

- Non-negligible secondary contribution to brown carbon in autumn and winter: 1 2 inspiration from particulate nitrated and oxygenated aromatic compounds in 3 urban Beijing 4 5 Yanqin Ren¹, Zhenhai Wu¹, Yuanyuan Ji¹, Fang Bi¹, Junling Li¹, Haijie Zhang¹, Hao 6 Zhang¹, Hong Li^{1*}, Gehui Wang^{2*} 7 8 9 ¹ State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 10 ² Key Lab of Geographic Information Science of Ministry of Education of China, 11 School of Geographic Sciences, East China Normal University, Shanghai 200142, 12 China 13 14 15
- 16 *Corresponding authors: Dr. Gehui Wang/ Dr. Hong Li
- 17 E-mail address: <u>ghwang@geo.ecnu.edu.cn</u> / <u>lihong@craes.org.cn</u>

18 Abstract

Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic 19 aromatic hydrocarbons (OPAHs) play vital roles within brown carbon (BrC), 20 influencing both climate dynamics and human health to a certain degree. The 21 concentrations of these drug classes were analyzed in PM2.5 from an urban area in 22 Beijing during the autumn and winter of 2017-2018. There were four heavy haze 23 episodes during the campaign; two of which happened prior to heating whereas the 24 other two after heating. During the entire course of sampling, the mean total 25 concentrations of the nine NACs and the eight OPAHs were 1.2-263 and 2.1-234 ng m⁻ 26 ³, respectively. The concentrations of both NACs and OPAHs were approximately 2-3 27 times higher in the heating period than before heating. For NACs, the relative molecular 28 29 composition did not change significantly before and during heating, with 4nitrocatechol and 4-nitrophenol demonstrating the highest abundance. For OPAHs, 1-30 Naphthaldehyde was the most abundant species before and during heating, while the 31 32 relative proportion of Anthraquinone increased by more than twice, from 13% before 33 heating to 31% during the heating. In Beijing's urban area during autumn and winter, significant sources of NACs and OPAHs have been traced back to automobile emissions 34 and biomass-burning activities. Interestingly, it was observed that the contribution from 35 coal combustion increased notably with the onset of heating during this period. It is 36 worth noticing that the secondary generation of BrC was important throughout the 37 whole sampling period, which was manifested by the photochemical reaction before 38

39	heating and the aqueous reaction during heating. It was further found that the haze in
40	autumn and winter was nitrate-driven before heating and SOC-driven when heating
41	began, and the secondary formation of BrC increased significantly in pollution events,
42	particularly during heating.

43 1 Introduction

44	As an important light-absorbing material, brown carbon (BrC) has garnered
45	increasing attention in recent years (Jiang et al., 2023; Yi Chen et al., 2022; Song et al.,
46	2022; Cai et al., 2022; Zhang et al., 2021; Liu et al., 2023; Ren et al., 2023; Ren et al.,
47	2022). BrC could not only directly absorb solar energy, but also indirectly contribute to
48	climate change by promoting the evaporation of water and the dispersal of clouds
49	(Laskin et al., 2015; Huang et al., 2018). In addition to its significant climate effects,
50	BrC also has potential adverse effects on human health on account of its strong
51	mutagenic, cytotoxic, and carcinogenic properties (Teich et al., 2016).

Primary as well as secondary sources contribute to the atmospheric accumulation of BrC (Zhu et al., 2021). Direct emissions of primary BrC come from burning biomass and combustion of fossil fuels (Ni et al., 2021; Wang et al., 2020a; Lu et al., 2019a; Lu et al., 2019b). Oxidation and aging processes in the atmosphere produce secondary BrC (Wang et al., 2019; Wang et al., 2020c; Cheng et al., 2021; Jiang et al., 2023; Cai et al., 2022). Toluene, phenol, benzene, and other aromatic hydrocarbons can be oxidized by NO₃ or OH radical vapor phase in the presence of NO_x to produce nitrophenol or

59	nitrocatechol (Olariu et al., 2002; Sato et al., 2007; Iinuma et al., 2010; Ji et al., 2017).
60	VOCs emitted during biomass combustion and pyrolysis (such as cresol, catechol,
61	methyl catechol, etc.) can be oxidized to produce nitro-aromatic hydrocarbons (Iinuma
62	et al., 2010; Claeys et al., 2012; Finewax et al., 2018). Research on the source analysis
63	of brown carbon (BrC) frequently focuses on examining two key constituents: the
64	carbon component within humic-like substances (HULIS-C) and water-soluble organic
65	carbon (WSOC). These components are often studied to understand the origins and
66	properties of BrC in various environmental contexts. Secondary generation and burning
67	of biomass are the two main sources of HULIS in Guangzhou and Shanghai (Fan et al.,
68	2016; Zhao et al., 2016). In comparison with the water-insoluble BrC in the winter, the
69	contribution of non-fossil sources (for instance burning biomass) to water-soluble BrC
70	is 67% (Liu et al., 2018; Song et al., 2018). Coal combustion is presumably a significant
71	source of HULIS in the winter, in addition to burning biomass and secondary generation
72	(Tan et al., 2016). According to multiple studies conducted in Beijing, the primary
73	contributor to WSOC is secondary generation, accounting for 54% of its composition.
74	Following this, biomass burning contributes approximately 40%, while other primary
75	emission sources contribute a smaller proportion, making up only 6% (Du et al., 2014).
76	In Beijing, the percentages of biomass burning, coal combustion, and secondary
77	generation that contribute to atmospheric HULIS are 47%, 15%, and 39%, respectively.
78	The primary origins of HULIS show minimal association with motor vehicles and
79	industrial emissions (Li et al., 2019). According to Ma et al., secondary generation is
80	responsible for over 50% of HULIS in the non-heating season. Biomass burning

represents 21% of the HULIS content during this period. However, in the heating season, approximately 40% of HULIS originates from biomass burning, while the remaining 60% is contributed by diverse combustion sources like coal burning, waste incineration, and vehicular emissions. Within this season, secondary generation accounts for about 19% of the HULIS content (Ma et al., 2018).

The research suggests that various sources contribute to BrC, but their relative 86 87 impact varies depending on time and location. As a result, the chemical makeup, light 88 absorption characteristics, and concentrations of BrC show considerable variability. 89 This variability poses challenges in accurately assessing and forecasting the influence of these sources on radiation and climate changes (Wang et al., 2020b; Yan et al., 2018; 90 Laskin et al., 2015). However, until recently, there was only a limited volume of 91 92 research pertaining to the sources and pathways of BrC leading to their generation in 93 the densely populated city environment. NACs and OPAHs are the primary focus of this study because several studies have noted that nitrogen-containing aromatics, 94 polycyclic aromatic hydrocarbons (PAHs), and their derivatives are significant BrC 95 96 chromophores (Huang et al., 2018; Cai et al., 2022; Yi Chen et al., 2022; Wu et al., 2020; Liu et al., 2023; Wang et al., 2020b). It is well-established that residential heating 97 plays a significant role in the substantial increase of anthropogenic pollutant emissions 98 during the winter season. From autumn to winter, there is a substantial rise in the 99 100 emission of aromatics-derived secondary organic aerosol (Ding et al., 2017), and 101 particle BrC is often detected especially in haze periods during the autumn and winter 102 (Liu et al., 2023). This study was conducted in the autumn and winter of 2017-2018 in

103	Beijing. Nine NACs and eight OPAHs were measured in PM _{2.5} samples, with a focus
104	on examining their sources, compositions, and concentration variations under various
105	air conditions. Specifically, emphasis was placed on investigating the contribution of
106	secondary generation to these two typical BrC species, particularly their involvement
107	in particle pollution processes during autumn and winter.

108 2 Materials and Methods

109 2.1 Field observations

PM_{2.5} was sampled at a height of 10m on the rooftop of a building at the Chinese 110 Research Academy of Environmental Sciences (CRAES), Beijing, China (40°02'N, 111 116°24'E). Using a high-volume sampler (1.13 m³ min⁻¹, Thermofisher Co., USA), 112 PM_{2.5} specimens were collected in the autumn and winter of 2017/2018. The sampling 113 process was executed from 8:00 to 19:30 during the day and from 20:00 to 7:30 in the 114 subsequent morning. The specimens and blanks were gathered using a pre-combusted 115 quartz fiber filter (at 450 °C for 6 h). A total of 4 field blanks and 122 PM_{2.5} samples 116 117 were acquired. Individual filters were sealed in a bag made from an aluminum foil bag 118 before sampling and analysis and placed in a freezer set at a temperature of -20 °C. Using automatic equipment (CRAES Supersite for Comprehensive Urban Air 119

120 Observation and Research), meteorological parameters such as air temperature (T, °C)

and relative humidity (RH, %) along with gaseous pollutants (SO₂, NO₂, O₃, and CO)

122 were observed and measured at the same time.

