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Abstract. Climate models, derived from process understanding, are essential tools in the study of climate change and its wide-

ranging impacts. Hindcast and future simulations provide comprehensive spatiotemporal estimates of climatology that are

frequently employed within the environmental sciences community, although the output can be afflicted with bias that impedes

direct interpretation. Post-processing, bias correction approaches utilise observational data to address this challenge, although

are typically criticised for not being physically justified and not considering uncertainty in the correction. This paper proposes5

a novel Bayesian bias correction framework that propagates uncertainty robustly and models underlying spatial covariance

patterns. Shared latent Gaussian processes are assumed between the in situ observations and climate model output with the aim

of partially preserving the covariance structure from the climate model after bias correction, which is based on well-established

physical laws. Results demonstrate added value in modelling shared generating processes under several simulated scenarios,

with most value added for the case of sparse in situ observations and smooth underlying bias. Additionally, the propagation of10

uncertainty to a simulated final bias corrected time series is illustrated, which is of key importance to a range of stakeholders,

from climate scientists engaged in impact studies, decision makers trying to understand the likelihood of particular scenarios

and individuals involved in climate change adaption strategies where accurate risk assessment is required for optimal resource

allocation. This paper focuses on one-dimensional simulated examples for clarity, although the code implementation is de-

veloped to also work on multi-dimensional input data, encouraging follow-on real-world application studies that will further15

validate performance and remaining limitations. The Bayesian framework supports uncertainty propagation under model adap-

tations required for specific applications, providing a flexible approach that increases the scope to data assimilation tasks more

generally.
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1 Introduction

Climate models are invaluable in the study of climate change and its impacts (Bader et al., 2008; Flato et al., 2013). Formulated20

from physical laws and with parameterisation and process understanding derived from past observations; climate models pro-

vide comprehensive spatiotemporal estimates of our past, current and future climate under different emission scenarios. Global

climate models (GCMs) simulate important climatological features and drivers such as storm tracks and the El Niño–Southern

Oscillation (ENSO) (Greeves et al., 2007; Guilyardi et al., 2009). In addition, independently developed GCMs agree on the

future direction of travel for many important features such as global temperature rise under continued net-positive emission25

scenarios (Tebaldi et al., 2021). However, GCMs are computationally expensive to run and also exhibit significant system-

atic errors, particularly on regional scales (Cattiaux et al., 2013; Flato et al., 2013). Regional climate models (RCMs) aim to

dynamically downscale GCMs and more accurately represent climatology for specific regions of interest and have parameteri-

sation, tuning and additional physical schemes optimised to the region (Giorgi, 2019; Doblas-Reyes et al., 2021). Despite this,

significant systematic errors remain, particularly for regions with complex climatology and with sparse in situ observations30

available to inform process understanding, such as over Antarctica (Carter et al., 2022). These systematic errors inhibit the

direct interpretation of climate model output, particularly important in impact assessments (Ehret et al., 2012; Liu et al., 2014;

Sippel et al., 2016).

There are many fundamental causes of systematic errors in climate models, including: the absence or imperfect represen-

tation of physical processes; errors in initialisation; influence of boundary conditions and finite resolution (Giorgi, 2019).35

The inherent complexity and computationally expensive nature of climate models makes direct reduction of systematic errors

through climate model development and tuning challenging (Hourdin et al., 2017). Additionally, end users are typically inter-

ested in only a narrow aspect of the output (e.g. possibly only one or two variables), which the climate model is unlikely to be

specifically tuned for. Post-processing, bias correction techniques allow improvements to the consistency, quality and value of

climate model output, specific to the end user’s focus of interest, with manageable computational cost and without requirement40

of in-depth knowledge behind the climate model itself (Ehret et al., 2012). Transfer functions are derived between the climate

model output and in situ observational data to correct components such as the mean (Das et al., 2022) or probability den-

sity functions (PDFs) of the data (Qian and Chang, 2021). This paper focuses on providing a novel framework for correcting

systematic errors in the PDF of the climate model output at each grid point.

One of the fundamental issues often attached to post-processing bias correction is the lack of justification based on known45

physical laws and process understanding (Ehret et al., 2012; Maraun, 2016). The spatiotemporal field and associated covari-

ance structure from the climate model, which is consistent with accepted physical laws, is typically not considered and so not

preserved. Resulting corrected fields may exhibit too smooth or sharply varying behaviour over the region and discontinuities

near observations. In addition, many approaches of bias correction fail to adequately handle uncertainties or estimate them

at all. Reliable uncertainty estimation is valuable for inclusion in impact studies to inform resulting decision making. This is50

especially true for regimes with tipping points, such as ice shelf collapse over Antarctica, where uncertainties in the clima-

tology can cause a regime shift (DeConto and Pollard, 2016). In this paper these issues are partially addressed through the

2



development of a fully Bayesian hierarchical approach to bias correction. Parameter uncertainties are propagated through the

hierarchical model and underlying spatial covariance structures are captured with latent Gaussian processes (GPs) for both in

situ observations and the climate model output.55

The approach presented builds on that of Lima et al. (2021), which models the in situ observational data as generated from a

GP and uses quantile mapping (Qian and Chang, 2021) to apply the correction to the climate model output. In Lima et al. (2021)

the spatial covariance structure of the climate model output is not considered and uncertainty is not propagated to the final bias

corrected time series. The novelty of the approach proposed here is that shared latent GPs are modelled between the climate

model output and the in situ observational data, which aims to incorporate information from the physically realistic spatial60

patterns of the climate model output in predictions of the unbiased field. Additionally, uncertainty is propagated through the

quantile mapping step, which results in uncertainty bands on the bias corrected output. The approach is developed with the focus

of applying bias correction to regions with sparse in situ observations, such as over Antarctica, where capturing uncertainty

in the correction is of key importance and where including data from all sources during inference is particularly valuable.

Performance under simulated scenarios with differing data density and underlying covariance length scales is evaluated in this65

paper and the potential added value assessed when compared with the approach in Lima et al. (2021).

:::::
While

::::::
simple

::::::::
simulated

::::::::
scenarios

::
are

:::::::
focused

::
on

::
in
::::
this

:::::
paper,

:::
the

::::::::::
applicability

::
of

::::
GPs

:::
for

::::::::
modelling

:::::::
complex

::::::
spatial

:::::::
patterns

::::
seen

::
in

:::::::::
real-world

::::::::::
climatology

::
is

::::::
already

:::::::::
illustrated

::
in

::::::::::::::::
Zhang et al. (2021)

:::
and

:::::::::::::::
Lima et al. (2021)

:
.
:::
The

:::::::::::::
non-parametric

::::::
nature

::
of

::::
GPs

:::::
makes

:::
the

::::::
model

:::::::
flexible

:::
and

::::
able

::
to

:::::::
capture

:::::::
complex

:::::::::
non-linear

::::::
spatial

:::::::::::
relationships.

::::::::::::
Additionally,

::::::
features

:::
of

::::
GPs

::::
such

::
as

:::::::::
uncertainty

:::::::::
estimation,

:::::::
sensible

::::::::::::
extrapolation,

:::::
kernel

::::::::::::
customisation

:::
and

:::
the

:::::
ability

::
to
:::::::
produce

:::::::
accurate

::::::::::
predictions

::::
with70

::::::
limited

::::
data

::
are

::::::::
desirable

:::
for

:::::::::
real-world

::::
case

::::::
studies.

:::::::
Finally,

::::::::::::
advancements

::
in

::::::::::
approximate

::::::::
inference

:::::::
methods

:::::
have

::::::::
improved

::
the

:::::::::
scalability

::
of

:::::
GPs,

:::::::::
improving

:::
the

::::::::::
applicability

::
to

:::::
large

::::::
climate

::::
data

::::
sets,

::
as

:::::::::::
demonstrated

::
in
::::::::::::::::::::::::

Wang and Chaib-draa (2017)
:
.

::
In

:::::::
addition

::
to

:::
the

::::
main

::::::
results

::::::::
presented

::
in
:::::
Sect.

::
4,

::
to

::::::
further

::::::::::
demonstrate

:::
the

:::::::::
flexibility

:::
and

::::::::::
applicability

:::
of

:::
the

:::::::::::
methodology

::::::::
presented

::
in

:::
this

:::::
paper

::
to

:::::::
potential

:::::::::
real-world

::::::::
scenarios,

:::::
some

::::::::
additional

::::::::
simulated

::::::::
scenarios

:::
are

::::::
created

::::
with

:::::
added

::::::::::
complexity

:::
and

::::::
results

::::::::
presented

:::
in

::::::::
appendix

:::
G.

:::::
These

:::::::::
additional

:::::::::
scenarios

:::
test

:::
the

::::::::::
robustness

::
of

:::
the

::::::
model

:::
to

::::::::
potential

:::::::::
real-world75

::::::::
situations

:::::
where

:::
not

:::
all

:::
the

::::::::::
assumptions

::
of

:::
the

::::::
model

:::
will

::::::::::
necessarily

:::::::::
completely

::::
hold.

:

Developing the bias correction approach in a flexible Bayesian framework means further adjustments/advancements that

are necessary for real-world scenarios can easily be incorporated while maintaining robust uncertainty propagation. For ex-

ample, extra predictors, such as elevation and latitude, can be included either in the mean function or covariance matrix of

the latent GPs. Alternatively, the model could be expanded to incorporate a temporal component of the bias accounting for80

variability across different seasons. This flexibility is important and increases the scope of the work, allowing the methodology

to be applied to a wide range of scenarios, including for example application to many different meteorological fields and also

combining observation data from different instruments rather than necessarily with respect to climate model output. Addition-

ally, the Bayesian framework allows incorporation of domain specific, expert knowledge of different data sources and their

uncertainties through the choice of prior distributions.85
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2 Methodology

In a probabilistic framework, the in situ observations and climate model output are treated as realisations from latent spatiotem-

poral stochastic processes, denoted as {Y (s, t) : s ∈ S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T } respectively. Stochastic processes

are sequences of random variables indexed by a set, which in this case are the spatial and temporal coordinates in the domain

(S,T ). The observed data is then considered a realisation of the joint distribution over a finite set of random variables across90

the domain. For the purpose of evaluating the time-independent component of the climate model bias, the random variables

are treated as independent and identically distributed across time. That is the collection of temporal data for a given spatial

location can be considered as multiple realisations from the same random variable. The random variables for each location

are distributed respectively as Y (s)∼ fY (φY (s)) and Z(s)∼ fY (φZ(s)), where φY (s) and φZ(s) represent the collection of

parameters that describe the PDF. For example, if the PDF is approximated as normal then φ(s) = [µ(s),σ(s)].The disparity95

between each of the PDF parameters for the in situ observations and climate model at each site then gives a measure of bias.

The goal is to estimate the parameters φY (s) and φZ(s) at the climate model grid points to quantify the bias and to apply

quantile mapping to bias correct the climate model output. Gaussian processes are used to model the underlying spatial co-

variance structure of the parameters, which is required to estimate φY (s) away from the location of the in situ observations.

Further discussion around the definition of bias in climate models is provided in appendix A.100

Consider a collection of nY in situ observational sites, where for each site i there exists mi measurements of some property.

In addition, consider gridded output from a climate model at nz locations, where at each location there existsmz measurements

of the same property. The data can then be represented through the following:

y = [ys1 , . . . ,ysny
] (1)

ysi = [ysi,1, . . . ,ysi,mi
] (2)105

z = [zs′1 , . . . ,zs′nz
] (3)

zs′i = [zs′i,1, . . . ,zs′i,mz
] (4)

Defining the collection of in situ observation sites as sy = [s1, . . . ,sny
] and the collection of climate model output locations

as sz = [s′1, . . . ,s
′
nz
], then the collection of PDF parameter values for each set of locations is written as:

φY (sy) = [φY (s1), . . . ,φY (sny
)] (5)110

φZ(sz) = [φZ(s
′
1), . . . ,φZ(s

′
nz
)] (6)

The PDF parameters are each modelled as being generated from latent stochastic processes {φY (s)} and {φZ(s)}. The

latent processes that generate the parameters for climate model are considered composed of two independent processes, one

that also generates the equivalent parameters for the in situ observations and another that generates some bias, such that

{φZ(s)}= {φY (s)}+ {φB(s)}. The family of GPs are chosen for the latent processes. A link function is used for the case115
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where the parameter space is not the same as the sample space for GPs. Considering the case of no link function, the following

can then be written:

φY (s)∼GP(·, ·|θφY
) (7)

φB(s)∼GP(·, ·|θφB
) (8)

φZ(s)∼GP(·, ·|θφY
,θφB

) (9)120

The collection of hyper-parameters for the generating processes are given by θφY
and θφB

respectively. The hyper-parameters

used in this paper consist of a mean constant, kernel variance and kernel length scale. Note the additive property of GPs allows

φZ(s) to also be represented by a GP, where the mean and covariances are computed from the sum of the relative values from

the independent processes. Further discussion around the properties of GPs is provided in appendix B. The hierarchical model

is illustrated through the plate diagram shown in Fig. 1. In addition, a specific example where the PDFs are approximated as125

normal is presented in appendix D.

