correction approach (10) to correct for the MERRA-2-based AOD-to-PM2.5 conversion

factor η. We utilize an ensemble of neural networks to learn the correction to the conversion factor η and producing simultane-

ously error envelopes related to the learning process. Our post process correction model ê(x) : Rn 7→ R corrects the conversion200

factor pixel-by-pixel, meaning that

η(x) = η̂+ ê(x) (12)

PM2.5 = η(x) ·AODPOPCORN (13)

where η̂ represents the AOD-to-PM2.5 ratio to be corrected. The correction model is learned using collocated data from ground

station PM2.5 data, MERRA-2 data, satellite data and retrieval, meteorological data, and high-resolution geographical indica-205

tors. All the inputs used can be found in Table A1 and are described in Section 2. We used SHAP analysis (Lundberg and Lee,
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Figure 2. Feed-forward neural network architecture for post-process correction of η ratio, optimized with KerasTuner. The model contains

two hidden layers with seLu activation functions (160 and 128 nodes respectively) and a single node output layer with linear activation

function.

2017) in order to estimate feature importance after the training of the model. In fig.A1 you can see a bar plot of the first 26

input features ordered by their importance (SHAP value) and in Table A1 the feature are ordered by their SHAP importance

(from left to right and from top to bottom). Since no features showed non-negligible SHAP value, we decided to keep them all

in the training of the model. We finally add the estimated correction term to the MERRA-2 η values and calculate the PM2.5210

estimates corresponding to POPCORN AOD retrievals using Equation (5).

3.4 Selection of the network model

As the dimension n of the input data x to the correction model ê(x) is relatively small (n= 172) and output is a scalar,

we utilize a fully connected feedforward neural network for the regression task. The networks are implemented using the

TensorFlow framework.215

To optimize the neural network architecture, we employed KerasTuner, a hyperparameter optimization framework. The

Adam optimizer and 10−3 learning rate were selected. We used the Mean Square Error (MSE) loss function in the training. A

linear activation function was employed for the output layer as the correction ê(x) is real valued. Other parameters, such as the

activation functions and the number of nodes in hidden layers, were optimized using KerasTuner. We considered the number

of hidden layers, experimenting with 2, 3, and 4-layer architectures. The model with two hidden layers led to better accuracy220

compared to the deeper models with 3 or 4 hidden layers and thus we employed the architecture with two hidden layers as our

final model. The final optimal neural network architecture comprises of 172 input features and two hidden layers with seLu

activation functions. The first and second hidden layers consisted of 160 and 128 neurons, respectively. Figure 2 shows the

neural network architechture obtained from the model optimization.

We divided the dataset into three subsets in training our neural network model. Specifically, 60% of the data was used for225

training, 20% for validation, and 20% for testing, see Figure 1 for the division of the AQ stations into the training, validation
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Figure 3. Distribution of AQ station PM2.5 values in training, validation, and test sets. The training data is used to train the machine learning

algorithm, while the validation data is used to prevent overfitting. The test data is used to test the results after training. The division of the

data was obtained by dividing the AQ stations in the region of interest to three separate sets with 60%, 20% and 20% shares of training,

validation and test stations.

and test sites. The learning data was divided into training, validation and test data by stations instead of random division of

data points in order to avoid model overfitting and having test data from locations within the region of interest that were not

included in the model training. Figure 3 shows the proportions of different PM2.5 values in the train, validate and test data.

We used the validation set and the early stopping technique with the patience of 30 to avoid overfitting of the neural network230

model.