123 2.2 Chemical analysis

124	The present study employed a pre-treatment comprising ultrasonic extraction and
125	derivatization in an attempt to analyze the organic species in the specimens. The details
126	of specimen extraction and derivatization have already been published (Wang et al.,
127	2009; Ren et al., 2021; Ren et al., 2023). In brief, filter aliquots were sectioned and
128	extracted with a methanol and dichloromethane (1:2 v/v,) mixture. Following the
129	concentration of the extracts to dryness, derivatization was carried out using a mixture
130	of N, O-bis-(trimethylsilyl) trifluoroacetamide [BSTFA+TMCS, (99:1), v/v] and
131	pyridine (5:1, v/v). Lastly, the derivatized samples were examined using gas
132	chromatography coupled with a mass spectroscopy detector (GC/MS: HP 7890A, HP
133	5975C, Agilent Co., USA). The extraction and derivatization methods described above
134	allowed for the simultaneous measurement of the samples' polar and non-polar
135	constituents.

Given that OPAHs and NACs were the main points of focus, this study 136 investigated a total of eight OPAHs and nine NACs. The nine NACs included 2,4-137 dinitrophenol (2, 4-DNP), 4-nitrophenol (4NP), 3-methyl-4-nitrophenol (3M4NP), 4-138 nitrocatechol (4NC), 4-methyl-5-nitrocatechol (4M5NC), 4-nitroguaiacol (4NGA), 5-139 nitroguaiacol (5NGA), 3-nitro-salicylic acid (3NSA), and 5-nitro-salicylic acid (5NSA), 140 while the eight OPAHs encompassed 9-fluorenone (9-FO), benzanthrone (BZA), 1-141 Naphthaldehyde (1-NapA), anthraquinone (ATQ), 1,4-chrysenequione (1,4-CQ), 142 benzo(a)anthracene-7,12-dione (7,12-BaAQ), 5,12-naphthacenequione (5,12-NAQ) 143 and 6H-benzo(cd)pyrene-6-one (BPYRone). 144

145	The elemental carbon (EC) and organic carbon (OC) content of individual $PM_{2.5}$
146	filter samples were analyzed using an Atmoslytic Inc. DRI model 2001 Carbon
147	Analyzer. This analysis followed the Interagency Monitoring of Protected Visual
148	Environments (IMPROVE) thermal/optical reflectance (TOR) protocol, involving the
149	examination of a 0.526 cm^2 punch from each specimen. The specifics of the above-
150	described techniques have been documented in literature (Li et al., 2016; Ren et al.,
151	2021).

152 2.3 Evaluation of secondary BrC

In this study, the contributions of secondary oxidation to the detected NACs and OPAHs were evaluated by using a CO-tracer method, which is comparable to the ECtracer used for secondary OC quantification. Various methodologies have been similarly adopted successfully in other studies (Liu et al., 2023; Cai et al., 2022). Equation 1 and Equation 2 were respectively used to evaluate the secondary formation of NACs and OPAHs.

159
$$[NACs]_s = [NACs]_t - ([NACs]_t / [CO])_{pri} \times [CO]$$
(1)

160
$$[OPAHs]_s = [OPAHs]_t - ([OPAHs]_t / [CO])_{pri} \times [CO]$$
(2)

161 $[NACs]_s$ and $[NACs]_t$ in Equation 1 refer to the NACs concentration produced by 162 secondary oxidation and the total amount of NACs, respectively. $([NACs]_t / [CO])_{pri}$ 163 represents the primary emission ratio of NACs in relation to combustion. This 164 calculation assumes that the primary source was predominant during the period, with 165 minimal secondary production. The $([NACs]_t / [CO])_{pri}$ was calculated in this work by 166 fitting the 15% lowest $[NACs]_t / [CO]$ ratios observed during the entire sampling

167	duration. In equation 2 the concentration of OPAHs produced by secondary oxidation
168	and the total observed OPAHs are denoted by $[\mbox{OPAHs}]_{s}$ and $[\mbox{OPAHs}]_{t}$ respectively.
169	The concentration of CO is denoted by [CO], while the primary emission ratio of
170	OPAHs in relation to combustion is represented by ([OPAHs] /[CO]) pri, which was
171	calculated by fitting the lowest 15% [OPAHs] $_t$ /[CO] ratios observed in the entire
172	sample interval.

173 3 Results and discussion

3.1 Variations in major components of PM_{2.5} with respect to meteorological conditions and gaseous pollution

Based on the Beijing heating time, the entire period of the study was divided into 176 two phases: before heating (18 October to 14 November 2017) and during heating (15 177 to 23 November 2017; 23 December 2017 to 17 January 2018). Table 1 and Fig. 1 178 present the temporal fluctuations in meteorological factors, gaseous pollutant 179 concentrations, and the main PM2.5 components in the two phases. The temperature (T) 180 and relative humidity (RH) were higher before heating $(11 \pm 3.8 \text{ }^\circ\text{C} \text{ and } 49 \pm 26\%)$ than 181 during heating (1.9 \pm 4.4 °C and 23 \pm 15%), with average values amounting to 5.9 \pm 182 5.9 °C and 35 \pm 25%, respectively. SO₂ concentrations during heating (4.3 \pm 1.5 ppb) 183 184 were more than twice that before heating $(2.1 \pm 0.8 \text{ ppb})$, presumably because of the increase in household coal burning for heating. The levels of NO2 and NO remained 185 consistent before and during heating, suggesting that these pollutants were minimally 186

- impacted by heating and were primarily influenced by mobile sources in Beijing. This
- 188 pattern seems to remain stable in the short term.

Fig.2 shows the variation in the chemical makeup of PM_{2.5} in the entire sampling 189 period, before and during hearting, respectively. Secondary inorganic aerosols (SIA, i.e. 190 191 SO₄²⁻, NH₄⁺, and NO₃⁻) were identified as the leading constituents of PM_{2.5}, followed by OM (1.6 times OC), with an average of 31.5% and 20.4% in the whole sampling, 192 193 respectively (Fig. 2a). Even though the PM_{2.5} concentrations remained relatively stable 194 during this period (as indicated in Table 1 and Fig. 2), there were significant changes 195 observed in the concentrations of SIA and OM, as well as their relative contributions to PM_{2.5}. Before heating, SIA accounted for 41.9% of PM_{2.5}, which notably decreased to 196 23.1% during heating. This decline was primarily evident in the reduction of NO³⁻. 197 Specifically, SO4²⁻, NO3⁻, and NH4⁺ were measured at 5.5, 16, and 5.4 µg m⁻³, 198 respectively, according to Table 1. These values constituted 8.7%, 24.7%, and 8.5% of 199 PM_{2.5} before heating, as shown in Fig. 2b. Their concentrations decreased to 4.3, 6.8, 200 and 4.2 µg m⁻³ (Table 1). The relative contributions of NO₃⁻ to PM_{2.5} dropped 201 202 dramatically to 10.3% during heating, amounting to a drop of nearly 60%. Both SO4²⁻ and NH4⁺ experienced a roughly 25% decrease in their relative contributions to PM2.5, 203 as illustrated in Fig. 2c. The relative abundance of OM to PM2.5 increased from 18.6% 204 before heating to 21.9% during heating, with the average mass concentration of OC 205 showing an increase from 7.4 to 9.1 μ g m⁻³ in the corresponding duration. The OC/EC 206 ratio also increased by 63% from 2.7 ± 3.3 before heating to 4.4 ± 3.7 during heating. 207 These significant changes in SIA and OM, including concentrations and the relative 208

were the leading contributors during the heating seasons due to household heating (Tan et al., 2018). The rise in mass concentrations of K^+ and Cl^- indicated additional burning activities occurring during heating, aside from coal combustion, such as biomass burning (Bai et al., 2023; Li et al., 2022).

contributions to PM2.5, showed that primary organic aerosols and/or VOCs emissions

214

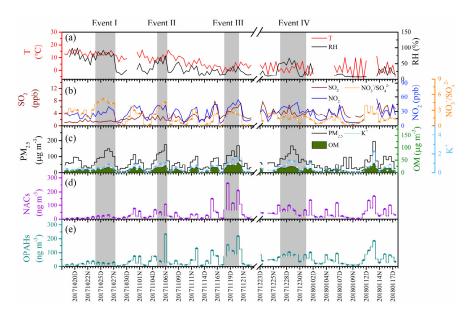
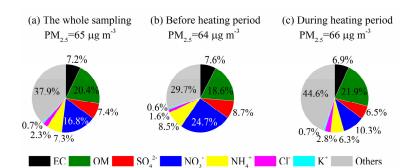

209

Table 1. Gaseous pollution concentrations and meteorological parameters and chemical constituents of $PM_{2.5}$ during the sampling periods in Beijing.

