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Abstract. We present a decomposition of skill scores for the conditional verification of weather and climate forecast systems.

Aim is to evaluate the performance of such a system individually for predefined subsets with respect to the overall performance.

The overall skill score is decomposed into: (1) the subset skill score assessing the performance of a forecast system compared5

to a reference system for a particular subset; (2) the frequency weighting accounting for varying subset size; (3) the reference

weighting relating the performance of the reference system in the individual subsets to the performance of the full data set. The

decomposition and its interpretation is exemplified using a synthetic data set. Subsequently we use it for a practical example

from the field of decadal climate prediction: An evaluation of the Atlantic-European near-surface temperature forecast from the

German initiative Mittelfristige Klimaprognosen (MiKlip) decadal prediction system conditional on different Atlantic Merid-10

ional Oscillation (AMO) phases during initialization. With respect to the chosen Western European North Atlantic sector, the

decadal prediction system preop-dcpp-HR performs better than the un-initialized simulations mostly due to performance gain

during a positive AMO phase. Compared to the predecessor system (preop-LR), no overall performance benefits are made in

this region, but positive contributions are achieved for initialization in neutral AMO phases. Additionally, the decomposition

reveals a strong imbalance among the subsets (defined by AMO phases) in terms of reference weighting allowing for so-15

phisticated interpretation and conclusions. This skill score decomposition framework for conditional verification is a valuable

tool to analyze the effect of physical processes on forecast performance and consequently supports model development and

improvement of operational forecasts.

1 Introduction

The verification of forecast systems plays an important role in the field of weather and climate prediction to asses the quality20

of such systems and, moreover, of the entire forecast process. Furthermore, a common practice for evaluating forecast systems

is the comparison against a standard reference forecast, e.g., the persistence or climatological forecast, or another competing

prediction system. Basically, the relative performance in terms of accuracy of a prediction system with respect to a reference is

expressed as forecast skill and is usually presented as a skill score (Wilks, 2011). Therefore, a variety of skill scores are widely

used for verification, e.g., the mean squared error skill ccore (MSESS) is a common way to verify a deterministic forecast,25

while the Brier skill score (BSS), the ranked probability skill score (RPSS) or the continuous ranked probability skill score
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(CRPSS), e.g., in decadal forecast verification (e.g., Kadow et al., 2016; Kruschke et al., 2016; Pasternack et al., 2018, 2021),

could be the choice for a probabilistic forecast.

Since the forecast performance is typically not homogeneous in time and space, it is of interest how variable the forecast skill

is for different states of the system. Therefore, conditional verification is a common practice in weather and climate research,30

i.e. the evaluation of forecasts separately for different regions (e.g., Northern Hemisphere and Southern Hemisphere) or seasons

(e.g., winter and summer). Additionally, the initial state and particular conditions the system goes through during the forecast

might also affect the prediction skill. In weather forecasting, the state of atmospheric flow regimes or circulation patterns can

influence the forecast quality (Grönås, 1982, 1985), where a more stable regime such as blocking can improve the forecast

quality of a model (Tibaldi and Molteni, 1990). The presence of different climate states during the initialization procedure35

of medium-range forecasts, which can improve the predictive ability in certain periods, is addressed in the subseasonal-to-

seasonal (S2S) prediction community (Mariotti et al., 2020). Large-scale atmospheric circulation variability, such as the North

Atlantic Oscillation (NAO, Jones et al., 2004; Ferranti et al., 2015; Jones et al., 2015), the Madden-Julien Oscillation (MJO,

Ferranti et al., 2018) or circulation patterns (Frame et al., 2013; Richardson et al., 2021) as well as coupled ocean-atmospheric

phenomena like El Niño–Southern Oscillation (ENSO, e.g., Qin and Robinson, 1995; Branković and Palmer, 2000; Goddard40

and Dilley, 2005; Frías et al., 2010; Kim et al., 2012; Manzanas et al., 2014; Miller and Wang, 2019) can contribute to a

forecast skill improvement. In decadal climate prediction – the focus of this study – the state of the ocean has the potential

to affect long-term forecasts of the following years, i.e. an enhanced subpolar ocean heat transport (OHT) linked to North

Atlantic upper ocean heat content (UOHC) and in some way via the Atlantic Meridional Overturning Circulation (AMOC) to

the positive Atlantic Multidecadal Oscillation/Variability (AMO/AMV) phase shows the potential of an improved predictive45

ability during the initialization of a climate model (Müller et al., 2014; Zhang and Zhang, 2015; Borchert et al., 2018, 2019).

In a typical verification study, the accuracy of a given forecast is compared to a reference to evaluate the quality of the

forecast. To assess the forecast quality for specific situations (states, seasons, regions, etc.) verification can be carried out

conditional on these situations by stratifying the full data set along situations. Thus the forecast data set is split up and (skill)

scores are obtained individually for the splits. The interpretation of these partial skill scores is not necessarily straightforward.50

This is particularly the case when the reference strongly varies among individual subsets compared to the overall behavior and

is commonly known as “Simpson’s Paradox” (Pearson et al., 1899; Yule, 1903; Simpson, 1951; Blyth, 1972). With respect to

weather and climate prediction, a potential mis-interpretation of the forecast performance stratified along specific conditions

or samples may arise if the underlying climatology that is used as reference forecast differs in some way among these samples

(e.g., Murphy, 1996; Goeber et al., 2004; Hamill and Juras, 2006). In that case a fair comparison should consider the varying55

behavior of such climatology in the verification procedure.