In our tests, the model struggled to predict high PM2.5 values accurately. We partially attributed this limitation to the skewed

distribution of our dataset, which was predominantly composed of low PM2.5 values, see Figure 3 for the histogram of the

PM2.5 values of the AQ stations in the learning data. To address this, we introduced a cut-off value of 80 µgm−3 for PM2.5 and

trained our model with samples corresponding to PM2.5 values only below this. Furthermore, we experimented with reweight-235

ing the loss function to emphasize higher PM2.5 values. Although this strategy slightly improved the model’s performance on

the high-end tail, it compromised the accuracy on the low-end tail. Consequently, we decided not to use the reweighted loss

function.
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3.5 Ensemble of networks

To adress the problem of local minima and dependency on the initialization in neural network training we used an ensemble240

based technique where we trained an ensemble of 80 networks each initialized with different random weights. We considered

the predictions of the networks as samples from a distribution and used the median of the predictions as a point estimate for

the correction term of η. We use the spread minimum to maximum interval of the 80 outputs of the networks as an learning

related uncertainty for η which was propagated onward to uncertainty of the PM2.5 estimates through the conversion (5).

4 Results245

Figure 4 shows scatter plots of the satellite and model-based predictions of PM2.5 with respect the values of the ground stations

for the test data AQ stations per single-overpass and as monthly averages. We calculated the monthly averages considering a

threshold: monthly averages were accepted only when we had more than 5 daily measurements per month (and station). The

figures on the top row show results for single-overpasses and the figures on the bottom row show monthly averages. The figures

on the left show the ground data comparison for the MERRA-2 PM2.5 estimates, the figures on the middle show the ground250

data comparison for the PM2.5 values estimated using Equation (5) with POPCORN AOD and MERRA-2 conversion factor η,

and the figures on the right show the comparison for the PM2.5 values estimated using Equation (5) with POPCORN AOD and

post-process corrected η. As can be seen, the use of post-process corrected conversion factor leads to a clear improvement on

the accuracy of the predictions of PM2.5 at the independent test data locations. The R2 coefficient for instantaneous values is

improved by about 290% compared to both the MERRA-2 prediction and the estimate (5) with POPCORN AOD and MERRA-255

2 conversion factor. The RMSE is improved by a factor 32% compared to MERRA-2 prediction and by a factor 41% compared

to the product of POPCORN AOD with MERRA-2 η. The absolute value of the bias is reduced by a factor over 95% respect to

both of the uncorrected estimates, and the MAE decreased by a factor 26% compared to MERRA-2 prediction and by a factor

41% compared to the product of POPCORN AOD with MERRA-2 η. In the monthly averages the R2 coefficient is improved

by a factor 350% respect to MERRA-2 prediction and by a factor 279% compared to the estimate (5) with POPCORN AOD and260

MERRA-2 η. The RMSE in the monthly averages is reduced by a factor over 47% with respect to both uncorrected methods.

The bias in the monthly averages is reduced by a factor 92% and 89%, respectively, and the MAE decreased by a factor 44%

and 49%.

We remark that we tested also the fully-learned approach (11) for learning directly the AOD-to-PM2.5 conversion factor η

values instead of the correction of the MERRA-2 based conversion, but the results with the fully learned approach were less265

accurate than with the post-correction approach (10).

Figures 5 and 6 show PM2.5 maps over Paris (23 February 2019) and Madrid (29 March 2019) for a single satellite overpass,

respectively. On the top-left the uncorrected map is obtained based on POPCORN AOD 500nm and MERRA-2 η, while on

the top-right the corrected map uses the post-process corrected MERRA-2 η. On the bottom left we compare the satellite

based PM2.5 values to the measured PM2.5 values at the AQ stations which are represented by the circles in the maps.270

The red circles represent the post-corrected estimates (medians calculated from the ensemble predictions), the black dots the
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uncorrected estimates while the blue dots the ground based measurement values at the stations. The red error bars represent the

spread of PM2.5 values coming from the ensemble of networks and they are to be considered as uncertainty estimates related to

the machine learning process. The joint RMSE of the uncorrected estimates with respect to the ground stations are 7.82 µg/m3

and 4.59 µg/m3 respectively for Paris and Madrid, and the joint RMSE for the post-corrected estimates with respect the ground275

stations are 6.36 µg/m3 and 2.27 µg/m3, indicating improved accuracy of the per overpass PM2.5 estimates in the post process

correction approach. The figure reveals that, for all the stations, the different initialization points for the trainings improve over

the uncorrected prediction. The median of the ensemble predictions is not always better than the uncorrected prediction, but

the uncertainty interval is either enclosing the measured value or is closer to the measured value than the uncorrected estimate.

