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Abstract 14 

Red beds belong to slippery formations, and their rapid identification is of great significance for 15 

major scientific and engineering issues such as geological hazard risk assessment and rapid response. 16 

Existing research often identifies red beds from a qualitative or semi quantitative perspective, resulting 17 

in slow recognition speed and inaccurate recognition results, making it difficult to quickly handle 18 

landslide geological disasters. Combined with the correlation between red beds geomorphic 19 

characteristics, mineral compositions, and chemical compositions, this study established a preliminary 20 

identification quantitative criterion based on the basic chemical composition combination rules 21 

(SiO2+Al2O3, Al2O3/SiO2, FeO+Fe2O3, Fe2O3/FeO, K2O+Na2O, Na2O/K2O, CaO+MgO, and MgO/CaO) 22 

in the red beds. Then, perform principal component analysis on the basic chemical composition 23 

combination rules mentioned above. The results indicate that simultaneously meeting the following 24 

principal component features can serve as a rapid quantitative criterion for distinguishing red beds from 25 

other rocks: F1=-3.36~23.55, F2=-23.00~3.11, F3=-10.12~4.88, F4=-2.21~4.52, F5=-0.97~7.30, and 26 

F =-0.67~1.89. By comparing the chemical composition combinations of 15 kinds of rocks collected 27 

from China in this study, it is proven that the quantitative criterion proposed in this study are effective. 28 
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The study results can be used for rapid identification of red beds, achieving risk assessment and rapid 29 

response of geological disasters such as landslides. 30 

Keywords: red beds, quantitative criterion, geological disasters, rapid response, chemical compositions 31 

 32 

1. Introduction 33 

Red beds are widely distributed throughout the world (Zhou et al., 2023b; Yan et al., 2019; Chen 34 

et al., 2021). Geological disasters occur frequently in the red beds distribution area, especially landslides, 35 

debris flows, collapses, and underground engineering damage (Chen et al., 2014; Zhou et al., 2023a; 36 

Wang et al., 2022b). According to the characteristics of disasters such as landslides, the red beds belong 37 

to “landslide prone strata”, and the instability of slopes with weak interlayers of the red beds is 38 

particularly evident (Zhang et al., 2015). This is mainly due to the strong hydrophilicity and weak 39 

permeability of the red beds, which are prone to softening and plastic deformation under the action of 40 

water; After absorbing water, the red beds are easy to expand, and after losing water, they are easy to 41 

contract; The weathering resistance of the red beds are weak, they are easy to collapse, and their 42 

compressive and shear strength are low (Zhang et al., 2016; Wu et al., 2018; Wang et al., 2017; Marat 43 

et al., 2022; Zhang et al., 2024). The red beds have different lithology or poor binding force with other 44 

rock strata, which can easily cause differential deformation and lead to rock mass sliding along the 45 

bedding plane (Liu et al., 2020; He et al., 2023; Wang et al., 2024). Therefore, the identification of rock 46 

types, especially the rapid determination of red beds, is of great significance for major scientific and 47 

engineering issues such as risk assessment and rapid response of geological disasters in red beds 48 

distribution area. 49 

At present, the studies on red beds identification are mostly carried out from the perspectives of 50 

geomorphic characteristics, mineral compositions, and chemical compositions (Cui et al., 2022; Zhou 51 

et al., 2021). And, there is a close relationship between these perspectives (Moonjun et al., 2017; 52 

Bankole et al., 2016; Perri et al., 2013). For example, the content of Fe2O3 or hematite in the red beds 53 

is higher than that in the grey beds (Hu et al., 2006). Among these perspectives, the research of 54 

geomorphic characteristics and mineral compositions mostly adopts qualitative or semi quantitative 55 

methods, and there are many such studies. For example, Rainoldi et al. (2015) identified red beds by 56 
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studying the color of geomorphic characteristics and hematite in mineral compositions, and studied the 57 

mechanism of red beds bleaching. Uchida et al. (2000) distinguished red sandstone, yellowish brown 58 

sandstone, and green sandstone according to the content of hematite, goethite, biotite, and muscovite in 59 

the mineral compositions, analyzed the characteristics of different rocks and pointedly protected 60 

Angkor monuments. Xue et al. (2023) distinguished red mudstone and red sandstone by quantifying the 61 

clay mineral content in the mineral compositions, in order to analyze the mechanisms and control factors 62 

of summer uplift of high-speed railway cutting. At this stage, the research on the geomorphology, 63 

mineral color and clay content of the red beds lays the foundation for the identification of the red beds, 64 

but this identification is still vague and needs to be further quantified. Therefore, some scholars have 65 

conducted quantitative studies on the chemical compositions of red beds. Hong et al. (2009) analyzed 66 

the alteration of clay minerals by studying the changes in the SiO2/Al2O3 ratio in the chemical 67 

compositions of the red beds, thereby obtaining the weathering degree of the red beds. Bankole et al. 68 

