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Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, Antti Lipponen

We would like to thank the reviewers for reading carefully the manuscript and giving their comments. Below we reply to each

of the comments.

1 Answers to reviewer #1

1.1 There are many researches that focus on using AOD to estimate PM2.5 through machine learning approaches.

Compared with them, what is the innovation of this study? I understand that this study corrects the ratio between5

PM2.5 and AOD derived from MERRA2 and applies the improved ratio to satellite AOD to estimate surface PM2.5

concentrations, which is different from other researches that estimate PM2.5 directly. Although this is a new

approach, what is the advantage of this study. Compared with previous researches, can the new approach provide

better PM2.5 estimation?

The novelty of this study is to employ the post process correction where we use machine learning for correcting the geophysical10

model based AOD-to-PM2.5 conversion ratio instead of directly predicting the conversion ratio. The rationale for this selection is

improved accuracy over the conventional approach of learning the conversion ratio directly. Figure 1 shows the results obtained

with the conventional approach of learning directly the AOD-to-PM2.5 ratio. The R2, RMSE and MAE with the proposed

post-correction approach (left image) are better than with the conventional direct estimation (right image).

1.2 This exclude the PM2.5 concentrations that are larger than 80 µg/m3. This would reduce the importance of this15

study as the research community is more interested in heavy polluted scene. The authors excluded that condition

that PM2.5 concentrations that are larger than 80 µg/m3 due to imbalanced data (only a small set of data with

PM2.5 concentrations that are larger than 80 µg/m3). Can the problem is solved through bagging or other

approaches?

The PM2.5 values beyond 80 µg/m3 were excluded from the study due to sparsity of high value data in the region of interest20

(central Europe, 2019) considered in this study. Similar cutoff for high PM2.5 values has been applied, for example, in Ibrahim

et al. (2022)). To address the lack of high PM2.5 data, one could think of producing synthetic training data using machine

learning models such as TVAE (Tabular Variational Auto Encoder) or CTGAN (Conditional Tabular Generative Adversarial

Network) (Xu et al., 2019): we tried already to use them to balance the data but they did not improve the results. In future studies

1



Figure 1. A) Post process corrected PM2.5 predictions against OpenAQ PM2.5 measurements. B) Fully-learned NOODLESALAD PM2.5

predictions against OpenAQ PM2.5 measurements.

the approach could be extended to more global training data and include data, for example, from India and China, where higher25

values of PM2.5 exist more frequently.

1.3 More information of satellite data is needed. What is the temporal resolution and swath of the sensor?

Two Sentinel-3 satellites currently flying provide revisit times of less than two days for OLCI and less than one day for the

SLSTR instrument at equator. Swath width of the OLCI instrument is 1270 km. SLSTR swath width is 1420 km for the nadir

view and 750 km for the oblique view. In our study, we base our aerosol information on the official Sentinel-3 Synergy Land30

data product and the characteristics of that data set matches our satellite overpass data. The information have been added to the

manuscript.

1.4 This study only demonstrates the validations in Fig. 4. It would be more interesting to show the fitting (training) as

well.

Fig.2 shows the results on the training set. The metrics are better than on the test set (as it is expected to be), but not very35

different since we used the early stopping technique as regularization to avoid overfitting on the training set. We remark that in

this study we separated part of the available stations to be used as independent validation data for the methods. For operational

use, the model could be trained using all the available data in the training and test data sets.

1.5 In Fig.4, why monthly mean shows larger bias than instant estimations?

It is not strictly necessary that the monthly bias is smaller than the instantaneous bias. We have added mean absolute error40

(MAE) as an additional metric in the figures. MAE shows improvement for the monthly data over the instantaneous data.
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Figure 2. A) MERRA-2 PM2.5 predictions against OpenAQ PM2.5 measurements per single-overpass. B) Uncorrected NOODLESALAD

PM2.5 predictions against OpenAQ PM2.5 measurements per single-overpass. C) Corrected NOODLESALAD PM2.5 predictions against

OpenAQ PM2.5 measurements per single-overpass. These results regard the training set.

1.6 Latitude and longitude are missing in the top panels of Figs. 5 and 6.

Latitude and longitude have been added to the panels.