While the majority of mentioned studies focus more on decomposing a skill score to measure basic aspects of forecast

quality with respect to a climatological reference forecast in a fair way, here we apply a decomposition framework in the

context of conditional verification in the field of decadal predictions. The aim is to evaluate the performance of individual

subsets in relation to the performance of the entire forecast set. The decomposition provides a simple diagnostic tool to assess60

the contribution of certain subsets to the overall skill as well as to identify potential causes of variable skill between these
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subsets. The resulting information can be further used to analyze physical processes related to certain subsets and consequently

to support the model development and to optimize operational forecasts. In terms of decadal forecasts, we exploit the potential

source of long-term predictability forced by ocean states associated with the AMO to improve the forecast assessment.

First, the general decomposition procedure of the skill score is described in section 2 and exemplified in section 3 using65

synthetic data. In section 4, the decomposition is applied to decadal predictions to evaluate the Atlantic-European near-surface

temperature forecast of a pre-operational forecast system depending on different North Atlantic ocean states. The latter are

determined by the Atlantic Meridional Oscillation (AMO). The results are summarized and discussed in section 5. Section 6

concludes this study.

2 Decomposition of skill score70

This section presents the decomposition of a skill score into contributions from different subsets derived from the full set of

forecast-observation pairs and discusses the interpretation of individual terms.

2.1 Subset contribution

To verify a forecast fn we calculate a verification score Sn(fn,on), an error metric between an individual forecast fn and

the corresponding observation on (Wilks, 2011). Considering all forecast-observation pairs (fn,on),n= {1, . . . ,N}, the mean75

score S of the full set can be computed by

S =
1
N

N∑

n=1

Sn(fn,on). (1)

The mean squared error (MSE) is an adequate score for a deterministic forecast of a continuous variable, while the ranked

probability score (RPS) is an appropriate choice for a probabilistic forecast of a discrete forecast. To measure the performance

of a forecast system fc compared to a reference forecast ref, the associated skill score SS (e.g., MSE skill score MSESS and80

ranked probability skill score RPSS, respectively) is used.

The forecast performance may vary for individual subsets of the data and the resulting interpretation may depend on the

different behavior of the reference system. To assess varying skill scores for specific situations (e.g., states, time periods,

seasons, regions, etc.), the verification is carried out conditional on these situations, i.e., the full data set is stratified. We thus
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split the data into K subsets and determine the individual contribution of each subset i to the overall mean skill score SS85

SS =
Sfc−Sref

Sperf−Sref

=
∑K

i=1
Ni

N Sfc
i −

∑K
i=1

Ni

N Sref
i

Sperf−Sref

=
K∑

i=1

Ni

N

(
Sfc

i −Sref
i

Sperf−Sref

)

︸ ︷︷ ︸
contribution subset i

,

(2)

where Sfc and Sref is the mean score of the forecast system fc and the reference system ref, respectively, over an entire data set

withN forecast-observation pairs and Sperf the score of a perfect forecast, which is 0 for the MSE or RPS. Sfc
i and Sref

i represent

the mean score of the forecast system and reference system, respectively, for individual subsets, where Ni is the number of

forecast-observation pairs in subset i.90

2.2 Terms of decomposition

In order to evaluate how strongly and in which situations the skill score of the subsets affects the total skill score, we include

and separate any component that influences the contribution of a subset to the overall skill score. We multiply equation Eq. (2)

by 1 = Sperf−Sref
i

Sperf−Sref
i

, yielding

SS =
K∑

i=1

Ni

N︸︷︷︸
frequency
weighting

·
(

Sfc
i −Sref

i

Sperf−Sref
i

)

︸ ︷︷ ︸
subset

skill score

·
(

Sperf−Sref
i

Sperf−Sref

)

︸ ︷︷ ︸
reference
weighting

=
K∑

i=1

Wfreqi
·SSi ·Wrefi =

K∑

i=1

Wi ·SSi . (3)95

This decomposition of the total skill score results in three terms characterizing the contribution of a subset to the overall skill

score:

2.2.1 Subset skill score

SSi = Sfc
i −Sref

i

Sperf−Sref
i

gives the mean subset skill score of the forecast system fc versus the reference system ref with respect to

forecast-observation pairs of the given subset i. This term characterizes how well the forecast system performs in comparison100

to the reference system in that specific subset, e.g., during a positive AMO phase. It is commonly applied in model evaluations

to find enhanced predictability during certain climate or large-scale circulation states or specific seasons. In Sect. 3, this term

can be found as SS1/2 in Table 1 and 2 as well as in Fig. 1.

4

https://doi.org/10.5194/egusphere-2023-2582
Preprint. Discussion started: 22 January 2024
c© Author(s) 2024. CC BY 4.0 License.



2.2.2 Frequency weighting

Wfreqi
= Ni

N considers the number of forecast-observation pairs (e.g., time steps) in subset i relative to the total number of105

forecast-observation pairs. For a time series one could imagine, this part reflects the relative frequency of occurrence of the

situation stratified along within the total time period and is therefore named as frequency weighting. Consequently, a situa-

tion which does not occur very often will contribute less to the overall skill score compared to an event which occurs more

frequently.

2.2.3 Reference weighting110

Wrefi = Sperf−Sref
i

Sperf−Sref is the ratio of the mean score of the reference system for the subset i (numerator) and the full set of forecast-

observation pairs (denominator). It ajust the scale (or range) of the subset skill score which was set by Sperf−Sref
i to the scale

used for the overall skill score. This component can be interpreted as a weighting of the subset skill score by means of the

performance of the reference system in the subset compared to its performance in the full set of forecast-observation pairs. If

the performance of the reference varies strongly among subsets, the individual subset skill scores will contribute to the total115

skill score according to the performance of the reference. We call this component reference weighting.

