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Abstract. Climate models, derived from process understanding, are essential tools in the study of climate change and its wide-

ranging impactson the biosphere. Hindcast and future simulations provide comprehensive spatiotemporal estimates of climatol-

ogy that are frequently employed within the environmental sciences community, although the output can be afflicted with bias

that impedes direct interpretation. Bias correction approaches using observational data aim
:::::::::::::
Post-processing,

::::
bias

:::::::::
correction

:::::::::
approaches

:::::
utilise

::::::::::::
observational

::::
data to address this challenge. However, approaches

:
,
:::::::
although

:
are typically criticised for not5

being physically justified and not considering uncertainty in the correction. These aspects are particularly important in cases

where observations are sparse, such as for weather station data over Antarctica. This paper attempts to address both of these

issues through the development of
:::
This

:::::
paper

::::::::
proposes

:
a novel Bayesian hierarchical model for bias prediction. The model

:::
bias

:::::::::
correction

:::::::::
framework

:::
that

:
propagates uncertainty robustly and uses latent Gaussian process distributions to capture

::::::
models

underlying spatial covariance patterns, .
:::::::
Shared

:::::
latent

::::::::
Gaussian

::::::::
processes

:::
are

:::::::
assumed

::::::::
between

:::
the

::
in

::::
situ

::::::::::
observations

::::
and10

::::::
climate

:::::
model

::::::
output

::::
with

:::
the

:::
aim

::
of

:
partially preserving the covariance structure from the climate model

::::
after

::::
bias

:::::::::
correction,

which is based on well-established physical laws. The Bayesian framework can handle complex modelling structures and

provides an approach that is flexible and adaptable to specific areas of application, even increasing the scope of the work

to data assimilation tasks more generally. Results in this paper are presented for one-dimensional simulated examples for

clarity, although the method implementation has been developed to also work on multidimensional data as found in most15

real applications. Performance under different simulated scenariosis examined, with the method providing
::::::
Results

::::::::::
demonstrate

:::::
added

::::
value

::
in
:::::::::
modelling

::::::
shared

::::::::
generating

::::::::
processes

:::::
under

::::::
several

:::::::::
simulated

::::::::
scenarios,

::::
with most value added over alternative

approaches in
::
for

:
the case of sparse

::
in

::::
situ observations and smooth underlying bias. A major benefit of the model is the

robust
::::::::::
Additionally,

:::
the

:
propagation of uncertainty

::
to

:
a
:::::::::

simulated
::::
final

::::
bias

::::::::
corrected

::::
time

::::::
series

::
is

::::::::
illustrated, which is of

key importance to a range of stakeholders, from climate scientists engaged in impact studies, decision makers trying to un-20

derstand the likelihood of particular scenarios and individuals involved in climate change adaption strategies where accurate

risk assessment is required for optimal resource allocation.
::::
This

:::::
paper

::::::
focuses

:::
on

::::::::::::::
one-dimensional

::::::::
simulated

:::::::::
examples

:::
for

:::::
clarity,

::::::::
although

:::
the

::::
code

::::::::::::::
implementation

::
is

::::::::
developed

::
to
::::
also

:::::
work

::
on

::::::::::::::::
multi-dimensional

::::
input

:::::
data,

::::::::::
encouraging

:::::::::
follow-on

::::::::
real-world

::::::::::
application

::::::
studies

::::
that

::::
will

::::::
further

::::::::
validate

:::::::::::
performance

:::
and

:::::::::
remaining

::::::::::
limitations.

::::
The

::::::::
Bayesian

::::::::::
framework
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:::::::
supports

::::::::::
uncertainty

::::::::::
propagation

:::::
under

::::::
model

::::::::::
adaptations

:::::::
required

:::
for

:::::::
specific

:::::::::::
applications,

::::::::
providing

::
a
:::::::
flexible

::::::::
approach25

:::
that

::::::::
increases

:::
the

:::::
scope

::
to

::::
data

::::::::::
assimilation

::::
tasks

:::::
more

::::::::
generally.

:
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1 Introduction

Climate models are invaluable in the study of climate change and its impacts (Bader et al., 2008; Flato et al., 2013). Formulated

from physical laws and with parameterisation and process understanding derived from past observations; climate models pro-

vide comprehensive spatiotemporal estimates of our past, current and future climate under different emission scenarios. Global30

climate models (GCMs) simulate important climatological features and drivers such as storm tracks and the El Niño–Southern

Oscillation (ENSO) (Greeves et al., 2007; Guilyardi et al., 2009). In addition, independently developed GCMs agree on the

future direction of travel for many important features such as global temperature rise under continued net-positive emission

scenarios (Tebaldi et al., 2021). However, GCMs are computationally expensive to run and also exhibit significant system-

atic errors, particularly on regional scales (Cattiaux et al., 2013; Flato et al., 2013). Regional climate models (RCMs) aim to35

dynamically downscale GCMs and more accurately represent climatology for specific regions of interest and have parameteri-

sation, tuning and additional physical schemes optimised to the region (Giorgi, 2019; Doblas-Reyes et al., 2021). Despite this,

significant systematic errors remain, particularly for regions with complex climatology and with sparse in situ observations

available to inform process understanding, such as over Antarctica (Carter et al., 2022). These systematic errors inhibit the

direct interpretation of climate model output, particularly important in impact assessments (Ehret et al., 2012; Liu et al., 2014;40

Sippel et al., 2016).

There are many fundamental causes of systematic errors in climate models, including: the absence or imperfect represen-

tation of physical processes; errors in initialisation; influence of boundary conditions and finite resolution (Giorgi, 2019).

The inherent complexity and computationally expensive nature of climate models makes direct reduction of systematic errors

through
::::::
climate model development and tuning challenging (Hourdin et al., 2017). End

:::::::::::
Additionally,

:::
end

:
users are typically45

interested in only a narrow aspect of the output (e.g. possibly only one or two variables), which the
::::::
climate

:
model is unlikely

to be specifically tuned for. Post-processing, bias correction techniques allow improvements to the consistency, quality and

value of climate model output, specific to the end user’s focus of interest, with manageable computational cost and without

requirement of in-depth knowledge behind the climate model itself (Ehret et al., 2012). Different end users are focused on

different types of systematic errors, whether that’s errors in the mean climatology, the multi-year trends or in other features50

of the output such as the covariance structure
::::::
Transfer

:::::::::
functions

:::
are

::::::
derived

::::::::
between

:::
the

:::::::
climate

:::::
model

::::::
output

::::
and

::
in

::::
situ

:::::::::::
observational

::::
data

::
to

::::::
correct

::::::::::
components

:::::
such

::
as

:::
the

:::::
mean

:::::::::::::::
(Das et al., 2022)

::
or

:::::::::
probability

:::::::
density

::::::::
functions

::::::
(PDFs)

:::
of

:::
the

:::
data

::::::::::::::::::::
(Qian and Chang, 2021). This paper follows a common approach to focus on

::::::
focuses

::
on

:::::::::
providing

:
a
:::::
novel

::::::::::
framework

::
for

:::::::::
correcting

:
systematic errors in the parameters that describe the probability density function (PDF ) at each site. Further,

detailed discussion of this is given in Sect. 2 as are approaches to bias correction within this context
::::
PDF

::
of

:::
the

::::::
climate

::::::
model55

:::::
output

::
at

::::
each

::::
grid

:::::
point.

One of the fundamental issues often attached to
:::::::::::::
post-processing bias correction is the lack of justification based on known

physical laws and process understanding (Ehret et al., 2012; Maraun, 2016). Transfer functions are derived that are applied

to the climate data to improve some aspect of consistency with observations, such as the mean in for example the delta

method (Das et al., 2022) or the overall PDF in the case of quantile mapping (Qian and Chang, 2021). The spatiotemporal field60
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and associated covariance structure from the climate model, which is consistent with accepted physical laws, is typically not

considered and so not preserved. Resulting corrected fields may exhibit too smooth or sharply varying behaviour over the region

and discontinuities near observations. In addition, many approaches of bias correction fail to adequately handle uncertainties

or estimate them at all. Reliable uncertainty estimation is valuable for inclusion in impact studies to inform resulting decision

making. This is especially true for regimes with tipping points, such as ice shelf collapse over Antarctica, where uncertainties65

in the climatology can cause a regime shift (DeConto and Pollard, 2016).

In this paper
::::
these

:::::
issues

:::
are

:::::::
partially

::::::::
addressed

:::::::
through

:::
the

:::::::::::
development

::
of

:
a fully Bayesian approach using a hierarchical

structure and
:::::::::
hierarchical

::::::::
approach

::
to
::::

bias
:::::::::
correction.

:::::::::
Parameter

:::::::::::
uncertainties

:::
are

:::::::::
propagated

:::::::
through

:::
the

::::::::::
hierarchical

::::::
model

:::
and

:::::::::
underlying

::::::
spatial

:::::::::
covariance

::::::::
structures

:::
are

::::::::
captured

::::
with latent Gaussian processes (GP) is proposed for bias correction,

discussed in detail in Sect. 3. Parameter uncertainties are propagated through the model and the underlying covariance structure70

is derived both from observations and the
::::
GPs)

::
for

::::
both

:::
in

:::
situ

::::::::::
observations

::::
and

:::
the

::::::
climate

::::::
model

::::::
output.

:::
The

::::::::
approach

::::::::
presented

:::::
builds

:::
on

:::
that

::
of

:::::::::::::::
Lima et al. (2021)

:
,
:::::
which

::::::
models

:::
the

::
in

::::
situ

:::::::::::
observational

::::
data

::
as

::::::::
generated

::::
from

::
a

:::
GP

:::
and

::::
uses

::::::
quantile

::::::::
mapping

::::::::::::::::::::
(Qian and Chang, 2021)

::
to

::::
apply

:::
the

:::::::::
correction

::
to

:::
the

::::::
climate

:::::
model

::::::
output.