The bottom right images show a time series of PM2.5 monthly averages predictions against the time series coming from a280

ground station monthly averages (the stations are pointed on the corrected maps by a white arrow). The red envelopes show

the uncertainty envelope of the post-process corrected estimate. Here the ground station monthly averages are contained in

the uncertainty envelope. Figure 7 shows time series of PM2.5 monthly averages of the post-process corrected estimates for

different stations in the region of interest, showing good alignment with the accurate ground based AQ measurements. Similar

performance was found out for the monthly averages in most of the test stations in the region of interest, indicating that the285

post process corrected estimates of monthly averages of PM2.5 are generally well aligned with the accurate ground based

observations.

The post process correction method we have proposed here is flexible with respect data to be utilized in the training, as it

allows straightforward addition of more training data (by re-optimization of the neural network architechture) coming from

different data sources in order to improve the PM2.5 predictions. In this study, we demonstrated the approach using POPCORN290

AOD data, which is obtained post-correcting Sentinel-3 AOD. The approach can also be extended and trained to other satellite

instruments and their AOD products to obtain similarly post-process corrected high-resolution satellite estimates of PM2.5,

leading to more frequent temporal sampling of a particular location. In this study, we demonstrated the approach using a

relatively large region-of-interest covering central Europe year 2019. The approach can also be scaled in a straightforward

manner to smaller or larger regions of interest by changing the training data.295

5 Conclusions

We developed an innovative machine learning technique aimed at correcting the AOD-to-PM2.5 ratio derived from MERRA-

2 data. This correction method integrates data from various sources, including ground station PM2.5 data, MERRA-2 data,

satellite data, meteorological data, and high-resolution geographical indicators. The post process corrected AOD-to-PM ratio

was then employed to estimate PM2.5 levels within the Central Europe region for the year 2019. Our approach outperforms300

MERRA-2 predictions and predictions made using MERRA-2 AOD-to-PM ratio and POPCORN AOD, resulting in improve-

ment in all evaluated metrics, whether considering individual overpasses or monthly averages. The PM2.5 estimates were

derived by aggregating the median values from an ensemble of neural networks. We incorporated the ensemble’s value spread

as a measure of machine learning related uncertainty in the post-process corrected PM2.5 estimates, and our estimates with

12



Figure 4. A) MERRA-2 PM2.5 predictions against OpenAQ PM2.5 measurements per single-overpass. B) Uncorrected NOODLESALAD

PM2.5 predictions against OpenAQ PM2.5 measurements per single-overpass. C) Corrected NOODLESALAD PM2.5 predictions against

OpenAQ PM2.5 measurements per single-overpass. D) MERRA-2 monthly averages PM2.5 predictions against OpenAQ monthly averages

PM2.5 measurements. E) Uncorrected NOODLESALAD monthly averages PM2.5 predictions against OpenAQ monthly averages PM2.5

measurements. F) Corrected NOODLESALAD monthly averages PM2.5 predictions against OpenAQ monthly averages PM2.5 measure-

ments.
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Figure 5. On the top-left: single overpass not-corrected PM2.5 map over Paris (RMSE against ground stations = 7.82 µg/m3). On the

top-right: single overpass corrected PM2.5 map over Paris (RMSE against ground stations = 6.36 µg/m3). Notice that the white regions

for the figures on top are regions where the AOD (so the PM2.5) values are missing because of cloud contamination. On the bottom-left:

comparison of the uncorrected and corrected method at the ground stations, The red error bars represent the spread of values obtained

through the ensemble method, while the red dots represent the medians of those values. On the bottom-right: comparison between OpenAQ

and corrected method predicted time series of PM2.5 monthly averages at a single station (indicated on the corrected map by a green arrow).