(2016) studied the relationship between Fe/Mg ratio, Fe3+/FeT ratio, and Cr/Fe ratio of red beds to 69 

indirectly study the oxygen content of the Paleoproterozoic. Hu et al. (2006) studied the characteristics 70 

of high Fe2O3 content and low FeO content in the oceanic red beds, and analyzed ancient landslides on 71 

the continental margin from the perspective of petrology. However, these studies do not distinguish 72 

between red beds and other rocks in terms of chemical compositions. The use of portable spectrometers 73 

and drone-borne multi-sensor remote sensing technique can quickly obtain the chemical compositions 74 

of rocks in geological disasters while ensuring safety (Triantafyllou et al., 2021; Kirsch et al., 2018), 75 

making it feasible to use chemical compositions as the standards to distinguish red beds from other 76 

rocks. 77 

Therefore, the purpose of this study to develop a quantitative criterion for quickly and accurately 78 

identifying the red beds. This study first collected the data about the geomorphic characteristics, mineral 79 

content, and chemical composition of red beds and other rocks, then compared these data to obtain the 80 

basic characteristics of red beds, and finally summarized and analyzed the red beds identification 81 

criterion and verified the reliability of this criterion. 82 

 83 

2. Methods 84 
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Figure 1 shows the methodology used in this study involving the investigation of geomorphic 85 

characteristics, mineral compositions, and chemical compositions (the perspective of chemical 86 

compositions is the focus of this study). In this study, data on geomorphological features, mineral 87 

content and chemical composition of the red beds and other rocks were first collected, then these data 88 

were compared to derive the basic characteristics of the red beds, and finally the red bed identification 89 

criteria were summarized and analyzed, and the reliability of the criteria was verified.  90 

 91 

Figure 1. Methodology for identifying red beds from geomorphic characteristics, mineral 92 

compositions, and chemical compositions. 93 

 94 

2.1 Data collection 95 

The geomorphic characteristics data were collected from the previous studies about landslides, 96 

debris flows, and collapses on of red beds, igneous rocks (andesite, basalt, diorite, granite), 97 
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metamorphic rocks (gneiss, marble), and other sedimentary rocks (arkose, black-shale, breccia, 98 

claystone, dolomite, lignite, limestone, marl, mudstone, siliciclastic, tuff) (e.g., (Zhang et al., 2015; San 99 

et al., 2020; He et al., 2021; Ciftci et al., 2008; Perez-Rey et al., 2019; Anbarasu et al., 2010; Xia et al., 100 

2019; Gokbulak and Ozcan, 2008; Li et al., 2016; Wang et al., 2022a; Zhang et al., 2017; Underwood 101 

et al., 2016; Kavvadas et al., 2020; Harp et al., 2011; De Montety et al., 2007; Contino et al., 2017; Liu 102 

et al., 2018; Ni et al., 2015; Hale et al., 2021)). The geomorphic characteristics of red beds investigated 103 

in this study involve the evolution process and distribution of red beds on Earth's surface, and the results 104 

were compared with that of other types of rock samples. 105 

The mineral compositions of red beds (1,536 groups data) were collected from the previous studies 106 

as shown in Supplementary Table 1 (e.g., (Jian et al., 2009; Liu et al., 2020; Zha et al., 2022; Bai et al., 107 

2020; Zhang et al., 2021; Zhang et al., 2020; Yao et al., 2016; Li et al., 2023; Marat et al., 2022; Wang 108 

et al., 2017; Chen et al., 2014; Zhang et al., 2016; Li et al., 2015; Li et al., 2013; Wang et al., 2018; 109 

Wang et al., 2014)). These studies used semi quantitative or quantitative methods in XRD technology 110 

to statistically analyze the differences in mineral composition between different red beds (e.g., quartz, 111 

feldspar, mica, hematite, clay minerals, and calcite), as detailed in the aforementioned literatures. This 112 

study mainly focuses on the influence of mineral compositions on geomorphic characteristics, 113 

particularly the layered structure and color of red beds. 114 

The chemical compositions of red beds (1536 groups data) with different geological ages and 115 

various lithologies such as conglomerate, sandy conglomerate, sandstone, siltstone, shale and mudstone 116 

were collected from the previous studies as shown in Supplementary Table 2 (e.g., (Uchida et al., 2000; 117 

Xue et al., 2023; Jiang et al., 2022; Yang et al., 2016; Liu et al., 2020; Kong et al., 2018; Zhao et al., 118 

2005; Gao et al., 2017; Zhang et al., 2008; Liu et al., 2006; Zhu et al., 2003; Liu et al., 2007; Hong et 119 

al., 2009; Wild et al., 2017)). The chemical compositions of igneous rocks, including andesite 120 

(Supplementary Table 3 - 49,203 groups data. Data were downloaded from the GEOROC database 121 

(https://georoc.mpch-mainz.gwdg.de//georoc/) on 11 May 2023, using the following parameters: search 122 

= andesite), basalt (Supplementary Table 4 - 80,365 groups data. Data were downloaded from the 123 

GEOROC database on 11 May 2023, using the following parameters: search = basalt), diorite 124 

(Supplementary Table 5 - 4,941 groups data. Data were downloaded from the GEOROC database on 125 
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11 May 2023, using the following parameters: search = diorite), and granite (Supplementary Table 6 - 126 

17,272 groups data. Data were downloaded from the GEOROC database on 11 May 2023, using the 127 

following parameters: search = granite). The chemical compositions of metamorphic rocks, including 128 

gneiss (Supplementary Table 7 - 24,300 groups data. The data were downloaded from the EarthChem 129 

Portal Database (http://portal.earthchem.org/) on 20 April, 2018, using the following parameters: 130 

material = metamorphic and rock name = gneiss) and marble (Supplementary Table 8 - 3,364 groups 131 

data. The data were downloaded from the EarthChem Portal Database on 12 May, 2023, using the 132 

following parameters: material = metamorphic and rock name = marble). The chemical compositions 133 

of other sedimentary rocks, including arkose (Supplementary Table 9 - 682 groups data. The data were 134 

downloaded from the EarthChem Portal Database on 10 May, 2023, using the following parameters: 135 

material = sedimentary and rock name = arkose), black-shale (Supplementary Table 10 - 305 groups 136 

data. The data were downloaded from the EarthChem Portal Database on 10 May, 2023, using the 137 

following parameters: material = sedimentary and rock name = black-shale), breccia (Supplementary 138 