1.7 Line 78-80: I cannot understand. More details are needed for the method description.

Some OpenAQ stations report 24 hour average PM2.5 every hour based on the last 24 hours.45

In this work, we used the 24 hour averages given every hour to estimate hourly PM2.5. This processing was done station-by-

station using a Tikhonov regularized (with regularization parameter value 0.05) least-squares fit to unfold the time integrated

data into hourly estimates.

In practice, the hourly PM2.5 estimates were computed using the formula

PM2.5,1h =
(
ATA+αI

)−1
AT b, (1)50

where the system matrix

A=


1
24

1
24 · · · 1

24 0 0 · · · 0

0 1
24 · · · 1

24
1
24 0 · · · 0

...

0 0 · · · 0 0 0 · · · 1
24

 , (2)
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is 24 hour time averaging operator and the data vector

b=


PM2.5,24h,1

PM2.5,24h,2

...

PM2.5,24h,N

 , (3)

55

PM2.5,1h =


PM2.5,1h,24

PM2.5,1h,25

...

PM2.5,1h,N

 (4)

contain the hourly 24 hour averages PM2.5,24h,N of the station data and α= 0.05 is the regularization parameter. The solution

vector PM2.5,1h,N contains the unfolded 1 hour PM2.5 at timestep N , respectively.

We have added this explanation in the revised manuscript.

1.8 Why CALIOP data are used. This is monthly mean data, but PM2.5 and AOD has strong diurnal variation. Can60

the CALIOP data help to improve PM2.5 estimation?

We tested the approach without CALIOP data in the training and the result is shown in fig.3 (left image: CALIOP included,

right image: without CALIOP). The model which uses CALIOP data results in slightly better accuracy, indicating that use of

CALIOP data is warranted.

Figure 3. A) Corrected NOODLESALAD PM2.5 predictions against OpenAQ PM2.5 measurements per single-overpass (using CALIOP data).

B) Corrected NOODLESALAD PM2.5 predictions against OpenAQ PM2.5 measurements per single-overpass (without CALIOP data).
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1.9 The unit of RMSE is missing throughout the paper.65

The unit of RMSE has been added to the paper.

2 Answers to reviewer #2

2.1 Abstract: The study lacks major conclusions and quantitative descriptive results.

The abstract has been modified as follows (extension highlighted in red):

Estimates of PM2.5 levels are crucial for monitoring air quality and studying the epidemiological impact of air quality on70

the population. Currently, the most precise measurements of PM2.5 are obtained from ground stations, resulting in limited

spatial coverage. In this study, we consider satellite-based PM2.5 retrieval, which involves conversion of high-resolution satellite

retrieval of Aerosol Optical Depth (AOD) into high-resolution PM2.5 retrieval. To improve the accuracy of the AOD to PM2.5

conversion, we employ the machine learning based post-process correction to correct the AOD-to-PM conversion ratio derived

from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis model data. The75

post-process correction approach utilizes a fusion and downscaling of satellite observation and retrieval data, MERRA-2

reanalysis data, various high resolution geographical indicators, meteorological data and ground station observations for learning

a predictor for the approximation error in the AOD to PM2.5 conversion ratio. The corrected conversion ratio is then applied to

estimate PM2.5 levels given the high-resolution satellite AOD retrieval data derived from Sentinel-3 observations. The region of

study is central Europe during the year 2019. Our model produces PM2.5 estimates with a spatial resolution of 100 meters at80

satellite overpass times with R2 = 0.55 and RMSE = 6.2 µg/m3. The corresponding metrics for monthly averages are R2 =

0.72 and RMSE = 3.7 µg/m3. Additionally, we have incorporated an ensemble of neural networks to provide error envelopes

for machine learning related uncertainty in the PM2.5 estimates. The proposed approach can produce accurate high resolution

PM2.5 data that can be very useful for air quality monitoring, emission regulation and epidemiological studies.

2.2 The introduction is very short and lacks a comprehensive review of numerous previous studies on converting AOD85

to PM2.5 using machine learning models.