The red envelope represents the uncertainty coming from the ensemble method.
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Figure 6. On the top-left: single overpass not-corrected PM2.5 map over Madrid (RMSE against ground stations = 4.59 µg/m3). On the

top-right: single overpass corrected PM2.5 map over Madrid (RMSE against ground stations = 2.27 µg/m3). Notice that the white regions

for the figures on top are regions where the AOD (so the PM2.5) values are missing because of cloud contamination. On the bottom-left:

comparison of the uncorrected and corrected method at the ground stations. The red error bars represent the spread of values obtained

through the ensemble method, while the red dots represent the medians of those values. On the bottom-right: comparison between OpenAQ

and corrected method predicted time series of PM2.5 monthly averages at a single station (indicated on the corrected map by a green arrow).

The red envelope represents the uncertainty coming from the ensemble method.
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Figure 7. Monthly averages time series for six stations from the independent test set within the region of interest. The red envelopes represent

the uncertainty coming from the ensemble method.
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their uncertainty envelopes were found to be generally highly feasible with respect the accurate ground based observations at305

the independent test station locations. We remark that while our approach produced generally good accuracy in estimation of

PM2.5, it exhibited poorer performance for the high end values of PM2.5. This finding can be attributed to small number of

learning data for the high end tail of PM2.5 values in our region of interest, highlighting the obvious fact that the learning data

for machine learning needs to be representative for the operational environment and conditions.

In this study, our goal was to utilize a simple neural network model to estimate the PM2.5 values from satellite data. There-310

fore, the adoption of a fully connected neural network architecture was considered a reasonable choice. The architecture of

the network was determined through a combination of manual selection and the use of KerasTuner to optimize the number of

neurons per layer and the activation function. This ensured the development of an effective network for the specific problem

under study. The robust performance of the resulting model highlights the efficacy of employing a simple neural network model

to address PM2.5 estimation with notable success.315

Code and data availability. Sentinel-3 Synergy Land POPCORN dataset is openly available for download at https://a3s.fi/swift/v1/AUTH_

ca5072b7b22e463b85a2739fd6cd5732/POPCORNdata/readme.html. The OpenAQ data is open data and available for download at https:

//openaq.org/. The OpenStreetMap data is open data and available for download at https://www.openstreetmap.org/. All the NASA data

(MERRA-2, CALIOP, MODIS, ASTER DEM) used in this work is open data and can be found and downloaded using the NASA Earthdata

Search website at https://www.earthdata.nasa.gov/. The NASA Black Marble Night Lights data is available at https://blackmarble.gsfc.nasa.320

gov/. Code will be available from the authors on a reasonable request.
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Appendix A: Lists of variables used from datasets

A1 MERRA-2 variables

We use the following meteorology-related variables from the MERRA-2 M2T1NXSLV dataset:

– PS: surface pressure (Pa)335

– QV10M: 10-meter specific humidity (kg kg−1)

– QV2M: 2-meter specific humidity (kg kg−1)

– SLP: sea level pressure (Pa)

– T10M: 10-meter air temperature (K)

– T2M: 2-meter air temperature (K)340

– TO3: total column ozone (Dobsons)

– TOX: total column odd oxygen (kg m−2)

– TQI: total precipitable ice water (kg m−2)

– TQL: total precipitable liquid water (kg m−2)

– TQV: total precipitable water vapor (kg m−2)345

– TROPPB: tropopause pressure based on blended estimate (Pa)

– TROPPT: tropopause pressure based on thermal estimate (Pa)

– TROPPV: tropopause pressure based on EPV estimate (Pa)

– TROPQ: tropopause specific humidity using blended TROPP estimate (kg kg−1)

– TROPT: tropopause temperature using blended TROPP estimate (K)350

– TS: surface skin temperature (K)

– U10M: 10-meter eastward wind (m / s)

– U2M: 2-meter eastward wind (m / s)

– U50M: eastward wind at 50 meters (m / s)

– V10M: 10-meter northward wind (m / s)355
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– V2M: 2-meter northward wind (m / s)

– V50M: northward wind at 50 meters (m / s)