Table 11 - 1,396 groups data. The data were downloaded from the EarthChem Portal Database on 10 139 

May, 2023, using the following parameters: material = sedimentary and rock name = breccia), claystone 140 

(Supplementary Table 12 - 3,790 groups data. The data were downloaded from the EarthChem Portal 141 

Database on 10 May, 2023, using the following parameters: material = sedimentary and rock name = 142 

claystone), dolomite (Supplementary Table 13 - 2,169 groups data. The data were downloaded from the 143 

EarthChem Portal Database on 6 May, 2023, using the following parameters: material = sedimentary 144 

and rock name = dolomite), lignite (Supplementary Table 14 - 3 groups data. The data were downloaded 145 

from the EarthChem Portal Database on 24 April, 2018, using the following parameters: material = 146 

sedimentary and rock name = lignite), limestone (Supplementary Table 15 - 9,104 groups data. The 147 

data were downloaded from the EarthChem Portal Database on 10 May, 2023, using the following 148 

parameters: material = sedimentary and rock name = limestone), marl (Supplementary Table 16 - 142 149 

groups data. The data were downloaded from the EarthChem Portal Database on 10 May, 2023, using 150 

the following parameters: material = sedimentary and rock name = marlstone, marl), mudstone 151 

(Supplementary Table 17 - 6,140 groups data. The data were downloaded from the EarthChem Portal 152 

Database on 10 May, 2023, using the following parameters: material = sedimentary and rock name = 153 
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mudstone, mud), siliciclastic (Supplementary Table 18 - 26,938 groups data. The data were downloaded 154 

from the EarthChem Portal Database on 10 May, 2023, using the following parameters: material = 155 

sedimentary and rock name = siliciclastic), tuff (Supplementary Table 19 - 10,295 groups data. The 156 

data were downloaded from the EarthChem Portal Database on 6 May, 2023, using the following 157 

parameters: material = sedimentary and rock name = tuff).  158 

Studies have found that rock disasters are related to the content of minerals such as quartz, clay 159 

minerals, hematite, calcite, dolomite, feldspar, etc., and these mineral contents are also closely related 160 

to the combination of major elements or oxides (Table 1), for example, SiO2 and Al2O3 (used to study 161 

the relative content relationship between quartz and clay minerals) (Hong et al., 2009), Fe2O3 and FeO 162 

(used to study the high content characteristics of hematite) (Hu et al., 2006), CaO and MgO (used to 163 

study the content relationship of potassium feldspar, calcite, and dolomite) (Han et al., 2023), Na2O and 164 

K2O (Qiao et al., 2017). Therefore, this study on the basic chemical composition combination rules and 165 

quantitative criterion of the red beds only involves the major elements mentioned above, and does not 166 

involve the analysis of trace elements or other stable isotopes. 167 

Table 1. Chemical composition (%) of minerals in red beds from database. 168 

Mineral chemical formulas SiO2 Al2O3 Fe2O3 FeO CaO MgO Na2O K2O H2O CO2 

Quartz (SiO2) 100.0          

Potassium feldspar (KAlSi3O8) 64.7 18.4      16.9   

Sodium feldspar (NaAlSi3O8) 68.8 19.4     11.8    

Calcium feldspar (CaAl2Si2O8) 43.2 36.7   20.1      

White mica (KAl2(AlSi3O10)(OH,F)2) 45.2 38.4      11.8 4.1  

Biotite (KMg3[Si3 AlO10](OH,F)2) 43.0 12.2    28.8  11.2 2.2  

Phlogopite (K(Mg,Fe)3AlSi3O10(F,OH)2) 41.6 11.8  8.3  23.2 0.5 10.9 3.6  

Hematite (Fe2O3)   100.0        

Calcite (CaCO3)     56.0     44.0 

Kaolinite (Al2Si2O5(OH)4) 46.6 39.5       14.0  

Illite (K0.75(Al1.75R)[Si3.5Al0.5O10](OH)2) 54.0 17.0  1.9  3.1  7.3 12.0  

Montmorillonite  

((Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O) 

43.8 18.6   1.0  1.1  36.1  

Chlorite (Y3[Z4O10](OH)2·Y3(OH)6) 30.3 17.1  15.1  25.4   12.1  

Note: Data collected from http://webmineral.com/ and https://www.mindat.org/. 169 

 170 

Using SPSS PRO online data analysis program and principal component analysis method to compare the 171 

http://webmineral.com/
https://www.mindat.org/
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chemical components combination rules of red beds, the identification quantitative criterion was studied at a 172 

significance level of P<0.05. 173 

 174 

2.2 Criterion verification 175 

In order to verify the proposed basic chemical compositions combination rules and quantitative 176 

criterion of red beds, 15 kinds of rocks of known rock types were selected in Guangdong, Sichuan, 177 

Hubei, Zhejiang, and Anhui provinces (Figure 2), including 12 kinds of red beds (red claystone, red 178 

mudstone, red silty mudstone, red argillaceous siltstone, red fine sandstone, red medium sandstone, red 179 

coarse sandstone, red conglomerate, etc.), limestone (1 kind), arkose (1 kind) and mudstone (1 kind). 180 

After on-site sampling, use a hammer to smash the rock block out of the fresh surface. Then, the fresh 181 

surface was analyzed using the YL-P-3LRX Handheld Laser Induced Breakdown Spectroscopy (LIBS, 182 