2.2.4 Subset weighting

In summary, the individual contribution of a certain subset to the overall skill score depends on i) the performance of the fore-

casting system compared to the reference system in that given subset, weighted by ii) the relative size of the subset (frequency

of the stratification event occurring) and iii) the performance of the reference system in the subset compared to the full set of120

forecast-observation pairs. The total subset weight

Wi =
Ni

N
· S

perf−Sref
i

Sperf−Sref (4)

is the product of the frequency weighting and the reference weighting and determines the influence of the subset on the total

skill score, i.e. for an improvement/degeneration ∆SSi of the forecast in the subset i, the total skill score for the full set of

forecast-observation pairs changes by125

∆SS(∆SSi) =
Ni

N
· S

perf−Sref
i

Sperf−Sref ·∆SSi . (5)

3 Synthetic time series cases

We illustrate the effect of the different reference performance using a synthetic data set in the following. In the context of

near-term climate prediction one could imagine the annual mean of 2m-temperature being verified in two different forecast

systems with respect to the same observation for a certain defined time period.130
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Case (Skill) score behavior Sfc
1 Sref

1 SS1 Sfc
2 Sref

2 SS2 Sfc Sref SS

A0 SS1 is worse compared to SS2; SS close to SS2 0.30 0.22 -0.36 1.56 2.69 0.42 0.93 1.46 0.36

A1 SS1: increase; SS2: unchanged; SS: nearly unchanged 0.18 0.22 0.18 1.56 2.69 0.42 0.87 1.46 0.40

A2 SS1: increase; SS2: decrease; SS: decrease 0.13 0.22 0.41 3.46 2.69 -0.29 1.93 1.46 -0.23

Table 1. Different cases (A0-A2) showing the scores (S) and skill scores (SS) of two subsets and of the total forecast time series. The

contribution of subset 1 to the total skill score is weak compared to the contribution of subset 2. The (skill) score changes as described in A1

and A2, both related to the first case A0.

3.1 Example cases with different behavior of skill scores

With respect to a time-based stratified verification which is addressed in this study, we assume that the performance of both

forecast systems varies systematically within the time period considered. For this purpose, we divide the entire time period –

here we use a time period of N = 60 time steps representing 60 years – into two equal sized subsets (K = 2, N1 =N2 = 30).

The performance of the two forecast systems shows a systematically different behavior for the two subsets. An example from135

near-term climate prediction could be the state of the ocean in terms of years dominated by a negative or positive AMO phase

during the initialization procedure, which might have an influence on the forecast performance in some regions via the OHT

(Borchert et al., 2018).

Applied to our fictive example, the mean score of the forecast systems differs between both subsets (Sfc
1 6= Sfc

2 ). The same

assumption holds for the mean score of the reference system (Sref
1 6= Sref

2 ). In some situations it is possible that the long-term140

performance expressed in terms of total skill score SS of a forecast system compared to another forecast system is dominated

by a specific subset period. With the setup described above and the decomposition approach from Sect. 2, we illustrate and

discuss the individual contributions of subsets to the total skill score. For this purpose we generate six hypothetical cases with

different performance combinations of forecast fc and reference ref during the two subsets i= 1 and i= 2. Case A assumes a

very different performance of the reference system in the two subsets and case B assumes an almost equal performance of the145

reference instead.

3.1.1 Case A: Unequal performance of the reference

In the first case (A0, see Table 1) we assume the forecast system fc performs poorly compared to the reference in subset i= 1

(subset skill score SS1 =−0.36). In contrast, forecast system fc performs better compared to the reference in subset i= 2

(subset skill score SS2 = 0.42). As a first guess from seeing the skill scores one might assume the total skill score SS being an150

equal composition (e.g., arithmetic mean) of both subset skill scores SS1/2 leading to a value close to zero. However, in this

specific configuration the total skill score of the overall data (SS = 0.36) is very close to that one in subset 2. The total skill of

forecast system fc is mainly dominated by this subset.
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Case A0 Case A1 Case A2

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
Subset 1 Subset 2 Total data(a)

Case B0 Case B1 Case B2

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(b)

S
ki

ll 
sc

or
e

Figure 1. Subset skill scores (green/orange bars) and their influence on the respective total skill score (gray bars and dashed lines) from

synthetic example cases of (a) setup A shown in Table 1 (strong reference weighting imbalance among both subsets) and (b) setup B shown

in Table 2 (nearly balanced reference weighting among both subsets).
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Case (Skill) score behavior Sfc
1 Sref

1 SS1 Sfc
2 Sref

2 SS2 Sfc Sref SS

B0 SS1 is worse compared to SS2; SS close to zero 0.30 0.22 -0.36 0.14 0.24 0.42 0.22 0.23 0.04

B1 SS1: increase; SS2: unchanged; SS: increase 0.18 0.22 0.18 0.14 0.24 0.42 0.16 0.23 0.30

B2 SS1: increase; SS2: decrease; SS: unchanged 0.13 0.22 0.41 0.31 0.24 -0.29 0.24 0.23 0.04

Table 2. Cases B0-B2 similar to table 1, but in contrast the contribution of subset 1 and subset 2 to the total skill score is similar.