We use the following meteorology-related variables from the MERRA-2 M2T1NXFLX dataset:

– BSTAR: surface bouyancy scale (m s−2)

– CDH: surface exchange coefficient for heat (kg m−2 s −1)360

– CDM: surface exchange coefficient for momentum (kg m−2 s −1)

– CDQ: surface exchange coefficient for moisture (kg m−2 s −1)

– CN: surface neutral drag coefficient (1)

– DISPH: zero plane displacement height (m)

– EFLUX: total latent energy flux (W m−2)365

– EVAP: evaporation from turbulence (kg m−2 s −1)

– FRCAN: areal fraction of anvil showers (1)

– FRCCN: areal fraction of convective showers (1)

– FRCLS: areal fraction of nonanvil large scale showers (1)

– FRSEAICE: ice covered fraction of tile (1)370

– GHTSKIN: ground heating for skin temp (W m −2)

– HFLUX: sensible heat flux from turbulence (W m−2)

– HLML: surface layer height (m)

– NIRDF: surface downwelling nearinfrared diffuse flux (W m−2)

– NIRDR: surface downwelling nearinfrared beam flux (W m−2)375

– PBLH: planetary boundary layer height (m)

– PGENTOT: total column production of precipitation (kg m−2 s −1)

– PRECANV: anvil precipitation (kg m−2 s −1)

– PRECCON: convective precipitation (kg m−2 s −1)
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– PRECLSC: nonanvil large scale precipitation (kg m−2 s −1)380

– PRECSNO: snowfall (kg m−2 s −1)

– PRECTOT: total precipitation from atm model physics (kg m−2 s −1)

– PRECTOTCORR: Bias corrected total precipitation (kg m−2 s −1)

– PREVTOT: total column re-evap/subl of precipitation (kg m−2 s −1)

– QLML: surface specific humidity (1)385

– QSH: effective surface specific humidity (kg kg−1)

– QSTAR: surface moisture scale (kg kg−1)

– RHOA: air density at surface (kg m−3)

– RISFC: surface bulk Richardson number (1)

– SPEED: surface wind speed (m s −1)390

– SPEEDMAX: surface wind speed (m s −1)

– TAUGWX: surface eastward gravity wave stress (N m−2)

– TAUGWY: surface northward gravity wave stress (N m−2)

– TAUX: eastward surface stress (N m−2)

– TAUY: northward surface stress (N m−2)395

– TCZPBL: transcom planetary boundary layer height (m)

– TLML: surface air temperature (K)

– TSH: effective surface skin temperature (K)

– TSTAR: surface temperature scale (K)

– ULML: surface eastward wind (m s−1)400

– USTAR: surface velocity scale (m s −1)

– VLML: surface northward wind (m s−1)

– Z0H: surface roughness for heat (m)
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– Z0M: surface roughness (m)

We use the following aerosol and air quality related variables from the MERRA-2 M2T1NXAER dataset:405

– BCANGSTR: Black Carbon Angstrom parameter [470-870 nm] (1)

– BCCMASS: Black Carbon Column Mass Density (kg m−2)

– BCEXTTAU: Black Carbon Extinction AOT [550 nm] (1)

– BCFLUXU: Black Carbon column u-wind mass flux (kg m−1 s −1)

– BCFLUXV: Black Carbon column v-wind mass flux (kg m−1 s −1)410

– BCSCATAU: Black Carbon Scattering AOT [550 nm] (1)

– BCSMASS: Black Carbon Surface Mass Concentration (kg m−3)

– DMSCMASS: DMS Column Mass Density (kg m−2)

– DMSSMASS: DMS Surface Mass Concentration (kg m−3)

– DUANGSTR: Dust Angstrom parameter [470-870 nm] (1)415

– DUCMASS: Dust Column Mass Density (kg m−2)

– DUCMASS25: Dust Column Mass Density - PM 2.5 (kg m−2)

– DUEXTT25: Dust Extinction AOT [550 nm] - PM 2.5 (1)