Figure 3) to check whether these elements conform to the basic chemical compositions combination 183 

rules of red beds proposed by this study. This device can detect elements such as K, Na, Si, Al, Ca, Mg, 184 

Fe, and oxides. 185 

The working principle of the LIBS is that a miniature X-ray source provides tube voltage and tube 186 

current, and the light tube emits continuous X-ray spectral lines. The X-rays irradiated on the sample 187 

knock out the inner electrons of the K and L layers of the element atoms, and the holes in the low-188 

energy layer are filled by high-energy outer electrons (N layer). The high-energy electrons emit excess 189 

energy as X-ray fluorescence (K) with elemental characteristics. Thus, the instrument detects the type 190 

and concentration of elements through the emitted spectral lines. On the instrument analysis interface, 191 

point the detection window towards the rock sample and press the trigger to start and stop the 192 

measurement. After amplification and data collection, the signal is processed to obtain the required test 193 

data. 194 
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 195 

Figure 2. Distribution areas of red beds in China and sampling locations for 15 types of rocks. 196 

 197 

 198 

Figure 3. YL-P-3LRX Handheld Laser Induced Breakdown Spectroscopy and the working principle. 199 
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3. Results and discussions 200 

3.1 Geomorphic characteristics of red beds 201 

Geomorphic characteristics of the red beds as shown in Figure 4. Red beds are sedimentary rocks 202 

of different geological ages (mainly Mesozoic and Cenozoic) with bedding structure typically 203 

consisting of various lithologies such as conglomerate, sandy conglomerate, sandstone, siltstone, shale 204 

and mudstone that are predominantly red in color due to the presence of ferric oxides (Yan et al., 2019). 205 

Owing to differences in depositional environments and influences of late stage geologic processes, the 206 

color of red beds can be brownish-reddish-yellow, brownish-yellow, purplish-red, brownish-red, 207 

grayish-purple and other reddish tints (Yan et al., 2019; Nance, 2015), making it difficult to accurately 208 

describe using the CIELAB color space and/or Munsell color system. Bedding is a common structural 209 

feature of sedimentary rocks representing the changes in the sedimentary environment. The sandstone 210 

is one of the most common types of red beds, with a distinct reddish appearance. Compared with the 211 

obvious layering and red appearance characteristics of red beds, igneous rocks and metamorphic rocks 212 

do not show the two characteristics of red appearance and bedding at the same time. Basalts are reddish 213 

in appearance but does not have bedding (Cunha et al., 2005). In addition, andesites are mainly light 214 

black and have a columnar structure which is similar to that of basalts (Feizizadeh et al., 2021). Most 215 

of granites are grey or light brown with a significantly different structure compared to red beds (Migon 216 

et al., 2018), while gneisses are generally characterized as a dark and light gneissic structure (Garajeh 217 

et al., 2022). Although the red color appearance and bedding structure can be used as qualitative criteria 218 

for identifying the red beds, the analysis of mineral and chemical compositions is still necessary for 219 

identifying the rocks from quantitative perspective. 220 

 221 

Figure 4. Geomorphic characteristics of the red beds. 222 
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3.2 Mineral compositions of red beds 223 

Table 2 shows the statistical analysis results of mineral compositions of red beds in Supplementary 224 

Table 1. The common minerals in the red bed are quartz (median value is 40%, the same below), clay 225 

minerals (35%, including kaolinite, illite, montmorillonite, and chlorite), feldspar (10%, including K-226 

feldspar and plagioclase), calcite (10%), mica (7%, including biotite, muscovite and sericite), and 227 

hematite (3%) according to their content. According to the average value and standard deviation, it can 228 

be seen that the content range of various minerals has significant dispersion. The ratio of the content of 229 

clay minerals to other minerals (quartz, feldspar, mica, hematite, and calcite) ranges between 0.11 to 230 

1.50. The hematite content ranges between 1.5% and 10.0% (percentile=10%~90%), and reddish 231 

appearance of red beds is due to the abundant hematite content of the rocks. The change in mineral 232 

compositions of red beds could lead to the change in rock color which is one of the major characteristics 233 

of red beds. Furthermore, when the red beds encounter water, softening and expansion could happen 234 

because of the large amount of clay minerals in the rocks, especially the mudstone. The differences in 235 

mineral compositions of the red beds can also be quantitatively described through their chemical 236 

composition combination characteristics (Table 1). 237 

Table 2. The statistical analysis results of mineral compositions of red beds from literature data. 238 

Minerals Range  

(per = 0%~100%) 

Range  

(per = 10%~90%) 

Median value 

(per = 50%) 

Average  

value 

Standard 

deviation 

Quartz (%) 2.3~94.0 21.0~69.0 40.0 42.6 18.8 

Clay minerals (%) 1.0~80.0 7.8~59.0 35.0 34.1 18.6 

Feldspar (%) 0.4~71.0 2.3~25.0 10.0 12.6 10.7 

Mica (%) 0.1~40.8 3.0~20.0 7.0 9.2 8.2 

Hematite (%) 0.4~25.2 1.5~10.0 3.0 5.0 4.4 

Calcite (%) 0.7~97.7 3.1~23.5 10.0 12.2 10.0 

Clay minerals/ 

Other minerals 

0.01~6.00 0.11~1.50 0.61 0.76 0.66 

Note: per – percentile; Other minerals – quartz, feldspar, mica, hematite, and calcite. 239 