::
In

::::::::::::::::
Lima et al. (2021)

::
the

::::::
spatial

:::::::::
covariance

::::::::
structure

::
of

:::
the

::::::
climate

::::::
model

:::::
output

::
is

:::
not

:::::::::
considered

:::
and

::::::::::
uncertainty

::
is

:::
not

:::::::::
propagated

::
to

:::
the

::::
final

::::
bias

:::::::
corrected

:::::
time

:::::
series.

::::
The

::::::
novelty

:::
of

:::
the

::::::::
approach

::::::::
proposed

::::
here

::
is

:::
that

::::::
shared

:::::
latent

::::
GPs

:::
are

::::::::
modelled

:::::::
between

:::
the

:::::::
climate75

:::::
model

::::::
output

:::
and

:::
the

:::
in

:::
situ

::::::::::::
observational

::::
data,

::::::
which

::::
aims

::
to
::::::::::

incorporate
::::::::::
information

:::::
from

:::
the

:::::::::
physically

:::::::
realistic

::::::
spatial

::::::
patterns

:::
of

:::
the climate model output

::
in

:::::::::
predictions

::
of

:::
the

::::::::
unbiased

:::::
field.

:::::::::::
Additionally,

:::::::::
uncertainty

::
is
::::::::::
propagated

:::::::
through

:::
the

::::::
quantile

::::::::
mapping

::::
step,

::::::
which

::::::
results

::
in

::::::::::
uncertainty

:::::
bands

:::
on

:::
the

::::
bias

::::::::
corrected

:::::
output. The approach is developed with the

focus of applying bias correction to regions with sparse in situ observations, such as over Antarctica, where capturing un-

certainty
:
in

:::
the

:::::::::
correction

:
is of key importance and where including data from all sources during inference is particularly80

valuable. In the method, climate model output is assumed to be generated from two underlying and independent stochastic

processes, one relating to the true underlying field of interest (that also generates the in situ observations) and one that generates

the bias present in the climate data. The aim is to separate these two processes and to infer their covariance structures.

Posterior predictive estimates of the true underlying field across the region can then be made, which in turn can be used

for bias correction. The ability of the model in doing this depends on factors such as the density of observations and the85

relative smoothness of the truth and bias components. Simulated data is used to test the performance under
:::::::::::
Performance

:::::
under

::::::::
simulated scenarios with differing data density and latent

::::::::
underlying

:
covariance length scales , with results and discussion

presented in Sect. 4.
::
is

::::::::
evaluated

::
in

::::
this

:::::
paper

:::
and

:::
the

::::::::
potential

:::::
added

:::::
value

::::::::
assessed

:::::
when

::::::::
compared

::::
with

::::
the

::::::::
approach

::
in

::::::::::::::
Lima et al. (2021)

:
.

The model is developed
:::::::::
Developing

:::
the

::::
bias

::::::::
correction

::::::::
approach in a flexible Bayesian framework , where adjustments

:::::
means90

:::::
further

:::::::::::::::::::::::
adjustments/advancements

:::
that

:::
are

:::::::::
necessary

:::
for

:::::::::
real-world

::::::::
scenarios

:
can easily be incorporated while maintaining

robust uncertainty propagation. For example, extra predictors, such as elevation and latitude, can be included either in the

mean function or covariance matrix of the latent GPs. Alternatively, the model could be expanded to incorporate a temporal

component of the bias accounting for variability across different seasons. This flexibility is important and increases the scope

of the work, allowing the model
::::::::::
methodology

:
to be applied to a wide range of scenarios, including for example application95
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to many different meteorological fields and also combining observation data from different instruments rather than necessarily

with respect to climate model output. Additionally, the Bayesian framework allows incorporation of domain specific, expert

knowledge of different data sources and their uncertainties through the choice of prior distributions.

2 Methodology

The goal of the methodology developed and presented in this paper is to evaluate the bias in the climate model output across100

the domain in a framework that captures uncertainty robustly and that preserves information available from both the in situ

observations and climate model output on underlying spatial structures. The resulting predictive bias can be coupled with

known bias correction methods, such as quantile mapping, with the benefits of uncertainty quantification and inherited spatial

structure. The overarching approach is summarised in Sect. 3.1 with a specific example given in Sect. 3.2. The properties of

GPs are discussed in Sect. 3.3105

2.1 Model Overview

In a probabilistic framework, the in situ observations and climate model output are treated as realisations from latent spatiotem-

poral stochastic processes, denoted as {Y (s, t) : s ∈ S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T } , respectively. Stochastic processes

are sequences of random variables indexed by a set, which in this case are the spatial and temporal coordinates in the domain

(S,T ). A random variable is attributed to each spatiotemporal coordinate (Y (s, t),Z(s, t)). The data observed
:::
The

::::::::
observed110

:::
data

:
is then considered a realisation of the joint distribution over a finite set of random variables across the domain.

For the purpose of bias prediction
::::::::
evaluating

:::
the

::::::::::::::
time-independent

::::::::::
component

::
of

:::
the

:::::::
climate

:::::
model

::::
bias, the random vari-

ables are treated as independent and identically distributed across time, such that .
:::::
That

::
is

:::
the

::::::::
collection

:::
of

::::::::
temporal

::::
data

for a given location s, Y (s, t) | φY (s)
i.i.d.∼ FY (φY (s)) and Z(s, t) | φZ(s)

i.i.d.∼ FZ(φZ(s)), where FY (·) and FZ(·) represent

some generic site-level distributions with spatially varying vector parameters
::::::
spatial

:::::::
location

:::
can

:::
be

:::::::::
considered

::
as

::::::::
multiple115

:::::::::
realisations

::::
from

:::
the

:::::
same

::::::
random

:::::::
variable.

::::
The

::::::
random

::::::::
variables

:::
for

::::
each

:::::::
location

::
are

:::::::::
distributed

::::::::::
respectively

::
as

::::::::::::::::
Y (s)∼ fY (φY (s))

:::
and

::::::::::::::::
Z(s)∼ fY (φZ(s)),::::::

where
::::::
φY (s) :::

and
::::::
φZ(s)::::::::

represent
:::
the

::::::::
collection

:::
of

:::::::::
parameters

::::
that

:::::::
describe

:::
the

:::::
PDF.

:::
For

::::::::
example,

:
if
:::
the

:::::
PDF

:
is
::::::::::::

approximated
::
as

:::::::
normal

::::
then

::::::::::::::::::::
φ(s) = [µ(s),σ(s)].The

:::::::
disparity

:::::::
between

:::::
each

::
of

:::
the

::::
PDF

::::::::::
parameters

:::
for

:::
the

::
in

:::
situ

:::::::::::
observations

:::
and

:::::::
climate

:::::
model

::
at
:::::
each

:::
site

::::
then

:::::
gives

:
a
::::::::
measure

::
of

::::
bias.

::::
The

::::
goal

::
is

::
to

:::::::
estimate

::::
the

:::::::::
parameters

:
φY (s)

and φZ(s). This follows from evaluating the time-independent component of the climate model bias. Consider evaluating120

bias in the values of January midday near-surface temperature over a region. While the values of nearby days are clearly

dependent on each other, since focus is on evaluating time-independent bias, the time component of the data is dropped and

only the marginal distribution considered. The marginal distribution in this case gives the probability of a certain value of

January midday temperature just based on location and could for example be approximated as normal with mean and variance

parameters, as mentioned in Sect. 2.1. In the case of other climatological fields such as rainfall a more appropriate distribution125

might be that of a Bernoulli-Gamma with its own collection of parameters, as used in Lima et al. (2021). Caution in this

treatment should be applied in cases where, for example, the observational site only has a limited number of days of data and
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these are bunched around the same relatively short time period, since this period is unlikely to be representative of the time

series as a whole.

The disparity between the spatially varying parameters
:::::
φZ(s)::

at
:::
the

:::::::
climate

:::::
model

::::
grid

::::::
points

::
to

:::::::
quantify

:::
the

::::
bias

::::
and

::
to130

::::
apply

:::::::
quantile

::::::::
mapping

::
to

::::
bias

::::::
correct

:::
the

::::::
climate

::::::
model

::::::
output.

::::::::
Gaussian

::::::::
processes

:::
are

::::
used

::
to

::::::
model

:::
the

:::::::::
underlying

::::::
spatial

:::::::::
covariance

:::::::
structure

::
of

:::
the

::::::::::
parameters,

::::::
which

:
is
::::::::
required

::
to

:::::::
estimate φY (s) and φZ(s) in the site-level marginal distributions

serves as a measure of bias. Specifically, as in Sect. 2.2, the bias for each parameter φi can be defined by some discrepancy

function φB,i(s) = bi(φY,i(s),φZ,i(s)). Alternatively, the parameters associated with the climate model output φZ,i(s) can be

defined as a function of
::::
away

::::
from

:::
the

:::::::
location

::
of

:::
the

::
in
::::
situ

:::::::::::
observations.

::::::
Further

:::::::::
discussion

::::::
around

:::
the

:::::::::
definition

::
of

::::
bias

::
in135

::::::
climate

::::::
models

::
is

::::::::
provided

::
in

:::::::
appendix

:::
??.

:

:::::::
Consider

::
a

::::::::
collection

::
of

:::
nY ::

in
:::
situ

::::::::::::
observational

::::
sites,

::::::
where

::
for

:::::
each

:::
site

:
i
::::
there

:::::
exists

:::
mi::::::::::::

measurements
::
of

:::::
some

::::::::
property.

::
In

:::::::
addition,

:::::::
consider

:::::::
gridded

:::::
output

:::::
from

:
a
::::::
climate

::::::
model

::
at

::
nz::::::::

locations,
::::::
where

:
at
:::::
each

::::::
location

:::::
there

:::::
exists

:::
mz::::::::::::

measurements

::
of the unbiased parameters φY,i(s) and a latent biasfunction φB,i(s). In this paper an additive relationship is used

::::
same

::::::::
property.