	The whole sampling	Before heating period	During heating period
	<i>N</i> =122	18/10-14/11, 2017	15/11–23/11, 2017 23/12, 2017–17/1, 2018
		<i>N</i> =56	<i>N</i> =66
Meteorological pa	arameters		
Temperature, °C	$5.9 \pm 5.9 ((-7.5) - 16)$	11 ± 3.8 (1.2 – 16)	$1.9 \pm 4.4 \; ((-7.5) - 11)$
Relative humidity, %	35 ± 25 (7.1 – 99)	$49 \pm 26 (11 - 99)$	$23 \pm 15 \ (7.1 - 67)$
Gaseous pollutant	ts, ppb		
SO ₂	$3.2\pm 1.6\;(1.1-7.9)$	$2.1\pm 0.8\;(1.1-4.8)$	$4.3\pm 1.5\;(2.2-7.9)$
NO ₂	$26 \pm 13 \; (4.6 - 56)$	$25 \pm 11 \; (4.6 - 43)$	$26 \pm 14 \; (5.5 - 56)$
NO	$26\pm 28\;(2.4-136)$	$28\pm 30\ (2.4-136)$	$25 \pm 26 \ (2.7 - 116)$
СО	$0.64\pm0.55\;(0.03-2.7)$	$0.81 \pm 0.42 \; (0.12 - 1.6)$	$0.50\pm 0.61\;(0.03-2.7)$
Major component	ts of PM _{2.5} , μg m ⁻³		
PM _{2.5}	$65\pm 40\ (6.1-195)$	$64 \pm 39 \ (6.1 - 175)$	$66\pm 41\ (8.6-195)$
OC	$8.3\pm 5.0\ (0.99-26)$	$7.4\pm 3.9\;(1.0-18)$	9.1 ± 5.8 (1.8 – 26)
EC	$4.7\pm 4.7\;(0.11-25)$	$4.9\pm 3.8\;(0.11-17)$	$4.5\pm5.3\;(0.18-25)$
OC/EC	$3.7\pm 3.6\;(0.96-21)$	$2.7\pm 3.3\;(0.96-21)$	$4.4\pm 3.7\;(1.0-17)$
SO4 ²⁻	$4.8\pm 4.2\;(0.85-25)$	$5.5\pm3.5\;(0.86-13)$	$4.3\pm 4.7\;(0.85-25)$
NO ₃ -	$11\pm 14\ (0.09-58)$	$16\pm 16\ (0.09-58)$	$6.8\pm 8.8\;(0.29-37)$
$\mathrm{NH_4^+}$	$4.7\pm4.9\;(0.02-20)$	$5.4\pm5.4\;(0.02-20)$	$4.2\pm 4.5\;(0.19-20)$
\mathbf{K}^+	$0.43\pm0.39\;(0.02-2.2)$	$0.38\pm 0.27\;(0.03-1.1)$	$0.48\pm0.46\;(0.02-2.2)$
Cl	$1.5\pm1.6\;(0.06-9.2)$	$1.0\pm0.98\;(0.06-4.5)$	$1.9\pm2.0\;(0.13-9.2)$



217 218

Time (YYYYMMDD; D: daytime, N: nighttime)

Fig.1 Time series of (a) RH and T, (b) SO₂ and NO₂, (c) PM_{2.5}, OM, and K⁺, (d) NACs and (e) OPAHs in the autumn and winter of urban Beijing. (Daytime is denoted by empty marks and the nighttime is represented by solid marks in the panel b–e. The pollution episodes, with elevated concentrations of daily PM_{2.5} more than 75 μ g m⁻³ in two successive days, have been marked in light gray).

224

225

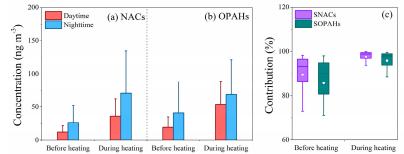
Fig.2 Chemical constitution of PM_{2.5} in the entire sampling period (a), before (b), and

227 during (c) heating periods, respectively.

228 **3.2** Concentration and composition variations of BrC compounds

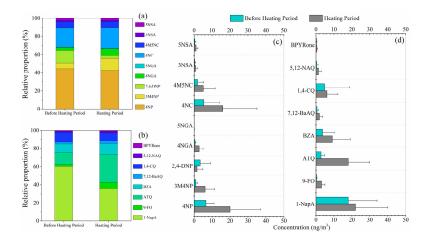
229 This work quantified nine NACs and eight OPAHs. The corresponding

230 concentrations and compositions have been presented in Fig. 3 and Table S1


231 (supporting information).

As seen in Table S1, during the entire sampling, the total concentrations of NACs 232 (Σ 9NACs) and their corresponding contribution to OM (Σ 9NACs/OM) respectively 233 averaged to 38 (1.2-263) ng m⁻³ and 0.25 (0.03-0.86) %. Σ 9NACs and Σ 9NACs/OM 234 respectively averaged 53 (4.5-263) ng m⁻³ and 0.33 (0.09-0.86) % during heating, both 235 236 values are two times higher in magnitude in comparison to those measured before heating (averaged 20 (1.2-108) ng m⁻³ and 0.15 (0.03-0.4) %, respectively). ∑9NACs 237 238 exhibited a nighttime increase, reaching approximately twice the levels observed during daytime throughout the entire campaign (Fig. 3a). The observed difference between day 239 and night is consistent with our previous research (Ren et al., 2022). However, the 240 relative molecular composition of the total nine NACs in PM2.5 did not manifest any 241 242 significant change (Fig.4a, c), 4-Nitrophenol (4NP) was found to have the highest concentration among all species, accounting for 44% and 42% of the total NACs before 243 and during heating, followed by 4-nitrocatechol (4NC) which accounted for 21% before 244 245 heating and 23% during heating. These findings align with the dominant species observed in previous studies (Ren et al., 2022; Ren et al., 2023; Li et al., 2020) however 246 the values were much higher in comparison to those found in our earlier work (Ren et 247 al., 2022) at the same sample site during the spring $(8.6 (0.48-27) \text{ ng m}^{-3})$ and summer 248 (8.5 (1.0-16) ng m⁻³). It's plausible that seasonal variations in NACs are linked to 249 250 emission sources, formation pathways, and weather conditions. In this study, the overall abundance of the Σ 9NACs appeared to align closely with measurements from earlier 251

studies conducted during winter in Beijing $(74 \pm 51 \text{ ng m}^{-3} \text{ in winter}, 20 \pm 12 \text{ ng m}^{-3} \text{ in})$ 252 autumn) (Li et al., 2020) and Jinan ($48 \pm 26 \text{ ng m}^{-3}$ in winter, $9.8 \pm 4.2 \text{ ng m}^{-3}$ in autumn,) 253 (Wang et al., 2018), but are significantly higher than those measured for Xi'an (17 ± 12) 254 ng m⁻³) and Hong Kong (12 ± 14 ng m⁻³) in winter (Wu et al., 2020; Chow et al., 2015). 255 256 In contrast to studies conducted abroad, the levels of Σ 9NACs in this particular study tended to be higher Germany showed 16 ng m⁻³, while in the UK, levels were around 257 19 ng m⁻³. Belgium recorded levels of 32 ng m⁻³ in winter and 13 ng m⁻³ in autumn. 258 (Teich et al., 2017; Mohr et al., 2013; Kahnt et al., 2013). This indicates that it is urgent 259 260 to further reduce the concentration of contaminant precursors in China.



261 Fig.3 NACs and OPAHs concentrations (a,b) and contributions of secondary 262 formation (SNACs, SOPAHs) to the total (c) before and during heating periods. 263 Throughout the sampling, the total concentrations of OPAHs (Σ 80PAHs) 264 averaged 47 (1.2-234) ng m⁻³ whereas the mean value for their total contribution to OM 265 (Σ 80PAHs/OM) was 0.33 (0.06–0.81) % (Table S1). These values were both slightly 266 higher than those of NACs in this work. Σ 80PAHs and Σ 80PAHs/OM respectively 267 averaged 61 (6.9-218) ng m⁻³ and 0.40 (0.18-0.58) % during heating. These values are 268 almost twice as much as those measured before heating (averaging 31 (2.1–234) ng m⁻ 269 3 and 0.24 (0.06–0.81) %, respectively). Like the Σ 9NACs, the combined levels of 270

271 Σ 80PAHs were higher during nighttime compared to daytime, averaging about twice as high before heating and 1.3 times during heating, as indicated in Fig. 3b. Among the 272 eight OPAHs studied, 1-NapA constituted the highest proportion before (60%) and 273 during (36%) heating. However, the relative proportion of ATQ more than doubled, 274 275 increasing from 13% before heating to 31% during heating, as depicted in Fig. 4b and d. The average concentrations of Σ 80PAHs were higher than those recorded for other 276 Chinese urban sites, including Guangzhou (23 ng m⁻³) and Xi'an (54 ng m⁻³) (Ren et 277 al., 2017) as well as higher than those documented for the south (41.8 ng m⁻³, traffic 278 site) (Alves et al., 2017) and central (~10 ng m⁻³) European cities (Lammel et al., 2020). 279 The average concentrations of Σ 80PAHs were also higher than those recorded for 280 Mainz, Germany (0.047-1.6 ng m⁻³) and Thessaloniki, Greece (0.86-4.3 ng m⁻³) 281 282 (Kitanovski et al., 2020).