From just focusing on subset skill scores, one could be tempted to improve the forecast system fc especially for subset 1

where the skill score compared to the reference system is worse. This scenario will be covered in case A1 (Table 1) where an155

improvement of the subset skill score is achieved for the first subset, while the skill score of the second subset remains the

same. Although the skill score of the forecast system fc in subset i= 1 is improved (A1: SS1 = 0.18), the overall skill score

hardly changes (A1: SS = 0.40).

In the last case (A2 in Table 1), we simulate a stronger improvement of the skill score in subset i= 1 compared to case A1

(SS1 = 0.41), which is accompanied by a reduction in skill score for subset i= 2 (SS2 =−0.29). Here, the total skill score160

(SS =−0.23) decreases compared to A0 although there is a stronger improvement in subset i= 1 than the decline in the second

subset.

Taking into account all three cases, it can be summarized that the total skill score of the forecast system fc with respect to

the reference ref is mainly dominated by the subset skill score from subset i= 2; to be seen in Fig. 1a, where the overall skill

score of the full set of forecast-observation pairs (gray bars) behaves very sensitively towards changes in the subset skill score165

from subset i= 2 (orange), whereas changes of the skill score from subset i= 1 (green) yield almost no effect.

3.1.2 Case B: Equal performance of the reference

In contrast to case A we show three additional examples (B0-B2 in Table 2) in which the influence on the total skill score is

nearly equally balanced between both subsets. To see the different behavior, the subset skill scores of all cases will be the same

as before. Consequently, in the first case (B0 in Table 2) the forecast system fc performs worse in subset i= 1 compared to170

the reference system ref (SS1 =−0.36), while it shows a better performance in subset i= 2 (SS2 = 0.42). Unlike case A0,

the total skill score now depends almost equally on both subsets (SS = 0.04). The changes made to the two cases B1 and B2

follow a similar pattern as the changes in A1 and A2 as can be seen in Fig. 1b, whereas the total skill score is almost given by

the arithmetic mean of both periods.

With the skill score decomposition from Sect. 2 the reason for this behavior can be investigated.175

3.2 Decomposition of skill scores and impact of the reference weighting

The different behaviors shown can be investigated using the decomposition terms from Eq. (3) with Sperf = 0. As demonstrated

there, the contribution of an individual subset to the total skill score depends on three terms: frequency weighting, reference
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Figure 2. Reference weighting of both subsets (green/orange bars) for synthetic case setup A and B. Cases from setup A show strong reference

weighting imbalance among both subsets and cases of setup B show nearly balanced reference weighting among both subsets. The dashed

line reflects a balanced behavior among both subsets.

weighting and the subset skill score. As defined above, we varied the subset skill scores in a same way and used equal-

sized subsets resulting in the same frequency weighting of 1
2 for both subsets. Consequently, the reference weighting for the180

individual subsets must play a crucial role. For case A the scores (S1/2) between subsets differ by more than one unit. In detail,

the scores generally are much higher in subset i= 2 than in subset i= 1. As a result, potential subset skill score changes for

the forecast system fc that are just achieved during the first subset will not affect the total skill score very much. The larger

scores in subset i= 2 show a stronger relevance with respect to the total skill.

In contrast to setup A, the cases generated in B show a nearly balanced behavior in this respect. These difference can also be185

seen when we compare the reference weighting term from the skill score decomposition described before. Figure 2 visualizes

this behavior, in which the cases from setup A show a different value for the reference weighting in both subsets, while in setup

B the reference weighting is close to 1 in both cases.

Gnerally, the reference weighting lies between 0 and K (number of subsets). Values below 1 reflect a lower than average

contribution to the overall skill score while values above 1 indicate a higher than average contribution. Figure 3 demonstrates190
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Figure 3. (a) Variations in the reference weighting term of both subsets (green/orange bars) and (b) their potential influence on the corre-

sponding total skill score (gray bars) for given subset skill scores SS1/2 (green/orange horizontal lines) from example cases A0-A2 described

in Table 1 and B0-B2 in Table 2. Current values of the example cases are highlighted with a dot. A balanced (enhanced unbalanced) behavior

among both subsets reflects the center bar pair (bar pairs towards left/rights edges).
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∆SS1 ∆SS2 ∆SS Wref,1 Wref,2 Wfreq,1/2

0.5 0 0.04 0.15 1.84 0.5

0 0.5 0.46 0.15 1.84 0.5

Table 3. Individual effect of a 0.5 change in the subset skill score SSi on the total skill score SS for example case A0. The weighting terms

from the decomposition are also shown.

the impact of individual subset skill scores on the resulting total skill score depending on their reference weighting. For this

purpose, we compute the total skill score SS with respect to our cases (Fig. 3b) with prescribed subset skill score in subset

i= 1 (SS1) and subset i= 2 (SS1), respectively, and change successively the reference weighting term (Fig. 3a). Starting with

a behavior similar to the setup A which is dominated by subset i= 2 (left in Fig. 3), where the reference weighting term of

subset i= 2 (orange bars) is larger than the one of subset i= 1 (green). A balanced ratio between both subsets (similar to case195

B) is shown in the middle; The right part shows a total skill score which is mainly controlled by the subset i= 1. Thus, the

ratio of the score of the reference system between a subset and the full data set – captured here by the reference weighting term

– controls the subset’s contribution to the overall skill score.