θY

φY (s)

Y (s)

θB

φB(s)

φZ(s)

Z(s)
Site (si ∈ S)

Latent Spatial GPs Hyper-Parameters

Site Level PDFs Parameters and Bias

Data

Figure 1. Plate diagram illustrating the full hierarchical model. The random variables for the in-situ observations Y (s) and climate model

output Z(s) have PDFs with the collection of parameters φY (s) and φZ(s) respectively, where φZ(s) is modelled as the sum of φY (s) and

some independent bias φB(s). The parameters φY (s) and the corresponding bias φB(s) are each themselves modelled over the domain as

generated from Gaussian processes with hyper-parameters θY and θB .

Inference on the parameters of the hierarchical model given the data is applied in a Bayesian framework, where parameters

of the model are themselves treated as random variables with distributions. The distribution prior to conditioning on any data

is known as the prior distribution and allows the incorporation of a domain specific expert’s knowledge in the estimates of

the parameters. The updated distribution after conditioning on the observed data is known as the posterior and is approxi-130

mated using Markov chain Monte Carlo (MCMC) methods, which provide samples of the parameters from the distribution

P (φY (sy),φZ(sz),θφY
,θφB

|y,z). Estimates of the parameters φY and φZ at any set of new locations ŝ can then be made by

constructing the posterior predictive distribution, in particular for the purpose of bias correction estimates of φY at the climate

model locations can be made by sampling from the posterior predictive distribution of P (φY (sz)|y,z).
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After obtaining multiple realisations of φY (sz) and φZ(sz) quantile mapping is then used to bias correct the climate model135

time series at every grid cell location. Specifically, for each value of the time series from the climate model output at a given

point (zs′i,j), this involves finding the percentile of that value using the parameters φZ(s
′
i) and then mapping the value onto the

corresponding value of the equivalent percentile of the PDF estimated for the unbiased process, defined through the parameters

φY (s
′
i). The cumulative density function (CDF) returns the percentile of a given value and the inverse CDF returns the value

corresponding to a given percentile, which results in the following correction function ẑsi,j = F−1
Ysi

(FZsi
(zsi,j)), where F140

represents the CDF at a specific site. The CDF can be estimated as an integral over the parametric form assumed for the PDF.

The Bayesian hierarchical model presented provides a collection of realisations for φY (sz) and φZ(sz) from an underlying

latent distribution. Applying quantile mapping with each set of realisations then results in a collection of bias corrected time

series, with an expectation and uncertainty. The full framework for bias correction proposed in this paper is then illustrated in

Fig. 2. The formulation for the posterior and posterior predictive is given in appendix C.145

Apply MCMC inference on

hierarchical model to obtain

estimates of φY (sy) and φZ(sz),

as well as estimates of the

hyper-parameters θY and θB for

the generating spatial processes.

Sample from the posterior

predictive distribution

P (φY (sz)|y,z) to get estimates

of the unbiased PDF parameters at

the climate model grid cells.

Use the samples of φY (sz) and

φZ(sz) to apply quantile mapping

to the climate model time series at

each grid cell, resulting in a bias

corrected output with uncertainty

bands.

Figure 2. The full bias correction framework proposed in this paper broken down into the key steps.

3 Data Generation

The goal of the hierarchical model in Fig. 1 is primarily to estimate, with reliable uncertainties, the true unbiased values

of the PDF parameters at each location of the climate model output so bias correction can be applied. Simulated examples

are generated that highlight the advantage of two key features of the methodology over other approaches in the literature:

modelling shared spatial covariance between the in situ data and climate model output through the inclusion of a shared150

generating latent process (Sect. 3.1) and the Bayesian hierarchical framework with uncertainty propagation (Sect. 3.2). One

dimensional simulated examples are chosen for clarity in illustrating these features, although it is noted the implementation

works for higher dimensional domains as is useful in real-world scenarios.

3.1 Non-Hierarchical Examples: Data Generation

To illustrate the potential advantage of modelling shared generating spatial processes, non-hierarchical examples are generated155

for simplicity. Direct measurements are assumed for one parameter of the PDFs for the in situ observations φY (sy) and for
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the climate model output φZ(sz). The goal is to predict the unbiased parameter at the climate model locations φY (sz) using

information from both sets of input data φY (sy) and φZ(sz), which are related through φZ(s) = φY (s)+φB(s). Comparison

is made to the approach of inferring φY (sz) from the in situ data alone φY (sy), as in Lima et al. (2021). Relative performance

is evaluated for three alternative simulated scenarios that correspond to different possible real-world situations. The data is160

generated assuming the model in Fig. 1, where the GPs are taken with constant mean and an radial basis function (RBF) kernel

with constant kernel length scale and kernel variance. The specific values of the hyper-parameters used to generate the data

and the number of observations under the different scenarios is given in Table 1.

For each scenario, a sample of the parameters φY (s?) and φB(s
?) is taken from the distributions GPφY

and GPφB
at

regularly spaced, high-resolution intervals. These samples are referred to here as complete realisations and represent underlying165

fields for each parameter across the domain. The complete realisations of φY (s?) are sampled at lower-resolution, randomised

locations, with the addition of some noise, to provide direct simulated ‘in situ observations’ of the parameter φY (sy). In order

to simulate input data for the parameter φZ(sz) of the climate model output, the complete realisations of φY (s?) and φB(s?)

are sampled at regularly spaced intervals to provide φY (sz) and φB(sz), then the sum of these samples at each location is taken

to give φZ(sz). The input data for inference is then φY (sy) and φZ(sz) and can be considered as the training set, while the170

underlying realisations generated for φY (sz) are the test set used for validating the model performance.

Data is generated for three scenarios chosen to represent different potential real-world situations, illustrated in Fig. 3. The

first scenario (Fig. 3a) represents an example case where it is expected that there is ample data provided in the form of in

situ observations to capture the features of the underlying complete realisation of φY without significant added value provided

from inclusion of the climate model output during inference. The second scenario (Fig. 3b) is an adjustment where the in situ175

observations are relatively sparse and the underlying bias is relatively smooth. In this situation the climate model output should

provide significant added value in estimating φY across the domain since it is only afflicted by a comparatively simple bias that

is easy to estimate. The final scenario (Fig. 3c) also involves sparse in situ observational data but with a reduced smoothness

of the bias compared to the other scenarios. In this scenario the climate model output should provide added value in estimating

φY across the domain but this will be limited compared to scenario two due to the difficulty of disaggregating the components180

and estimating the comparatively more complex bias.

::
In

:::::::
practice,

:::::::::
real-world

::::::
datasets

:::
are

:::::
likely

::
to

::
be

:
a
:::::::::::
combination

::
of

::::
these

:::::::::
scenarios.

:::
For

:::::::
example,

:::
the

:::::::::::
methodology

::
in

:::::::::::::::
Lima et al. (2021)

:
is
:::::::
applied

::
to

:::
bias

:::::::::
correcting

::::::::::
precipitation

::::
over

:
a
:::::::
domain

:::::::
covering

:::::
South

:::::
Korea

::::
and

::
the

:::::::::::
surrounding

:::::
ocean.

::::
Over

:::
the

:::::
land,

::::
there

::
is

:
a
::::::::
sufficient

:::::
spatial

:::::::
density

::
of

:::::::::::
observational

::::::
rainfall

::::::
gauges

::
to

:::::::::
adequately

:::::::
capture

:::
the

:::::
spatial

:::::::
features

::
of

:::
the

::::::::
unbiased

:::::::::
underlying

::::
field

::::
from

:::
the

:::::::::::
observations

:::::
alone

::::::
(similar

::
to
::::::::
scenario

:::
A).

::::
Over

:::
the

::::::
ocean,

::::::
rainfall

::::::
gauges

::::
are

::::
very

:::::
sparse

::::
and

::
so

::
its

:::::::::
important185

::
to

:::::::
consider

:::
the

::::::
spatial

::::::
patterns

::::::::
observed

:::::
from

:::
the

::::::
climate

::::::
model

:::::
output

:::::::
(similar

::
to

:::::::
scenario

:::
B).

::::
Not

:::::::::
accounting

:::
for

:::
the

::::::
spatial

::::::
features

:::::
seen

::
in

:::
the

::::::
climate

::::::
model

::::::
output

::::
over

:::
the

:::::
ocean

::::::
results

::
in

::::::::::
undesirable

:::::::::::
extrapolation

::::
over

::::
this

::::::
region,

::
as

::::
seen

:::
in

:::
the

:::::
results

::::::::
presented

::
in
:::::::::::::::
Lima et al. (2021)

:
.
::::
This

::::::::::
undesirable

:::::::
property

::
is

:::::::::
something

:::
that

::
is

::::::::
addressed

:::
by

:::
the

:::::::::::
methodology

::::::::
proposed

::
in

:::
this

:::::
paper,

::
as
:::::::::
illustrated

::
by

::::::
results

:::
for

:::::::
scenario

::
B

:::::
given

::
in

::::
Sect.

::::
4.1.
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Dependent Variable Model Parameters Scenario 1 Scenario 2 Scenario 3

Unbiased PDF Parameter φY

Kernel Variance (vφY
) 1.0 1.0 1.0

Kernel Lengthscale (lφY
) 3.0 3.0 3.0

Mean Constant (mφY
) 1.0 1.0 1.0

Noise (σφY
) 0.1 0.1 0.1

# Observations 80.0 20.0 20.0

Bias PDF Parameter φB

Kernel Variance (vφB
) 1.0 1.0 1.0

Kernel Lengthscale (lφB
) 10.0 20.0 5.0

Mean Constant (mφB
) -1.0 -1.0 -1.0

Climate Model PDF Parameter φZ # Observations 100.0 80.0 80.0

Table 1. A table showing the hyper-parameters of the two latent Gaussian processes used to generate the complete underlying realisations

of φY (s?), φB(s?) and hence φZ(s?), as well as observations of φY (sy) and φZ(sz), on which inference is done for three scenarios. The

number of observations representing in-situ data and climate model output is also given.
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(c) Scenario 3

Unbiased Parameter Field Y(s )
Bias Parameter Field B(s )
Climate Model Parameter Field Z(s )

In Situ Parameter Observations Y(sy)
Climate Model Parameter Observations Z(sz)

Figure 3. A figure showing simulated observed data for the PDF parameters φY (sy) and φZ(sz), as well as the underlying complete

realisations for each parameter and the underlying bias (φY (s?), φZ(s?) and φB(s?)). Three scenarios are shown and correspond to data

generated from parameters in Table 1.
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3.2 Hierarchical Example: Data Generation190

Following on from the non-hierarchical examples, to illustrate the advantage of uncertainty propagation in the Bayesian frame-

work a hierarchical example is generated. In situ data and climate model output are simulated at each site as generated from

normal distributions, such that Y (s)∼N (µY (s),σY (s)) and Z(s)∼N (µY (s),σY (s)) as in appendix D. The following re-

lationship is assumed for the mean parameters µZ(s) = µY (s)+µB(s), where µB(s) is the bias in the mean for the climate

data. For the standard deviation, the parameters are first transformed using a logarithmic link function and then the relationship195

σ̃Z(s) = σ̃Y (s)+σ̃B(s) is assumed, where σ̃B(s) is the bias in the transformed parameter. The latent distributions that generate

µY (s), µB(s), σ̃Y (s) and σ̃B(s) across the domain are assumed as independent GPs with constant mean and an RBF kernel.