:::
The

::::
data

:::
can

::::
then

:::
be

:::::::::
represented

:::::::
through

:::
the

:::::::::
following:140

y =
:::

[ys1 , . . . ,ysny
::::::::::

] (1)

ysi =
::::

[ysi,1, . . . ,ysi,mi
::::::::::::

] (2)

z =
:::

[zs′1 , . . . ,zs′nz
::::::::::

] (3)

zs′i =
::::

[zs′i,1, . . . ,zs′i,mz
::::::::::::

] (4)

:::::::
Defining

:::
the

::::::::
collection

:::
of

::
in

:::
situ

::::::::::
observation

::::
sites

::
as

:::::::::::::::
sy = [s1, . . . ,sny ] :::

and
:::
the

::::::::
collection

::
of

:::::::
climate

:::::
model

::::::
output

::::::::
locations145

::
as

:::::::::::::::
sz = [s′1, . . . ,s

′
nz
],

::::
then

::
the

:::::::::
collection

::
of

::::
PDF

:::::::::
parameter

:::::
values

:::
for

::::
each

:::
set

::
of

::::::::
locations

::
is

::::::
written

:::
as:

φY (sy) =
::::::::

[φY (
:::

s1), . . . ,φY (
::::::::

sny
)

::
] (5)

φZ(sz) =
::::::::

[φZ(
:::

s′1), . . . ,φZ(
::::::::

s′nz
)

::
] (6)

:::
The

::::
PDF

::::::::::
parameters

:::
are

:::::
each

::::::::
modelled

::
as

:::::
being

:::::::::
generated

::::
from

::::::
latent

::::::::
stochastic

:::::::::
processes

:::::::
{φY (s)}::::

and
::::::::
{φZ(s)}.::::

The

::::
latent

:::::::::
processes

:::
that

::::::::
generate

:::
the

:::::::::
parameters

:::
for

:::::::
climate

:::::
model

:::
are

:::::::::
considered

:::::::::
composed

::
of
::::

two
::::::::::
independent

:::::::::
processes,

::::
one150

:::
that

::::
also

::::::::
generates

::::
the

:::::::::
equivalent

:::::::::
parameters

:::
for

::::
the

::
in

::::
situ

::::::::::
observations

::::
and

:::::::
another

::::
that

::::::::
generates

:::::
some

::::
bias, such that

φZ,i(s) = φY,i(s)+φB,i(s). Additionally, the bias φB,i(s) is considered independent of the value of φY,i(s). To estimate the

parameters across the domain and quantify the bias, these spatially varying parameters are modelled as spatial stochastic

processes with
::::::::::::::::::::::::::
{φZ(s)}= {φY (s)}+ {φB(s)}.::::

The
::::::
family

::
of

::::
GPs

::
are

:::::::
chosen

::
for

:::
the

:::::
latent

:::::::::
processes.

::
A

::::
link

:::::::
function

::
is

::::
used

::
for

:::
the

::::
case

::::::
where

:::
the

::::::::
parameter

:::::
space

::
is

:::
not

:::
the

:::::
same

::
as

:::
the

::::::
sample

:::::
space

:::
for

::::
GPs.

:::::::::::
Considering

:::
the

::::
case

::
of

::
no

::::
link

::::::::
function,155

::
the

:::::::::
following

:::
can

::::
then

::
be

:::::::
written:

:

6



φY (s)
::::

∼
:
GP(·, ·|θφY

)
::::::::::

(7)

φB(s)
::::

∼
:
GP(·, ·|θφB

)
::::::::::

(8)

φZ(s)
::::

∼
:
GP(·, ·|θφY

,θφB
)

::::::::::::::
(9)

:::
The

:::::::::
collection

::
of hyper-parameters θ. It’s important to note that since the collection of parameters may not necessarily all160

belong to the same parameter space, their representation can be standardized by applying a link function transformation to some

of the parameters φ̃i = hi(φi) so that all parameters can
::
for

:::
the

:::::::::
generating

::::::::
processes

:::
are

:::::
given

:::
by

::::
θφY :::

and
::::
θφB:::::::::::

respectively.

:::
The

:::::::::::::::
hyper-parameters

::::
used

::
in

:::
this

:::::
paper

::::::
consist

:::
of

:
a
:::::
mean

::::::::
constant,

:::::
kernel

:::::::
variance

::::
and

:::::
kernel

::::::::::
lengthscale.

:::::
Note

:::
the

:::::::
additive

:::::::
property

::
of

::::
GPs

:::::
allows

::::::
φZ(s)::

to
::::
also be represented by the same family of stochastic processes. In the methodology presented

in this paper the family of Gaussian processes is used to model spatial dependencies. The full
:
a
:::
GP,

::::::
where

:::
the

:::::
mean

::::
and165

:::::::::
covariances

:::
are

:::::::::
computed

::::
from

:::
the

::::
sum

::
of
:::

the
:::::::

relative
::::::
values

::::
from

:::
the

::::::::::
independent

:::::::::
processes.

:::::::
Further

:::::::::
discussion

::::::
around

:::
the

::::::::
properties

::
of

::::
GPs

:::
is

:::::::
provided

:::
in

::::::::
appendix

:::
??.

::::
The

:
hierarchical model is then the following, with dependencies illustrated

through the plate diagram shown in Fig. 1.

Y (s, t) | φY (s)
i.i.d.∼ FY (φY (s))

Z(s, t) | φZ(s)
i.i.d.∼ FZ(φZ(s))170 

φZ,i(s) = φY,i(s)+φB,i(s) if correct support,

φY,i(s)⊥⊥ φB,i(s)

φY,i(s)∼GP(·, ·|θφY,i
)

φB,i(s)∼GP(·, ·|θφB,i
)

φ̃Z,i(s) = φ̃Y,i(s)+ φ̃B,i(s) if link function required for correct support.

φ̃Y,i(s)⊥⊥ φ̃B,i(s)

φ̃Y,i(s)∼GP(·, ·|θφ̃Y,i
)

φ̃B,i(s)∼GP(·, ·|θφ̃B,i
)

::
In

:::::::
addition,

::
a

::::::
specific

:::::::
example

::::::
where

:::
the

:::::
PDFs

:::
are

:::::::::::
approximated

::
as

:::::::
normal

:
is
:::::::::
presented

::
in

:::::::
appendix

:::
??.

:
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Plate diagram showing a generic version of the full hierarchical model. The in-situ observations Y and climate model output

Z are generated from distributions with the collection of parameters φY and φZ respectively. The parameters φZ are

modelled as some function of the parameters φY and some independent bias φB . The parameters φY and the corresponding

bias φB are each themselves modelled over the domain as generated from Gaussian processes with hyper-parameters θY and

θZ .

θY

φY (s)

Y (s)

θB

φB(s)

φZ(s)

Z(s)
Site (si ∈ S)

Latent Spatial GPs Parameters

Site Level PDFs Parameters and Bias

Data

Figure 1.
::::
Plate

::::::
diagram

:::::::::
illustrating

:::
the

:::
full

:::::::::
hierarchical

:::::
model.

:::
The

::::::
random

:::::::
variables

:::
for

:::
the

:::::
in-situ

:::::::::
observations

:::::
Y (s)

:::
and

::::::
climate

:::::
model

:::::
output

::::
Z(s)

:::
have

:::::
PDFs

:::
with

:::
the

::::::::
collection

::
of

::::::::
parameters

:::::
φY (s):::

and
:::::
φZ(s)::::::::::

respectively,
:::::
where

:::::
φZ(s):is::::::::

modelled
:
as
:::
the

:::
sum

::
of
::::::
φY (s):::

and

::::
some

:::::::::
independent

:::
bias

::::::
φB(s).::::

The
::::::::
parameters

:::::
φY (s):::

and
:::
the

:::::::::::
corresponding

:::
bias

::::::
φB(s) ::

are
::::
each

::::::::
themselves

::::::::
modelled

:::
over

:::
the

::::::
domain

::
as

:::::::
generated

::::
from

:::::::
Gaussian

:::::::
processes

::::
with

:::::::::::::
hyper-parameters

:::
θY :::

and
:::
θB .

Gaussian processes naturally introduce spatial structure into the parameters and enable inference with misaligned data.

Predictive estimates of the PDF parameters for each data source can be made for any set of locations across the domain.

Estimates at the climate model output locations are needed for bias correction, while there’s also the possibility to compute175

estimates at higher resolution and combine with a downscaling approach, as in Lima et al. (2021). Additional added benefits

of GPs include properties that facilitate inference, for example the additive property where the sum of two independent GPs is

itself also represented as a GP. More details following on from this and the application of GPs in the methodology is provided

in Sect. 3.3.

Inference on the parameters of site-level and spatial distributions of the
:::
the

::::::::::
hierarchical model given the data is applied in a180

Bayesian hierarchical framework, where parameters of the model are
:::::::::
themselves treated as random variables with distributions.

The distribution prior to conditioning on any data is known as the prior distribution and allows the incorporation of a domain

specific expert’s knowledge in the estimates of the parameters. The updated distribution after conditioning on the observed data

is known as the posterior and is approximated using Markov chain Monte Carlo (MCMC) methods, which provide samples

from the posterior. An important advantage of this framework is it allows flexible extensions of the model while automatically185

maintaining robust uncertainty estimation. This results in the model being applicable to a wide range of problems and domains,

especially important for correcting
:
of

:::
the

::::::::::
parameters

::::
from

:::
the

::::::::::
distribution

::::::::::::::::::::::::::::::
P (φY (sy),φZ(sz),θφY

,θφB
|y,z).

::::::::
Estimates

:::
of

::
the

::::::::::
parameters

:::
φY :::

and
:::
φZ::

at
::::
any

::
set

::
of

::::
new

::::::::
locations

:̂
s
::::
can

::::
then

::
be

:::::
made

::
by

:::::::::::
constructing

:::
the

:::::::
posterior

:::::::::
predictive

::::::::::
distribution,

::
in

::::::::
particular

:::
for

:::
the

::::::
purpose

:::
of

:::
bias

:::::::::
correction

::::::::
estimates

::
of

::::
φY ::

at
:::
the

::::::
climate

:::::
model

::::::::
locations

::::
can

::
be

:::::
made

::
by

::::::::
sampling

:::::
from

::
the

::::::::
posterior

::::::::
predictive

::::::::::
distribution

::
of

::::::::::::::
P (φY (sz)|y,z).:190
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::::
After

::::::::
obtaining

:::::::
multiple

::::::::::
realisations

::
of

:::::::
φY (sz):::

and
:::::::
φZ(sz):::::::

quantile
:::::::
mapping

::
is

::::
then

::::
used

::
to

::::
bias

::::::
correct

:::
the

::::::
climate

::::::
model

::::
time

:::::
series

::
at

:::::
every

::::
grid

::::
cell

:::::::
location.