283

Fig.4 Comparison of measurements before and during the heating period at the urban
site of Beijing, including (a) Relative proportion of NAC species, (b) Relative
proportion of OPAH species, (c) NAC concentrations, and (d) OPAH concentrations.
(4NP: 4-nitrophenol, 3M4NP: 3-methyl-4-nitrophenol, 2, 4-DNP: 2,4-dinitrophenol,
4NGA: 4-nitroguaiacol, 5NGA: 5-nitroguaiacol, 4NC: 4-nitrocatechol, 4M5NC: 4-

methyl-5-nitrocatechol, 3NSA: 3-nitro-salicylic acid, 5NSA: 5-nitro-salicylic acid; 1-289 290 NapA: 1-Naphthaldehyde, 9-FO: 9-fluorenone, ATQ: anthraquinone, BZA: benzanthrone, 7,12-BaAQ: benzo(a)anthracene-7,12-dione, 1,4-CQ: 1,4-291 chrysenequione, 5,12-NAQ: 5,12-naphthacenequione, and **BPYRone**: 292 6Hbenzo(cd)pyrene-6-one) 293

294 3.3 Sources and formation of BrC compounds

The relation between individual and total species and the associated pollutants-295 296 levoglucosan, K⁺, SO₂, NO₂, O₃, RH, and SIA-was examined according to the data findings for the Pearson correlations shown in Table 2 (for NACs) and Table 3 (for 297 OPAHs) to provide additional clarity regarding the source and formation of NACs and 298 OPAHs. The strong correlations observed throughout the entire campaign between 299 300 levoglucosan (an organic tracer associated with biomass burning), K^+ (an inorganic tracer linked to biomass burning), and NO₂ with total NACs and all identified NAC 301 species indicate that both automobile emissions and biomass burning played significant 302 roles in the accumulation of NACs in urban Beijing during autumn and winter. The 303 correlation between NACs and SO₂ was significantly higher during heating (r=0.275, 304 p<0.05) compared to pre-heating, indicating that coal combustions play a more 305 significant role in NAC formation after heating commences. 306

In addition to these primary pollutants, NACs were also significantly correlated with some secondary pollutants. Before heating, there existed a strong positive association (r=0.692, p<0.01) between NACs and O₃. However, this association changed considerably after heating, becoming notably negative (r=-0.303, p<0.05). NACs and RH concurrently displayed a strong positive correlation (r=0.548, p<0.01)

during heating. Along with SO4²⁻, NO3⁻, and NH4^{+,} total NACs also exhibited high 312 positive correlation, particularly while heating (r=0.373, p<0.01; r=0.504, p<0.01; 313 r=0.513, p<0.01, respectively). The overall concentrations of OPAHs and NACs 314 throughout the campaign exhibited substantial correlations (r=0.830, p<0.01 before 315 316 heating; r=0.895, p<0.01 during heating) (Table 3, Fig. S1). This suggests that their sources and/or influencing variables were comparable. Specifically, throughout the 317 318 entire campaign, both total OPAHs and all identified OPAH species exhibited a strong 319 correlation with levoglucosan, K⁺, and NO₂. This implies that automobile emissions 320 and biomass burning played significant roles as sources of OPAHs. OPAHs and SO2 321 (r=0.365, p<0.01) were determined to be more strongly correlated during heating than before heating, suggesting the contribution of coal combustions to OPAHs becomes 322 323 significant when heating begins. Moreover, the correlation between OPAHs and O3 was 324 significantly positive before heating (r=0.563, p < 0.01), whereas it was significantly negative during heating (r=-0.385, p < 0.01). Furthermore, it was discovered that 325 throughout the heating phase, OPAHs and RH had a substantial positive correlation 326 327 (r=0.578, p < 0.01). Total OPAHs also showed good correlations with SO₄²⁻, NO₃⁻, and NH4⁺, especially during heating period (r=0.477, p<0.01; r=0.658, p<0.01; r=0.658, 328 p < 0.01; respectively). 329

The observed phenomena, involving photooxidation before heating and aqueous reactions during heating, strongly suggest a significant role in the secondary creation of BrC throughout the entire sampling period. Earlier studies have highlighted that in certain regions, the primary mechanism driving the formation of nitro-aromatic

334	hydrocarbons involves the gaseous phase oxidation of VOC precursors from
335	anthropogenic sources, such as toluene and benzene (Olariu et al., 2002; Sato et al.,
336	2007; Yuan et al., 2016; Ji et al., 2017; Liu et al., 2023). According to a recent study,
337	for instance, NACs are mostly generated at a rural location on China's Chongming
338	Island through gaseous-phase photooxidation (Liu et al., 2023). Aqueous reaction is
339	also a key pathway for the formation of BrC (Zhang et al., 2020; Cheng et al., 2021;
340	Jiang et al., 2023). Zhang et al., suggested that the aqueous formation of anthropogenic
341	secondary organic carbon was a key source of atmospheric BrC in Xi'an (Zhang et al.,
342	2020). Wang et al.'s field observations in urban Beijing revealed that the aqueous
343	reaction is a significant mechanism for the secondary synthesis of nitro-aromatic
344	hydrocarbons during summer temperatures with high relative humidity (Wang et al.,
345	2019).

346

Table 2 Correlations between NACs and meteorological parameters, gas pollutants, and aerosol components before (n=56) and during the heating period (n=66).

Before h	eating period	levoglucosan	\mathbf{K}^+	SO_2	NO_2	O3	RH	SO4 ²⁻	NO ₃ -	$\mathrm{NH_{4}^{+}}$
	∑9NACs	0.897**	0.738**	0.210	0.714**	0.692**	0.170	0.359**	0.369**	0.190
	4NP	0.784**	0.699**	0.249	0.715**	0.649**	0.118	0.345**	0.372**	0.207
	3M4NP	0.752**	0.526**	0.290^{*}	0.575**	0.511**	-0.011	0.184	0.191	0.029
	2,4-DNP	0.436**	0.353**	0.310*	0.463**	0.492**	-0.151	0.034	-0.048	-0.166
NAC	4NGA	0.545**	0.361**	0.438**	0.560**	0.524**	-0.137	-0.016	-0.025	-0.131
NACs	5NGA	0.582**	0.355**	0.114	0.343**	0.433**	0.005	0.120	0.139	0.044
	4NC	0.897**	0.748^{**}	0.064	0.641**	0.617**	0.308^{*}	0.448**	0.486**	0.325*
	4M5NC	0.885**	0.668**	0.076	0.579**	0.577**	0.252	0.364**	0.413**	0.261
	3NSA	0.791**	0.678**	0.129	0.553**	0.495**	0.214	0.457**	0.515**	0.331*
	5NSA	0.737**	0.596**	0.219	0.594**	0.553**	0.085	0.279*	0.316*	0.125
During h	eating period	levoglucosan	\mathbf{K}^+	SO ₂	NO ₂	O3	RH	SO4 ²⁻	NO ₃ -	$\mathrm{NH_{4^{+}}}$
	∑9NACs	0.888**	0.786**	0.275^{*}	0.481**	-0.303*	0.548**	0.373**	0.504**	0.513**
NACs	4NP	0.812**	0.725**	0.262^{*}	0.471**	-0.296*	0.586**	0.390**	0.489**	0.511**
	3M4NP	0.756**	0.655**	0.248	0.374**	-0.225	0.613**	0.318**	0.397**	0.462**

2,4-DNP	0.537**	0.495**	0.280^{*}	0.417**	-0.304*	0.199	0.136	0.247*	0.136
4NGA	0.672**	0.406**	0.229	0.274^{*}	-0.206	0.201	-0.047	0.074	0.081
5NGA	0.275*	0.208	-0.028	0.190	0.026	-0.006	0.114	0.100	0.125
4NC	0.894**	0.804**	0.248	0.454**	-0.290*	0.520**	0.378**	0.523**	0.530**
4M5NC	0.882**	0.736**	0.246	0.434**	-0.244	0.430**	0.283*	0.421**	0.422**
3NSA	0.788**	0.910**	0.348**	0.681**	-0.410**	0.577**	0.707**	0.888**	0.828**
 5NSA	0.820**	0.866**	0.268^{*}	0.629**	-0.377**	0.599**	0.680**	0.846**	0.828**

**significant correlation at the 0.01 level;

*significant correlation at the 0.05 level;

347 From the above analysis, it is evident that there is a good correlation between these 348 two aromatic compounds and levoglucosan, as well as SO2. Since levoglucosan and SO₂ are long-lived and inert chemicals in the atmosphere (Cai et al., 2022), it was not 349 possible to determine with certainty whether NACs and OPAHs originated 350 predominantly from direct emission from the coal and biomass combustion or by 351 352 secondary oxidation of the precursors produced as a result of these processes. Equations 1 and 2's outcomes indicated that in Beijing's urban areas during fall and winter, NACs 353 and OPAHs were predominantly of secondary origin. Throughout the entire sampling 354 period, secondary formation accounted for 17% to 99% (average of 80%) of NACs and 355 8.9% to 99% (average of 73%) of OPAHs, as depicted in Fig. 3c. Notably, the secondary 356 fraction for OPAHs increased by 10.4% from 86% to 96%, while the secondary fraction 357 for NACs rose by 8.9% from 90% before heating to 98% during heating. Earlier studies 358 359 have highlighted the presence of significant levels of secondary particle BrC during autumn and winter, particularly during haze periods (Ding et al., 2017; Liu et al., 2023), 360 and the results of this work corroborate well with the earlier studies. Moreover, the good 361 correlations between OPAHs and NACs with O3 before heating and with RH during 362 363 heating, confirm the importance of photochemical and aqueous oxidation in these two

364 different periods.