The hyper-parameters for these latent generating processes are set for a single scenario, as given in Table 2 along with the

number of simulated observation locations and the number of samples per location.

A sample of the parameters µY (s?), µB(s?), σ̃Y (s?) and σ̃B(s?) is taken from the distributions GPµY
, GPµB

, GP σ̃Y and200

GP σ̃B at regularly spaced, high resolution intervals. These samples are referred to as complete realisations and represent the

underlying fields for each PDF parameter across the domain. The complete realisations of µY (s?) and σ̃Y (s?) are sampled

at a selection of lower-resolution, randomised locations that represent simulated in situ observation sites to give µY (sy) and

σ̃Y (sy). Multiple observations of Y (si) are then generated at each in situ observation site by sampling from the corresponding

normal distributionN (µY (si), σ̃Y (si)). In the case of the simulated climate model output, samples are first taken from µY (s
?),205

µB(s
?), σ̃Y (s?) and σ̃B(s?) at regularly spaced intervals, then the sum of these samples at each location is taken to give µZ(sz)

and σ̃Z(sz). The climate model output is then generated at each of these locations from the corresponding normal distribution

Z(si)∼N (µZ(si), σ̃Z(si)).

In the generated example there are 40 locations corresponding to simulated in situ observation sites, where for each site 20

measurements are generated. There are 80 locations corresponding to simulated climate model output grid points and at each210

location 100 samples are generated. This reflects the typical scenario where the climate model output has greater spatiotemporal

coverage than in situ observations but is afflicted with bias. In Fig. 4 examples of the generated samples of Y (si) and Z(si) are

shown corresponding to the nearest sites for three locations. It is clear that, due to limited observations, there will be significant

uncertainty in estimates of the mean and standard deviation parameters at each site and it’s important this uncertainty is

propagated to inference of the hyper-parameters for the latent GPs and also to estimates of the unbiased PDF parameters at215

the climate model locations (µY (sz) and σ̃Y (sz)). The underlying, complete realisations of the parameters µY (s?), µZ(s?),

σY (s
?) and σZ(s?), as well as the bias µB(s?) and σB(s?), are shown in Fig. 5. In addition, the empirical mean value and

standard deviation of the generated data is illustrated at the simulated in situ observation and climate model sites. The goal of

the hierarchical model is then to predict the unbiased values for the parameters of the PDFs at the locations of the climate model

output (µY (sz) and σ̃Y (sz)), while propagating uncertainty. An example of how the uncertainty in predictions of µY (sz) and220

σ̃Y (sz) is propagated through quantile mapping is then provided.
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Dependent Variable Model Parameters Hierarchical Scenario

Unbiased PDF Mean µY

Kernel Variance (vµY ) 1.0

Kernel Lengthscale (lµY ) 3.0

Mean Constant (mµY ) 1.0

Unbiased PDF Transformed

Variance σ̃2
Y

Kernel Variance (vσ̃2
Y

) 1.0

Kernel Lengthscale (lσ̃2
Y

) 3.0

Mean Constant (mσ̃2
Y

) 1.0

Bias PDF Mean µB

Kernel Variance (vµB ) 1.0

Kernel Lengthscale (lµB ) 10.0

Mean Constant (mµB ) -1.0

Bias PDF Transformed Variance

σ̃2
B

Kernel Variance (vσ̃2
B

) 1.0

Kernel Lengthscale (lσ̃2
B

) 10.0

Mean Constant (mσ̃2
B

) -1.0

Unbiased Output Y
# Observation Sites 40.0

# Observations per Site 20.0

Climate Model Output Z
# Observation Sites 80.0

# Observations per Site 100.0

Table 2. A table showing the hyper-parameters used to generate the complete underlying realisations and the measurement data on which

inference is done for the hierarchical scenario. The number of sites where data is generated along with the number of samples for each site

is also given.
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Figure 4. Histograms for the climate model output at three locations and the corresponding data from the nearest in situ observation site. The

locations are a) s=11.4, b) s=46.8 and c) s=79.7. The latent normal distribution the data was generated from is illustrated as a dotted line.
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Figure 5. Simulated complete realisations for the parameters µY (s?), µB(s?), µZ(s?), σ̃Y (s?), σ̃B(s?) and σ̃Z(s?) as well as the empirical

values at the observation locations for the in situ and climate model data.

4 Results

Inference is done in a Bayesian framework using MCMC and the No-U-Turn Sampler (NUTS) algorithm (Hoffman and Gel-

man, 2014) implemented in Numpyro (Phan et al., 2019). For the MCMC sampling 1000 iterations were used for warm-up and

then 2000 samples taken, which was found to be adequate for convergence. The parameters/hyper-parameters are treated as225

random variables with associated probability distributions. A prior distribution is set for each hyper-parameter and represents

the belief on the distribution before observing any data, which typically incorporates knowledge from application specific ex-

perts. In the examples presented, relatively non-informative priors are chosen since the data is simulated and represents generic

examples. The posterior distribution of each parameter/hyper-parameter is the updated distribution after observing and condi-
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tioning on the data. Estimates of the PDF parameters φY (ŝ), φZ(ŝ) and the corresponding bias φB(ŝ) at new locations away230

from the observation sites, are then referred to as samples from the posterior predictive.

4.1 Non-Hierarchical Examples: Results

The shared latent process model presented in this paper is fit to the three non-hierarchical example scenarios, as discussed

in Sect. 3.1. Input data for φY (sy) and φZ(sz) are provided and the hyper-parameters for the latent GPs that generate the

unbiased and biased components inferred. Comparisons in estimates of the hyper-parameters for the unbiased process (mφY
,235

vφY
and lφY

) are made to the approach of only fitting to the in situ data, referred to here as the single process approach since the

latent process generating the bias is not modelled. The difference between the shared and single process approaches is detailed

further in appendix E. The expectation, standard deviation and 95% credible intervals for the prior and posterior distributions of

the hyper-parameters under the three different scenarios is given in Table 3. Illustrations of the prior and posterior distributions

for each hyper-parameter are plot in Fig. F1 of the appendix.240

Under all scenarios the 95% credible interval of the posterior for every hyper-parameter bounds the value specified in

generating the data. The expectation for the posterior distribution of the unbiased hyper-parameters is in general closer to the

specified value in the shared process model compared with the single process model and the range of the credible interval

is smaller. In scenario one and three the differences between the shared and single process models posteriors are relatively

insignificant for the mean constant (mφY
) and kernel variance (vφY

), although the shared process model shows a noticeable245

reduction in the uncertainty of the kernel length scale (lφY
). In scenario two the difference is more significant and clear

improvement is shown for the shared process model, both in the expectation and uncertainty of hyper-parameter estimates.

After applying MCMC inference on the parameters/hyper-parameters that generate the data, posterior predictive estimates

are made for the unbiased PDF parameter values at the simulated locations of the climate model (φY (sz)). These estimates

are presented in Fig. 6 for each scenario and for both the shared and single process models. Additionally, estimates of the250

underlying bias φB(s) are shown for the shared process model, since the bias is explicitly modelled. The relative performance

of the shared and single process models is quantified by computingR2 scores between the predictions of φY (sz) and the actual

values used in generating the data (although not used in training), with results presented in Table 4. In Fig. 6 it can be seen

that the predictions of φY (sz) in the shared process case (Fig. 6d, 6e and 6f) are closer to the true underlying field and with

smaller but still realistic uncertainty compared to the single process model. In scenario one, the difference between the posterior255

predictive distributions for φY (sz) between the two approaches is not substantial, with both models performing adequately,

having R2 scores of 0.99 and 0.97 respectively. In scenario two, the difference between estimates of φY (sz) between the

models is significant with R2 scores of 0.99 and 0.68 for the shared and single process models respectively. Finally, in scenario

three the difference is again significant with R2 scores of 0.74 and 0.52 respectively, although less significant compared with

scenario two.260
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(a) Scenario 1

Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

Dependent Variable Model Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased PDF

Parameter φY

Kernel Variance vφY
1.0 0.67 0.67 0.02 2.46 1.25 0.30 0.73 1.86 1.04 0.31 0.57 1.69

Kernel Lengthscale lφY
3.0 15.00 8.66 3.09 36.12 2.96 0.06 2.85 3.08 2.73 0.20 2.32 3.10

Mean Constant mφY
1.0 0.00 2.00 -3.92 3.92 1.14 0.28 0.61 1.68 1.23 0.26 0.74 1.76

Noise σφY
0.1 2.00 2.00 0.05 7.38 0.11 0.01 0.09 0.12 N/A N/A N/A N/A

Bias PDF

Parameter φB

Kernel Variance vφB
1.0 15.00 8.66 3.09 36.12 2.10 1.30 0.48 4.72 N/A N/A N/A N/A

Kernel Lengthscale lφB
10.0 0.00 2.00 -3.92 3.92 11.45 1.28 9.07 14.00 N/A N/A N/A N/A

Mean Constant mφB
-1.0 0.25 0.14 0.01 0.49 -1.00 0.64 -2.31 0.24 N/A N/A N/A N/A

(b) Scenario 2

Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

Dependent Variable Model Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased PDF

Parameter φY

Kernel Variance vφY
1.0 0.67 0.67 0.02 2.46 1.13 0.28 0.66 1.66 1.49 0.53 0.65 2.55

Kernel Lengthscale lφY
3.0 15.00 8.66 3.09 36.12 2.97 0.06 2.86 3.09 3.70 0.44 2.83 4.56

Mean Constant mφY
1.0 0.00 2.00 -3.92 3.92 0.70 0.27 0.15 1.22 0.69 0.40 -0.14 1.44

Noise σφY
0.1 2.00 2.00 0.05 7.38 0.12 0.03 0.08 0.18 N/A N/A N/A N/A

Bias PDF

Parameter φB

Kernel Variance vφB
1.0 15.00 8.66 3.09 36.12 1.24 0.99 0.16 3.23 N/A N/A N/A N/A

Kernel Lengthscale lφB
20.0 0.00 2.00 -3.92 3.92 23.69 5.79 12.29 34.90 N/A N/A N/A N/A

Mean Constant mφB
-1.0 0.25 0.14 0.01 0.49 -0.66 0.64 -1.87 0.62 N/A N/A N/A N/A

(c) Scenario 3

Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

Dependent Variable Model Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased PDF

Parameter φY

Kernel Variance vφY
1.0 0.67 0.67 0.02 2.46 1.18 0.33 0.62 1.83 0.85 0.33 0.30 1.50

Kernel Lengthscale lφY
3.0 15.00 8.66 3.09 36.12 3.00 0.07 2.87 3.14 3.08 0.49 2.03 3.96

Mean Constant mφY
1.0 0.00 2.00 -3.92 3.92 0.95 0.30 0.35 1.53 0.90 0.29 0.33 1.48

Noise σφY
0.1 2.00 2.00 0.05 7.38 0.16 0.06 0.03 0.27 N/A N/A N/A N/A

Bias PDF

Parameter φB

Kernel Variance vφB
1.0 15.00 8.66 3.09 36.12 1.50 1.02 0.28 3.56 N/A N/A N/A N/A

Kernel Lengthscale lφB
5.0 0.00 2.00 -3.92 3.92 6.34 1.71 3.23 9.20 N/A N/A N/A N/A

Mean Constant mφB
-1.0 0.25 0.14 0.01 0.49 -1.17 0.50 -2.11 -0.10 N/A N/A N/A N/A

Table 3. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation

(Std. Dev.) and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The posterior distributions for the shared and

single process models are given. The specified value for each parameter used to generate the data is also shown.