:::::::::::
Specifically,

:::
for

:::::
each

:::::
value

::
of

:::
the

::::
time

::::::
series

::::
from

::::
the climate model output since

there’s a broad range of users interested in different variables and domains with varying levels of complexity
::
at

:
a
:::::
given

:::::
point

:::::
(zs′i,j),::::

this
:::::::
involves

:::::::
finding

:::
the

::::::::
percentile

:::
of

::::
that

:::::
value

:::::
using

:::
the

:::::::::
parameters

:::::::
φZ(s

′
i) :::

and
::::
then

::::::::
mapping

:::
the

:::::
value

:::::
onto

:::
the

:::::::::::
corresponding

:::::
value

::
of

:::
the

:::::::::
equivalent

::::::::
percentile

::
of

:::
the

::::
PDF

::::::::
estimated

:::
for

:::
the

::::::::
unbiased

:::::::
process,

::::::
defined

:::::::
through

:::
the

:::::::::
parameters195

::::::
φY (s

′
i).::::

The
:::::::::
cumulative

:::::::
density

:::::::
function

::::::
(CDF)

::::::
returns

:::
the

::::::::
percentile

::
of
::

a
:::::
given

:::::
value

:::
and

:::
the

::::::
inverse

:::::
CDF

::::::
returns

:::
the

:::::
value

:::::::::::
corresponding

:::
to

:
a
::::::

given
:::::::::
percentile,

:::::
which

::::::
results

:::
in

:::
the

::::::::
following

:::::::::
correction

::::::::
function

:::::::::::::::::::::
ẑsi,j = F−1

Ysi
(FZsi

(zsi,j)),:::::
where

:::
F

::::::::
represents

:::
the

::::
CDF

::
at
::
a
:::::::
specific

:::
site.

::::
The

::::
CDF

::::
can

::
be

::::::::
estimated

::
as

:::
an

::::::
integral

::::
over

:::
the

::::::::::
parametric

::::
form

:::::::
assumed

:::
for

:::
the

:::::
PDF.

:::
The

::::::::
Bayesian

::::::::::
hierarchical

::::::
model

::::::::
presented

:::::::
provides

::
a
::::::::
collection

:::
of

:::::::::
realisations

:::
for

:::::::
φY (sz)::::

and
::::::
φZ(sz):::::

from
::
an

::::::::::
underlying

::::
latent

:::::::::::
distribution.

::::::::
Applying

:::::::
quantile

:::::::
mapping

:::::
with

::::
each

:::
set

::
of

::::::::::
realisations

::::
then

:::::
results

:::
in

:
a
:::::::::
collection

::
of

::::
bias

::::::::
corrected

::::
time200

:::::
series,

::::
with

:::
an

:::::::::
expectation

::::
and

::::::::::
uncertainty.

:::
The

::::
full

:::::::::
framework

:::
for

:::
bias

:::::::::
correction

::::::::
proposed

::
in

:::
this

:::::
paper

::
is
::::
then

:::::::::
illustrated

::
in

:::
Fig.

::
2.

::::
The

::::::::::
formulation

:::
for

::
the

::::::::
posterior

:::
and

::::::::
posterior

:::::::::
predictive

:
is
:::::
given

::
in

::::::::
appendix

:::
??.

Apply MCMC inference on

hierarchical model to obtain

estimates of φY (sy) and φZ(sz),

as well as estimates of the

hyper-parameters θY and θB for

the generating spatial processes.

Sample from the posterior

predictive distribution

P (φY (sz)|y,z) to get estimates

of the unbiased PDF parameters at

the climate model grid cells.

Use the samples of φY (sz) and

φZ(sz) to apply quantile mapping

to the climate model time series at

each grid cell, resulting in a bias

corrected output with uncertainty

bands.

Figure 2.
:::
The

:::
full

:::
bias

::::::::
correction

::::::::
framework

:::::::
proposed

::
in
:::
this

:::::
paper

:::::
broken

:::::
down

:::
into

:::
the

:::
key

::::
steps.

3 Simulated Examples
::::
Data

::::::::::
Generation

The goal of the model
:::::::::
hierarchical

::::::
model

::
in

::::
Fig.

:
1
:
is primarily to estimate, with reliable uncertainties, the true unbiased values

of the PDF parameters at each location of the climate model output so bias correction can be applied. The model additionally205

infers the spatial structure of these parameters and their bias. Results are presented to
::::::::
Simulated

::::::::
examples

:::
are

::::::::
generated

::::
that

highlight the advantage of two key features of the methodology over other approaches in the literature: modelling shared spatial

covariance between the in situ data and climate model output through the inclusion of a shared generating latent process (Sect.

3.1
::

3.1) and the Bayesian hierarchical nature and
:::::::::
framework

::::
with

:
uncertainty propagation (Sect. 3.2

:::
3.2). One dimensional

simulated examples are chosen for clarity in illustrating these features, although it is noted the implementation works for210

higher dimensional domains as is useful in real-world scenarios. The steps for generating the data and the results are presented

separately for each example, while the discussion of results is done together in Sect. 5.
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3.1 Shared Latent Generating Processes: Non-Hierarchical Example

3.1
::::::::::::::

Non-Hierarchical
::::::::::
Examples:

:::::
Data

::::::::::
Generation

A
::
To

:::::::
illustrate

:::
the

::::::::
potential

::::::::
advantage

::
of
:::::::::
modelling

::::::
shared

:::::::::
generating

:::::
spatial

:::::::::
processes, non-hierarchical example is presented215

where direct
:::::::
examples

:::
are

:::::::::
generated

::
for

:::::::::
simplicity.

::::::
Direct

:
measurements are assumed for one parameter of the PDFs for the

in situ observations φY (s) ::::::
φY (sy) and for the climate model output φZ(s)::::::

φZ(sz). The goal is to predict the parameter φY (s)

across the spatial domain
::::::::
unbiased

::::::::
parameter

::
at

:::
the

::::::
climate

::::::
model

:::::::
locations

:::::::
φY (sz) using information from both the simulated

in situ observations and climate model output
:::
sets

:::
of

::::
input

::::
data

::::::
φY (sy)::::

and
::::::
φZ(sz), which are related through φZ = φY +φB .

The parameters φY (s) and φB(s) are considered independent and generated from Gaussian processes
::::::::::::::::::::
φZ(s) = φY (s)+φB(s).220

Comparison is made to the approach of inferring φY (s) just
::::::
φY (sz):from the in situ data

::::
alone

:::::::
φY (sy), as in Lima et al.

(2021). The purpose of this example is to illustrate the advantage of modelling shared latent generating processes between the

observational data and the climate model output, as in Fig. ??. Relative performance is evaluated for three alternative simulated

scenarios that correspond to different possible real-world situations.

The simulated data in this example
::::
The

::::
data is generated assuming the dependency

:::::
model

:
in Fig. 4 and the relationship225

φZ = φB +φY , where φY and φB are assumed independent. The latent Gaussian process distributions that generate φY and

φB across the domain
:
1,
::::::
where

:::
the

:::
GPs

:
are taken with constant mean and an RBF kernel. The hyper-parameters of these latent

distributions
::::
radial

:::::
basis

:::::::
function

::::::
(RBF)

::::::
kernel

::::
with

::::::::
constant

:::::
kernel

::::::
length

:::::
scale

::::
and

:::::
kernel

::::::::
variance.

::::
The

:::::::
specific

::::::
values

::
of

:::
the

::::::::::::::
hyper-parameters

:::::
used

::
to

:::::::
generate

:::
the

::::
data

:
and the number of simulated observations are set for three scenarios , as

::::::::::
observations

:::::
under

:::
the

:::::::
different

::::::::
scenarios

::
is
:
given in Table . The prior distributions

:
1.
:

230

:::
For

::::
each

::::::::
scenario,

:
a
::::::
sample

:
of the parameters are taken as the same for each scenario. Specifics of the data generation are

given in Sect. of the appendix.

The three scenarios
::::::
φY (s

?)
:::
and

:::::::
φB(s

?)
:
is
:::::
taken

::::
from

:::
the

:::::::::::
distributions

:::::
GPφY::::

and
:::::
GPφB::

at
::::::::
regularly

::::::
spaced,

:::::::::::::
high-resolution

:::::::
intervals.

::::::
These

:::::::
samples

:::
are

::::::::
referred

::
to

::::
here

:::
as

::::::::
complete

::::::::::
realisations

:::
and

:::::::::
represent

:::::::::
underlying

:::::
fields

:::
for

:::::
each

:::::::::
parameter

:::::
across

:::
the

:::::::
domain.

::::::
Direct

:::::::::::
‘observations’

:::
of

:::
the

::::::::
parameter

:::::::
φY (sy) ::::

from
:::
the

:::::::::
underlying

::::
field

:::
are

:::::::::
simulated

::
at

::::::::::::::
lower-resolution,235

:::::::::
randomised

::::::::
locations

::::
after

:::::::::::
conditioning

::
the

::::::::::
distribution

::::::
GPφY ::

on
:::
the

::::::::
complete

::::::::
realisation

::::
and

:::::::::
introducing

:::::
some

:::::
noise.