The introduction has been modified as follows (extension highlighted in red):

Poor air quality is one of the most serious environmental health risks of our time. In September 2021, the World Health

Organization (WHO) released Global Air Quality Guidelines, revealing clear evidence of the damage air pollution inflicts on

human health at even lower concentrations than previously understood (World Health Organization, 2021). WHO estimates90

that exposure to air pollution causes 7 million premature deaths every year. A key indicator in monitoring air quality and

epidemiological studies is the PM2.5 parameter, which is the dry mass concentration of fine particulate matter with an

aerodynamic diameter of less than 2.5 micrometers (micrograms of particulate matter per cubic meter of air). Fine particulate

matter originates from vehicle emissions, coal burning, and industrial emissions, among many other human and natural sources.

Epidemiological studies link long exposures to high PM2.5 levels to many severe illnesses, such as stroke and cardiovascular95
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and respiratory diseases (e.g. Pope and Dockery, 2006; Cohen et al., 2017). On a global scale, the magnitude of the PM2.5

exposure-related risk for human health is enormous as more than 90% of the world’s population lives in areas with annual mean

PM2.5 levels exceeding the new WHO 2021 air quality guideline of 5 micrograms per cubic meter (Health Effects Institute,

2019).

While the knowledge of the health effects of pollution increases continuously, the epidemiological estimates still have100

significant uncertainties due to the lack of accurate global air pollution data (Hammer et al., 2020). Networks of ground-based

observation stations produce accurate pointwise observations of PM2.5 and certain chemical components such as ozone, sulfur

dioxide and nitrogen dioxide. These ground station measurements produce relatively accurate data, but the networks consist of

only a few thousand irregularly located observation stations, mainly in developed countries, leading to the insufficient spatial

coverage of the PM2.5 data. To better monitor and understand air quality and pollution sources near real-time global observations105

of air quality are needed. The only way to get spatially resolved air quality data is to utilize satellite retrievals.

Satellite retrievals of PM2.5 are often based on satellite AOD retrievals and AOD-to-PM conversion ratio (Health Effects

Institute, 2019; van Donkelaar et al., 2013; Zhang and Kondragunta, 2021; Geng et al., 2015). AOD is a columnar optical

quantity, whereas PM2.5 is the mass concentration of dry aerosol particles at some single point, typically at the surface level.

Many factors affect the AOD-to-PM conversion ratio, including the aerosol vertical extinction profile, aerosol type and size110

distribution, and relative humidity. These factors are typically unavailable from a single data source, such as data provided by

the instruments onboard a satellite, so a simulation-model-based AOD-to-PM ratio is often used. The simulation-model-based

AOD-to-PM conversion ratio is typically computed based on meteorology, chemical transport models (CTM) and auxiliary

satellite data such as lidar-based aerosol vertical profiles. The PM2.5 retrieval at a given location and time is then calculated as a

product of the retrieved satellite AOD and the AOD to PM2.5 ratio. The current state-of-the-art PM2.5 retrieval algorithm also115

contains a post-processing step where the retrieved spatial PM2.5 estimate is fitted to the ground-based PM2.5 station data by a

linear geographically weighted regression (van Donkelaar et al., 2016).

Many previous studies use machine learning techniques to convert AOD to PM2.5 levels. In particular, (Ibrahim et al., 2022)

used a variant of Random Forest called Extremely Randomised Trees (ET) to estimate PM2.5 across Europe. (Stafoggia et al.,

2019; Schneider et al., 2020) used Random Forest regressors in a multi-stage approach to estimate PM2.5 at ground stations120

when only PM10 measurements were available, to impute AOD values when not accessible and to finally predict PM2.5 values

across Italy and Great Britain. (Handschuh et al., 2023) considered multiple Random Forest models to evaluate PM2.5 levels

across Germany using 4 different AOD datasets.