– DUEXTTAU: Dust Extinction AOT [550 nm] (1)

– DUFLUXU: Dust column u-wind mass flux (kg m−1 s −1)420

– DUFLUXV: Dust column v-wind mass flux (kg m−1 s −1)

– DUSCAT25: Dust Scattering AOT [550 nm] - PM 2.5 (1)

– DUSCATAU: Dust Scattering AOT [550 nm] (1)

– DUSMASS: Dust Surface Mass Concentration (kg m−3)

– DUSMASS25: Dust Surface Mass Concentration - PM 2.5 (kg m−3)425

– OCANGSTR: Organic Carbon Angstrom parameter [470-870 nm] (1)

– OCCMASS: Organic Carbon Column Mass Density (kg m−2)
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– OCEXTTAU: Organic Carbon Extinction AOT [550 nm] (1)

– OCFLUXU: Organic Carbon column u-wind mass flux (kg m−1 s −1)

– OCFLUXV: Organic Carbon column v-wind mass flux (kg m−1 s −1)430

– OCSCATAU: Organic Carbon Scattering AOT [550 nm] (1)

– OCSMASS: Organic Carbon Surface Mass Concentration (kg m−3)

– SO2CMASS: SO2 Column Mass Density (kg m−2)

– SO2SMASS: SO2 Surface Mass Concentration (kg m−3)

– SO4CMASS: SO4 Column Mass Density (kg m−2)435

– SO4SMASS: SO4 Surface Mass Concentration (kg m−3)

– SSANGSTR: Sea Salt Angstrom parameter [470-870 nm] (1)

– SSCMASS: Sea Salt Column Mass Density (kg m−2)

– SSCMASS25: Sea Salt Column Mass Density - PM 2.5 (kg m−2)

– SSEXTT25: Sea Salt Extinction AOT [550 nm] - PM 2.5 (1)440

– SSEXTTAU: Sea Salt Extinction AOT [550 nm] (1)

– SSFLUXU: Sea Salt column u-wind mass flux (kg m−1 s −1)

– SSFLUXV: Sea Salt column v-wind mass flux (kg m−1 s −1)

– SSSCAT25: Sea Salt Scattering AOT [550 nm] - PM 2.5 (1)

– SSSCATAU: Sea Salt Scattering AOT [550 nm] (1)445

– SSSMASS: Sea Salt Surface Mass Concentration (kg m−3)

– SSSMASS25: Sea Salt Surface Mass Concentration - PM 2.5 (kg m−3)

– SUANGSTR: SO4 Angstrom parameter [470-870 nm] (1)

– SUEXTTAU: SO4 Extinction AOT [550 nm] (1)

– SUFLUXU: SO4 column u-wind mass flux (kg m−1 s −1)450

– SUFLUXV: SO4 column v-wind mass flux (kg m−1 s −1)
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– SUSCATAU: SO4 Scattering AOT [550 nm] (1)

– TOTANGSTR: Total Aerosol Angstrom parameter [470-870 nm] (1)

– TOTEXTTAU: Total Aerosol Extinction AOT [550 nm] (1)

– TOTSCATAU: Total Aerosol Scattering AOT [550 nm] (1)455

A2 OpenStreetMap road types used to compute the distance to the closest road

We use the following road types to compute the distance to the closest road. The descriptions of the road types are obtained

from OpenStreetMap (2023).

– motorway: A restricted access major divided highway, normally with 2 or more running lanes plus emergency hard

shoulder. Equivalent to the Freeway, Autobahn, etc.460

– trunk: The most important roads in a country’s system that aren’t motorways.

– primary: The next most important roads in a country’s system.

– secondary: The next most important roads in a country’s system.

– tertiary: The next most important roads in a country’s system.

– motorway_link: The link roads (sliproads/ramps) leading to/from a motorway from/to a motorway or lower class high-465

way. Normally with the same motorway restrictions.

– trunk_link: The link roads (sliproads/ramps) leading to/from a trunk road from/to a trunk road or lower class highway.