According to Eq. (5), we can compute potential changes of the total skill score ∆SS depending on changes in the subset

skill score ∆SSi. For example, in case A0 a change of the subset skill score in subset i= 1 of ∆SS1 = 0.5 (e.g., increase of200

SS1 from -0.36 to 0.14) would change the total skill score of only ∆SS = 0.04. On the other hand, a skill gain of 0.5 in subset

i= 2 would increase the total skill score by a value of 0.46. In detail, with Sperf = 0 the derived weighting terms from the

decomposition are shown in Table 3. In this example, it is more effective in terms of gain in total skill score to focus on the

subset i= 2 for improvement of the forecast system.

The synthetic example is focused on the reference weighting; however the decomposition is also useful for unequal subset205

sizes. The contribution to the total skill score is then additionally controlled by the frequency weighting. Depending on the

verification setup, both parts should be considered in weather and climate forecasts. As a consequence, complexity is reduced

when each subset has the same size and the reference weighting of all subsets is 1 due to a chosen reference. This leads to

equally weighted skill scores of the subsets.

3.3 Subset contributions210

In Fig. 4, we assess the subset contributions compared to a balanced contribution across the synthetic example cases. The

balanced contribution (gray horizontal lines) represents a hypothetical value resulting from distributing the total skill score

into equal contributions from the K subsets: SSbal = SS
K . The sign of the subset contribution indicates positive or negative

contribution to the total skill score, while its value indicates the amount of the contribution. In setup A, the absolute values of

the contribution from subset 2 (orange bars) are much larger, while the contributions of subset 1 (green bars) remain negligibly215

small. The large deviations from SSbal shows the strong imbalance between the contributions of both subsets. Since, the
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Figure 4. Subset contributions of both subsets (green/orange bars) from cases A0-A2 and B0-B2. The sign of the bars accounts for positive

or negative contributions to the total skill score. Gray horizontal lines indicate a balanced contribution with respect to the total skill score.

frequency weighting of both subsets is identical, the observed characteristic is driven by the reference weightings. In contrast,

the strengths of the subsets’ contributions in setup B are more similar, hence the subsets’ skill scores directly affects the subsets’

contributions without relevant modifications from the weighting terms.

In summary, the decomposition of the subset contribution into its three componentes reveals the potential impact of a subset220

on the overall skill score considering the combination of all three terms of the subset (i.e., size and performance of the reference)

instead of only the skill score for a particular subset.

4 Conditional verification in the MiKlip decadal prediction system

4.1 Simulations from MiKlip decadal prediction system

We investigate the influence of ocean states – given in terms of AMO phases – on the near-surface air temperature hindcast225

skill in the MiKlip decadal climate prediction system. The MiKlip decadal climate prediction system (Marotzke et al., 2016)

generation preop-dcpp is based on the coupled atmosphere-ocean Earth System Model of the Max-Planck Institute version

1.2 simulated in the high-resolution setting HR (Müller et al., 2018; Mauritsen et al., 2019). The model for the atmospheric

component – ECHAM6.3 – has a T127 horizontal resolution (0.9375◦) and 95 vertical levels. The ocean part is simulated by

the Max Planck Institute ocean model (MPIOM) with a horizontal resolution of 0.4◦ and 40 vertical levels.230
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The 10-member ensemble of the system is initialized on an annual basis from 1960 to 2012, with a period of 10 years being

simulated for each run. The initialization procedure is similar to Pohlmann et al. (2013) which is based on nudging the model

toward atmospheric and oceanic fields obtained from reanalysis data. In case of the atmospheric model component, a full atmo-

spheric field-initialization from ERA40 (Uppala et al., 2005) and Era-Interim (Dee et al., 2011) reanalyses is applied. For the

ocean component, salinity and ocean temperature anomalies derived from an assimilation experiment forced by ORA-S4 ocean235

reanalysis data (Balmaseda et al., 2013) as well as sea ice concentrations from the National Snow and Ice Data Center (Fetterer

et al., 2018) described in Bunzel et al. (2016) are taken as initial conditions. The external forcing is based on the CMIP6 forcing

(see Eyring et al. (2016) and Pohlmann et al. (2019b) for details). In addition to the initialized simulations, an ensemble of 10

uninitialized runs (historical simulations) is used as the competitive hindcast for the skill assessment. Further details about the

simulations can be found in Müller et al. (2018) and Pohlmann et al. (2019b). To evaluate the probabilistic hindcast skill, both240

hindcast sets are verified against observations from the Hadley Centre and Climate Research Unit (HadCRUT)4 (Morice et al.,

2012) on the basis of monthly mean temperatures. To be on the same horizontal resolution as the observational data, the model

data of the prediction system is re-gridded to a regular 5◦× 5◦ grid.

4.2 Atlantic Multidecadal Oscillation time series

Since the conditional verification of the temperature will be stratified along three different phases of the Atlantic Multidecadal245

Oscillation (AMO), we calculate the AMO index proposed by Enfield et al. (2001) in the ORA-S4 ocean reanalysis data to

match the current state of the Atlantic ocean during the initialization procedure. Specifically, monthly anomalies (base period:

1960–2010) of the sea surface temperature (SST) averaged over the North-Atlantic region (80–0° W, 0–60° N) are exploited to

compute the North-Atlantic temperature time series. Afterwards, the linear trend (base period: 1960–2010) of this time series is

removed to obtain the AMO time series. With regard to the subsequent conditional evaluation of the decadal prediction system,250

annually averages of the AMO are used to split the entire time period into three different subsets (based on 0±0.5σ thresholds

using base period 1960-2010) representing years of negative, neutral and positive AMO phases.

4.3 Verification of probabilistic forecasts for three categories

We verify the decadal ensemble predictions using the ranked probability score RPS (e.g., Wilks, 2011; Kruschke et al., 2016).