In this paper, we propose a novel approach for high-resolution satellite-based retrieval of PM2.5. While the previous studies

use machine learning to learn the AOD to PM2.5 conversion directly, we take a novel approach where we train the model to125

predict the approximation error in the geophysical model based conversion ratio. Our approach retrieves PM2.5 at the spatial

resolution of 100 m. It is based on the machine learning post-process correction approach, which we developed for the correction

of approximation errors in satellite retrievals (Lipponen et al., 2021) and employed for high-resolution spectral aerosol optical

depth (AOD) retrieval (POPCORN AOD) from SENTINEL-3 SYNERGY data (Lipponen et al., 2022). In our algorithm

development work, we take the spectral, high-resolution Sentinel-3 POPCORN AOD (Lipponen et al., 2022) as the starting point.130
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Our PM2.5 retrieval is based on the AOD-to-PM2.5 conversion ratio applied to the POPCORN AOD. The AOD-to-PM2.5 ratio is

estimated by machine learning techniques utilizing a fusion of collocated ground station-based in-situ PM2.5 data, MERRA-2

reanalysis model AOD and PM2.5 data, spectral AERONET AOD, satellite-observed spectral top-of-atmosphere reflectances,

meteorology data and various high-resolution geographical indicators representing, for example, population density and land

surface elevation. Utilizing these data, we employ the post-process correction approach to the estimation of AOD-to-PM2.5135

ratio (Lipponen et al., 2021, 2022; Taskinen et al., 2022) and then the high-resolution PM2.5 retrieval is obtained as the product

of the post-process corrected AOD-to-PM2.5 ratio and POPCORN AOD. By using an ensemble of neural networks, we can

also provide error envelopes for the machine learning related uncertainty in the PM2.5 estimates. The approach is tested with

Sentinel-3 data from central Europe in 2019.

2.3 The use of MERRA2-2 for calculating PM2.5 is criticized for its inaccuracies and omission of certain species like140

Nitrate. It is suggested to consider using GEOS-CF data, which provides PM2.5 simulations at a higher resolution

of 0.25 degrees.

We thank the referee for the suggestion. We agree that GEOS-CF would be a suitable and good model data to consider in our

methodology. Our methodology developed is not restricted to any single model or satellite data. Some criteria in selecting the

model data for our work were long time series and widely used model in scientific literature and we therefore ended up selecting145

MERRA-2. In our future work, we will consider using GEOS-CF data as it has somewhat better spatial accuracy and more

relevant species for air quality applications.

2.4 The spatial resolution of high-resolution indicators such as roads and nighttime lights needs clarification.

– NASA Black Marble Night Lights: We use the 500 meter resolution data.

– OpenStreetMap roads: The original data is vector data with a typical accuracy of orders of meters. We have re-projected150

the OpenStreetMap road data to 100 meter resolution before use.

We have added the resolutions used to the revised manuscript.

2.5 The excessive number of variables selected raises questions about their relevance and contribution to the network

model. It would be beneficial to employ importance analysis methods to identify and eliminate redundant variables.

This process will streamline the model and improve its efficiency and interpretability.155

We used SHAP analysis (Lundberg and Lee (2017)) to estimate the feature importance after model training. A bar plot can be

seen in fig.4 for the first 26 features found with the SHAP analysis. Table 1 contains all the input variables listed by importance

(SHAP value). Since all the variables had non-negligible SHAP values, indicating some information content in them, we decided

to keep them all. The input variable table in the manuscipt has been modified so that now the variables are listed in order of

importance by the SHAP values.160
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Figure 4. Bar plot of the SHAP values for the first 26 input variables in order of importance.

2.6 Figure 3: It is unclear how the training and validation stations are divided. Additionally, the proximity of stations

may lead to correlation issues, affecting the independence of training and testing samples spatially.

We are not the first ones to use site-validation, please see the review of different validation methods used in the literature Tang

et al. (2024). Essentially we divided randomly the stations into training set, validation set and test set, then used the related data
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accordingly. For what regards the correlation issues, there should be only a minimal effect since we are operating at resolution165

of 100 m and there are not two or more stations in the same pixel.

2.7 Section 3.4: The rationale for choosing the neural network model over other more powerful machine learning and

deep learning models is not provided. The advantages of this model should be discussed.