– primary_link: The link roads (sliproads/ramps) leading to/from a primary road from/to a primary road or lower class

highway.

– secondary_link: The link roads (sliproads/ramps) leading to/from a secondary road from/to a secondary road or lower470

class highway.

– tertiary_link: The link roads (sliproads/ramps) leading to/from a tertiary road from/to a tertiary road or lower class

highway.

A3 IGBP land cover types

IGBP classification contains the following land cover types:475

– 1: Evergreen needleleaf forests

– 2: Evergreen broadleaf forests
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– 3: Deciduous needleleaf forests

– 4: Deciduous broadleaf forests

– 5: Mixed forests480

– 6: Closed shrublands

– 7: Open shrublands

– 8: Woody savannas

– 9: Savannas

– 10: Grasslands485

– 11: Permanent wetlands

– 12: Croplands

– 13: Urban and built-up

– 14: Cropland/natural

– 15: Snow and ice490

– 16: Barren

– 17: Water bodies

A4 Table of all input variables
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MERRA2_POPCORN_ELEVATIONDIFFERENCE POPCORN_AOD500 POPCORN_AOD870

MERRA2_ETA MERRA2_FLX_GHTSKIN POPCORN_distancetolandclass2

POPCORN_time_cyclic_yearly_sin POPCORN_time_cyclic_yearly_cos POPCORN_AOD675

MERRA2_surface_to_column_ratio_PM25 POPCORN_AOD550 MERRA2_ASMCONST_SGH

POPCORN_distancetolandclass6 MERRA2_AER_BCFLUXU MERRA2_AER_SO2CMASS

MERRA2_ASM_QV2M POPCORN_ANGSTROM MERRA2_AER_DUSMASS

MERRA2_AER_SSSMASS25 POPCORN_AOD440 MERRA2_ASM_TROPT

MERRA2_AER_TOTANGSTR MERRA2_ASM_QV10M MERRA2_ASM_T2M

MERRA2_AER_OCCMASS MERRA2_ASM_TQV MERRA2_FLX_QLML

MERRA2_AER_SUFLUXV MERRA2_FLX_USTAR MERRA2_AER_SO4CMASS

POPCORN_distancetolandclass17 MERRA2_AER_DUCMASS MERRA2_AER_BCSMASS

MERRA2_AER_BCSCATAU MERRA2_AER_DUEXTTAU MERRA2_FLX_EFLUX

MERRA2_AER_SO4SMASS MERRA2_FLX_EVAP MERRA2_FLX_NIRDR

MERRA2_FLX_HFLUX POPCORN_ASTERDEM MERRA2_AER_SUANGSTR

MERRA2_ASM_TROPPB MERRA2_AER_BCFLUXV MERRA2_FLX_TLML

MERRA2_FLX_QSTAR POPCORN_time_cyclic_daily_sin MERRA2_AER_DUSCATAU

MERRA2_FLX_PBLH POPCORN_distancetolandclass7 POPCORN_distancetolandclass12

MERRA2_AER_OCSCATAU MERRA2_AER_TOTEXTTAU POPCORN_distancetolandclass15

MERRA2_ASM_TROPPV MERRA2_SURFACERH MERRA2_FLX_RHOA

MERRA2_AER_BCEXTTAU MERRA2_FLX_FRCLS MERRA2_AER_DUEXTT25

MERRA2_ASM_T10M MERRA2_ASM_TS MERRA2_FLX_SPEED

MERRA2_AER_BCANGSTR MERRA2_AER_DUSCAT25 MERRA2_AER_OCFLUXU

MERRA2_CTMCONST_FRLANDICE MERRA2_AER_DUCMASS25 MERRA2_AER_OCEXTTAU

MERRA2_FLX_FRCAN MERRA2_ASMCONST_FRLAND MERRA2_AER_SSCMASS

MERRA2_AER_TOTSCATAU MERRA2_AER_BCCMASS MERRA2_CTMCONST_FRACI

MERRA2_AER_DUSMASS25 POPCORN_distancetolandclass16 POPCORN_CALIOP_MASK_AOD_90_Percent_Below