 240 

3.3 Chemical composition characteristics of red beds 241 

Figures 5~6 are mainly used to qualitatively analyze the differences in chemical compositions 242 

between the red beds and other rocks through scatter plots. The area surrounded by black dashed lines 243 

is the area where the red beds data points are located. To better distinguish various rock data points, the 244 

distribution areas of various rock data are shown on the right side of the figure, and the corresponding 245 
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colored dashed ellipses are used to indicate the distribution areas in the dataset. Figure 5 shows the 246 

comparison of SiO2 and Al2O3, FeO and Fe2O3, K2O and Na2O, CaO and MgO contents in red beds, 247 

igneous rocks, and metamorphic rocks, respectively. Figure 6 shows the comparison of SiO2 and Al2O3, 248 

FeO and Fe2O3, K2O and Na2O, CaO and MgO contents in red beds and other sedimentary rocks 249 

respectively. 250 

 251 

Figure 5. Comparison of (a) SiO2 and Al2O3, (b) FeO and Fe2O3, (c) K2O and Na2O, (d) CaO and 252 

MgO contents in red beds, igneous rock, and metamorphic rocks, respectively. (Note: Icons of the 253 

same color in the figure have the same meanings) 254 
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 255 

Figure 6. Comparison of (a) SiO2 and Al2O3, (b) FeO and Fe2O3, (c) K2O and Na2O, (d) CaO and MgO 256 

contents in red beds and other sedimentary rocks respectively. (Note: Icons of the same color in the figure 257 

have the same meanings) 258 

 259 

The content of SiO2 in the red beds is about 30%~80%, Al2O3 is about 8%~30%, Fe2O3 is about 260 

0%~10%, FeO is about 0%~3%, K2O is about 0%~10%, Na2O is about 0%~2.5%, CaO is about 261 

0%~10%, and MgO is about 0%~5%. Compared with igneous rocks, metamorphic rocks, and other 262 

sedimentary rocks, the content of each chemical composition of the red beds has three relationships 263 

with the content of corresponding chemical composition of other rocks: inclusion relationship (the data 264 

distribution range of one rock completely covers and is larger than the data range of the other rock), 265 

intersection relationship (the data distribution range of one rock intersects with the data distribution 266 

range of another rock), and mutual difference relationship (the data distribution range of one rock does 267 
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not intersect at all with the data distribution range of another rock). The distribution range of SiO2 and 268 

Al2O3 content in the red beds includes the distribution range of SiO2 and Al2O3 content in 9 types of 269 

rocks, namely andesite, basalt, diorite, granite, black shale, claystone, mudstone, siliciclastic, and tuff. 270 

The distribution range of SiO2 and Al2O3 content in the red beds intersects with that in breccia, lignite, 271 

and marl. The distribution range of SiO2 and Al2O3 content in gneiss, marble, arkose, dolomite, and 272 

limestone is different from that in the red beds. The distribution range of Fe2O3 and FeO content in the 273 

red beds includes the distribution range of Fe2O3 and FeO content in granite, marble, and lignite. The 274 

distribution range of Fe2O3 and FeO content in the red beds intersects with that in 8 kinds of rocks, 275 

namely, andesite, basalt, diorite, breccia, claystone, dolomite, limestone, and mudstone. The 276 

distribution range of Fe2O3 and FeO content in gneiss, arkose, black shale, siliciclastic, and tuff is 277 

different from that in the red beds. The distribution range of K2O and Na2O content in the red beds 278 

includes the distribution range of K2O and Na2O content in lignite. The distribution range of K2O and 279 

Na2O content in the red beds intersects with that in 15 kinds of rocks, including andesite, basalt, diorite, 280 

granite, marble, arkose, black shale, breccia, claystone, dolomite, limestone, marl, mudstone, 281 

siliciclastic, and tuff. The distribution range of K2O and Na2O content in gneiss is different from that in 282 

the red beds. The distribution range of CaO and MgO content in the red beds includes the distribution 283 

range of CaO and MgO content in granite, black shale, and lignite. The distribution range of CaO and 284 

MgO content in the red beds intersects with that in 13 types of rocks, including andesite, basalt, diorite, 285 

gneiss, arkose, breccia, claystone, dolomite, limestone, marl, mudstone, siliciclastic, and tuff. The 286 

distribution range of CaO and MgO content in marble is different from that in the red beds. Therefore, 287 

from a qualitative perspective, it can be seen that the red beds differ in chemical composition from 8 288 

kinds of rocks, including gneiss, marble, arkose, dolomite, limestone, black-shale, siliciclastic, and tuff, 289 

and also intersects with other rocks to varying degrees. But this is not enough as a criterion to determine 290 

the difference between red beds and other rocks. 291 

Figures 7~8 mainly analyze the differences in chemical compositions between red beds and other 292 

rocks through further data statistics and box plots of the scatter plots mentioned above, and propose 293 

quantitative identification criterion for the red beds chemical compositions combination. The red dashed 294 

box in the figure represents rocks that differ from the red beds data, while the black dashed box 295 
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represents rocks that intersect less than 25% with the red beds data. The data collected in section 2.1 296 

comes from published papers or databases, and its accuracy and robustness have been explained in 297 

relevant literature. In order to ensure the exclusion of outliers in the box plots mentioned above during 298 

the analysis of this study. The horizontal gray dashes corresponding to the red beds box chart represent 299 

10% percentile (the same below), lower quartile (25% percentile), median (50% percentile), upper 300 

quartile (75% percentile), and 90% percentile in the red beds data from bottom to top. Figure 7 shows 301 

the chemical compositions combination comparison of SiO2+Al2O3 (total content, the same below) and 302 

Al2O3/SiO2 (content ratio, the same below), FeO+Fe2O3 and Fe2O3/FeO, K2O+Na2O and Na2O/K2O, 303 