The score is computed for both hindcast sets against the HadCRUT observation to asses the probabilistic skill of the initialized255

vs un-initialized simulations. For near-surface air temperature, we build time series of forecast-observation pairs depending on

lead-time for all initialized decadal experiments from 1960 to 2012. Data with lead-times between 2 and 5 years are averaged

to obtain a score for the lead-time period 2–5 years.

In the next step we divide the resulting data sets (separately for initialized, un-initialized and observational data) along

their terciles into three equal parts to obtain J = 3 different temperature categories j = 1, . . . ,J (below normal, normal, above260

normal). With this approach, an implicit lead-time-dependent bias-correction, which is commonly applied in decadal climate

predictions projects, will be achieved.
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The ranked probability score (RPS) defined as

RPSt =
J∑

j=1

(Yj,t−Oj,t)2 (6)

is calculated between both hindcast sets and the observational data, where Yj,t is the cumulative forecast probability of class j265

(with J = 3) derived from the forecast ensemble of initialization year t for the given forecast lead-time mean 2–5 years.

Oj,t represents the corresponding observed cumulative probability represented as the Heaviside step function where either

Oj,t = 0 in case a higher category than j is observed or Oj,t = 1 otherwise. To asses the skill between the initialized (fc) and

un-initialized (ref ) simulations, the ranked probability skill score

RPSS = 1− RPSfc

RPSref
(7)270

is computed.

With respect to the conditional verification using the decomposition of the skill score, here we want to evaluate the prob-

abilistic hindcast skill stratified along three phases (negative, neutral, positive) of the AMO instead of two demonstrated in

Sect. 2. That means, the RPS and RPSS of the entire time period contain every initialization year t from 1960 to 2012 as time

step, while the AMO-phase-specific terms only consider initialization years which are related to the associated AMO phase.275

The information about the significance of the RPSS is based on a 5-year-block-bootstrap method by a 1000-fold re-sampling

of the forecast-reference-observation cases in the entire time period. The RPSS value is considered statistically significant if 0

is outside the 95 % inner values of the bootstrap distribution.

A large part of the routines used for verification presented here is implemented as the verification plug-in ProblEMS (https:

//www.xces.dkrz.de/plugins/problems/detail/; via guest login; last access: 24 October 2023) into the MiKlip and ClimXtreme280

Central Evaluation System (https://www.xces.dkrz.de; last access: 24 October 2023) – based on the Free Evaluation System

Framework for Earth System Modeling (Freva; Kadow et al., 2021).

4.4 Subset contributions of RPSS

Figure 5a shows the RPSS over the European region for the initialized decadal hindcast with respect to the un-initialized hind-

cast averaged over the entire hindcast period for lead-years 2–5. Significant values (marked with a cross) are rare. Negative285

significant values can be found in the Barents Sea and a larger patch in the south-western North Atlantic. The latter is presum-

ably caused by a displacement of ocean currents in that area since the region is especially sensitive to initializations (Kröger

et al., 2018; Polkova et al., 2019). Positive significant skill can be found in the Greenland Sea. Besides individual grid points

with significant values only patches with positive but non-significant skill is visible in the eastern Mediterranean and in the

north-eastern part of the North Atlantic.290

To exemplify the stratified verification, Fig. 5b-d shows the subset contributions to the total RPSS during (b) negative, (c)

neutral and (d) positive AMO phases following Eq. (2). The AMO neutral phase (Fig. 5c) contributes to negative RPSS in the

south-western North Atlantic and Barents Sea, while positive contributions in W-EU and C-EU are found during negative AMO

phase (Fig. 5b) as well as in the North Atlantic under positive AMO conditions during the initialization procedure (Fig. 5d).
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Figure 5. (a) Ranked probability skill score (RPSS) of near-surface temperature of the initialized hindcast (preop-dcpp-HR) with respect to

un-initialized historical simulations and HadCrut observations for lead-year 2–5 from 1962–2017. Additionally, individual contribution of

subsets for (b) negative, (c) neutral and (d) positive AMO phase initialization. Missing values are depicted in gray. Crosses in (a) indicate

areas with significant (95 %-level) skill scores. The box highlights the W-EU NA region analyzed in Sect. 4.5.

4.5 Decomposition of RPSS over Western European North Atlantic295

Next, we focus on the Western European North Atlantic region (W-EU NA). This is motivated on the one hand by the different

predictability associated with certain AMO phases identified in previous studies, and on the other hand by the positive total

skill found in that region. We investigate the subset contributions and the three terms (subset skill score, frequency weighting,

reference weighting) of the decomposition for the annual field-mean of the W-EU NA region 40–10° W, 35–60° N, (box in

Fig. 5) according to Eq. (2) and (3). The subset skill score (subset RPSS) in Fig. 6b shows no or at most very weak improvement300

of the initialized prediction system over the un-initialized simulations under negative and neutral AMO conditions during the
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Figure 6. (a) Subset contributions related to Eq. (2) as well as (b) subset RPSS, (c) frequency weighting and (d) reference weighting of

subsets (defined by AMO initialization) according to Eq. (3) for the conditional verification of near-surface temperature in the W-EU NA

region between initialized hindcast (preop-dcpp-HR) and un-initialized historical simulations with respect to HadCrut observations for lead-

year 2-5 from 1962-2017. Gray horizontal lines represent (b) total skill score, (c–d) balanced weightings and (a) balanced contributions with

respect to the total skill score.

initialization procedure. In contrast, a clearly positive subset RPSS of 0.3 is achieved for initialization during positive AMO

years. As comparison, the total RPSS is around 0.1 (gray horizontal line). The frequency weighting (Fig. 6c) indicates that

initialization years with neutral AMO phase are more frequent (0.4) than years of the other two phases. This leads to a higher

frequency weighting factor associated with the AMO neutral phase. Figure 6d shows that the reference weighting is close to 1305

for all phases. As this component represents a potentially different score of the reference system along the three subsets, we do

not expect large variability as the uninitialized reference is not be influenced by the AMO phase.