POPCORN_time_cyclic_daily_cos POPCORN_distancetolandclass4 MERRA2_AER_DUANGSTR

MERRA2_FLX_SPEEDMAX MERRA2_CTMCONST_FRLAND MERRA2_FLX_HLML

MERRA2_AER_DUFLUXV MERRA2_AER_OCANGSTR MERRA2_FLX_TAUY

MERRA2_FLX_FRCCN MERRA2_PM25 MERRA2_ASMCONST_FRLAKE

POPCORN_distancetolandclass8 MERRA2_AER_SSFLUXV MERRA2_AER_SUFLUXU

MERRA2_FLX_CDQ POPCORN_distancetolandclass13 MERRA2_FLX_TSTAR

MERRA2_FLX_CN MERRA2_ASM_V50M MERRA2_AER_SSSCATAU

MERRA2_FLX_QSH MERRA2_FLX_Z0H MERRA2_ASM_PS

MERRA2_AER_SSEXTTAU MERRA2_FLX_TCZPBL MERRA2_AER_OCSMASS

MERRA2_FLX_TSH POPCORN_distancetolandclass3 MERRA2_SURFACEELEVATION

MERRA2_ASM_TROPQ MERRA2_FLX_CDH MERRA2_FLX_PGENTOT

MERRA2_ASM_U10M MERRA2_FLX_ULML MERRA2_ASM_TOX

MERRA2_AER_DMSCMASS POPCORN_distancetolandclass1 POPCORN_distancetolandclass14

MERRA2_FLX_TAUX MERRA2_ASMCONST_FRLANDICE MERRA2_AER_SUSCATAU

MERRA2_AER_DUFLUXU POPCORN_distancetolandclass10 MERRA2_FLX_PREVTOT

MERRA2_CTMCONST_FROCEAN MERRA2_ASM_TQL MERRA2_ASM_U2M

MERRA2_ASM_DISPH MERRA2_FLX_PRECTOT MERRA2_AER_SO2SMASS

MERRA2_FLX_CDM MERRA2_FLX_Z0M MERRA2_ASM_windspeed

POPCORN_distancetolandclass11 MERRA2_FLX_DISPH MERRA2_AER_OCFLUXV

MERRA2_FLX_PRECTOTCORR MERRA2_ASM_TROPPT MERRA2_FLX_PRECLSC

MERRA2_FLX_BSTAR MERRA2_ASM_TO3 POPCORN_CALIOP_MASK_AOD_63_Percent_Below

MERRA2_FLX_PRECCON MERRA2_ASM_TQI MERRA2_ASMCONST_FROCEAN

MERRA2_CTMCONST_PHIS POPCORN_distancetolandclass5 MERRA2_CTMCONST_FRLAKE

MERRA2_FLX_TAUGWX MERRA2_FLX_PRECANV MERRA2_ASM_V2M

MERRA2_ASMCONST_PHIS MERRA2_FLX_NIRDF POPCORN_distancetolandclass9

MERRA2_ASM_SLP POPCORN_BlackMarble POPCORN_distancetoroad_upwind

MERRA2_AER_SSANGSTR MERRA2_FLX_VLML MERRA2_AER_SSSCAT25

MERRA2_ASM_winddirection MERRA2_FLX_TAUGWY MERRA2_AER_SSFLUXU

MERRA2_AER_SUEXTTAU MERRA2_ASM_V10M MERRA2_AER_SSCMASS25

MERRA2_FLX_PRECSNO MERRA2_AER_SSEXTT25 MERRA2_AER_DMSSMASS

MERRA2_FLX_RISFC MERRA2_AER_SSSMASS MERRA2_ASM_U50M

MERRA2_FLX_FRSEAICE

Table A1. List of input variables used in our model ordered by SHAP value (from left to right and from top to bottom).
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Figure A1. Bar plot of the SHAP values for the first 26 input variables in order of importance.
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