::
In

:::::
order

::
to

:::::::
simulate

::::
input

::::
data

:::
for

:::
the

::::::::
parameter

::::::
φZ(sz):::

of
::
the

:::::::
climate

:::::
model

::::::
output,

:::::::
samples

:::
are

::::
first

::::::::
generated

:::
for

::::::
φY (sz):::

and
:::::::
φB(sz)

:
at
::::::::

regularly
::::::
spaced

::::::::
intervals

::::
after

:::::::::::
conditioning

:::
the

::::::::::
distributions

::::::
GPφY :::

and
::::::
GPφB:::

on
:::
the

::::::::
complete

::::::::::
realisations,

::::
then

:::
the

::::
sum

::
of

::::
these

:::::::
samples

::
at

::::
each

:::::::
location

::
is

:::::
taken

::
to

::::
give

:::::::
φZ(sz).:::

The
:::::
input

::::
data

::::::
φY (sy)::::

and
::::::
φZ(sz):::

can
:::
be

:::::::::
considered

::
as

:::
the

:::::::
training

:::
set,

:::::
while

:::
the

:::::::::
underlying

:::::::::
realisations

:::::::::
generated

::
for

:::::::
φY (sz):::

are
:::
the

:::
test

:::
set

::::
used

:::
for

::::::::
validating

:::
the

::::::
model

:::::::::::
performance.240

::::
Data

::
is

::::::::
generated

:::
for

::::
three

::::::::
scenarios

:::::::
chosen

::
to represent different potential real-world situationsand the data generated for

each is shown ,
:::::::::

illustrated
:
in Fig.

:
3. The first scenario (Fig.

:
3a) represents an example case where it is expected that there is

ample data provided in the form of in situ observations to capture the features of the underlying complete realisation of φY

without significant added value provided from inclusion of the climate model output during inference. The second scenario

(Fig.
:
3b) is an adjustment where the in situ observations are relatively sparse and the underlying bias is relatively smooth. In245

this situation the climate model output should provide significant added value in estimating φY across the domain since it is

10



only afflicted by a comparatively simple bias that is easy to estimate. The final scenario (Fig.
:
3c) also involves sparse in situ

observational data but with a reduced smoothness of the bias compared to
::
the

:
other scenarios. In this scenario the climate

model output should provide added value in estimating φY across the domain but this will be limited compared to scenario two

due to the difficulty of disaggregating
::
the

::::::::::
components

:
and estimating the comparatively more complex bias.250

:::::::
Dependent

::::::
Variable ::::

Model
::::::::
Parameters Scenario 1 Scenario 2 Scenario 3

In-Situ

Unbiased PDF Parameter φY

Kernel Variance (vφY
) 1.0 1.0 1.0

In-Situ Kernel Lengthscale (lφY
) 3.0 3.0 3.0

In-Situ Mean Constant (mφY
) 1.0 1.0 1.0

In-Situ Observation Noise (σφY
) 0.1 0.1 0.1

Bias
:
#
:::::::::
Observations

:::
80.0

:::
20.0

:::
20.0

Bias PDF Parameter φB

Kernel Variance (vφB
) 1.0 1.0 1.0

Bias Kernel Lengthscale (lφB
) 10.0 20.0 5.0

Bias Mean Constant (mφB
) -1.0 -1.0 -1.0

# In-Situ Observations 80.0 20.0

Climate Model PDF Parameter φZ
20.0 # Climate Model Predictions

:::::::::
Observations 100.0 80.0 80.0

Table 1. A table showing the hyper-parameters of the two latent Gaussian processes used to generate the complete underlying realisations of

φY::::::
φY (s

?), φB ::::::
φB(s

?) and hence φZ::::::
φZ(s

?), as well as observations of φY ::::::
φY (sy):and φZ::::::

φZ(sz), on which inference is done for three

scenarios. The number of observations representing in-situ data and climate model output is also given.

3.2 Bayesian Framework: Hierarchical Example

A hierarchical example is presented in this section where the in situ data and climate model output are simulated at each site

as generated from normal distributions, as in the specific example given in Sect. . The goal of the model is the same as in

Sect. , that is to predict the parameters of the PDFs for the climate model output and in situ observations at the locations

of the climate model output. An example of how uncertainty in these predictions can be propagated through bias correction255

techniques such as quantile mapping is then presented. The purpose of this section is to demonstrate the model working in

the intended hierarchical structure and to illustrate the benefit of having a fully Bayesian hierarchical model for uncertainty

estimation.
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Figure 3.
:
A

:::::
figure

:::::::
showing

:::::::
simulated

::::::::
observed

:::
data

:::
for

:::
the

::::
PDF

:::::::::
parameters

::::::
φY (sy):::

and
:::::::
φZ(sz),::

as
::::
well

::
as

:::
the

::::::::
underlying

::::::::
complete

::::::::
realisations

:::
for

::::
each

:::::::
parameter

::::
and

::
the

:::::::::
underlying

:::
bias

:::::::
(φY (s?),::::::

φZ(s
?)

:::
and

::::::::
φB(s

?)).
::::
Three

::::::::
scenarios

::
are

::::::
shown

:::
and

::::::::
correspond

::
to

::::
data

:::::::
generated

::::
from

::::::::
parameters

::
in

:::::
Table

:
1.

The simulated data in this

12



3.2
::::::::::

Hierarchical
:::::::::
Example:

:::::
Data

::::::::::
Generation260

::::::::
Following

:::
on

:::::
from

:::
the

::::::::::::::
non-hierarchical

:::::::::
examples,

::
to

::::::::
illustrate

:::
the

:::::::::
advantage

:::
of

::::::::::
uncertainty

::::::::::
propagation

::
in

::::
the

::::::::
Bayesian

:::::::::
framework

:
a
:::::::::::

hierarchical example is generatedassuming the dependencies in Sect. and Fig. . Defining Y (s, t) and Z(s, t)

as the in-situ .
:::
In

:::
situ

:
data and climate model output respectively, then the time-independent PDF

::
are

::::::::
simulated

:
at each site is

taken as normal
::
as

::::::::
generated

:::::
from

::::::
normal

:::::::::::
distributions, such that Y (s)∼N (µY (s),σY (s)) and Z(s)∼N (µY (s),σY (s)) ::

as

::
in

:::::::
appendix

:::
??. The following relationship is assumed for the mean parameters µZ(s) = µY (s)+µB(s), where µB(s) is the265

bias in the mean for the climate data. For the standard deviation, the parameters are first transformed using a logarithmic link

function and then the relationship σ̃Z(s) = σ̃Y (s)+ σ̃B(s) is assumed, where σ̃B(s) is the bias in the transformed parameter.

The latent distributions that generate µY (s), µB(s), σ̃Y (s) and σ̃B(s) across the domain are assumed as independent GPs with

constant mean and an RBF kernel. The hyper-parameters for these latent generating processes are set for a single scenario,

as given in Table . Further specifics of the data generation is provided in Sect. of the appendix
:
2
:::::
along

::::
with

::::
the

::::::
number

:::
of270

::::::::
simulated

::::::::::
observation

:::::::
locations

::::
and

:::
the

::::::
number

::
of

:::::::
samples

:::
per

::::::::
location.

:
A
:::::::

sample
::
of

:::
the

:::::::::
parameters

:::::::
µY (s

?),
:::::::
µB(s

?),
:::::::
σ̃Y (s

?)
:::
and

:::::::
σ̃B(s

?)
::
is

::::
taken

:::::
from

:::
the

::::::::::
distributions

:::::::
GPµY

,
::::::
GPµB

,
:::::
GP σ̃Y::::

and

:::::
GP σ̃B::

at
::::::::
regularly

::::::
spaced,

::::
high

:::::::::
resolution

::::::::
intervals.

:::::
These

:::::::
samples

:::
are

:::::::
referred

::
to
:::

as
::::::::
complete

:::::::::
realisations

::::
and

::::::::
represent

:::
the

:::::::::
underlying

::::
fields

:::
for

::::
each

:::::
PDF

::::::::
parameter

::::::
across

:::
the

:::::::
domain.

::::
After

:::::::::::
conditioning

:::
the

:::::
latent

::::
GPs

::
on

:::
the

::::::::
complete

::::::::::
realisations

::
a

::::::
sample

::
is

::::::::
generated

:::
for

:::::::
µY (sy) :::

and
:::::::
σ̃Y (sy) ::

at
:
a
::::::::
selection275

::
of

::::::::::::::
lower-resolution,

::::::::::
randomised

:::::::
locations

::::
that

::::::::
represent

::::::::
simulated

::
in

:::
situ

::::::::::
observation

:::::
sites.

:::::::
Multiple

::::::::::
observations

:::
of

:::::
Y (si):::

are

:::
then

:::::::::
generated

::
at

::::
each

::
in

:::
situ

::::::::::
observation

:::
site

:::
by

::::::::
sampling

::::
from

:::
the

::::::::::::
corresponding

::::::
normal

::::::::::
distribution

:::::::::::::::::
N (µY (si), σ̃Y (si)). ::

In

::
the

::::
case

::
of

:::
the

::::::::
simulated

:::::::
climate

:::::
model

::::::
output,

:::::::
samples

:::
are

::::
first

::::::::
generated

::
for

:::::::
µY (sz),:::::::

µB(sz),:::::::
σ̃Y (sz) :::

and
::::::
σ̃B(sz)::

at
::::::::
regularly

:::::
spaced

::::::::
intervals

::::
after

:::::::::::
conditioning

:::
the

:::::
latent

::::::::::
distributions

:::
on

:::
the

::::::::
complete

::::::::::
realisations,

::::
then

:::
the

::::
sum

::
of

:::::
these

:::::::
samples

::
at

::::
each

::::::
location

::
is
:::::
taken

::
to
::::

give
:::::::
µZ(sz):::

and
:::::::
σ̃Z(sz).::::

The
::::::
climate

::::::
model

::::::
output

::
is

::::
then

::::::::
generated

::
at

::::
each

:::
of

::::
these

::::::::
locations

:::::
from

:::
the280

:::::::::::
corresponding

:::::::
normal

:::::::::
distribution

:::::::::::::::::::::::
Z(si)∼N (µZ(si), σ̃Z(si)).

There
::
In

:::
the

::::::::
generated

::::::::
example

::::
there

:
are 40 locations corresponding to simulated in situ observation sites, where for each

site 20 measurements are generated. Likewise, there
::::
There

:
are 80 locations corresponding to simulated climate model output

:::
grid

::::::
points and at each location 100 samples are generated. This reflects the typical scenario where the climate model output has

greater spatiotemporal coverage than in situ observations but is also afflicted with greater
::::::
afflicted

::::
with

:
bias. In Fig.