14



2

1

0

1

2

3
Sc

en
ar

io
 1

 
 

 P
ar

am
et

er
 V

al
ue

(a)
Single Process Model

(d)
Shared Process Model

3

2

1

0

1

2

3

Sc
en

ar
io

 2
 

 
 P

ar
am

et
er

 V
al

ue

(b) (e)

0 20 40 60 80 100
Location (s)

4
3
2
1
0
1
2
3

Sc
en

ar
io

 3
 

 
 P

ar
am

et
er

 V
al

ue

(c)

0 20 40 60 80 100
Location (s)

(f)

Unbiased Parameter Post.Pred. Exp. E[ Y(sz)]
Unbiased Parameter Post.Pred. Std.Dev. [ Y(sz)]
Bias Parameter Post.Pred. Exp. E[ B(sz)]
Bias Parameter Post.Pred. Std.Dev. [ B(sz)]

Unbiased Parameter Field Y(s )
Bias Parameter Field B(s )
Climate Model Parameter Field Z(s )
In Situ Parameter Observations Y(sy)
Climate Model Parameter Observations Z(sz)

Figure 6. Expectation and 1σ uncertainty of the posterior predictive distributions of the parameter φY (sz) and the corresponding bias

φB(sz) for three scenarios. The underlying functions (complete realisations) as well as the simulated input data are also shown.
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R2 Scores: Posterior Predictive Estimates of φY (sz)

Shared Process Model Single Process Model

Scenario Exp. Std.Dev. Exp. Std.Dev.

1 0.99 0.00 0.97 0.01

2 0.99 0.01 0.68 0.07

3 0.74 0.12 0.52 0.10

Table 4. A table showing the expectation and standard deviation of R2 scores for the posterior predictive estimates of the unbiased PDF

parameter at the climate model output locations φY (sz) for the shared and single process models for each scenario.

4.2 Hierarchical Example

The hierarchical model presented in this paper is fit to the hierarchical example from Sect. 3.2. The expectation, standard

deviation and 95% credible intervals for the prior and posterior distributions of each hyper-parameter of the latent generating

processes are given in Table 5. The 95% credible interval of the posterior for every hyper-parameter bounds the value specified

in generating the data. As expected the posterior distribution for each hyper-parameter is concentrated closer to the value265

specified when generating the data than the relatively non-informative prior distributions. The prior and posterior distributions

for each hyper-parameter are plot in Fig. F2 of the appendix.

Specified Prior Distribution Posterior Dist.

PDF Parameter Model Hyper-Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased Mean

µY

Kernel Variance vµY 1.0 0.67 0.67 0.02 2.46 1.00 0.32 0.49 1.63

Kernel Lengthscale lµY 3.0 15.00 8.66 3.09 36.12 3.00 0.22 2.56 3.43

Mean Constant mµY 1.0 0.00 2.00 -3.92 3.92 0.73 0.28 0.17 1.26

Unbiased

Transformed

Variance σ̃Y

Kernel Variance vσ̃2
Y

1.0 0.67 0.67 0.02 2.46 0.70 0.25 0.30 1.17

Kernel Lengthscale lσ̃2
Y

3.0 15.00 8.66 3.09 36.12 2.94 0.24 2.47 3.40

Mean Constant mσ̃2
Y

1.0 0.00 2.00 -3.92 3.92 1.12 0.24 0.66 1.61

Bias Mean µB

Kernel Variance vµB 1.0 0.67 0.67 0.02 2.46 1.38 0.63 0.42 2.58

Kernel Lengthscale lµB 10.0 15.00 8.66 3.09 36.12 12.02 3.59 5.08 18.50

Mean Constant mµB -1.0 0.00 2.00 -3.92 3.92 -0.78 0.56 -1.89 0.29

Bias

Transformed

Variance σ̃B

Kernel Variance vσ̃2
B

1.0 0.67 0.67 0.02 2.46 0.92 0.48 0.24 1.86

Kernel Lengthscale lσ̃2
B

10.0 15.00 8.66 3.09 36.12 8.97 1.96 5.07 12.58

Mean Constant mσ̃2
B

-1.0 0.00 2.00 -3.92 3.92 -0.86 0.42 -1.73 -0.06

Table 5. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation

(Std. Dev.) and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The specified value for each hyper-parameter used

to generate the data is also shown.
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After fitting the model, posterior predictive estimates are made of the unbiased mean and standard deviation parameters at

the simulated locations of the climate model (µY (sz) and σY (sz)). Additionally, estimates of the bias in the parameters are

made (µB(sz) and σB(sz)). These estimates along with the true underlying values are shown in Fig. 7. The empirical mean270

and standard deviation of the input data is also given at the locations where they are sampled. The estimates visually appear

to perform well at capturing the spatial features of the underlying fields and at estimating a one sigma uncertainty range. For

example, in the range of s ∈ [28,38], where the main data source is the biased climate model output, the prediction accurately

captures the spatial features of the unbiased parameters (µY (s) and σY (s)) with an uncertainty that bounds the true underlying

value over most of the region. Additionally, uncertainty in the unbiased parameters at the in situ observation sites (µY (sy) and275

σY (sy)) due to limited samples is clearly reflected in the estimates.

3

2

1

0

1

2

3

4

M
ea

n 
Pa

ra
m

et
er

(a)

0 20 40 60 80 100Location (s)

1

2

3

4

St
d.

 D
ev

. P
ar

am
et

er

(b)

Unbiased Parameter Post.Pred. Exp. E[ Y(sz)]
Unbiased Parameter Post.Pred. Std.Dev. [ Y(sz)]
Bias Parameter Post.Pred. Exp. E[ B(sz)]
Bias Parameter Post.Pred. Std.Dev. [ B(sz)]

Unbiased Parameters Complete Realisations: Y(s ), Y(s ) 
Bias Parameters Complete Realisations: B(s ), B(s )
Climate Model Parameters Complete Realisations: Z(s ), Z(s )
Empirical Values from In Situ Observations: E[ysy], [ysy]
Empirical Values from Climate Model Output: E[zsz], [zsz]

Figure 7. A figure showing the expectation and one sigma uncertainty of the posterior predictive distribution across the domain for the

parameters µY (sz), µB(sz), σY (sz) and σB(sz) as well as the true underlying functions.
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Quantile mapping is applied to the climate model output for a single site (zsi ) and the bias corrected time series (ẑsi ) is

shown in Fig. 8. The site chosen is at s= 11.4 and is the same as in Fig. 4a. A generic time series for the climate model output

and nearest in situ observations is generated from the correct mean and standard deviations of the samples. Quantile mapping

is performed for each posterior predictive realisation of µY (si), µZ(si), σY (si) and σZ(si). This results in multiple realisations280

of bias corrected time series with an expectation and uncertainty.
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Figure 8. Simulated time series for the climate model output at location s= 11.4 and for the nearest in situ observation site. Realisations of

the climate model bias corrected time series are shown along with the expectation and three sigma uncertainty range.

5 Discussion

The bias correction framework proposed in this paper models the parameters of the PDFs for the in situ observations and

climate model output across the domain using a Bayesian hierarchical model. This allows estimates to be made of the unbiased

PDF parameters at the climate model locations and quantile mapping can then be applied to bias correct the climate model time285

series. The hierarchical model uses GPs to model the spatial covariance structure of the PDF parameters and assumes that each

parameter of the climate model output is generated from two independent GPs: One that generates an unbiased component and

another that generates a bias. The GP that generates the unbiased component is also modelled as generating the equivalent PDF

parameters for the in situ data. This approach reflects the belief that the climate model provides skillful estimates of the PDF
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parameters across the domain and that the spatial covariance structure, generated from equations based on established physical290

laws, has spatial features similar to the true unbiased PDF parameter values. The climate model output, while afflicted with

bias, provides comprehensive spatiotemporal coverage and useful information in the inference of the unbiased PDF parameters

across the domain. This is assuming the bias signal can be adequately deconstructed from the climate model output with the

use of in situ observations. In Sect. 4.1 of the results, the added value of modelling shared latent GPs between the in situ

observations and climate model output is demonstrated. This is compared with the approach of modelling a latent GP for the in295

situ observations alone and inferring the unbiased PDF parameters without incorporating information from the climate model

output, as in Lima et al. (2021) and here referred to as the single process approach.

The added value is assessed for three scenarios with differing density of observations and spatial complexity of the bias

signal. The methods used to assess the added value include: comparisons of summary statistics for the posterior distributions

of the GP hyper-parameters; visual comparisons of the expectation and standard deviation for posterior predictive estimates300

of the unbiased PDF parameters across the domain; and comparison of R2 scores for the unbiased PDF parameter at the

locations of the climate model output. It is shown that across all these measures, the most added value is provided where the

in situ observations are relatively sparse compared with the climate model output and the underlying bias is relatively spatially

smooth compared with the the unbiased signal, as in scenario two. In this scenario, despite sparse in situ observations, since

the bias signal varies smoothly across the domain the climate model output can be accurately and precisely disaggregated into305

its unbiased and biased components. This leads to improved estimates of the unbiased PDF parameters at the climate model

locations when considering shared GPs compared with the single process approach that uses in situ observations alone, see

Fig. 6.

As the density of in situ observations is increased to similar levels as the climate model output itself, then the value added

from the climate model output in inference of the unbiased parameters is reduced, illustrated through results for scenario310

one. The number of in situ observations is sufficient to adequately capture the spatial features of the underlying process

(Fig. 6a) as well as the latent spatial covariance structure, encoded through the hyper-parameter estimates of the latent GP

(Table 3). Additionally, as the complexity of the bias signal is increased, through for example reducing the length scale of the

latent generating process, as in scenario three, then again added value is reduced. The relatively more complex bias structure

compared with scenario two makes it more difficult to disaggregate the climate model output into its biased and unbiased315

components. Despite this, while added value is reduced for scenarios one and three relative to scenario two, incorporating the

climate model output in inference is still shown to improve overall performance. Modelling the generating process for the bias

explicitly also provides informative information that is potentially useful for future climate model development.

In addition to modelling shared latent processes, another important feature of the methodology presented in this paper is

the Bayesian framework. In this framework the parameters/hyper-parameters of the hierarchical model are treated as random320

variables with associated probability distributions. Uncertainty is inherently propagated through the framework, making the

code implementation flexible to further development and so applicable to a wide range of real-world scenarios. Additionally,

a Bayesian framework allows expert knowledge to be incorporated in the inference through the choice of prior distributions,

which can be especially important where the data is sparse. In Sect. 4.2, results for a simulated hierarchical example illustrate
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uncertainty propagation between the PDF parameter values and the hyper-parameters of the latent generating processes. Un-325

certainty present in the different levels of the hierarchical model are incorporated in the final posterior predictive estimates of

the unbiased PDF parameters at the climate model locations, see Fig. 7. Multiple realisations from the posterior predictive can

then be used in quantile mapping to produce multiple realisations of the final bias corrected time series, with an expectation

and uncertainty range, illustrated in Fig. 8. Reliable uncertainty bands on the final bias corrected time series is important for

impact assessments and resulting decision making. Additionally, having multiple realisations for the final bias corrected time330

series allows further propagation of uncertainty in process models driven by climate model output, such as land surface models

(Liu et al., 2014).

The simulated examples presented provide an initial proof of concept, although future studies validating the methodology

against real-world applications are important for understanding the remaining limitations and areas for further development.

The current primary limitation is expected to be that the underlying spatial covariance structures are assumed stationary. That335

is that the covariance length scale is assumed constant across the domain, whereas for real-world applications over large

and complex topographic domains the length scale will be expected to change depending on the specific topography of the

region. Further development of the methodology to incorporate non-stationary kernels would therefore be valuable, although

is beyond the scope of this paper. Another important limitation to consider is the assumption that the bias is time independent.

In situations where the bias varies gradually through time and uniformly across the domain, the methodology can be further340

developed such that the mean function of the GPs is modelled with a time dependency. If the bias varies in time non-uniformly

across the domain, spatiotemporal GPs will need to be considered, which is again beyond the scope of this paper. Secondary

limitations, include the assumption that the unbiased and biased components of the PDF parameter values are independent.

In situations where there is a dependence between these components, the methodology presented is still expected to perform

adequately, although information is lost by not modelling the dependency explicitly. Additionally, many real-world applications345

will necessitate specific model adjustments, such as incorporating a mean function dependent on factors like elevation and

latitude. Finally, the computational complexity of the model is an important remaining consideration, with inference time

of GPs scaling as the cube of the number of data points. Incorporating techniques from the literature such as using sparse

variational GPs (SVGP) (Hensman et al., 2015), nearest-neighbor GPs (NNGP) (Datta et al., 2016) or upscaling the climate

model output, while outside the scope of this paper, will aid computational performance under demanding real-world scenarios350

and will facilitate further model development.