Multiplying the three components for the individual subsets, we arrive at the subset contributions (Fig. 6a). This contribution

is mainly determined by the subset skill score (Fig. 6a) and to a small extent modified by the frequency weighting (Fig. 6d).

The resulting subset contributions related to the AMO phases show that the positive AMO phase contributes to a large amount310

(around 0.08) to the total RPSS, followed by the neutral AMO phase with a smaller contribution of 0.02.
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Figure 7. Same as Fig. 6, but with the preop-LR initialized prediction system as reference.

Since the reference weighting was not relevant in the above case, we now choose a reference system affected by the AMO

phase: an earlier version of the decadal prediction system. The pre-operational version preop in a low-resolution configuration

LR has a T63 horizontal grid (1.875◦) and 47 vertical levels in the atmospheric component, while the ocean part has a horizontal

resolution of 1.5◦ and 40 vertical levels. Being an older version, the low-resolution system is forced by CMIP5 external forcing315

(Giorgetta et al., 2013). The other settings (e.g., initialization and assimilation procedure etc.) remain unchanged compared to

the preop-dcpp-HR version introduced in Sect. 4.1. Figure 7b shows again the RPSS of the individual subsets (bars) and the

total RPSS as horizontal gray line. As the latter coincides with the zero skill score line, we see that the initialized prediction

system preop-dcpp-HR does not outperform the low-resolution version preop-LR over the entire period. The subset RPSS under

positive AMO conditions during the initialization procedure is strongly negative (-0.55); a similar tendency can be seen during320

the negative phase (-0.2). Only during the neutral AMO phase, the preop-dcpp-HR shows an improvement compared to the

earlier system version.

Since classification of AMO phases is again based on ORA-S4, the frequency weighting terms are the same as in the previous

case. Again, the weighting factor of the neutral AMO phase is slightly higher than that of the other two phases (Fig. 7c). The

reference weighting exhibits huge differences among the individual phases (Fig. 7d). While the subset of the neutral AMO325

phase shows a weighting factor of 1.4, which is approximately 40 % higher than the balanced value (1, gray horizontal line),
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the reference weighting term of the subset of the positive phase is 0.5 and thus only half of the balanced one. The reference

weighting associated to the negative AMO phase (0.9) lies in between.

The individual subset contributions (Fig. 7a) are now affected by all three terms of the skill score decomposition. In par-

ticular, the reference weighting now influences the contribution to a large extent. While the subset RPSS (Fig. 7b) suggests330

a strong negative contribution to the overall skill driven by a positive AMO phase, the subset contribution (Fig. 7d) allows a

slightly different interpretation: positive as well as negative AMO phases contribute negatively to the overall skill score with

similar amounts, counteracting the benefits from the neutral AMO phase.

5 Summary and discussion

We present a decomposition of skill scores into contributions from subsets of the forecasts which are selected according to335

characteristics of processes or large scale circulation, climate states during initialization of the forecast system, seasons or

regions. Using the MSESS and RPSS we give examples for this decomposition in the context of a synthetic data set designed

to reveal situations where this decomposition shows its usefulness. To achieve this, the synthetic time series show different

performance characteristics of forecast and reference systems in two subsets. These subsets contribute differently to the overall

skill score in an additive way; according to their size, the performance of the forecast system on the subset and the performance340

of the reference system on the subset compared to the full data set. Hence, the contribution of a specific subset to the overall

skill can be decomposed into

subset skill score SSi = Sfc
i −Sref

i

Sperf−Sref
i

,

frequency weighting Wfreqi
= Ni

N ,

reference weighting Wrefi = Sperf−Sref
i

Sperf−Sref .345

The subset skill score measures the performance of a forecast system compared to a reference system for a particular subset, a

useful and popular quantity to assess varying performance of a forecast system over different subsets; this is frequently used to

detect enhanced/reduced predictability for certain climate and large-scale circulation states or specific seasons and regions (see

references mentioned in the introduction). The frequency weighting reflects the size of the subset with respect to the full data

set. For small subsets, it reduces the subset’s contribution to the overall skill and vice versa for large subsets. The reference350

weighting adjusts the scale (or range) of the skill score, which is set by the difference between the reference performance of

the subset and the perfect forecast, to the scale relevant for the overall data set. For negatively oriented scores with Sperf = 0,

this is expressed by the ratio of the two differences, see Eq. (3). Reference weighting as well as frequency weighting are both

independent of the forecast system. The product of all three terms yields the subset’s contributions to the overall skill score.

We expect that this decomposition helps to avoid mis-interpreting a potential performance increase in a subset resulting, e.g.355

from a significant performance decrease in the reference system. In this context, climatological forecasts used as a reference

system could also impact the interpretation of the skill, as discussed for example in Hamill and Juras (2006).
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Subsequently, we exemplify the RPSS decomposition in the context of the MiKlip decadal prediction system stratified along

characteristics of the AMO during forecast system initialization. Target is the quantification of hindcast skill for the near-surface

air temperature for leadyear 2–5 over the North Atlantic and European region. The initialized hindcasts (preop-dcpp-HR) show360

a weak positive overall skill (locally significant) in the north-eastern part of the North Atlantic and in the eastern Mediterranean

compared to un-initialized hindcasts. Stratified verification along positive, negative and neutral AMO phases for initialization

reveals

– a negative subset contribution to the total RPSS in the south-western North Atlantic and Scandinavia for a subset associ-

ated with neutral AMO and365

– a positive subset contribution for W-EU and C-EU (AMO-) and in the North Atlantic (AMO+) for subsets associated

with negative and positive AMO.