:
4 examples285

of the generated samples
:
of

::::::
Y (si) :::

and
:::::
Z(si):are shown corresponding to the nearest sites for three locations. It is clear that,

due to limited observations, there will be significant uncertainty in estimates of the mean and standard deviation parameters

at each site and it’s important this uncertainty is propagated when estimating the parameters across the domain
::
to

::::::::
inference

::
of

::
the

:::::::::::::::
hyper-parameters

:::
for

:::
the

:::::
latent

::::
GPs

:::
and

::::
also

::
to

::::::::
estimates

:::
of

:::
the

:::::::
unbiased

::::
PDF

::::::::::
parameters

::
at

:::
the

::::::
climate

::::::
model

::::::::
locations

:::::::
(µY (sz) :::

and
:::::::
σ̃Y (sz)). The underlying, complete realisations of the parameters µY (s), µZ(s), σY (s) and σZ(s):::::::

µY (s
?),

:::::::
µZ(s

?),290

::::::
σY (s

?)
:::
and

:::::::
σZ(s

?), as well as the bias µB(s) and σB(s)::::::
µB(s

?)
::::
and

::::::
σB(s

?), are shown in Fig.
:
5. In addition, the

::::::::
empirical

mean value and standard deviation of the generated data is given
::::::::
illustrated at the simulated in situ observation and climate

model sites.
:::
The

:::::
goal

::
of

:::
the

::::::::::
hierarchical

::::::
model

::
is

::::
then

::
to

::::::
predict

:::
the

::::::::
unbiased

::::::
values

:::
for

:::
the

:::::::::
parameters

::
of

:::
the

::::::
PDFs

::
at

:::
the

13



:::::::
locations

::
of

:::
the

:::::::
climate

:::::
model

::::::
output

:::::::
(µY (sz):::

and
::::::::
σ̃Y (sz)), ::::

while
::::::::::
propagating

::::::::::
uncertainty.

:::
An

:::::::
example

:::
of

:::
how

:::
the

::::::::::
uncertainty

::
in

:::::::::
predictions

::
of

:::::::
µY (sz) :::

and
::::::
σ̃Y (sz)::

is
::::::::::
propagated

::::::
through

:::::::
quantile

::::::::
mapping

::
is

::::
then

::::::::
provided.295

:::::::
Dependent

::::::
Variable ::::

Model
::::::::
Parameters Hierarchical Scenario

In-Situ Mean,

Unbiased PDF Mean µY

Kernel Variance (vµY ) 1.0

In-Situ Mean, Kernel Lengthscale (lµY ) 3.0

In-Situ Mean, Mean Constant (mµY ) 1.0

In-Situ Transformed Variance,

Unbiased PDF Transformed

Variance σ̃2
Y

Kernel Variance (vσ̃2
Y

) 1.0

In-Situ Transformed Variance, Kernel Lengthscale (lσ̃2
Y

) 3.0

In-Situ Transformed Variance, Mean Constant (mσ̃2
Y

) 1.0

Bias Mean,

Bias PDF Mean µB

Kernel Variance (vµB ) 1.0

Bias Mean, Kernel Lengthscale (lµB ) 10.0

Bias Mean, Mean Constant (mµB ) -1.0

Bias Transformed Variance,

Bias PDF Transformed Variance

σ̃2
B

Kernel Variance (vσ̃2
B

) 1.0

Bias Transformed Variance, Kernel Lengthscale (lσ̃2
B

) 10.0

Bias Transformed Variance, Mean Constant (mσ̃2
B

) -1.0

Unbiased Output Y
# Spatial Locations of In-Situ Observations

::::::::
Observation

::::
Sites 40.0

# Spatial Locations of Climate Model Predictions
:::::::::
Observations

::
per

:::
Site 80.0

:::
20.0

Climate Model Output Z
# Samples per Location of In-Situ Observations

::::::::
Observation

:::
Sites

:
20.0

:::
80.0

# Samples per Location of Climate Model Predictions
:::::::::
Observations

::
per

:::
Site 100.0

Table 2. A table showing the hyper-parameters used to generate the complete underlying realisations and the measurement data on which

inference is done for the hierarchical scenario. The number of sites where data is generated along with the number of samples for each site

is also given.
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Figure 4.
:::::::::
Histograms

::
for

:::
the

:::::
climate

:::::
model

:::::
output

::
at

::::
three

:::::::
locations

:::
and

::
the

:::::::::::
corresponding

::::
data

:::
from

:::
the

::::::
nearest

:
in
:::
situ

:::::::::
observation

::::
site.

:::
The

::::::
locations

:::
are

::
a)

::::::
s=11.4,

::
b)

:::::
s=46.8

:::
and

::
c)

::::::
s=79.7.

:::
The

::::
latent

::::::
normal

:::::::::
distribution

::
the

::::
data

:::
was

:::::::
generated

::::
from

::
is
::::::::
illustrated

::
as

:
a
:::::
dotted

:::
line.
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Figure 5.
:::::::
Simulated

:::::::
complete

:::::::::
realisations

::
for

:::
the

::::::::
parameters

:::::::
µY (s

?),
::::::
µB(s

?),
:::::::
µZ(s

?),
::::::
σ̃Y (s

?),
::::::
σ̃B(s

?)
:::
and

::::::
σ̃Z(s

?)
::
as

:::
well

::
as

:::
the

:::::::
empirical

:::::
values

:
at
:::
the

:::::::::
observation

:::::::
locations

::
for

:::
the

::
in

:::
situ

:::
and

::::::
climate

:::::
model

:::
data.

4 Results

Inference of the parameters of the models
::::::::
Inference is done in a Bayesian framework using MCMC and the No-U-Turn Sampler

(NUTS) algorithm (Hoffman and Gelman, 2014) implemented in Numpyro (Phan et al., 2019). The parameters
:::::::::::::::
/hyper-parameters

are treated as random variables with associated probability distributions. A prior distribution is set for each parameter
::::::::::::::
hyper-parameter

and represents the belief on the distribution before observing any data, which typically incorporates knowledge from applica-300

tion specific experts. In the examples presented, relatively non-informative priors are chosen since the data is simulated and

represents generic examples. The posterior distribution of each parameter
::::::::::::::
/hyper-parameter

:
is the updated distribution after
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observing and conditioning on the data. Estimates of the parameters φY (s), φZ(s) :::
PDF

::::::::::
parameters

::::::
φY (ŝ),::::::

φZ(ŝ):and the

corresponding bias φB(s) across the domain given the posterior and the observed data is
:::::
φB(ŝ)::

at
::::
new

:::::::
locations

:::::
away

:::::
from

::
the

::::::::::
observation

:::::
sites,

:::
are then referred to as

:::::::
samples

::::
from

:
the posterior predictive.305

4.1 Non-Hierarchical Examples: Results

The expectation, standard deviation and 95% credible intervals for the prior distribution and posterior distribution after inference

of each parameter under the three different scenariosis given in Table . Comparisons are shown in the statistics between the

posterior distributions of the full model presented in this paper, referred to as the shared process model,
:::
The

::::::
shared

:::::
latent

::::::
process

::::::
model

::::::::
presented

::
in

::::
this

:::::
paper

::
is

::
fit

::
to

:::
the

:::::
three

::::::::::::::
non-hierarchical

:::::::
example

:::::::::
scenarios,

::
as

::::::::
discussed

:::
in

::::
Sect.

::::
3.1.

:::::
Input310

:::
data

:::
for

:::::::
φY (sy) and the case where only the parameters for

:::::::
φZ(sz) :::

are
:::::::
provided

::::
and

:::
the

::::::::::::::
hyper-parameters

:::
for

:::
the

:::::
latent

::::
GPs

:::
that

:::::::
generate

:::
the

::::::::
unbiased

:::
and

::::::
biased

::::::::::
components

:::::::
inferred.

:::::::::::
Comparisons

::
in

::::::::
estimates

::
of

:::
the

::::::::::::::
hyper-parameters

:::
for

:::
the

::::::::
unbiased

::::::
process

::::::
(mφY

,
:::
vφY::::

and
::::
lφY

)
:::
are

::::
made

:::
to

::
the

::::::::
approach

::
of

:::::
only

:::::
fitting

::
to the in situ dataare modelled as generated from a latent

Gaussian processes, referred to
:::
here

:
as the single process model. In Sect. of the appendix, an illustration is given of

::::::::
approach

::::
since

:::
the

:::::
latent

:::::::
process

:::::::::
generating

:::
the

:::
bias

::
is
:::
not

:::::::::
modelled.

:::
The

:::::::::
difference

:::::::
between

:::
the

::::::
shared

:::
and

::::::
single

::::::
process

::::::::::
approaches315

:
is
:::::::
detailed

::::::
further

::
in
::::::::

appendix
:::
??.

::::
The

::::::::::
expectation,

::::::::
standard

::::::::
deviation

:::
and

:::::
95%

:::::::
credible

:::::::
intervals

:::
for

:
the prior and posterior

distributions of each parameter after inference with the shared process model for scenario one
::
the

:::::::::::::::
hyper-parameters

:::::
under

:::
the

::::
three

:::::::
different

::::::::
scenarios

::
is

:::::
given

::
in

:::::
Table

:
3.

Under all scenarios and for both the shared process and single process models the 95% credible interval of the posterior

for every hyper-parameter bounds the value specified in generating the data. The expectation for the posterior distribution320

of the shared process model
::::::::
unbiased

::::::::::::::
hyper-parameters

:
is in general closer to the specified value than

:
in

:::
the

::::::
shared

:::::::
process

:::::
model

::::::::
compared

:::::
with the single process model and the range of the credible interval is smaller. In scenario one

:::
and

:::::
three the

differences between the
:::::
shared

:::
and

::::::
single

::::::
process

:
models posteriors are relatively insignificant

:::
for

:::
the

:::::
mean

:::::::
constant

::::::
(mφY

)

:::
and

:::::
kernel

::::::::
variance

:::::
(vφY

), although the shared process model does show a
:::::
shows

:
a
:::::::::
noticeable reduction in the uncertainty of

the length scale for the latent process generating φY:::::
kernel

::::::
length

::::
scale

:::::
(lφY

). In scenario two the difference is more significant325

and clear improvement is shown in both the expectation and uncertainty of latent parameter estimates for the shared process

model. Improvement is also clear in estimates from the 3rd scenario, although the relative difference in performance between

models is less significant,
:::::
both

::
in

:::
the

:::::::::
expectation

::::
and

:::::::::
uncertainty

::
of

::::::::::::::
hyper-parameter

::::::::
estimates.