365

Table 3 Correlations between OPAHs and meteorological parameters, gas pollutants, and aerosol components before (n=56) and during the heating period (n=66).

Before h	eating period	∑9NACs	levoglucosan	\mathbf{K}^+	SO_2	NO_2	O3	RH	SO42-	NO ₃ -	$\mathrm{NH4}^{+}$
	∑80PAHs	0.830**	0.865**	.605**	0.188	0.563**	0.563**	0.143	0.244	0.283*	0.139
	1-NapA	0.844**	0.870**	.621**	0.211	0.640**	0.622**	0.174	0.213	0.238	0.096
	9-FO	0.775**	0.785**	.646**	0.283*	0.558**	0.573**	0.059	0.183	0.235	0.119
	ATQ	0.633**	0.694**	.497**	0.392**	0.477**	0.483**	-0.018	0.042	0.061	-0.024
OPAHs	BZA	0.686**	0.759**	.573**	0.232	0.537**	0.594**	0.110	0.177	0.206	0.117
	7,12-BaAQ	0.821**	0.865**	.685**	0.189	0.591**	0.622**	0.187	0.325*	0.356**	0.224
	1,4-CQ	0.636**	0.646**	.406**	0.041	0.303*	0.290^{*}	0.102	0.259	0.309*	0.174
	5,12-NAQ	0.694**	0.752**	.563**	0.227	0.511**	0.559**	0.091	0.184	0.214	0.110
	BPYRone	0.827**	0.870**	.662**	0.131	0.590**	0.616**	0.226	0.345**	0.398**	0.255
Heati	ing period	∑9NACs	levoglucosan	\mathbf{K}^+	SO_2	NO ₂	O3	RH	SO42-	NO ₃ -	$\mathrm{NH_4^+}$
	∑80PAHs	0.895**	0.931**	0.877**	0.365**	0.678**	-0.385**	0.578**	0.477**	0.658**	0.658**
	1-NapA	0.752**	0.774**	0.659**	0.248	0.547**	-0.378**	0.332*	0.332**	0.498**	0.446**
	9-FO	0.478**	0.457**	0.342**	0.305^{*}	0.302^{*}	-0.020	0.131	-0.013	0.167	0.250*
	ATQ	0.780**	0.797**	0.815**	0.426**	0.668**	-0.372**	0.656**	0.466**	0.642**	0.684**
OPAHs	BZA	0.840**	0.881**	0.829**	0.332**	0.570**	-0.273*	0.577**	0.431**	0.568**	0.577**
	7,12-BaAQ	0.801**	0.856**	0.896**	0.391**	0.633**	-0.299*	0.655**	0.531**	0.689**	0.710**
	1,4-CQ	0.703**	0.780**	0.791**	0.244	0.597**	-0.282*	0.624**	0.560**	0.647**	0.675**
	5,12-NAQ	0.777**	0.818**	0.869**	0.365**	0.601**	-0.293*	0.535**	0.444**	0.619**	0.614**
	BPYRone	0.858**	0.857**	0.845**	0.339**	0.588**	-0.320*	0.478**	0.396**	0.612**	0.568**

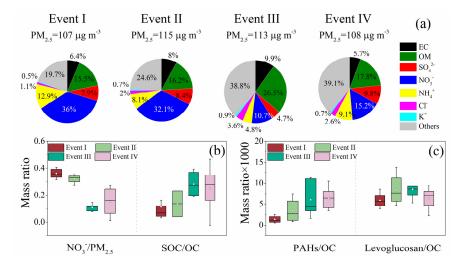
**significant correlation at the 0.01 level;

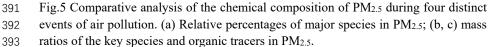
*significant correlation at the 0.05 level;

366

367 **3.4 Different pollution characteristics in haze events**

From Fig.1, it can be found that PM_{2.5} shows four equivalent maxima lasting for two to five days. Among the four pollution events, two occurred before heating (24-27, October and 5-6, November) and the other two occurred during heating (18-20, November and 27-31 December). PM_{2.5} was significantly different in terms of its chemical constituents before and during heating although the mass concentration of




373	$PM_{2.5}$ was rather similar (respectively averaging 107, 115, 113, and 108 $\mu g\ m^{\text{-}3}$ for
374	Event I, II, III, and IV) (Fig. 5a). In the two events before heating, OM existed as the
375	second most dominant species in $PM_{2.5}$, with the respective relative abundance of 15.5%
376	and 16.2% in Events I and II. In contrast, OM surfaced as the most dominant species of
377	$PM_{2.5}$ during heating. The relative abundance of OM (26.5%) during Event III was
378	higher (17.8%) than that during Event IV (Fig.5a). The ratios of $NO_3^-/PM_{2.5}$ were higher
379	in Events I and II as compared to Events III and IV, with the ratios of SOC/OC showing
380	the opposite trend (Fig.5b), suggesting a significant increase in the concentration of
381	secondary organic compounds after heating. In the context of fossil fuel combustion,
382	PAHs serve as markers for coal burning, while levoglucosan acts as a significant tracer
383	for biomass smoke. Figure 5c shows that the ratios of PAHs to organic carbon mass in
384	PM _{2.5} (PAHs/OC) were higher during Events III and IV compared to Events I and II.
385	This underscores the heightened emissions from household burning of coal for heating
386	purposes. Levoglucosan/OC, the mass ratio of levoglucosan to OC in PM2.5, did not,
387	however, rise considerably over the same period (Fig. 5c), indicating a similar degree
388	of emissions from burning biomass before and during heating. This result was
389	consistent with our earlier research from the 2014 APEC meeting (Wang et al., 2017).

390

394 According to the majority of research, Beijing's haze is distinguished by intense secondary formation (Zhang et al., 2018; Xu et al., 2017; Sun et al., 2016; Guo et al., 395 396 2014). According to several research studies, organic materials (OM) predominates in 397 the autumn and winter, while secondary SIA is the most prevalent species in the summer (Renhe et al., 2014). Additionally, according to a few investigators, SIA has a 398 major role in wintertime pollution episodes (Guo et al., 2014; Wang et al., 2016). 399 400 Furthermore, a recent investigation identified the species responsible for Beijing haze, and listed distinct haze-driving species operative over the year: The haze is primarily 401 OM-driven during winter and late fall, nitrate-driven in early fall, sulfate-driven in 402 summer, whereas it is driven primarily by nitrates during spring (Tan et al., 2018). Table 403 4 and Fig.5a depict that PM2.5 was enriched with SIA especially NO3⁻ during Events I 404 and II, but enriched OM with higher levels of SOC was observed during Events III and 405 IV. The findings strongly indicated that haze during fall and winter in urban Beijing 406

421

407	was primarily influenced by nitrate before heating and shifted to being driven by SOC
408	during heating. Table 4 illustrates that T (temperature) and RH (relative humidity) were
409	notably higher during Events I and II compared to Events III and IV. These warmer and
410	moister conditions favored photochemical oxidation, leading to an increased abundance
411	of SIA during the same period. Home heating activities, such as burning residential coal,
412	were increased during the heating period. This resulted in massive emissions of SO ₂ ,
413	NO _x , VOCs, and primary particles, all of which were conducive to the generation of
414	SOC. As a result, during Events III and IV, SOC concentrations and relative
415	abundances were higher than during Events I and II. Furthermore, Fig. 6a shows that
416	the NACs/OC and OPAHs/OC ratios were significantly higher in Events III and IV
417	compared to Events I and II. Figure 6b displays a parallel trend in the relative
418	contributions of secondary formation for both events, highlighting a notable increase in
419	the secondary formation of BrC during pollution events, particularly evident during
420	heating periods.