The decomposition for the Western European North Atlantic box shows that subsets associated with a positive AMO phase

initialization contribute strongly to the positive total RPSS with a positive subset skill score only slightly modified by the

frequency weighting.370

Additionally, evaluation of the decadal hindcast system versus an earlier version with lower resolution (preop-LR) shows that

individual subset contributions being affected by all three terms of the decomposition, with the reference weighting playing a

particular role. This leads to a slightly different conclusion: While the subset RPSS suggests that the strong negative contri-

bution to the overall skill is mainly driven by positive AMO initialization, the decomposition reveals that both, the negative

as well as the positive AMO phases contribute negatively with the same amount, counteracting the benefits from the neutral375

AMO phase.

In summary, the recent hindcast outperforms the un-initialized simulations in the Western European North Atlantic sector

mostly due to performance gain for positive AMO phase initialization. No overall performance benefits can be seen here

with respect to preop-LR, but positive contributions are achieved when initializing during neutral AMO phases. The first

findings are similar to those from Borchert et al. (2018) since AMO/AMV phases are linked to OHT with a lag of 5-10 years.380

Nevertheless, a stratification along different OHT states may strengthen the distinction between each subsets. As this paper

focuses on suggesting the framework of skill score decomposition for stratified verification, analysis of physical processes

being responsible for varying skill is beyond the scope of this study.

6 Conclusions

The verification of forecast systems stratified along characteristics of physical processes, large-scale circulation, climate states385

at initialization, seasons or regions can be a helpful tool for model development, the detailed assessment of forecasts quality,

as well as for communication of forecasts. However, interpretation and comparison of skill scores across different strata can

be challenging. This is not only the case for different subset sizes (frequency weighting) but also if the performance of the

reference system varies strongly across subsets (reference weighting).
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Both examples, the synthetic data set, as well as the one from decadal forecasting, exemplify the potential of the skill score390

decomposition for stratified verification. For the decadal prediction system initialized during positive AMO phases, we see

a degradation of performance in the associated subset compared to its predecessor system. However, since the error of the

reference system compared to observation in that subset is quiet small compared to the entire time series anyway (as can be

seen from the reference weighting), the negative AMO phase negatively affects the overall performance in the same way as

the positive AMO phase. In practice, potential model diagnostics and improvements should focus on both phases, rather than395

examining only the positive AMO phase suggested by the subset skill score assessment.

The skill score decomposition into contributions from suitable chosen subsets helps understanding possible model mis-

behavior in a detailed and robust way as subsets can be chosen along the characteristics of physical processes. This yields

valuable information for refinement of the forecast system or model development. Besides the state of the ocean or other large-

scale conditions, seasonal as well as regional or other aspects can be addressed. Conditional or stratified verification can be used400

to investigate known or hypothetical linkages in the area of climate and weather forecasts including the ability to simulate and

represent specific feedback mechanism. The example above examines the potential source of long-term predictability forced

by certain ocean states associated with the AMO.

Finally, to support decision-making related to weather and climate, operational forecasts can be optimized by assessing and

communicating its credibility in a more specific and situative way using stratified evaluation along conditions of initialization405

and the related skill score decomposition. Depending on the condition during initialization, forecast uncertainty can be quanti-

fied and eventually the forecast can be rated as more precise, as addressed in Borchert et al. (2019). Similar is the identification

of windows of opportunity for enhanced skill on subseasonal to decadal time scales (Mariotti et al., 2020). In the example

from decadal forecasting, a better temperature forecast ability of the prediction system compared to the un-initialized one is

achieved over parts of the North Atlantic for initialization during positive AMO phases.410

The skill score decomposition framework suggested and exemplified in context of conditional or stratified verification is a

relatively simple tool to analyze physical processes related to certain subsets and consequently supports the model development

as well as the optimization of operational forecasts and their communication.

Code and data availability. The code used for the verification of decadal predictions is written in Shell and R and uses CDO. R is a

GNU licensed free software from the R Project for Statistical Computing (http://www.r-project.org; last access: 11 January 2024). Cli-415

mate Data Operators (CDO, https://code.mpimet.mpg.de/projects/cdo; last access: 11 January 2024) is open source and released under

the 3-clause BSD License. It is implemented as a software routine (ProblEMS plug-in) in the Freva system (Kadow et al., 2021) at

Deutsches Klimarechenzentrum (DKRZ) and is versioned in gitlab. The version 1.6.3 used in this study is publicly available at https:

//doi.org/10.5281/zenodo.10469658. Synthetic examples, simulation data used in the conditional verification, and computed AMO time series

(including computational routines) are publicly available at https://doi.org/10.5281/zenodo.10471224. HadCRUT4 data is freely available420

at https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/gridded_fields/HadCRUT.4.6.0.0.median_netcdf.zip (last access: 11 January

2024) and ORA-S4 ocean reanalysis data at https://icdc.cen.uni-hamburg.de/thredds/aggregationOras4Catalog.html?dataset=oras4_temp_all

(last access: 11 January 2024).
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