Predictions for the underlying fields of the parametersφY (s), φZ(s) and the corresponding bias φB(s) across the domain

given
::::
After

::::::::
applying

::::::
MCMC

::::::::
inference

:::
on

:::
the

::::::::::::::::::::::::
parameters/hyper-parameters

:::
that

::::::::
generate the data, referred to as the posterior330

predictive , are shown
:::::::
posterior

::::::::
predictive

::::::::
estimates

:::
are

:::::
made

:::
for

::
the

::::::::
unbiased

::::
PDF

:::::::::
parameter

:::::
values

::
at

:::
the

::::::::
simulated

::::::::
locations

::
of

:::
the

::::::
climate

::::::
model

::::::::
(φY (sz)).::::::

These
::::::::
estimates

:::
are

::::::::
presented

:
in Fig.

:
6 for each scenario and for both the shared and single

process models. The true underlying fields that the simulated observations were sampled from is also shown. The single process

model is only concerned with estimating the underlying field of φY (s) across the domain given observations of the parameter

for the in situ data, so in Figs. a, c and e the climate model output and bias fields are excluded. To perform bias correction335

of the climate modeloutput through quantile mapping, posterior predictive estimates of φY (s) at the climate model output
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locations are required
:::::::::::
Additionally,

::::::::
estimates

::
of

:::
the

::::::::::
underlying

:::
bias

::::::
φB(s):::

are
::::::
shown

:::
for

:::
the

:::::
shared

:::::::
process

::::::
model,

:::::
since

:::
the

:::
bias

::
is

::::::::
explicitly

::::::::
modelled. The relative ability

::::::::::
performance of the shared and single process models to estimate this is further

assessed through
::
is

:::::::::
quantified

::
by

::::::::::
computing R2 scores ,

:::::::
between

:::
the

::::::::::
predictions

::
of

:::::::
φY (sz)::::

and
:::
the

:::::
actual

::::::
values

::::
used

:::
in

::::::::
generating

:::
the

:::::
data,

::::
with

:::::
results

:
presented in Table 4.340

In Fig.
:
6
:
it can be seen that the predictions of φY (s) across the domain

::::::
φY (sz) in the shared process case (Fig. b, dand

:::
6d,

::
6e

::::
and

:
6f) are closer to the true underlying field and with smaller but still realistic uncertainty compared to the single

process model. In scenario one, the difference between the posterior predictive distributions for φY (s) across the domain

::::::
φY (sz) between the two approaches is not substantial, with both models performing adequately, having R2 scores of 0.99 and

0.97 respectively. In scenario two, the difference between estimates of φY (s) ::::::
φY (sz):between the models is significant with345

R2 scores of 0.99 and 0.68 for the shared and single process models respectively. Finally, in scenario three there is again a

significant difference in the estimates of φY (s) between the models,
:::
the

::::::::
difference

::
is
:::::
again

:::::::::
significant with R2 scores of 0.74

and 0.52 respectively, although the difference is reduced
:::
less

::::::::
significant

:
compared with scenario two.
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Figure 6. Expectation and 1σ uncertainty of the posterior predictive distributions of the parameter φY (sz) and the corresponding bias

φB(sz) for three scenarios. The underlying functions (complete realisations) as well as the simulated input data are also shown.
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4.2 Hierarchical Example

The
:::::
model

::::::::
presented

::
in

::::
this

:::::
paper

::
is

::
fit

::
to

:::
the

:::::::::::
hierarchical

:::::::
example

::::
from

:::::
Sect.

::::
3.2.

:::
The

:
expectation, standard deviation and350

95% credible intervals for the prior and posterior distributions of each parameter
:::::::::::::
hyper-parameter

::
of

:::
the

::::::
latent

:::::::::
generating

::::::::
processes are given in Table

:
5. The 95% credible interval of the posterior for every hyper-parameter bounds the value specified

in generating the data. As expected the posterior distribution for each parameter
:::::::::::::
hyper-parameter

:
is concentrated closer to

the value specified when generating the data than the relatively non-informative prior distributions. The prior and posterior

distributions for each parameter
:::::::::::::
hyper-parameter

:
are plot in Fig.

::
?? of the appendix.355

Specified Prior Distribution Posterior Dist.

PDF Parameter Model Hyper-Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased Mean

µY

Kernel Variance vµY 1.0 0.67 0.67 0.02 2.46 1.00 0.32 0.49 1.63

Kernel Lengthscale lµY 3.0 15.00 8.66 3.09 36.12 3.00 0.22 2.56 3.43

Mean Constant mµY 1.0 0.00 2.00 -3.92 3.92 0.73 0.28 0.17 1.26

Unbiased

Transformed

Variance σ̃Y

Kernel Variance vσ̃2
Y

1.0 0.67 0.67 0.02 2.46 0.70 0.25 0.30 1.17

Kernel Lengthscale lσ̃2
Y

3.0 15.00 8.66 3.09 36.12 2.94 0.24 2.47 3.40

Mean Constant mσ̃2
Y

1.0 0.00 2.00 -3.92 3.92 1.12 0.24 0.66 1.61

Bias Mean µB

Kernel Variance vµB 1.0 0.67 0.67 0.02 2.46 1.38 0.63 0.42 2.58

Kernel Lengthscale lµB 10.0 15.00 8.66 3.09 36.12 12.02 3.59 5.08 18.50

Mean Constant mµB -1.0 0.00 2.00 -3.92 3.92 -0.78 0.56 -1.89 0.29

Bias

Transformed

Variance σ̃B

Kernel Variance vσ̃2
B

1.0 0.67 0.67 0.02 2.46 0.92 0.48 0.24 1.86

Kernel Lengthscale lσ̃2
B

10.0 15.00 8.66 3.09 36.12 8.97 1.96 5.07 12.58

Mean Constant mσ̃2
B

-1.0 0.00 2.00 -3.92 3.92 -0.86 0.42 -1.73 -0.06

Table 5. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation

(Std. Dev.) and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The specified value for each hyper-parameter used

to generate the data is also shown.

The posterior predictive estimate for the underlying fields of µY (s), µB(s), σY (s) and σB(s) across the domain given the

data is
::::
After

:::::
fitting

:::
the

::::::
model,

::::::::
posterior

::::::::
predictive

::::::::
estimates

:::
are

:::::
made

::
of

:::
the

:::::::
unbiased

:::::
mean

:::
and

::::::::
standard

:::::::
deviation

::::::::::
parameters

:
at
:::
the

:::::::::
simulated

:::::::
locations

:::
of

:::
the

::::::
climate

:::::
model

::::::::
(µY (sz) :::

and
::::::::
σY (sz)). :::::::::::

Additionally,
::::::::
estimates

::
of

:::
the

:::
bias

:::
in

::
the

::::::::::
parameters

:::
are

::::
made

:::::::
(µB(sz)::::

and
:::::::
σB(sz)).:::::

These
::::::::
estimates

:::::
along

::::
with

:::
the

:::
true

:::::::::
underlying

::::::
values

:::
are shown in Fig. . The true underlying fields

of the parameters are also shown, as are the
:
7.

::::
The

::::::::
empirical mean and standard deviation values of the samples of simulated360

in situ observations and climate model outputs
:
of
::::

the
::::
input

::::
data

::
is
::::

also
:::::
given

:
at the locations where they are sampled. The

posterior predictive appears
:::::::
estimates

:::::::
visually

::::::
appear to perform well at capturing the spatial features of the underlying fields

while also exhibiting a reasonable
:::
and

::
at

:::::::::
estimating

:
a
:
one sigma uncertainty rangethat bounds the majority of the underlying

function. For example, in the range of s ∈ [15,25]
:::::::::
s ∈ [28,38], where the main data source is the biased climate model output,
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the prediction accurately captures
:::
the

::::::
spatial features of the true, unobserved latent mean

:::::::
unbiased

::::::::::
parameters

:
(µY (s) and365

standard deviation σY (s). Uncertainty in the parameters of µY (s):)::::
with

:::
an

:::::::::
uncertainty

::::
that

::::::
bounds

:::
the

::::
true

:::::::::
underlying

:::::
value

:::
over

:::::
most

::
of

:::
the

::::::
region.

:::::::::::
Additionally,

:::::::::
uncertainty

::
in

:::
the

::::::::
unbiased

:::::::::
parameters

::
at

:::
the

::
in

:::
situ

::::::::::
observation

::::
sites

:::::::
(µY (sy) and σY (s)

at the observation sites,
::::::
σY (sy)):due to limited samples , is propagated through the model. This is

:
is

::::::
clearly

:
reflected in the

uncertainty shown in estimatesof the posterior predictive at the observation sites
:::::::
estimates.

Bias correction of samples from370
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Figure 7.
:
A

:::::
figure

:::::::
showing

::
the

:::::::::
expectation

::::
and

:::
one

:::::
sigma

::::::::
uncertainty

:::
of

::
the

:::::::
posterior

::::::::
predictive

:::::::::
distribution

:::::
across

:::
the

::::::
domain

:::
for

:::
the

::::::::
parameters

::::::
µY (sz),:::::::

µB(sz),::::::
σY (sz):::

and
::::::
σB(sz)::

as
::::
well

::
as

::
the

::::
true

::::::::
underlying

:::::::
functions.

:::::::
Quantile

::::::::
mapping

::
is

::::::
applied

::
to

:
the climate model output for a single site

::::
(zsi )::::

and
:::
the

::::
bias

::::::::
corrected

::::
time

:::::
series

:::::
(ẑsi ) is

shown in Fig.
:
8. The site chosen is at s= 11.4 and is the same as in Fig.