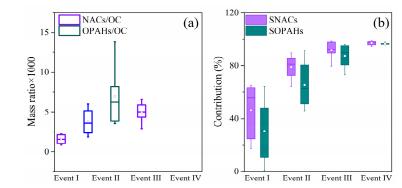


Fig. 6 Comparative analysis of the chemical composition of BrC during four distinct
air pollution events. (a) Mass ratios of NACs and OPAHs to OC in PM_{2.5}. (b) Relative
contributions of secondary formation (SNACs/OPAHs) to the total NACs/OPAHs in
the fine particulate.

426

Table 4. Meteorological parameters, chemical components ($\mu g m^{-3}$) of PM_{2.5}, and concentrations of gaseous pollutants (ppb) among four pollution episodes in Beijing.

	Before Heating Period During Heating Period		ating Period	
	Event I	Event II	Event III	Event IV
	24/10-27/10	5/11-6/11	18/11-20/11	27/12-31/12
	<i>N</i> =8	<i>N</i> =4	<i>N</i> =6	<i>N</i> =10
PM _{2.5}	107 ± 29	115 ± 48	113 ± 37	108 ± 35
Temperature, °C	13 ± 1.6	8.8 ± 4.2	1.8 ± 2.6	1.8 ± 3.8
Relative humidity, %	79 ± 10	55 ± 26	29 ± 10	36 ± 22
SO_2	1.4 ± 0.1	1.9 ± 1.1	5.0 ± 1.0	4.0 ± 1.2
NO	27 ± 19	27 ± 15	51 ± 42	47 ± 31
NO ₂	30 ± 6.7	33 ± 14	40 ± 12	37 ± 8.1
SIA ^a	62 ± 20	58 ± 22	23 ± 9.9	39 ± 30
NO ₃ -	39 ± 13	38 ± 15	12 ± 5.2	18 ± 14
SOC ^b	1.9 ± 1.3	2.3 ± 1.8	7.0 ± 2.8	3.9 ± 2.5
NACs (ng m ⁻³)	17 ± 8.3	41 ± 36	131 ± 85	55 ± 27
OPAHs (ng m ⁻³)	21 ± 7.6	62 ± 85	127 ± 53	74 ± 23

^a SIA: secondary inorganic aerosols (the sum of sulfate, nitrate, and ammonium).

^b SOC: secondary organic carbon ([SOC]=[OC]-[EC]×([OC]/[EC])_{pri}). [OC]/[EC])_{pri} was estimated from the fitting of the minimum [OC]/[EC] ratio, assuming that the primary source dominated the period with minimal secondary formation. In this work, ([OC]/[EC])_{pri} was estimated from the fitting of the lowest 15% [OC]/[EC] ratios during the whole sampling period.

427 4 Conclusions

The current study determined the concentrations of PM_{2.5}-bound nine NACs and eight OPAHs in autumn and winter in Beijing urban areas. The OPAHs and NACs concentrations were much higher during heating than before heating. These species have a distinct diurnal variation, with higher concentrations at night compared to day. 4-Nitrophenol, 4-nitrocatechol, and 1-Naphthaldehyde were the most abundantly existing species in the whole campaign. The primary sources of NACs and OPAHs were biomass combustion and

435 automobile emissions, with the secondary generation of BrC being the predominant

436	contributor across the entire sampling period. Our results underscore the significant role
437	of secondary generation in producing BrC, particularly its heightened contribution
438	during pollution events linked to heating. A comparative analysis of the chemical
439	constitution of $PM_{2.5}$ and BrC in four different haze events also revealed that the haze
440	in the autumn and winter was caused by SOC during heating and by nitrate prior to
441	heating. Increased attention should be directed towards reducing the emissions of
442	aromatic hydrocarbons and other anthropogenic volatile organic compounds (VOCs)
443	when heating commences. This focus is crucial for effectively mitigating pollution and
444	ensuring the preservation of human health. There is still only a limited volume of
445	research on the molecular makeup of BrC, with this study primarily concentrating on
446	two chromophores. As a result, further research is needed to identify more impactful
447	chromophores at a molecular level. Additionally, a comprehensive exploration of the
448	secondary generation pathways and key influencing factors of BrC through field
449	observations and laboratory simulations is essential. This investigation is crucial for
450	accurately assessing the environmental and human health impacts of BrC.

451 Data availability

The field observational and the lab experimental data used in this study are available from the corresponding author upon request (Hong Li via <u>lihong@craes.org.cn</u>).

455 Author contributions

456	randin Ken, Genul wang and Hong Li designed the research; randin Ken,
457	Yuanyuan Ji and Zhenhai Wu collected the samples; Yanqin Ren, Fang Bi and Hao
458	Zhang conducted the experiments; Yanqin Ren and Gehui Wang analyzed the data,
459	Yanqin Ren wrote the paper; Gehui Wang, Junling Li, Haijie Zhang and Hong Li
460	contributed to the paper with useful scientific discussions and comments.

461 Competing interests

462 The authors declare that they have no conflict of interest.

463 Acknowledgements

- 464 This work was supported by the Fundamental Research Funds for Central Public
- 465 Welfare Scientific Research Institutes of China (No. 2022YSKY-27; No. 2019YSKY-
- 466 018), and the National Natural Science Foundation of China (No. 42130704; No.
- 467 41907197).

468 References

Alves, C., Vicente, A., CustÃ³dio, D., Cerqueira, M., Nunes, T., Pio, C., Lucarelli, F., Calzolai, G., Nava,
S., and Diapouli, E.: Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs,
oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities, Sci. Total. Environ.,
595, 494-504, <u>http://dx.doi.org/10.1016/j.scitotenv.2017.03.256</u>, 2017.
Bai, X., Wei, J., Ren, Y., Gao, R., Chai, F., Li, H., Xu, F., and Kong, Y.: Pollution characteristics and
health risk assessment of Polycyclic aromatic hydrocarbons and Nitrated polycyclic aromatic

475	hydrocarbons during heating season in Beijing, JEnvS, 123, 169-182,
476	https://doi.org/10.1016/j.jes.2022.02.047, 2023.
477	Cai, D., Wang, X., George, C., Cheng, T., Herrmann, H., Li, X., and Chen, J.: Formation of Secondary
478	Nitroaromatic Compounds in Polluted Urban Environments, J. Geophys. ResAtmos.,
479	https://doi.org/10.1029/2021JD036167, 2022.
480	Cheng, X., Chen, Q., Li, Y., Huang, G., Liu, Y., Lu, S., Zheng, Y., Qiu, W., Lu, K., Qiu, X., Bianchi, F.,
481	Yan, C., Yuan, B., Shao, M., Zhe Wang, R, M., Canagaratna, Zhu, T., Wu, Y., and Zeng, L.:
482	Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments, Environ.
483	Sci. Technol., 55, 4410-4419, https://doi.org/10.1021/acs.est.0c07988, 2021.
484	Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic compounds in atmospheric
485	fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary
486	formation derived from biomass burning emissions, Environmental Chemistry, 13, 665,
487	https://doi.org/10.1071/EN15174, 2015.
488	Claeys, M., Vermeylen, R., Yasmeen, F., Gómez-González, Y., Chi, X., Maenhaut, W., Mészáros, T., and
489	Salma, I.: Chemical characterisation of humic-like substances from urban, rural and tropical
490	biomass burning environments using liquid chromatography with UV/vis photodiode array
491	detection and electrospray ionisation mass spectrometry, Environmental Chemistry, 9, 273-284,
492	http://dx.doi.org/10.1071/EN11163, 2012.
493	Ding, X., Zhang, Y. Q., He, Q., Yu, Q. Q., Wang, J. Q., Shen, R. Q., Song, W., Wang, Y., and Wang, X.:
494	Significant increase of aromatics-derived secondary organic aerosol during fall to winter in
495	China, Environ. Sci. Technol., 13, 7432-7441, <u>http://doi.org/10.1021/acs.est.6b06408</u> , 2017.
496	Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., and Weber, R.: A yearlong
497	study of water-soluble organic carbon in Beijing II: Light absorption properties, Atmos.
498	Environ., 89, 235-241, http://doi.org/10.1016/j.atmosenv.2014.02.022, 2014.
499	Fan, Xingjun, Peng, Ping'an, Song, and Jianzhong: Temporal variations of the abundance and optical
500	properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China,
501	Atmos. Res., http://doi.org/10.1016/j.atmosres.2015.12.024, 2016.
502	Finewax, Zachary, de, Gouw, Joost, A., Ziemann, Paul, and J.: Identification and Quantification of 4-
503	Nitrocatechol Formed from OH and NO3 Radical-Initiated Reactions of Catechol in Air in the
504	Presence of NOx: Implications for Secondary Organic Aerosol Formation from Biomass
505	Burning, Environ. Sci. Technol., http://doi.org/10.1021/acs.est.7b05864 2018.
506	Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., and Zeng, L.:
507	Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci. USA., 111, 17373-
508	17378, <u>http://doi.org/10.1073/pnas.1419604111</u> , 2014.
509	Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu, C., Dai, W., Wang, K., Lin, C.,
510	Ni, H., Corbin, J. C., Wu, Y., Zhang, R., Tie, X., Hoffmann, T., O'Dowd, C., and Dusek, U.:
511	Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light
512	Absorption Properties, Environ. Sci. Technol., 52, 6825-6833,
513	http://doi.org/10.1021/acs.est.8b02386, 2018.
514	Iinuma, Y., Boge, O., Graefe, R., and Herrmann, H.: Methyl-Nitrocatechols: Atmospheric Tracer
515	Compounds for Biomass Burning Secondary Organic Aerosols, Environ. Sci. Technol., 44, 8453,
516	http://doi.org/10.1021/es102938a, 2010.
517	Ji, Y., Zhao, J., Terazono, H., Misawa, K., and Zhang, R.: Reassessing the atmospheric oxidation