Using a fully connected neural network compared to other common models in PM2.5 prediction like random forest is very

suitable in the case one is working with assumption of independent pixels and a high number of data samples and features. In170

this case, our study is limited to the chosen ROI and period of time (2019) so we have roughly 20000 points in the training set:

our plan is to extend the ROI and the period of time in future studies so to have more data in the training set, where the fully

connected neural network should show all its learning capability. Comparing the fully connected neural network to other deep

learning models, we think it is the most suitable architecture for the task at hand since we are dealing with tabular data and a fair

amount of features. One could for example think of using a convolutional neural network and reorganizing the data samples into175

appropriate matrices but still the number of features is small and we don’t know if we would benefit deploying a convolutional

network (there’s no computational burden to justify this approach and the fully connected neural network should be able to find

proper representations of the input data in its hidden layers).

2.8 Figure 4: While the accuracy has improved, the correlation remains relatively low (only 0.63), compared to

previous studies achieving higher accuracy with AI (R2 higher than 0.8). The significance of the study is questioned,180

and comparison with previous studies to assess improvement is recommended.

The R2 coefficient is low compared to other studies but we should compare our manuscript to papers who deal with, for example.

the same ROI, spatial resolution and study time period. Our RMSE is comparable to other studies that consider European

countries or similar ROI (Schneider et al. (2020); Ibrahim et al. (2022); Handschuh et al. (2023)). The R2 coefficient is low

but the number of data samples at hand is low too: as mentioned before, we are considering the year 2019 and compared, for185

example, to Ibrahim et al. (2022) we have 10% of data. Our ensemble of fully connected neural networks would benefit from

having more data and the metrics would improve further. Also the data and the preprocessing choices are different, so the studies

are not directly comparable.
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MERRA2_POPCORN_ELEVATIONDIFFERENCE POPCORN_AOD500 POPCORN_AOD870

MERRA2_ETA MERRA2_FLX_GHTSKIN POPCORN_distancetolandclass2

POPCORN_time_cyclic_yearly_sin POPCORN_time_cyclic_yearly_cos POPCORN_AOD675

MERRA2_surface_to_column_ratio_PM25 POPCORN_AOD550 MERRA2_ASMCONST_SGH

POPCORN_distancetolandclass6 MERRA2_AER_BCFLUXU MERRA2_AER_SO2CMASS

MERRA2_ASM_QV2M POPCORN_ANGSTROM MERRA2_AER_DUSMASS

MERRA2_AER_SSSMASS25 POPCORN_AOD440 MERRA2_ASM_TROPT

MERRA2_AER_TOTANGSTR MERRA2_ASM_QV10M MERRA2_ASM_T2M

MERRA2_AER_OCCMASS MERRA2_ASM_TQV MERRA2_FLX_QLML

MERRA2_AER_SUFLUXV MERRA2_FLX_USTAR MERRA2_AER_SO4CMASS

POPCORN_distancetolandclass17 MERRA2_AER_DUCMASS MERRA2_AER_BCSMASS

MERRA2_AER_BCSCATAU MERRA2_AER_DUEXTTAU MERRA2_FLX_EFLUX

MERRA2_AER_SO4SMASS MERRA2_FLX_EVAP MERRA2_FLX_NIRDR

MERRA2_FLX_HFLUX POPCORN_ASTERDEM MERRA2_AER_SUANGSTR

MERRA2_ASM_TROPPB MERRA2_AER_BCFLUXV MERRA2_FLX_TLML

MERRA2_FLX_QSTAR POPCORN_time_cyclic_daily_sin MERRA2_AER_DUSCATAU

MERRA2_FLX_PBLH POPCORN_distancetolandclass7 POPCORN_distancetolandclass12

MERRA2_AER_OCSCATAU MERRA2_AER_TOTEXTTAU POPCORN_distancetolandclass15

MERRA2_ASM_TROPPV MERRA2_SURFACERH MERRA2_FLX_RHOA

MERRA2_AER_BCEXTTAU MERRA2_FLX_FRCLS MERRA2_AER_DUEXTT25

MERRA2_ASM_T10M MERRA2_ASM_TS MERRA2_FLX_SPEED

MERRA2_AER_BCANGSTR MERRA2_AER_DUSCAT25 MERRA2_AER_OCFLUXU

MERRA2_CTMCONST_FRLANDICE MERRA2_AER_DUCMASS25 MERRA2_AER_OCEXTTAU

MERRA2_FLX_FRCAN MERRA2_ASMCONST_FRLAND MERRA2_AER_SSCMASS

MERRA2_AER_TOTSCATAU MERRA2_AER_BCCMASS MERRA2_CTMCONST_FRACI

MERRA2_AER_DUSMASS25 POPCORN_distancetolandclass16 POPCORN_CALIOP_MASK_AOD_90_Percent_Below