CaO+MgO and MgO/CaO in red beds, igneous rock, and metamorphic rocks, respectively. Figure 8 304 

respectively shows the chemical compositions combination comparison of SiO2+Al2O3 and Al2O3/SiO2, 305 

FeO+Fe2O3 and Fe2O3/FeO, K2O+Na2O and Na2O/K2O, CaO+MgO and MgO/CaO in red beds and 306 

other sedimentary rocks. 307 

The SiO2+Al2O3 content in the red beds is 54.7%~85.0% (10%~90% percentile, the same below), 308 

the Al2O3/SiO2 ratio is 0.14~0.41, the FeO+Fe2O3 content is 0.9%~7.9%, the Fe2O3/FeO ratio is 309 

1.52~7.70, the K2O+Na2O content is 1.6%~6.8%, the Na2O/K2O ratio is 0.02~0.43, the CaO+MgO 310 

content is 0.8%~9.2%, and the MgO/CaO ratio is 0.16~1.57. By comparing the content of SiO2+Al2O3, 311 

the red beds are distinct or have small intersections (less than 25%, the same below) with granite, marble, 312 

dolomite, lignite, limestone, and marl. By comparing the Al2O3/SiO2 ratio, it is found that the red beds 313 

are distinct or have small intersections with gneiss, marble, arkose, and lignite. By comparing the 314 

content of FeO+Fe2O3, it is found that the red beds are distinct or have small intersections with basalt, 315 

gneiss, arkose, and siliciclastic. By comparing the Fe2O3/FeO ratio, it is found that the red beds are 316 

distinct or have small intersections with andesite, basalt, diorite, granite, gneiss, marble, arkose, black 317 

shale, dolomite, mudstone, siliclastic, and tuff. Through the comparison of K2O+Na2O content, the red 318 

beds are distinct or have small intersections with granite, marble, breccia, dolomite, and limestone. By 319 

comparing the Na2O/K2O ratio, the red beds are distinct or have small intersections with andesite, basalt, 320 

diorite, gneiss, lignite, siliciclastic, and tuff. Through the comparison of CaO+MgO content, the red 321 

beds are distinct or have small intersections with andesite, basalt, gneiss, marble, breccia, dolomite, 322 

limestone, and marl. By comparing the MgO/CaO ratio, it is difficult to distinguish the red beds from 323 
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other rocks. 324 

 325 

Figure 7. Chemical compositions comparison of (a) SiO2+Al2O3, Al2O3/SiO2, (b) FeO+Fe2O3, Fe2O3/FeO, 326 

(c) K2O+Na2O, Na2O/K2O, (d) CaO+MgO, MgO/CaO in red beds, igneous rock, and metamorphic rocks. 327 



17 

 

 328 

Figure 8. Chemical compositions comparison of (a) SiO2+Al2O3, Al2O3/SiO2, (b) FeO+Fe2O3, Fe2O3/FeO, 329 

(c) K2O+Na2O, Na2O/K2O, (d) CaO+MgO, MgO/CaO in red beds and other sedimentary rocks. 330 
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In summary, there are differences in chemical compositions between red beds and other rocks. 331 

Simultaneously meeting the following chemical compositions combinations as a preliminary 332 

quantitative criterion to distinguish red beds with different geological ages and various lithologies from 333 

other rocks: SiO2+Al2O3 ≈  50.7%~85.0%, Al2O3/SiO2 ≈  0.14~0.41, FeO+Fe2O3 ≈  0.9%~7.9%, 334 

Fe2O3/FeO ≈  1.52~7.70, K2O+Na2O ≈  1.6%~6.8%, Na2O/K2O ≈  0.02~0.43, 335 

CaO+MgO ≈ 0.8%~9.2%, and MgO/CaO ≈ 0.39~1.08. 336 

 337 

3.4 Principal component analysis and quantitative criterion for red beds identification 338 

Based on the preliminary quantitative criterion for identifying the red beds mentioned above, this 339 

section presents PCA statistical analysis (dimensionality reduction) of the SiO2+Al2O3, Al2O3/SiO2, 340 

FeO+Fe2O3, Fe2O3/FeO, K2O+Na2O, Na2O/K2O, CaO+MgO, and MgO/CaO of red beds in Figures 7 341 

and 8. The result is significant with P<0.05 (Table 3), rejecting the null hypothesis. There is correlation 342 

between the variables, and principal component analysis is effective. It can be seen that the cumulative 343 

variance interpretation rate of the first five principal components reaches 94.788% (generally greater 344 

than 90% is sufficient), indicating that using the first five principal components can be well used for 345 

red beds recognition. 346 

Table 3. Variance explanation. 347 

Components Characteristic roots Variance interpretation rate (%) Cumulative variance interpretation rate (%) 

1 2.700 33.754 33.754 

2 2.249 28.112 61.866 

3 1.169 14.613 76.479 

4 0.882 11.023 87.503 

5 0.583 7.285 94.788 

6 0.263 3.293 98.081 

7 0.131 1.638 99.72 

8 0.022 0.280 100.00 

 348 

According to the component matrix (Table 4) obtained during the PCA analysis process, the 349 

calculation equations for 5 principal components F1~F5 (Equations 1-5) and the calculation formula 350 

for the overall principal components F (Equation 6) can be obtained. 351 

 352 
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Table 4. Principal component matrix. 353 