 2017. Jiang, H., Cai, J., Feng, X., Chen, Y., Wang, L., Li, J., Tang, J., Mo, Y., Zhang, X., Zhang, G., Mu, Y., and Chen, J.: Aqueous-Phase Secondary Processes and Meteorological Change Promote the Brown Carbon Formation and Transformation During Haze Events, J. Geophys. ResAtmos., <u>http://doi.org/10.1029/2023JD038735</u>, 2023. Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, <u>https://doi.org/10.5194/acp-20-2471-2020</u>, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
 and Chen, J.: Aqueous-Phase Secondary Processes and Meteorological Change Promote the Brown Carbon Formation and Transformation During Haze Events, J. Geophys. ResAtmos., <u>http://doi.org/10.1029/2023JD038735</u>, 2023. Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, <u>https://doi.org/10.5194/acp-20-2471-2020</u>, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
 Brown Carbon Formation and Transformation During Haze Events, J. Geophys. ResAtmos., http://doi.org/10.1029/2023JD038735, 2023. Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, http://dx.doi.org/10.1016/j.atmosenv.2013.09.041, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, https://doi.org/10.5194/acp-20-2471-2020, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, https://dx.doi.org/10.1021/acs.est.9b06820, 2020.
 http://doi.org/10.1029/2023JD038735, 2023. Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, <u>https://doi.org/10.5194/acp-20-2471-2020</u>, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
 Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, <u>https://doi.org/10.5194/acp-20-2471-2020</u>, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
 Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, <u>https://doi.org/10.5194/acp-20-2471-2020</u>, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
 in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568, http://dx.doi.org/10.1016/j.atmosenv.2013.09.041, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, https://doi.org/10.5194/acp-20-2471-2020, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, https://dx.doi.org/10.1021/acs.est.9b06820, 2020.
 <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013. Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, https://doi.org/10.5194/acp-20-2471-2020, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, https://dx.doi.org/10.1021/acs.est.9b06820, 2020.
 Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, https://doi.org/10.5194/acp-20-2471-2020, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, https://dx.doi.org/10.1021/acs.est.9b06820, 2020.
529distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from530southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487,531 <u>https://doi.org/10.5194/acp-20-2471-2020</u> , 2020.532Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated533polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning,534mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625,535 <u>https://dx.doi.org/10.1021/acs.est.9b06820</u> , 2020.
 southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471-2487, <u>https://doi.org/10.5194/acp-20-2471-2020</u>, 2020. Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
531https://doi.org/10.5194/acp-20-2471-2020, 2020.532Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated533polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning,534mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625,535https://dx.doi.org/10.1021/acs.est.9b06820, 2020.
 Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning, mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625, <u>https://dx.doi.org/10.1021/acs.est.9b06820</u>, 2020.
533polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning,534mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625,535 <u>https://dx.doi.org/10.1021/acs.est.9b06820</u> , 2020.
534mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625,535 https://dx.doi.org/10.1021/acs.est.9b06820 , 2020.
535 <u>https://dx.doi.org/10.1021/acs.est.9b06820</u> , 2020.
536 Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chem. Rev., 115,
537 4335-4382, <u>http://doi.org/10.1021/cr5006167</u> , 2015.
538 Li, J., Wang, G., Ren, Y., Wang, J., Wu, C., Han, Y., Zhang, L., Cheng, C., and Meng, J.: Identification
539 of chemical compositions and sources of atmospheric aerosols in Xi'an, inland China during
540 two types of haze events, Sci. Total. Environ., 566, 230-237,
541 <u>http://dx.doi.org/10.1016/j.scitotenv.2016.05.057</u> , 2016.
542 Li, X., Yang, Y., Liu, S., Zhao, Q., Wang, G., and Wang, Y.: Light absorption properties of brown carbon
543 (BrC) in autumn and winter in Beijing: Composition, formation and contribution of nitrated
544 aromatic compounds, Atmos. Environ., 223, 117289,
545 <u>https://doi.org/10.1016/j.atmosenv.2020.117289</u> , 2020.
Li, X., Han, J., Hopke, P. K., Hu, J., Shu, Q., Chang, Q., and Ying, Q.: Quantifying primary and secondary
547 humic-like substances in urban aerosol based on emission source characterization and a source-
548 oriented air quality model, Copernicus GmbH, <u>https://doi.org/10.5194/acp-19-2327-2019</u> , 2019.
Li, Y., Bai, X., Ren, Y., Gao, R., Ji, Y., Wang, Y., and Li, H.: PAHs and nitro-PAHs in urban Beijing from
550 2017 to 2018: Characteristics, sources, transformation mechanism and risk assessment, J.
551 Hazard. Mater., 436, 1-11, <u>https://doi.org/10.1016/j.jhazmat.2022.129143</u> , 2022.
Liu, J., Mo, Y., Ding, P., Li, J., Shen, C., and Zhang, G.: Dual carbon isotopes (14C and 13C) and optical
553 properties of WSOC and HULIS-C during winter in Guangzhou, China, Sci. Total. Environ.,
554 633, 1571-1578, <u>https://doi.org/10.1016/j.scitotenv.2018.03.293</u> , 2018.
555 Liu, X., Wang, H., Wang, F., Lv, S., Wu, C., Zhao, Y., Zhang, S., Liu, S., Xu, X., Lei, Y., and Wang, G.:
556 Secondary Formation of Atmospheric Brown Carbon in China Haze: Implication for an
557 Enhancing Role of Ammonia, Environ. Sci. Technol., <u>http://doi.org/10.1021/acs.est.3c03948</u> ,
558 2023.
Lu, C., Wang, X., Dong, S., Zhang, J., and Wang, W.: Emissions of fine particulate nitrated phenols from
560 various on-road vehicles in China, Environ. Res., 179, 108709,

561	https://doi.org/10.1016/j.envres.2019.108709, 2019a.
562	Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions
563	of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ.,
564	203, 10-17, https://doi.org/10.1016/j.atmosenv.2019.01.047, 2019b.
565	Ma, Y., Cheng, Y., Qiu, X., Cao, G., Fang, Y., Wang, J., Zhu, T., Yu, J., and Hu, D.: Sources and oxidative
566	potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5)
567	in Beijing, Atmos. Chem. Phys., 18, 5607-5617, https://doi.org/10.5194/acp-18-5607-2018,
568	2018.
569	Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., t, A. S. H. P., Xu, L., Ng, N. L., Herndon, S. C., Williams, L.
570	R., Franklin, J. P., Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski,
571	K. J., Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of Nitrated Phenols to Wood
572	Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time,
573	Environ. Sci. Technol., 47, 6316-6324, https://doi.org/10.1021/es400683v, 2013.
574	Ni, H., Huang, R. J., Pieber, S. M., Corbin, J. C., and Dusek, U.: Brown Carbon in Primary and Aged
575	Coal Combustion Emission, Environ. Sci. Technol., 55, 5701-5710,
576	https://doi.org/10.1021/acs.est.0c08084, 2021.
577	Olariu, R. I., Klotz, B. R., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR study of the ring-retaining
578	products from the reaction of OH radicals with phenol, o-, m-, and p-cresol, Atmos. Environ.,
579	36, 3685-3697, http://doi.org/10.1016/S1352-2310(02)00202-9, 2002.
580	Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and
581	secondary formation to nitrated aromatic compounds in themountain background region of
582	Southeast China, Atmos. Chem. Phys., 23, 6835-6848, <u>http://doi.org/10.5194/acp-23-6835-</u>
583	<u>2023,</u> 2023.
584	Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under
585	strong influence of anthropogenic pollutants: Composition, sources, and secondary formation
586	of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982,
587	https://doi.org/10.1016/j.envres.2021.111982, 2022.
588	Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components
589	and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass
590	burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021.
591	Ren, Y., Zhou, B., Tao, J., Cao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Zhang, L., Han, Y., Liu, L., Cao,
592	C., and Wang, G.: Composition and size distribution of airborne particulate PAHs and
593	oxygenated PAHs in two Chinese megacities, Atmos. Res., 183, 322-330,
594	https://doi.org/10.1016/j.atmosres.2020.105412, 2017.
595	Renhe, Z., Qiang, L. I., and Ruonan, Z.: Meteorological conditions for the persistent severe fog and haze
596	event over eastern China in January 2013, Science China-earth Sciences, 57, 26-35,
597	http://doi.org/10.1007/s11430-013-4774-3, 2014.
598	Sato, K., Hatakeyama, S., and Imamura, T.: Secondary Organic Aerosol Formation during the
599	Photooxidation of Toluene: NOx Dependence of Chemical Composition, J. Phys. Chem. A, 111,
600	http://doi.org/10.1021/jp071419f, 2007.
601	Song, J., Li, M., and Zou, C.: Molecular Characterization of Nitrogen-Containing Compounds in Humic-
602	like Substances Emitted from Biomass Burning and Coal Combustion, Environ. Sci. Technol.,
603	56, 119-130, https://doi.org/10.1021/acs.est.1c04451, 2022.