6 Conclusion

Current approaches for bias prediction and correction do not aim to preserve the spatial covariance structure of the climate

model output and typically either neglect uncertainty or inadequately model uncertainty propagation (Ehret et al., 2012).

This paper presents a novel fully Bayesian hierarchical framework for bias correction with uncertainty propagation and latent355

GP distributions used to capture and preserve underlying covariance structures. In this framework bias is considered in the

parameters of the time-independent PDF at each site. Estimates of the unbiased PDF parameters are made at the climate model
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locations and then quantile mapping is applied to produce the final bias corrected time series. The novelty of the approach lies

in the fully Bayesian implementation, assuming shared latent GPs between the in situ data and climate model output and in

propagating uncertainty through the quantile mapping step.360

Simple simulated examples are chosen to illustrate key features of the framework. In Sect. 4.1, results are displayed for

non-hierarchical examples where the focus is on illustrating the advantage of modelling spatial covariance in both the in

situ data and climate model output, assuming shared latent GPs. This is shown to be particularly important in the case of

sparse in situ observations and bias that varies smoothly across the domain, where the climate model output itself provides

significant added value in predictions of the unbiased PDF parameters. In Sect. 4.2, results are presented for a hierarchical365

case and focus is on illustrating how the model propagates uncertainty between the different levels and to the final unbiased

PDF parameter predictions at the climate model locations. In addition, a simulated example of propagating this uncertainty

through quantile mapping is then provided to demonstrate how this results in a bias corrected time series with uncertainty

bands, which is desirable for use in impact studies and for informing decision making. Adequately modelling uncertainty in

the bias corrected time series is expected to be especially important over areas where the climatology is hard to model and in370

situ observations are sparse, such as over Antarctica (Carter et al., 2022). The framework presented provides a step towards

adequately capturing uncertainty and incorporating underlying spatial covariance structures from the climate model in bias

correction. While initial results are promising, further studies applied to real-world datasets are important to further validate

the approach and explore remaining limitations. The Bayesian implementation provides a flexible modelling framework, where

adjustments to the methodology needed for specific applications can be made while inherently propagating uncertainty.375

Code and data availability. The code used to generate the simulated data, fit the model, make predictions and create the figures/tables is

available at: https://doi.org/10.5281/zenodo.10053653 (Carter, a).

The data used to create the plots is available at: https://doi.org/10.5281/zenodo.10053531 (Carter, b).
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Appendix A: Bias in Climate Models

Bias in climate models is defined in a number of similar ways across different papers. In Maraun (2016) it is defined as the380

systematic difference between any statistic derived from the climate model and the real-world true value of that statistic. While

in Haerter et al. (2011), bias is defined as the time-independent part of the error between the climate model simulated values

and the observed values. In general, across the community involved with climate change impact studies, bias is used to refer

to any deviation of interest between the model output and that of the true value (Ehret et al., 2012). Deviations of interest are

typically with respect to the statistical properties of the data, for example the mean and variance as well as spatial properties385

such as the covariance length scale. The methodology developed in this paper treats bias with respect to deviations in the PDFs

of the climate model output and observations at each site. Assuming a parametric form for the PDF, this translates to evaluating

bias in the parameters of the site-level PDFs, as discussed in Sect. A1. In order to model bias in real-world phenomena while

considering the intrinsic spatial structure, the parameters are allowed to vary spatially using stochastic processes, see Sect. A2.

After evaluating bias across the domain, the methodology in this paper can be combined with current approaches of correcting390

bias in climate models, such as quantile mapping, discussed further in Sect. A3.

A1 Bias in Random Variables

Consider a specific in situ observation site (e.g. an automatic weather station) with measurements of some variable y =

[y1,y2, . . . ,yn], such as midday temperature, and also comprehensive predictions from a climate model at the same location

z = [z1,z2, . . . ,zk]. In this scenario, bias can be defined in terms of discrepancy between the PDFs of the in situ observations and395

the climate model predictions. In particular, assuming a parametric density function for both random variables, bias is translated

to the discrepancy between the parameters of the PDFs. For example, assuming the observation measurements are independent

and identically distributed (i.i.d.) with normal distribution Y ∼N (µY ,σY ) and the equivalent for the climate model outcomes

Z ∼N (µZ ,σZ), then bias can be quantified by some discrepancy function of the mean parameters (µZ ,µY ) and the standard

deviations (σZ ,σY ). This function can be defined in different ways, such as the difference b(µZ ,µY ) = µZ −µY or the ratio400

b(σZ ,σY ) = σZ/σY .

A2 Bias with Spatially Varying Parameters

Real-world applications, such as impact studies, typically require bias to be evaluated over a spatial region rather than just at a

point. Consider a collection of n observational sites [ys1 , . . . ,ysn ], where for each site i there exists m daily measurements of

some property such as midday temperature ysi = [ysi,1, . . . ,ysi,m]. In addition, consider gridded output from a climate model405

of the same property at different locations s∗. In this scenario, instead of defining bias in terms of the discrepancy in the PDFs

at a single point, bias can be defined with respect to the two latent spatial processes underlying the observed data {Y (s)} and

the climate model output {Z(s)}. This allows bias to be estimated across the domain.

As an example, assume that observations and the climate model output come from the spatial stochastic processes {Y (s)∼
N (µY (s),σY (s))} and {Z(s)∼N (µZ(s),σZ(s))} respectively, where the distribution of data at each location s is normal with410
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spatially varying parameters [µ(s),σ(s)]. The spatial structures of the latent processes are inherited from the spatial structures

in the parameters, which are themselves modelled throughout the domain as spatial stochastic processes {µY (s)}, {σY (s)},
{µZ(s)} and {σZ(s)}. In this paper, GPs are used to model the spatial structures, which explicitly capture relationships for

the expectation and covariance between points across the domain, see Sect. B of the appendix. Bias is then defined by some

discrepancy function of these spatially varying parameters, such as b(µZ(s),µY (s)) = µZ(s)−µY (s).415

A3 Bias Correction

Bias correction involves using observational data to predict and then reduce bias in the climate model output, with techniques

varying in focus and complexity. For example, the delta change method aims to simply apply an adjustment to the mean of the

variable under study at each location (Das et al., 2022), while quantile mapping aims to correct the whole PDF of the climate

model output (Qian and Chang, 2021). In (Beyer et al., 2020) generalised additive models (GAMs) are used to approximate420

transfer functions between the climate data and the observed values. The relative performance between methods is assessed in

various studies (Teutschbein and Seibert, 2012; Räty et al., 2014; Beyer et al., 2020; Mendez et al., 2020). Typically approaches

fail to adequately capture uncertainty and to explicitly model spatial dependencies between locations across the domain. The

approach proposed in this paper combines the use of a Bayesian hierarchical model for predicting bias across the region with

the established approach of quantile mapping for applying the final correction to the climate model output. Uncertainty is425

propagated through the framework and underlying spatial structures are explicitly modelled through latent spatial stochastic

processes.
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Appendix B: Capturing Spatial Structure with Gaussian Processes

A collection of random variables φ= [φs1 ,φs2 , ...,φsk ] indexed according to location in a domain can be modelled through a

spatial stochastic process, such as {φ(s) : s ∈ S} (shorthand {φ(s)}), where S represents the region under study. The family430

of Gaussian processes (Rasmussen, 2004) have the property that any finite subset of random variables across the domain are

modelled as multivariate normal (MVN) distributed. Consider a collection of k random variables, then the joint distribution

between these variables is MVN with φ∼Nk(µ,Σ) where φ is some k dimensional random vector, µ is some k dimensional

mean vector and Σ is some k · k dimensional covariance matrix. Parameterising the mean and covariance of the MVN distri-

bution then gives the GP, which provides a distribution over continuous functions φ(s)∼ GP(m(s),k(s,s′)). The collection435

of parameters for the mean and covariance functions are often referred to as hyper-parameters.

The mean function m(s) of a GP gives the expectation of the parameter at the location index, allowing global relationships

for the variable given predictors. In this paper the mean function is considered as a constant across the domain for simplicity,

such that m(s) =m. In real-world applications a more complex relationship is likely to be useful, for example Eq. (B1)

assumes a second order polynomial in two predictors, where the predictors x1(s) and x2(s) could be elevation and latitude.440

m(s) = b0 + b1 ·x1(s)+ b2 ·x2(s)+ b3 ·x1(s) ·x2(s)+ b4 ·x1(s)
2 + b5 ·x2(s)

2 = x(s)Tβ (B1)

The kernel (covariance) function is typically some function of distance between points d(s,s′), parameterised by a length

scale l and kernel variance v, for example Eq. (B2) gives the well known radial basis function (RBF) for the kernel. The

function of distance could be Euclidean or geodesic and arbitrarily complex, including factors such as wind paths, etc. The 2D

Euclidean case is given in Eq. (B3), where predictors x3(s) and x4(s) could for example be latitude and longitude, which for445

relatively small distances near the equator are approximately Euclidean. In Fig. B1, an example of how the covariance decays

with distance is given for the RBF kernel (a) and realisations of a conditioned GP with the equivalent kernel are illustrated (b).

kRBF (s,s
′) = v · exp

(
−d(s,s

′)2

2l2

)
(B2)

d(s,s′) =
√
(x3(s′)−x3(s))2 +(x4(s′)−x4(s))2 (B3)

The kernel is often assumed stationary for simplicity, as in Lima et al. (2021), meaning that the relationship between co-450

variance and distance is consistent across the domain of study. This assumption is used in the simulated results presented in

this paper. The validity of the stationarity assumption should be assessed on an application basis, with factors such as complex

topography contributing to non-stationarity.

Gaussian processes have the property that the sum of independent GPs is also a GP. This property is utilised in this paper as

the additive relationship φZ = φY +φB is assumed, where φY and the bias φB are taken as independent and generated from455

latent Gaussian processes. Note that in the case of different supports between the parameter space and that of the sample space

of a Gaussian process, then a link function is included and the relationship φ̃Z = φ̃Y + φ̃B assumed, where the parameters
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Figure B1. A) Values of the RBF function with a kernel variance equal to 1 and length scale equal to 20. B) Realisations of the GP with the

equivalent kernel as in A and conditioned on 3 data points. The expectation and uncertainty of the distribution are shown.