Chemical 

composition 

combinations 

Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

Principal 

component 4 

Principal 

component 5 

SiO2+Al2O3 0.274 -0.281 -0.115 -0.014 -0.009 

Al2O3/SiO2 0.085 0.356 0.283 -0.199 -0.352 

FeO+Fe2O3 -0.103 0.334 -0.071 0.449 0.702 

Fe2O3/FeO 0.194 0.038 0.268 0.827 -0.449 

K2O+Na2O 0.213 0.046 0.609 -0.336 0.16 

Na2O/K2O -0.092 -0.288 0.452 0.179 0.71 

CaO+MgO -0.331 0.05 0.289 -0.153 -0.195 

MgO/CaO 0.276 0.196 -0.162 -0.203 0.575 

 354 

𝐹1 = 0.274 × (SiO2 + Al2O3) + 0.085 × (
Al2O3
SiO2

) − 0.103 × (FeO + Fe2O3) + 0.194 × (
Fe2O3
FeO

) 355 

+0.213 × (K2O + Na2O) − 0.092 × (
Na2O

K2O
) − 0.331 × (CaO + MgO) + 0.276 × (

MgO

CaO
)          (1) 356 

𝐹2 = −0.281 × (SiO2 + Al2O3) + 0.356 × (
Al2O3
SiO2

) + 0.334 × (FeO + Fe2O3) + 0.038 × (
Fe2O3
FeO

) 357 

+0.046 × (K2O + Na2O) − 0.288 × (
Na2O

K2O
) + 0.05 × (CaO + MgO) + 0.196 × (

MgO

CaO
)          (2) 358 

𝐹3 = −0.115 × (SiO2 + Al2O3) + 0.283 × (
Al2O3
SiO2

) − 0.071 × (FeO + Fe2O3) + 0.268 × (
Fe2O3
FeO

) 359 

+0.609 × (K2O + Na2O) + 0.452 × (
Na2O

K2O
) + 0.289 × (CaO + MgO) − 0.162 × (

MgO

CaO
)          (3) 360 

𝐹4 = −0.014 × (SiO2 + Al2O3) − 0.199 × (
Al2O3
SiO2

) + 0.449 × (FeO + Fe2O3) + 0.827 × (
Fe2O3
FeO

) 361 

−0.336 × (K2O + Na2O) + 0.179 × (
Na2O

K2O
) − 0.153 × (CaO + MgO) − 0.203 × (

MgO

CaO
)          (4) 362 

𝐹5 = −0.009 × (SiO2 + Al2O3) − 0.352 × (
Al2O3
SiO2

) + 0.702 × (FeO + Fe2O3) − 0.449 × (
Fe2O3
FeO

) 363 

+0.16 × (K2O + Na2O) + 0.71 × (
Na2O

K2O
) − 0.195 × (CaO + MgO) + 0.575 × (

MgO

CaO
)          (5) 364 

𝐹 = (0.338/0.948) × 𝐹1 + (0.281/0.948) × 𝐹2 + (0.146/0.948) × 𝐹3 + (0.11/0.948) × 𝐹4 + (0.073/0.948) × 𝐹5  (6) 365 

 366 

Substituting the relevant data of the red beds in Figures 7 and 8 into Equations 1~6 can calculate 367 

the quantitative criterion for the red beds: F1=-3.36~23.55, F2=-23.00~3.11, F3=-10.12~4.88, F4=-368 

2.21~4.52, F5=-0.97~7.30, and F =-0.67~1.89. 369 

 370 
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3.5 Red beds identification quantization criterion verification 371 

The chemical composition combinations of the 15 selected rocks in this study are shown in Table 372 

5. Study has found that, The rapid detection of Fe2+ and Fe3+ is very difficult (Chen et al., 2019) and 373 

exceeds the detection range of handheld laser-induced breakdown spectroscopy in this manuscript and 374 

similar devices. But this factor does not affect the reliability of the quantification criterion for red beds 375 

recognition. F1~F5 and F are considered as 6 evaluation indicators, and there are a total of 72 (6 × 12) 376 

evaluation indicators for the 12 types of red beds. Among them, 3 evaluation indicators exceed the 377 

scope of the quantification criterion for red beds identification (F4 of numbered 7, 9, and 11 red beds 378 

with green background in Table 5 is less than the quantification criterion), indicating that the reliability 379 

of detecting these 12 types of rocks belonging to the red beds is as high as 95.8%. And for 3 non red 380 

beds rocks (limestone, arkose, and mudstone), there are a total of 18 evaluation indicators, of which 13 381 

exceed the scope of the quantification criterion for red beds identification (indicated by blue 382 

background), indicating a high reliability of 72.2% in detecting these three types of rocks that do not 383 

belong to the red beds. Therefore, this study proposes a quantitative criterion for red beds recognition 384 

with high reliability. In the future, if there are new devices that can quickly detect Fe2+ and Fe3+, the 385 

recognition efficiency of the red beds recognition quantification criterion in this study will be higher. 386 

 387 
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Table 5. Chemical composition combinations of 15 kinds of rocks. 388 

No. SiO2 

(%) 

Al2O3 

(%) 

TFe3O4 

(%) 

Na2O 

(%) 

K2O 

(%) 

MgO 

(%) 

CaO 

(%) 