604	Song, J., Zhu, M., Wei, S., Peng, P. A., and Ren, M.: Abundance and 14C-based source assessment of
605	carbonaceous materials in PM2.5 aerosols in Guangzhou, South China, Atmos. Pollut. Res., 10,
606	313-320, https://doi.org/10.1016/j.apr.2018.09.003, 2018.
607	Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., and Xu, W.: Primary and
608	secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys.,
609	16, 8309-8329, http://doi.org/10.5194/acp-16-8309-2016, 2016.
610	Tan, J., Xiang, P., Zhou, X., Duan, J., Ma, Y., He, K., Cheng, Y., Yu, J., and Querol, X.: Chemical
611	characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China, Sci. Total.
612	Environ., 573, 1481-1490, http://dx.doi.org/10.1016/j.scitotenv.2016.08.025, 2016.
613	Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., and Wu, Z.: New insight into PM2.
614	5 pollution patterns in Beijing based on one-year measurement of chemical compositions, Sci.
615	Total. Environ., 621, 734-743, https://doi.org/10.1016/j.scitotenv.2017.11.208, 2018.
616	Teich, M., Pinxteren, D. V., Kecorius, S., Wang, Z., Herrmann, H. J. E. S., and Technology: First
617	Quantification of Imidazoles in Ambient Aerosol Particles: Potential Photosensitizers, Brown
618	Carbon Constituents, and Hazardous Components, 50, 1166-1173,
619	http://doi.org/10.1021/acs.est.5b05474 2016.
620	Teich, M., Van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Mocnik, G., and Herrmann,
621	H.: Contributions of nitrated aromatic compounds to the light absorption of water-soluble and
622	particulate brown carbon in different atmospheric environments in Germany and China, Atmos.
623	Chem. Phys., 17, 1653-1672, https://doi.org/10.5194/acp-17-1653-2017, 2017.
624	Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z., and Wang, Z.: Size-distributions of
625	n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres
626	over East Asia, Atmos. Chem. Phys., 9, 8869-8882, http://doi.org/10.5194/acp-9-8771-2009,
627	2009.
628	Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy, Z. M., Hu, M., Lin, Y., Peng, J., Guo, S., and Meng,
629	J.: Persistent sulfate formation from London Fog to Chinese haze, Proc Natl Acad Sci U S A,
630	113, 13630-13635, https://doi.org/10.1073/pnas.1616540113, 2016.
631	Wang, H., Gao, Y., Wang, S., Wu, X., Liu, Y., Li, X., Dandan, Huang, Lou, S., Wu, Z., Guo, S., Jing, S.,
632	Li, Y., Huang, C., Tyndall, G. S., Orlando, J. J., and Zhang, X.: Atmospheric Processing of
633	Nitrophenols and Nitrocresols From Biomass Burning Emissions, J. Geophys. ResAtmos., 125,
634	http://doi.org/10.1029/2020JD033401, 2020a.
635	Wang, J., Wang, G., Gao, J., Wang, H., Ren, Y., Li, J., Zhou, B., Wu, C., Zhang, L., Wang, S., and Chai,
636	F.: Concentrations and stable carbon isotope compositions of oxalic acid and related SOA in
637	Beijing before, during, and after the 2014 APEC, Atmos. Chem. Phys., 17, 981-992,
638	http://doi.org/doi:10.5194/acp-17-981-2017, 2017.
639	Wang, L., Wang, X., Gu, R., Hao, W., and Wang, W.: Observations of fine particulate nitrated phenols in
640	four sites in northern China: concentrations, source apportionment, and secondary formation,
641	Atmos. Chem. Phys., 1-24, https://doi.org/10.5194/acp-18-4349-2018, 2018.
642	Wang, Y., Hu, M., Li, X., and Xu, N.: Chemical Composition, Sources and Formation Mechanisms of
643	Particulate Brown Carbon in the Atmosphere (in Chinese), Progress in Chemistry, 32, 627-645,
644	http://doi.org/10.7536/PC190917, 2020b.
645	Wang, Y., Hu, M., Wang, Y., Zheng, J., and Yu, J. Z.: The formation of nitro-aromatic compounds under
646	high NOx and anthropogenic VOC conditions in urban Beijing, China, Atmos. Chem. Phys., 19,

647	7649-7665, https://doi.org/10.5194/acp-19-7649-2019, 2019.
648	Wang, Y., Mehra, A., Krechmer, J. E., Yang, G., and Wang, L.: Oxygenated products formed from OH-
649	initiated reactions of trimethylbenzene: Autoxidation and accretion, Atmos. Chem. Phys., 20,
650	9563-9579, https://doi.org/10.5194/acp-20-9563-2020, 2020c.
651	Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z.,
652	and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland China: sources,
653	size distributions and optical properties, Atmos. Chem. Phys., 20, 2017-2030,
654	https://doi.org/10.5194/acp-20-2017-2020, 2020.
655	Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., and Li, H.:
656	Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing, Environ.
657	Pollut., 227, 296-305, http://dx.doi.org/10.1016/j.envpol.2017.04.076, 2017.
658	Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.: Review of brown carbon aerosols: Recent progress
659	and perspectives, Sci. Total. Environ., 634, 1475-1485,
660	https://doi.org/10.1016/j.scitotenv.2018.04.083, 2018.
661	Yi Chen, Penggang Zheng, Zhe Wang, Wei Pu, Yan Tan, Chuan Yu, Men Xia, Weihao Wang, Jia Guo,
662	Dandan Huang, Chao Yan, Wei Nie, Zhenhao Ling, Qi Chen, Shuncheng Lee, and Wang, T.:
663	Secondary Formation and Impacts of Gaseous Nitro-Phenolic Compounds in the Continental
664	Outflow Observed at a Background Site in South China, Environ. Sci. Technol., 56, 6933-6943,
665	https://doi.org/10.1021/acs.est.1c04596, 2022.
666	Yuan, B., Liggio, J., Wentzell, J., Li, S. M., and Stark, H.: Secondary formation of nitrated phenols:
667	insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014,
668	Atmos. Chem. Phys., 16, http://doi.org/10.5194/acp-16-2139-2016, 2016.
669	Zhang, Q., Shen, Z., Zhang, L., Zeng, Y., and Cao, J. J.: Investigation of Primary and Secondary
670	Particulate Brown Carbon in Two Chinese Cities of Xi'an and Hong Kong in Wintertime,
671	Environ. Sci. Technol., 54, 3803-3813, http://doi.org/10.1021/acs.est.9b05332, 2020.
672	Zhang, R., Sun, X., Huang, Y., Shi, A., Yan, J., Nie, T., Yan, X., and Li, X.: Secondary inorganic aerosols
673	formation during haze episodes at an urban site in Beijing, China, Atmos. Environ., 177, 275-
674	282, https://doi.org/10.1016/j.atmosenv.2017.12.031, 2018.
675	Zhang, W., Wang, W., Li, J., Ma, S., and Ge, M.: Light absorption properties and potential sources of
676	brown carbon in Fenwei Plain during winter 2018-2019, JEnvS, 102, 53-63,
677	https://doi.org/10.1016/j.jes.2020.09.007, 2021.
678	Zhao, M., Qiao, T., Li, Y., Tang, X., Xiu, G., and Yu, J.: Temporal variations and source apportionment
679	of Hulis-C in PM2.5 in urban Shanghai, Sci. Total. Environ., 571, 18-26,
680	http://doi.org/10.1016/j.scitotenv.2016.07.127, 2016.
681	Zhu, C. S., Qu, Y., Zhou, Y., Huang, H., and Cao, J. J.: High light absorption and radiative forcing
682	contributions of primary brown carbon and black carbon to urban aerosol, Gondwana Res, 90,
683	159-164, https://doi.org/10.1016/j.gr.2020.10.016, 2021.

684