φ̃Y and φ̃B are modelled as independent and generated from GPs. Assuming an additive relationship results in an easy to

define distribution for φZ (or φ̃Z), which is a GP where the mean and covariances are simply the sum of the values from

the independent GPs (Eq. B4 and B5). The additive relationship captures the belief that the climate model output has some460

shared latent spatial covariance structure with the in situ observations but is inflicted by an independent bias. In order to make

predictions from the unbiased process across the domain φY (ŝ) conditioning is then performed on both the observed in situ

data φY (sy) and the observed climate model output φZ(sz).

mφZ
=mφY

+mφB
(B4)

kφZ
(s,s′) = kφY

(s,s′)+ kφB
(s,s′) (B5)465
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Appendix C: Posterior and Posterior Predictives Formulation

C1 Full Hierarchical Model

The in situ observations and climate model output are treated as realisations from the stochastic processes {Y (s)} and {Z(s)}
respectively, where the random variables for a given site are distributed as Y (s)∼ f(φY (s)) and Z(s)∼ f(φZ(s)). The

symbols φY (s) and φZ(s) represent the collection of parameters that describe the PDF at the site. The collection of in situ470

observation sites is given as sy = [s1, . . . ,sny
] and the collection of climate model output locations as sz = [s′1, . . . ,s

′
nz
],

then the collection of PDF parameter values for each set of locations is written as φY (sy) = [φY (s1), . . . ,φY (sny
)] and

φZ(sz) = [φZ(s
′
1), . . . ,φZ(s

′
nz
)]. Each parameter of the PDFs are modelled as generated from latent Gaussian processes, one

that generates the unbiased component and one that generates the bias, such that φY (s)∼GP(·, ·|θφY
), φB(s)∼GP(·, ·|θφB

)

and φZ(s)∼GP(·, ·|θφY
,θφB

). The symbols θφY
and θφB

represent the collection of hyper-parameters for the Gaussian pro-475

cesses. The posterior distribution for the model can then be written as:

P (φY (sy),φZ(sz),θφY
,θφB

|y,z) =
P (y,z|φY (sy),φZ(sz),θφY

,θφB
) ·P (φY (sy),φZ(sz),θφY

,θφB
)

P (y,z)
(C1)

The first part of the numerator for the fraction can be broken down into:

P (y,z|φY (sy),φZ(sz),θφY
,θφB

) = P (y|φY (sy)) ·P (z|φZ(sz)) (C2)

The second part of the numerator for the fraction can be broken down into:480

P (φY (sy),φZ(sz),θφY
,θφB

) = P (φY (sy)|φZ(sz),θφY
,θφB

) ·P (φZ(sz)|θφY
,θφB

) ·P (θφY
) ·P (θφB

) (C3)

The above equations are inherently incorporated into the code implementation through the model definition using the

Numpyro python package (Phan et al., 2019). The posterior distribution is approximated using MCMC, which returns re-

alisations of φY (sy), φZ(sz), θφY
and θφB

from the posterior. The posterior predictive estimates of for example φY (ŝ) at

any set of new locations ŝ across the domain is then given by the following:485

P (φY (ŝ)|y,z) =
∫
P (φY (ŝ),φY (sy),φZ(sz),θφY

,θφB
|y,z)dφY (sy)dφY (sz)dφB(sz)dθφY

dθφB
(C4)

Where the integrand can be broken down into:

P (φY (ŝ),φY (sy),φZ(sz),θφY
,θφB

|y,z) = P (φY (ŝ)|φY (sy),φZ(sz),θφY
,θφB

) ·P (φY (sy),φZ(sz),θφY
,θφB

|y,z)

(C5)
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The second part of this expression is equivalent to the posterior distribution defined earlier. The realisations from the posterior

provided through the MCMC inference can be used as parameter values in the first part of the expression above to give a490

distribution that when sampled from provides posterior predictive realisations for φY (ŝ). In the case of Gaussian processes

the distribution of P (φY (ŝ)|φY (sy),φZ(sz),θφY
,θφB

) can be formulated in the following way, where to start take the joint

distribution:


φY (ŝ)

φY (sy)

φZ(sz)

∼N


mφY

(ŝ)

mφY
(sy)

mφZ
(sz)

 ,

KφY

(ŝ, ŝ) KφY
(ŝ,sy) KφY

(ŝ,sz)

KφY
(sy, ŝ) KφY

(sy,sy) KφY
(sy,sz)

KφY
(sz, ŝ) KφY

(sz,sy) KφZ
(sz,sz)


 (C6)

Note, that since φY (s) and φB(s) are independent and φZ(s) = φY (s)+φB(s), the covariance between the parameters495

φY (s) andφZ(s) is simplyCOV
(
φY (s),φZ(s

′)
)
= COV

(
φY (s),φY (s

′)
)
=KφY

(s,s′). Additionally, the mean and covari-

ance terms for the process that generates φZ(s) are computed as mφZ
(s) =mφY

(s)+mφB
(s) and KφZ

(s,s′) =KφY
(s,s′)+

KφB
(s,s′).

Then, defining the following:

U1 =
[
φY (ŝ)

]
,U2 =

φY (sy)
φZ(sz)

 ,U =

U1

U2

 ,M1 =
[
mφY

(ŝ)
]
,M2 =

mφY
(sy)

mφZ
(sz)

 ,M =

M1

M2

 (C7)500

K11 =
[
KφY

(ŝ, ŝ)
]
,K12 =

[
KφY

(ŝ,sy) KφY
(ŝ,sz)

]
(C8)

K21 =

KφY
(sy, ŝ)

KφY
(sz, ŝ)

 ,K22 =

KφY
(sy,sy) KφY

(sy,sz)

KφY
(sz,sy) KφZ

(sz,sz)

 (C9)

The distribution can be written as:

U1

U2

∼N
M1

M2

 ,
K11 K12

K21 K22

 (C10)

Where the conditional distribution P (U1|U2) is well known for Gaussian distributions and is given as:505

P (U1|U2) =N (M1|2,K1|2) (C11)

With parameter values:

M1|2 =M1 +K12K
−1
22 (U2−M2) (C12)

K1|2 =K11−K12K
−1
22 K21 (C13)
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This provides the distribution P (U1|U2), which is equivalent to the distribution P (φY (ŝ)|φY (sy),φY (sz),θφY
) that is510

needed to compute the poserior predictive.

C2 Non-hierarchical Case

In the non-hierarchical case used in Sect. 4.1, direct observations are assumed forφY (sy) andφZ(sz). In this case the posterior

for the model can be written out as:

P (θφY
,θφB

|φY (sy),φZ(sz)) =
P (φY (sy),φZ(sz)|θφY

,θφB
) ·P (θφY

,θφB
)

P (φY (sy),φZ(sz))
(C14)515

Where the first expression of the numerator can be broken down into:

P (φY (sy),φZ(sz)|θφY
,θφB

) = P (φY (sy)|φZ(sz),θφY
,θφB

) ·P (φZ(sz)|θφY
,θφB

) (C15)

While the second part of the numerator can be split due to independence between the generating processes, such that:

P (θφY
,θφB

) = P (θφY
) ·P (θφB

) (C16)

As with the full hierarchical model, the above equations are inherently incorporated into the non-hierarchical code imple-520

mentation, with the posterior distribution approximated using MCMC, which returns realisations of θφY
and θφB

from the

posterior. The posterior predictive estimates of for example φY (ŝ) at any set of new locations ŝ across the domain is then

given by the following:

P (φY (ŝ)|φY (sy),φZ(sz)) =
∫
P (φY (ŝ),θφY

,θφB
|φY (sy),φZ(sz))dθφY

dθφB
(C17)

Where the integrand can be broken down into:525

P (φY (ŝ),θφY
,θφB

|φY (sy),φZ(sz)) = P (φY (ŝ)|θφY
,θφB

,φY (sy),φZ(sz)) ·P (θφY
,θφB

|φY (sy),φZ(sz)) (C18)

The second part of this expression is equivalent to the posterior distribution defined earlier. The realisations from the posterior

provided through the MCMC inference can be used as parameter values in the first part of the expression above to give a

distribution that when sampled from provides posterior predictive realisations for φY (ŝ). The distribution in the first part of

the expression can be formulated in the same way as presented in Sect. C1.530
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Appendix D: Specific Example with Temperature

Take the case of evaluating bias in the output of near-surface temperature from a climate model relative to some in situ

observations. The output from the in situ observations and the climate model are each considered as realisations from latent

spatiotemporal stochastic processes, {Y (s, t) : s ∈ S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T } respectively. To evaluate bias the

time-independent marginal distributions are taken and the data treated as realisations from the spatial stochastic processes535

{Y (s) : s ∈ S} and {Z(s) : s ∈ S}. Temperature is known to have diurnal and seasonal dependency and so for the in situ

observation measurements to be representative of the time-independent marginal distribution there must be an equal spread of

the data over the time of day and season. To reduce this requirement the data can be filtered to just midday January values.

Filtering the data has the added benefit of simplifying the marginal distribution and so also the interpretation of bias, allowing

the bias to be evaluated for different seasons individually. In the case of January midday temperature, the site-level marginal540

distributions can be approximated as normal, such that Y (s)∼N (µY (s),σY (s)) and Z(s)∼N (µY (s),σY (s)).

Treating the site-level distributions as normal results in bias being defined in terms of disparities in the mean and stan-

dard deviation parameters between in situ observations and climate model ouput, such that µB(s) = b1(µY (s),µZ(s)) and

σB(s) = b2(σY (s),σZ(s)). Bias in the climate model output and the parameters of the in situ observations are considered

independent and both generated from separate spatial stochastic processes. For example, the bias in the mean µB(s) is con-545

sidered independent of the mean of the in situ observations µY (s) and both are modelled as generated from separate GPs:

µY (s)∼ GP(mµY
,kRBF (s,s

′|vµY
, lµY

)) and µB(s)∼ GP(mµB
,kRBF (s,s

′|vµB
, lµB

)). In this example the mean function of

the GP is considered a constant and the kernel/covariance function is considered a radial basis function parameterised by a

kernel variance and length scale. Defining the relationship µZ(s) = µY (s)+µB(s) allows advantage of the property that the

sum of 2 independent GPs is itself a GP, such that µZ(s)∼ GP(mµY
+mµB

,kRBF (s,s
′|vµY

, lµY
)+kRBF (s,s

′|vµB
, lµB

)). see550

Sect. B of the appendix.

In the case of the standard deviation the parameter space (σ(s) ∈ R>0) is not the same as the sample space of a GP (R) and so

a link function is applied log(σ(s)) = σ̃(s) ∈ R. The transformed parameters are then modelled as being generated from GPs:

σ̃Y (s)∼ GP(mσ̃Y ,kRBF (s,s
′|vσ̃Y , lσ̃Y )) and σ̃B(s)∼ GP(mσ̃B ,kRBF (s,s

′|vσ̃B , lσ̃B )). To again take advantage of the prop-

erty that the sum of 2 independent GPs is itself a GP, the relationship σ̃Z(s) = σ̃Y (s)+ σ̃B(s) is defined. The parameter σ̃Z(s)555

is then distributed as: σ̃Z(s)∼ GP(mσ̃Y +mσ̃B ,kRBF (s,s
′|vσ̃Y , lσ̃Y )+kRBF (s,s′|vσ̃B , lσ̃B )). After predictions across the do-

main are made of the transformed parameter the inverse link function can be applied to get estimates of the non-transformed

parameter.

The diagram in Fig.D1 gives a representation of this full model in a hierarchical framework. Applying MCMC inference

provides posterior realisations of the parameters of the model. This includes realisations from the posterior distribution of µY560

and σ̃Y at all in situ observation locations, as well as realisations from the posterior of µZ and σ̃Z at all the climate model

output locations. These realisations in addition to those of the parameters from the generating GPs can be used to compute

the posterior predictive distribution of the parameters [µY , σ̃Y ,µB, σ̃B,µZ , σ̃Z ] everywhere in the domain. For the purpose of

applying bias correction, the posterior predictive distribution for these parameters can be evaluated at the locations of the
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climate model output. Quantile mapping is then applied to transform the predicted distribution of the climate model output565

onto that of the predicted distribution for in situ observations. Applying quantile mapping or alternative methods for multiple

realisations of the parameters provides an expectation and uncertainty band for the bias corrected output.

mµY
vµY lµY

mσ̃Y vσ̃Y lσ̃Y mµB
vµB lµB

mσ̃B vσ̃B lσ̃B

µY (s) σ̃Y (s) µB(s) σ̃B(s)

µZ(s) σ̃Z(s)

Y (s) Z(s)

Y (s)∼N (µY (s),σY (s))

Z(s)∼N (µZ(s),σZ(s))

σ̃Y (s) = log(σY (s))

σ̃Z(s) = log(σZ(s))

µZ(s) = µY (s)+µB(s)

σ̃Z(s) = σ̃Y (s)+ σ̃B(s)

µY (s)∼ GP(mµY
,kRBF (s,s

′|vµY
, lµY

)) σ̃Y (s)∼ GP(mσ̃Y ,kRBF (s,s
′|vσ̃Y , lσ̃Y ))

µB(s)∼ GP(mµB
,kRBF (s,s

′|vµB
, lµB

)) σ̃B(s)∼ GP(mσ̃B ,kRBF (s,s
′|vσ̃B , lσ̃B ))

Sites (s ∈ S)

Figure D1. Plate diagram with directed acyclic graph showing the full hierarchical model for the case where the site-level distributions are

assumed normal with parameters µ and σ. The distribution of these parameters across the domain is modelled with Gaussian processes.
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Appendix E: Shared and Single Process Model Comparison

In the main paper comparisons are made made between the shared process and single process models. The shared process

model is the hierarchical model proposed in this paper, while the single process model represents a similar approach taken570

from the literature, see Lima et al. (2021). The two models are shown in Fig. E1. In both models the random variables for

the in-situ observations Y (s) and climate model output Z(s) have PDFs with the collection of parameters φY (s) and φZ(s)

respectively. In the case of the shared process model,φZ(s) is modelled as the sum ofφY (s) and some independent biasφB(s).