POPCORN_time_cyclic_daily_cos POPCORN_distancetolandclass4 MERRA2_AER_DUANGSTR

MERRA2_FLX_SPEEDMAX MERRA2_CTMCONST_FRLAND MERRA2_FLX_HLML

MERRA2_AER_DUFLUXV MERRA2_AER_OCANGSTR MERRA2_FLX_TAUY

MERRA2_FLX_FRCCN MERRA2_PM25 MERRA2_ASMCONST_FRLAKE

POPCORN_distancetolandclass8 MERRA2_AER_SSFLUXV MERRA2_AER_SUFLUXU

MERRA2_FLX_CDQ POPCORN_distancetolandclass13 MERRA2_FLX_TSTAR

MERRA2_FLX_CN MERRA2_ASM_V50M MERRA2_AER_SSSCATAU

MERRA2_FLX_QSH MERRA2_FLX_Z0H MERRA2_ASM_PS

MERRA2_AER_SSEXTTAU MERRA2_FLX_TCZPBL MERRA2_AER_OCSMASS

MERRA2_FLX_TSH POPCORN_distancetolandclass3 MERRA2_SURFACEELEVATION

MERRA2_ASM_TROPQ MERRA2_FLX_CDH MERRA2_FLX_PGENTOT

MERRA2_ASM_U10M MERRA2_FLX_ULML MERRA2_ASM_TOX

MERRA2_AER_DMSCMASS POPCORN_distancetolandclass1 POPCORN_distancetolandclass14

MERRA2_FLX_TAUX MERRA2_ASMCONST_FRLANDICE MERRA2_AER_SUSCATAU

MERRA2_AER_DUFLUXU POPCORN_distancetolandclass10 MERRA2_FLX_PREVTOT

MERRA2_CTMCONST_FROCEAN MERRA2_ASM_TQL MERRA2_ASM_U2M

MERRA2_ASM_DISPH MERRA2_FLX_PRECTOT MERRA2_AER_SO2SMASS

MERRA2_FLX_CDM MERRA2_FLX_Z0M MERRA2_ASM_windspeed

POPCORN_distancetolandclass11 MERRA2_FLX_DISPH MERRA2_AER_OCFLUXV

MERRA2_FLX_PRECTOTCORR MERRA2_ASM_TROPPT MERRA2_FLX_PRECLSC

MERRA2_FLX_BSTAR MERRA2_ASM_TO3 POPCORN_CALIOP_MASK_AOD_63_Percent_Below

MERRA2_FLX_PRECCON MERRA2_ASM_TQI MERRA2_ASMCONST_FROCEAN

MERRA2_CTMCONST_PHIS POPCORN_distancetolandclass5 MERRA2_CTMCONST_FRLAKE

MERRA2_FLX_TAUGWX MERRA2_FLX_PRECANV MERRA2_ASM_V2M

MERRA2_ASMCONST_PHIS MERRA2_FLX_NIRDF POPCORN_distancetolandclass9

MERRA2_ASM_SLP POPCORN_BlackMarble POPCORN_distancetoroad_upwind

MERRA2_AER_SSANGSTR MERRA2_FLX_VLML MERRA2_AER_SSSCAT25

MERRA2_ASM_winddirection MERRA2_FLX_TAUGWY MERRA2_AER_SSFLUXU

MERRA2_AER_SUEXTTAU MERRA2_ASM_V10M MERRA2_AER_SSCMASS25

MERRA2_FLX_PRECSNO MERRA2_AER_SSEXTT25 MERRA2_AER_DMSSMASS

MERRA2_FLX_RISFC MERRA2_AER_SSSMASS MERRA2_ASM_U50M

MERRA2_FLX_FRSEAICE

Table 1. List of input variables used in our model ordered by SHAP value (from left to right and from top to bottom).
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