F1 F2 F3 F4 F5 F Rock 

types 

1 63.67 18.56 7.41 0.56 5.60 4.2 - 21.71 -20.06 -4.89 -0.58 4.60 1.33 Red beds 

2 65.43 18.29 6.18 0.07 3.56 6.47 - 20.96 -20.88 -5.90 -0.66 2.82 0.52 

3 69.68 10.95 7.12 0.88 2.43 3.64 5.30 19.27 -19.59 -5.08 -0.52 3.66 0.50 

4 62.6 17.89 6.98 1.47 5.24 5.82 - 20.84 -19.67 -3.78 -1.14 4.21 1.21 

5 69.92 13.59 6.93 0.22 5.19 4.15 - 21.96 -20.64 -5.53 -0.54 4.13 1.12 

6 71.16 13.55 3.33 0.39 2.83 3.27 5.47 20.83 -21.96 -5.47 -2.24 0.76 -0.13 

7 68.63 15.74 1.33 1.61 4.86 2.83 5.00 21.91 -22.48 -3.47 -4.06 0.16 0.16 

8 64.53 15.67 6.75 0.30 5.35 3.6 3.80 20.31 -19.40 -4.18 -1.35 3.98 1.00 

9 69.11 15.63 4.21 0.68 5.98 4.38 - 22.76 -21.83 -4.61 -2.23 2.41 0.86 

10 66.58 11.66 7.41 1.53 4.05 8.77 - 18.94 -18.86 -3.37 -0.95 3.89 0.83 

11 73.04 11.46 1.6 1.39 3.34 2.97 6.20 21.07 -22.50 -4.15 -3.51 -0.15 -0.22 

12 70.47 12.35 6.33 1.26 5.47 1.49 2.63 22.26 -20.54 -4.62 -1.32 4.40 1.32 

13 30.36 2.35 0.15 0.33 0.28 0.70 65.84 -13.05 -6.10 16.38 -10.58 -12.25 -6.11 Limestone 

14 75.27 12.73 2.22 2.47 4.59 2.67 0.06 36.73 -14.90 -12.11 -12.00 27.27 7.52 Arkose 

15 78.33 18.86 1.00 0.25 1.04 0.53 - 26.62 -26.87 -10.13 -1.43 0.02 -0.20 Mudstone 

Note: TFe3O4 represents the content of Fe2O3 and FeO. "-" represents that no content was detected. Ignoring "Fe2O3/FeO" and "MgO/CaO" without values when calculating F1~F5 389 

and F. 390 
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3.6 Research results application methods 391 

Figure 9 shows the application methods of the research results. According to the methods for 392 

emergency management of landslide geological disasters (Fu et al., 2021), landslide risk assessment 393 

(including risk identification, risk analysis, and risk assessment) and risk management (developing and 394 

selecting treatment plans, as well as planning, implementing, and evaluating treatment methods) need 395 

to be carried out before the landslide occurs. In the field of engineering geology, risk identification is 396 

the most important prerequisite for landslide emergency response. Red beds is the slippery layer that 397 

needs to be identified in risk identification. 398 

 399 

Figure 9. Research results used for risk identification. 400 

 401 

At present, the commonly used risk identification method is to use drones to carry image capture 402 

devices for three-dimensional reconstruction of slope images, determine the volume of landslide 403 

accumulation, and determine the shape changes of the slope (Chen et al., 2020; Fu et al., 2021), which 404 

can be also used for mountain rescue (Wankmuller et al., 2021). Based on the drone technology, 405 

combined with the Optech Polaris LR 3D laser scanner and the HY-9070 hyperspectral analyzer of Sun 406 

Yat-sen University, the landslide shape change and remote monitoring of mineral and chemical 407 

compositions can be realized to identify whether it is a red beds landslide. It can also use a drone 408 

equipped with a block rock and soil sampling device to collect representative blocks of rock and soil 409 

within cracks to a safe area, and then use the YL-P-3LRX Handheld Laser Induced Breakdown 410 
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Spectroscopy for rapid analysis. Therefore, the research results can be used for rapid identification of 411 

red beds, achieving risk assessment and rapid response of geological disasters such as landslides. 412 

 413 

4. Conclusions 414 

(1) In response to the rapid identification of red beds in geological disaster emergency response, a 415 

rapid quantitative identification criterion based on the basic chemical compositions combination rules 416 

of red beds has been established, taking into account the correlation between red beds geomorphic 417 

characteristics, mineral compositions, and chemical compositions. It solves the current problem of 418 

fuzzy identification of the red beds. 419 

(2) The results indicate that the red beds in the geomorphic characteristics have obvious interlayer 420 

characteristics and its appearance is red. In mineral composition, the ratio of clay minerals to other 421 

minerals of red beds ranges from 0.11 to 1.50, and the content of hematite of red beds ranges from 1.5% 422 

to 10.0%. The following chemical composition combinations can be used as red beds preliminary 423 

quantification criterion: SiO2+Al2O3 ≈  50.7%~85.0%, Al2O3/SiO2 ≈  0.14~0.41, 424 

FeO+Fe2O3 ≈  0.9%~7.9%, Fe2O3/FeO ≈  1.52~7.70, K2O+Na2O ≈  1.6%~6.8%, 425 

Na2O/K2O ≈ 0.02~0.43, CaO+MgO ≈ 0.8%~9.2%. And the principal component features can serve 426 

as a rapid quantitative criterion for distinguishing red beds: F1=-3.36~23.55, F2=-23.00~3.11, F3=-427 

10.12~4.88, F4=-2.21~4.52, F5=-0.97~7.30, and F =-0.67~1.89. The reliability of the quantitative 428 

criterion was verified by collecting 15 kinds of rocks and analyzing their chemical composition 429 

combinations. 430 

(3) The combination of research results with existing landslide geological hazard risk identification 431 

techniques can effectively carry out rapid response to geological disasters, which is very important for 432 

emergency response to geological disasters. Moreover, the research results can also be applied to the 433 

quantitative identification of red beds in other fields such as resources, ecology, environment, energy, 434 

materials, etc. 435 

 436 
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