The parameters φY (s) and the corresponding bias φB(s) are each themselves modelled over the domain as generated from

Gaussian processes with hyper-parameters θY and θB . The unbiased parameters φY (s) and hyper-parameters θY are inferred575

from both the in situ data and climate model output. Posterior predictive estimates of φY (sz) are made by conditioning on both

sets of data. In the case of the single process model, the PDF parameters for the climate model output and in situ observations

are treated as independent. Only one latent GP is considered with the unbiased parameters φY (s) and hyper-parameters θY

inferred from in situ observations alone. Posterior predictive estimates of φY (sz) are also made by conditioning on just in situ

observations.580

θY

φY (s)

Y (s)

θB

φB(s)

φZ(s)

Z(s)

Site (si ∈ S)

θY

φY (s)

Y (s)

φZ(s)

Z(s)

Site (si ∈ S)

Shared Process Model Single Process Model

Figure E1. Plate diagram illustrating the difference between the shared process hierarchical model presented in this paper and the single

process model that comparisons are made against.
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Appendix F: Prior and Posterior Hyper-Parameter Distributions

A Bayesian framework considers the parameters of the model as random variables with probability distributions. The prior is

the assumed distribution before observing any data and the posterior is the updated distribution after observing data. Figures F1

and F2 illustrate the prior and posterior distributions for the non-hierarchical and hierarchical simulated examples respectively.

The parameter value specified when generating the data is also shown.585
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Figure F1. A figure illustrating the prior and posterior distributions for the parameters of the model in the case of scenario one. The value

that was specified when generating the data is also shown.
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Figure F2. A figure illustrating the prior and posterior distributions for the parameters of the model in the case of the 1D hierarchical

example. The value that was specified when generating the data is also shown.
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Appendix G:
::::::::
Complex

::::::::
Scenarios

:::::::::
Real-world

::::::::
scenarios

:::
are

::::::::
expected

::
to

::::
have

:::::
more

:::::::
complex

::::::
spatial

:::::::
features

::::
than

:::
the

::::::::
simulated

::::::::
examples

:::::::::
presented

::
in

::::
Sect.

::::
4.1,

::::
with

::::
some

::
of

:::
the

:::::::::::
assumptions

::
of

:::
the

:::::
model

::::::::
expected

::
to

::
be

:::::::
partially

:::::::
broken,

::::
such

::
as

::::::::::
stationarity

:::
and

::::::::::::
independence

::
of

:::
the

:::::
latent

::::::::
processes.

:::
To

::::::
explore

:::
the

::::::::::
performance

:::
of

::
the

:::::::::::
methodology

:::::
under

::::::::
scenarios

::::
with

:::::
more

:::::::
complex

::::::
spatial

:::::::
features,

::
as

::
in

:::::::::
real-world

::::::::
problems,

::::::
results

:::
for

::::::
several

::::::::
additional

:::::::::
simulated

::::::::
examples

:::::
(A-D)

:::
are

::::::::
presented

::
in

::::
Fig.

::::
G1.

:::
The

::::::::::::::
hyper-parameter

::::::
values

::::
used590

::
to

:::::::
generate

:::
the

:::
data

:::
are

::::::::
presented

::
in
:::::
Table

::::
G1,

::::
while

:::
the

::::::::
summary

::::::::
statistics

::
for

:::
the

::::::::
posterior

::::::::::
distributions

::::
after

:::::
fitting

:::
the

::::::
model

:::::::
proposed

::
in
::::
this

:::::
paper

:::
are

::::::::
presented

::
in

:::::
Table

:::
G2.

:

:::::::
Scenario

::
A

:::::::::
represents

:
a
::::::::

potential
:::::::::
real-world

:::::::
scenario

::::::
where

:::
the

:::::::::
covariance

::::::
length

:::::
scale

:::::::
changes

:::::
across

:::
the

::::::::
domain.

::::
This

::::
could

:::
be

::::
due

::
to

::::::::::
topographic

:::::::
features

::::
and

:
a
:::::

shift
::::
from

::::::::
relatively

:::::::
smooth

::::::::::
topography

::
to

:::::
sharp

:::::::::::
mountainous

:::::::
terrain.

:::
For

::::
this

:::::::
scenario,

:::
the

::::::
length

::::
scale

:::
of

:::
the

:::::
latent

:::::::
unbiased

:::::::
process

:::::::
changes

:::::::
abruptly

::
at

::::::
x= 50

::::
with

::
a
:::::
length

:::::
scale

::
of

::
5

:::
for

::::::
x < 50

:::
and

::
a595

:::::
length

:::::
scale

::
of

:
1
:::
for

:::::::
x > 50.

:::
The

::::::
length

:::::
scale

::
of

:::
the

:::::
biased

:::::::
process

::
is

:::
left

:::::::
constant

::::::
across

:::
the

::::::
domain

::
in
::::::::

scenario
::
A,

::::::::
although

::
in

:::::::
scenario

::
B

:
it
::
is
:::::
made

::
to

::::
also

::::::
change

::::::::
abruptly

::
at

::::::
x= 50

::
to

:::::
show

:
a
::::
case

::::::
where

:::
the

:::::
latent

:::::
spatial

::::::::
structure

::
of

:::
the

::::
bias

::
is

::::
also

::::::::
dependent

:::
on

::
an

:::::
extra

:::::
factor

::::
such

::
as

::::::::::
topography.

:

:::::::
Scenario

::
C

:::::::::
represents

:::
the

::::::::
potential

:::::::::
real-world

:::::::
scenario

::::::
where

::::
there

:::
are

::::::::
multiple

::::::
sources

:::
of

::::::::
variation

::
in

:::
the

::::::
climate

:::::
with

:::::::
different

:::::::::
covariance

::::::
length

::::::
scales.

:::
An

::::::::
example

:::
of

:::
this

::::::
could

::
be

::::
the

::::::::
combined

:::::::::
influence

::
of

:::::::::
large-scale

::::::::::::::::
upper-atmosphere600

:::::::::
circulation

:::::::
patterns

:::
and

::::::::::
small-scale

::::::::::
topographic

:::::::
changes

::::
over

:::
the

:::::::
domain.

::::
The

::::
data

::
is
:::::::::
generated

::::
from

:::
the

::::::::
unbiased

:::::::
process

::::
after

:::::::
defining

:::
the

::::::
kernel

::
as

:::
the

::::
sum

::
of

::::
two

::::::::::
independent

:::::::::::
components,

:::
one

:::::
with

:
a
::::::::
variance

::
of

:
1
::::

and
::::::
length

::::
scale

:::
of

:
3
::::
and

:::
the

::::
other

::::
with

::
a
:::::::
variance

::
of

:::
0.2

::::
and

:::::
length

:::::
scale

::
of

::::
0.6.

::::::
Finally,

::::::::
scenario

::
D

::::::::
represents

::
a
:::::::
potential

:::::::::
real-world

::::
case

::::::
where

:::
the

::::
bias

::
in

:::
the

::::::::
parameter

:::
of

:::::
study

::
is

:::::::::
dependent

:::
on

:::
the

:::::::::
parameter

:::::
value

:::::
itself,

::
as

::::::
might

::
be

:::
the

:::::
case

::
if

:::
for

:::::::
example

:::
the

::::::
output

:::::
from

::::::::::
temperature

::::::
sensors

:::::
were

::::::
skewed

:::
by

:::::::::::
over-heating.

::::
This

:::::::::
correlation

::
is
:::::::
induced

:::::::
between

:::
the

::::
bias

::::
and

:::
the

::::::::
unbiased

::::::
process

:::
by605

::::::::
generating

::::
the

::::
data

:::
for

:::
the

::::
bias

::
as

:::
the

::::
sum

:::
of

:::::::::::::::::::::::::::
φB(s) = 0.2 ∗φY (s)+φBind.

(s),
::::::

where
::::::::
φBind.

(s)
::
is
:::

an
::::::::::
independent

::::
bias

:::
as

::::::::
generated

::
in

:::
the

::::
other

:::::::::
examples.

:::
The

:::::
result

::
of

:::::
fitting

:::
the

::::::
model

::::::::
presented

::
in

:::
this

:::::
paper

::
to
:::::
each

:::::::
scenario

::
is

::::::::
displayed

::
in

:::::
Table

:::
G2

:::
and

::::
Fig.

:::
G1.

:::::
From

:::::
Table

:::
G2

:
it
::
is

::::
clear

::::
that

::
in

:::::
cases

:::::
where

::::::::
multiple

:::::
length

:::::
scales

:::
are

:::::
used

::
in

:::::::::
generating

:::
the

::::
data,

:::
the

::::::::
expected

:::::
value

::
of

:::
the

:::::::
assumed

::::::
single

:::::
length

:::::
scale

::
is

:::::::::
in-between

:::
the

::::
true

:::::
values

:::::::
tending

:::::
more

::
to

:::
the

:::::::
smallest

::::::
length

:::::
scale.

:::
The

::::::
reason

:::
the

::::::::::
expectation

::
of

:::
the

::::::
single610

:::::
length

:::::
scale

:::::
tends

:::::::
towards

:::
the

::::::
shorter

::::::
values

::::::
present

::
in

:::::::::
generating

::::
the

::::
data

::
is

:::::::::::
hypothesised

::
to

::
be

::::
the

:::::
result

::
of

:::::
more

::::::
spatial

::::::
features

::::::
(peaks

:::
and

::::::::
troughs)

:::::
being

::::::
present

:::
for

:::
the

::::::
shorter

:::::
length

:::::
scale

::::::::::
component.

:::
The

::::::
model

::
is

:::::
better

::::
able

::
to

::::::
explain

:::
the

::::
data

:::::::
observed

::::
with

::
a
:::::
length

:::::
scale

:::::
closer

::
to

:::
the

:::::::
shortest

:::::
value

::::::
present

::::
and

::
the

:::::
95%

:::::::
credible

::::::
interval

:::
for

:::
the

:::::
single

::::::
length

:::::
scale

::::
does

:::
not

:::::::::
necessarily

:::::
cover

:::
the

:::::::
multiple

:::::
values

:::::
used

::
in

:::::::::
generating

:::
the

::::
data.

::
In

::::
Fig.

:::
G1

:
it
::::

can
::
be

:::::
seen

::::
that,

::::::
despite

:::
the

:::::::::
additional

:::::::::::
complexities,

::::
the

:::::::::
predictions

:::
on

:::
the

::::::::
unbiased

::::::::
parameter

::::
and

:::
on

:::
the615

:::
bias

:::
are

:::::::::
reasonable

::::
and

:::::::
capture

:::
the

::::
main

::::::
spatial

::::::::
patterns.

::::
This

:::::::::::
demonstrates

:::
the

::::::::
flexibility

:::
of

::::
GPs

:::
and

:::
the

:::::::::
robustness

:::
of

:::
the

:::::::::::
methodology

:::::::
proposed

::
to

::
fit

::::::::
different

::::
types

::
of

:::::::::
real-world

::::
data

:::::
where

:::::
some

::
of

:::
the

::::::::::
assumptions

:::::
made

::
in

:::
the

:::::
model

:::::::
partially

:::::
don’t

::::
hold.

:::::
Some

:::::::
features

:::
of

:::
the

:::::
results

::::
due

::
to

:::
not

:::::
fully

::::::::
capturing

:::
the

::::::::::::
dependencies

:::::::
involved

::
in

:::::::::
generating

:::
the

::::
data

:::
are

:::::::::
described

::::
here.

::
In

::::::::
scenario

::
A

:::
the

::::::
length

::::
scale

:::
of

:::
the

::::::::
unbiased

::::::
process

::
is
:::::::::
estimated

::::
close

:::
to

:::
the

:::::
value

::::
used

::
in
::::::::::

generating
:::
the

::::
data

:::
for
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::::::
x > 50,

:::::
which

::::::
results

::
in

::::::
greater

::::::::::
uncertainty

::::
than

:::::::
expected

::::::::
between

::::::
nearby

::::::::::
observations

::
in

:::
the

::::::
region

::::::
x < 50

:::::
where

:::
the

::::::
length620

::::
scale

::
is

::::::
greater.

:::
For

::::::::
example,

::
in

:::
the

:::::::::::
extrapolation

:::::
range

::
of

:::::
x < 0

:::
the

::::::::
prediction

::
in

:::
the

::::::::
unbiased

::::::::
parameter

:::::
values

::::::
returns

:::::::
sharply

::
to

:::
the

:::::
mean

:::
and

::::
with

::::::::::
uncertainty

::::::::::
independent

::
of

::::::::
observed

::::::
points,

:::::::
whereas

::
if
:::
the

::::::
length

::::
scale

::::
was

::::::::
correctly

::::::::
estimated

::
in

::::
this

:::::
region

:::
the

::::::::::
predictions

:::::
would

::::::
remain

:::::::::
dependent

:::
on

:::
the

:::
data

::::::::
observed

::
at

::::::::::
x= 0− 10

::
for

:::::::
longer.

:::
The

:::::
same

::
is

:::
true

:::
in

:::::::
scenario

::
B

::::
with

:::
the

:::::::
addition

::
of

:::
the

::::::::
estimates

::
of

:::
the

::::
bias

::::
being

::::::::
effected,

::::::
making

:::::::::::::
disaggregating

:::
the

::::::
climate

:::::
model

::::::
output

::::
into

::
an

::::::::
unbiased

:::
and

::::::
biased

:::::::::
component

:::::
more

::::::::::
challenging,

:::
as

::::
seen

::
at

:::::::
x= 30.

::
In

:::::::
scenario

::
C

:::::
again

:::
by

::::
only

:::::::::
modelling

:
a
::::::
single

:::::
length

:::::
scale

:::
for625

::
the

::::::::
unbiased

:::::::
process,

::::::::::::
disaggregating

:::
the

:::::::
climate

:::::
model

::::::
output

::::
into

::
its

::::
two

::::::::::
components

::
is

:::::::
effected

:::
and

:::
the

::::::
longer

:::::
length

:::::
scale

::::
peak

::::::
present

::
at

::::::
x= 20

::
is

::::::::
attributed

::
to

:::
the

:::
bias

::::::::::
incorrectly.

::::::
Finally

::
in

:::::::
scenario

:::
D,

:::
not

:::::::::
accounting

:::
for

:::
the

:::::::::
correlation

:::::::
between

:::
the

:::::::
unbiased

::::::
values

:::
and

:::
the

::::
bias

:::::
results

::
in

::
a

::::::
slightly

::::::
greater

::::::::::
uncertainty

::
in

:::::::::
predictions

::::
than

:::::
could

::
be

::::::::
achieved

::
by

:::::::::::
incorporating

::::
this

::::::::::
relationship.

::::::
Overall

:::
the

::::::
model

::
is

::::::
shown

::
to

:::::::
perform

::::::::::
adequately

:::
and

:::
not

:::
be

::::::::::::
over-sensitive

::
to

:::::
some

::
of

::::
the

::::::::::
assumptions

:::::
being

::::::::
partially630

::::::
broken,

:::::
which

:::::::
supports

:::
the

:::::::::
usefulness

::
of

:::
the

:::::::::::
methodology

::
to

::::::::
real-world

:::::::::::
applications.

::
In

:::::::
addition,

:::::
other

::::::::::::
methodologies

::::::::
currently

::::::
applied

::
to

::::
bias

::::::::
correction

:::
are

:::::
likely

:::::
more

:::::::
affected

::
in

::::
these

:::::::
complex

:::::::::
scenarios.

::
It

:
is
:::::
noted

::::
that

:::
the

::::::
purpose

:::
of

:::
this

:::::
paper

::
is

:::
not

::
to

::::::
provide

:
a
::::
final

:::::
fixed

:::::
model

::::::::
however,

::::::
instead

::::::
aiming

::
to

::::::
provide

:
a
::::::::::
framework

:::::
where

::::::::
additional

:::::::::::
complexities

::::::
present

::
in

:::::::::
real-world

::::::::::
applications

:::
can

::
be

::::::::
assessed

::
on

:
a
:::::::::::
case-by-case

:::::
basis

:::
and

::::::
further

:::::
model

::::::::::
adjustments

:::::
made

:::::
where

:::::::
needed

::
to

::::::
account

:::
for

:::::::
specific

::::::
features

:::
of

:::
the

:::::::::
real-world

::::::
dataset.

::::
The

::::::
model

:::::
could

::
be

::::::::
modified

:::
for

::::
each

:::::::
scenario

:::
to

::::
take

:::
into

:::::::
account

:::
the

:::::
extra

::::::::::
complexity,635

::::::::
something

::::
that

:
a
:::::::::
fixed-type

:::::
model

:::
for

::::
bias

::::::::
correction

::::::
would

:::
not

::
be

::::
able

::
to

:::::::
handle.

:::::::
Dependent

::::::
Variable

::::
Model

::::::::
Parameters

:::::
Scenario

::
A

::::::
Scenario

:
B
: ::::::

Scenario
:
C
: ::::::

Scenario
:
D
:

Unbiased PDF Parameter φY

:::::
Kernel

::::::
Variance

::::
(vφY

)
::
1.0

: ::
1.0

::
1.0

:
&
:::
0.2

::
1.0

:::::
Kernel

::::::::
Lengthscale

::::
(lφY

)
::
5.0

:::::
(x<50),

:::
1.0

:::::
(x>50)

::
5.0

:::::
(x<50),

::
1.0

:::::
(x>50)

::
3.0

:
&
:::
0.6

::
3.0

::::
Mean

::::::
Constant

:::::
(mφY

)
::
1.0

: ::
1.0

::
1.0

::
1.0

::::
Noise

:::::
(σφY

)
::
0.1

: ::
0.1

::
0.1

::
0.1

:
#
:::::::::
Observations

:::
40.0

:::
40.0

: :::
40.0

: ::
40.0

Bias PDF Parameter φB
:::::
Kernel

::::::
Variance

::::
(vφB

)
::
1.0

: ::
1.0

::
1.0

::
1.0

:::::
Kernel

::::::::
Lengthscale

::::
(lφB

)
:::
10.0

:::
10.0

:::::
(x<50),

:::
2.0

::::
(x>50)

: :::
10.0

: ::
10.0

::::
Mean

::::::
Constant

:::::
(mφB

)
:::
-1.0

::
-1.0

:::
-1.0

::
-1.0

Climate Model PDF Parameter φZ :
#
:::::::::
Observations

:::
80.0

:::
80.0

: :::
80.0

: :::
80.0

:

Table G1.
:
A
::::
table

:::::::
showing

:::
the

:::::::::::::
hyper-parameters

::
of

::
the

:::::
latent

:::::::
Gaussian

:::::::
processes

::::
used

::
to
:::::::
generate

:::
the

:::::::
complete

::::::::
underlying

:::::::::
realisations

::
of

::::::
φY (s

?),
::::::
φB(s

?)
:::
and

:::::
hence

::::::
φZ(s

?),
::
as

::::
well

::
as

:::::::::
observations

::
of

::::::
φY (sy):::

and
:::::::
φZ(sz), ::

on
:::::
which

:::::::
inference

:
is
::::
done

:::
for

:::
the

:::::::
additional

::::::::
scenarios.

:::
The

::::::
number

::
of

:::::::::
observations

::::::::::
representing

:::::
in-situ

:::
data

:::
and

::::::
climate

:::::
model

:::::
output

:
is
::::

also
:::::
given.
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(a) Scenario A and B

Scenario A Posterior Dist. Scenario B Posterior Dist.

:::::::
Dependent

::::::
Variable

::::
Model

:::::::
Parameter

:::
Exp.

::
Std.

:::
Dev.

: ::
C.I.

::
L.

::
C.I.

::
U.

:::
Exp.

::
Std.

:::
Dev.

: ::
C.I.

::
L.

::
C.I.

::
U.

Unbiased PDF

Parameter φY

::::
Kernel

::::::
Variance

:::
vφY: :::

0.87
:::
0.17

:::
0.55

:::
1.18

:::
0.85

:::
0.18

:::
0.53

:::
1.20

::::
Kernel

::::::::
Lengthscale

:::
lφY :::

1.06
:::
0.06

:::
0.94

:::
1.19

:::
1.12

:::
0.07

:::
0.99

:::
1.24

:::
Mean

::::::
Constant

::::
mφY: :::

0.78
:::
0.15

:::
0.48

:::
1.07

:::
1.42

:::
0.17

:::
1.09

:::
1.77

:::
Noise

::::
σφY :::

0.12
:::
0.03

:::
0.06

:::
0.17

:::
0.15

:::
0.05

:::
0.05

:::
0.24

Bias PDF

Parameter φB

::::
Kernel

::::::
Variance

:::
vφB: :::

1.15
:::
0.86

:::
0.19

:::
2.87

:::
0.85

:::
0.39

:::
0.32

:::
1.60

::::
Kernel

::::::::
Lengthscale

:::
lφB :::

10.34
: :::

1.93
:::
6.86

:::
14.32

: :::
3.50

:::
0.82

:::
2.21

:::
5.05

:::
Mean

::::::
Constant

::::
mφB: :::

-0.68
:::
0.49

:::
-1.59

: :::
0.34

:::
-0.79

:::
0.27

:::
-1.33

: :::
-0.25

:

(b) Scenario C and D

Scenario C Posterior Dist. Scenario D Posterior Dist.

:::::::
Dependent

::::::
Variable

::::
Model

:::::::
Parameter

:::
Exp.

::
Std.

:::
Dev.

: ::
C.I.

::
L.

::
C.I.

::
U.

:::
Exp.

::
Std.

:::
Dev.

: ::
C.I.

::
L.

::
C.I.

::
U.

Unbiased PDF

Parameter φY

::::
Kernel

::::::
Variance

:::
vφY: :::

0.52
:::
0.10

:::
0.34

:::
0.72

:::
0.88

:::
0.23

:::
0.49

:::
1.33

::::
Kernel

::::::::
Lengthscale

:::
lφY :::

0.75
:::
0.08

:::
0.61

:::
0.92

:::
2.95

:::
0.06

:::
2.82

:::
3.07

:::
Mean

::::::
Constant

::::
mφY: :::

1.03
:::
0.11

:::
0.81

:::
1.25

:::
0.93

:::
0.26

:::
0.42

:::
1.44

:::
Noise

::::
σφY :::

0.18
:::
0.06

:::
0.09

:::
0.30

:::
0.10

:::
0.02

:::
0.07

:::
0.13

Bias PDF

Parameter φB

::::
Kernel

::::::
Variance

:::
vφB: :::

0.57
:::
0.44

:::
0.11

:::
1.38

:::
0.42

:::
0.22

:::
0.14

:::
0.84

::::
Kernel

::::::::
Lengthscale

:::
lφB :::

6.71
:::
2.11

:::
3.19

:::
10.84

: :::
4.31

:::
0.53

:::
3.26

:::
5.33

:::
Mean

::::::
Constant

::::
mφB: :::

-0.12
:::
0.30

:::
-0.73

: :::
0.44

:::
-0.02

:::
0.21

:::
-0.46

: :::
0.38

Table G2. Tables showing summary statistics for the posterior distributions including the expectation (Exp.), standard deviation (Std. Dev.)

and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The prior distributions are the same non-informative distribu-

tions given in Table 3.
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Figure G1.
:::::::::
Expectation

:::
and

::
1σ

:::::::::
uncertainty

::
of

:::
the

:::::::
posterior

::::::::
predictive

:::::::::
distributions

::
of
:::

the
::::::::
parameter

::::::
φY (sz)::::

and
::
the

:::::::::::
corresponding

::::
bias

::::::
φB(sz) ::

for
::::
three

::::::::
scenarios.

:::
The

::::::::
underlying

:::::::
functions

::::::::
(complete

:::::::::
realisations)

::
as
::::
well

::
as

::
the

::::::::
simulated

::::
input

::::
data

::
are

::::
also

:::::
shown.
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