:
4a. A generic time series for the climate model
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output and
::::::
nearest

:
in situ observations is generated from the correct mean and standard deviations of the samples. Quantile

mapping of the climate model time series is performed for each posterior predictive realisation of µY (s), µZ(s), σY (s) and

σZ(s)::::::
µY (si),::::::

µZ(si),::::::
σY (si)::::

and
::::::
σZ(si). This results in multiple realisations of bias corrected time series with an expectation375

and uncertainty.

A figure showing the expectation and one sigma uncertainty of the posterior predictive distribution across the domain for the

parameters µY (sz), µB(sz), σY (sz) and σB(sz) as well as the true underlying functions.
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Climate Model Output zsi

Bias Corrected Climate Model Output Expectation E[zsi]
Bias Corrected Climate Model Output 3 Sigma Uncertainty 3 [zsi]
Bias Corrected Climate Model Output Realisations zsi

Figure 8. Simulated time series for the climate model output at location s= 11.4 and for the nearest in situ observation site. Realisations of

the climate model bias corrected time series are shown along with the expectation and three sigma uncertainty range.

5 Discussion

The bias correction framework proposed in this paper models the parameters of the PDFs for the in situ observations and380

climate model output across the domain using a Bayesian hierarchical model. This allows estimates
::
to

::
be

:::::
made

:
of the unbiased

PDF parameters at the climate model locations and quantile mapping can then be applied to bias correct the climate model time

series. The hierarchical model uses GPs to model the spatial covariance structure of the data
:::
PDF

::::::::::
parameters and assumes that

each parameter of the PDF for the climate model output is generated from two independent , latent GPs. One GP
::::
GPs:

::::
One

that generates an unbiased component and so also the equivalent parameter for the PDF of
::::::
another

:::
that

::::::::
generates

::
a
::::
bias.

::::
The385
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:::
GP

:::
that

::::::::
generates

:::
the

::::::::
unbiased

:::::::::
component

::
is
::::
also

::::::::
modelled

::
as

:::::::::
generating

:::
the

:::::::::
equivalent

::::
PDF

::::::::::
parameters

:::
for the in situ data,

while the other GP generates a bias. This .
::::
This

::::::::
approach

:
reflects the belief that the climate model provides skillful estimates

of these
::
the

:::::
PDF parameters across the domain and that the spatial covariance structure, generated from equations based on

established physical laws, has similar features
::::::
spatial

::::::
features

:::::::
similar to the true underlying structure

:::::::
unbiased

::::
PDF

:::::::::
parameter

:::::
values. The climate model output, while afflicted with bias, has

:::::::
provides comprehensive spatiotemporal coverage and provides390

useful information in the inference of the unbiased PDF values parameters across the domain, .
::::
This

::
is
:

assuming the bias

signal can be adequately deconstructed from the climate model output with the use of in situ observations. Modelling shared

latent processes provides added value over the approach where
:
In

:::::
Sect.

:::
4.1

::
of

:::
the

::::::
results,

:::
the

:::::
added

:::::
value

::
of

:::::::::
modelling

::::::
shared

::::
latent

::::
GPs

::::::::
between

:::
the

::
in

::::
situ

::::::::::
observations

::::
and

::::::
climate

::::::
model

::::::
output

::
is

::::::::::::
demonstrated.

::::
This

::
is

::::::::
compared

:::::
with

:::
the

::::::::
approach

::
of

::::::::
modelling

::
a
:::::
latent

:::
GP

:::
for

:::
the

::
in
::::
situ

:::::::::::
observations

:::::
alone

:::
and

::::::::
inferring the unbiased PDF parameters are inferred from the395

in situ observations alone
::::::
without

:::::::::::
incorporating

::::::::::
information

:::::
from

:::
the

::::::
climate

::::::
model

:::::
output, as in Lima et al. (2021) . This is

demonstrated in Sect. of the results, where
:::
and

::::
here

:::::::
referred

::
to

::
as

:::
the

::::::
single

::::::
process

::::::::
approach.

:

:::
The

:
added value is assessed for three scenarios with differing density of observations and

::::::
spatial complexity of the bias

signal.

Added value is assessed with respect to :
:::
The

::::::::
methods

::::
used

::
to
::::::

assess
:::
the

:::::
added

:::::
value

::::::::
include:

::::::::::
comparisons

:::
of summary400

statistics for the posterior distributions of the
::
GP

:
hyper-parametersof the latent GPs; visual examination

:
;
:::::
visual

:::::::::::
comparisons

of the expectation and standard deviation for posterior predictive estimates of the unbiased PDF parameters across the domain;

and comparison ofR2 scores for the unbiased PDF parameter at the locations of the climate model output. It is shown that most

added value is provided, across all these measures, in the case of scenario two,
::
the

:::::
most

:::::
added

:::::
value

::
is

:::::::
provided

:
where the in

situ observations are sparse compared to
::::::::
relatively

:::::
sparse

:::::::::
compared

::::
with the climate model output and the underlying bias is405

relatively smooth compared to
:::::::
spatially

::::::
smooth

:::::::::
compared

::::
with

:::
the

:
the unbiased signal. The bias can be estimated with high

accuracy and precision
:
,
::
as

::
in
::::::::
scenario

::::
two.

::
In

:::
this

::::::::
scenario, despite sparse in situ observations, since it

::
the

::::
bias

:::::
signal

:
varies

smoothly across the domain , which also means the climate model output can be disaggregated and the unbiased component

estimated across the domain with high accuracy and precision.
::::::::
accurately

::::
and

:::::::
precisely

::::::::::::
disaggregated

::::
into

::
its

::::::::
unbiased

::::
and

:::::
biased

:::::::::::
components.

::::
This

:::::
leads

::
to

::::::::
improved

::::::::
estimates

:::
of

:::
the

::::::::
unbiased

::::
PDF

:::::::::
parameters

:::
at

:::
the

::::::
climate

::::::
model

::::::::
locations

:::::
when410

:::::::::
considering

::::::
shared

::::
GPs

::::::::
compared

::::
with

:::
the

::::::
single

::::::
process

::::::::
approach

:::
that

::::
uses

::
in
::::
situ

::::::::::
observations

::::::
alone,

:::
see

:::
Fig.

::
6.
:

As the density of in situ observations is increased to similar levels as the climate model output itself, then the value added

from the climate model output in inference of the unbiased parameters is reduced, illustrated through results for scenario

one. The number of in situ observations is sufficient to adequately capture the spatial features of the underlying process

(Fig. 6a) as well as the latent spatial covariance structure, encoded through the hyper-parameter estimates of the latent GP415

(Table 3). Additionally, if
:
as

:
the complexity of the bias signal is increased, through for example reducing the length scale

of the latent generating process, as in scenario three, then again added value is reduced. The relatively more complex bias

:::::::
structure

:
compared with scenario two makes it more difficult to disaggregate the climate model output into its biased and

unbiased components. While
::::::
Despite

::::
this,

:::::
while

:
added value is reduced for scenarios one and three relative to scenario two,

incorporating the climate model output in inference is still shown to improve overall performance. Modelling the generating420
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process for the bias explicitly is also informative and
:::
also

:::::::
provides

::::::::::
informative

::::::::::
information

:::
that

::
is
:
potentially useful for

:::::
future

climate model development.

In addition to
::::::::
modelling

:
shared latent processes, another important feature of the methodology presented in this paper is

the Bayesian framework, where .
:::

In
:::
this

::::::::::
framework the parameters/hyper-parameters of the hierarchical model are treated

as random variables with associated distributions. This framework is flexible and allows for robust uncertainty propagation,425

which is important for making the model
::::::::
probability

:::::::::::
distributions.

::::::::::
Uncertainty

::
is

::::::::
inherently

::::::::::
propagated

::::::
through

:::
the

::::::::::
framework,

::::::
making

:::
the

::::
code

:::::::::::::
implementation

:::::::
flexible

::
to

::::::
further

:::::::::::
development

:::
and

:::
so applicable to a wide range of real-world applications

where bias prediction is required
:::::::
scenarios. Additionally, expert knowledge can

:
a
:::::::
Bayesian

::::::::::
framework

:::::
allows

::::::
expert

:::::::::
knowledge

::
to be incorporated in the inference through the choice of prior distributions, which is

:::
can

::
be

:
especially important where the data

is sparse. In Sect.
:::
4.2, results for a simulated one dimensional hierarchical example illustrate uncertainty propagation between430

parameter values of the PDF at each sample site and the values of
::
the

::::
PDF

:::::::::
parameter

::::::
values

:::
and

:
the hyper-parameters of the

latent generating processes. Uncertainty present in the different levels of the hierarchical model are incorporated in the final

posterior predictive estimates of the
:::::::
unbiased

:
PDF parameters at the climate model locations

:
,
:::
see

::::
Fig.

:
7. Multiple realisations

from the posterior predictive can then be used in quantile mapping , which is illustrated in Fig.. This results in
::
to

:::::::
produce

multiple realisations of the final bias corrected time series, with an expectation and uncertainty range. Robust uncertainty435

computation that incorporates the spatial relationships between points ,
:::::::::

illustrated
::
in
::::

Fig.
:::

8.
:::::::
Reliable

::::::::::
uncertainty

:::::
bands

:::
on

::
the

:::::
final

:::
bias

:::::::::
corrected

::::
time

:::::
series

:
is important for impact assessments and resulting decision making. Having

:::::::::::
Additionally,

:::::
having

:
multiple realisations for the final bias corrected time series is also useful for

:::::
allows further propagation of uncertainty

in process models driven by climate model output, such as land surface models (Liu et al., 2014).

:::
The

::::::::
simulated

:::::::::
examples

::::::::
presented

:::::::
provide

::
an

:::::
initial

:::::
proof

:::
of

:::::::
concept,

:::::::
although

::::::
future

::::::
studies

:::::::::
validating

:::
the

:::::::::::
methodology440

::::::
against

:::::::::
real-world

::::::::::
applications

:::
are

::::::::
important

:::
for

::::::::::::
understanding

:::
the

:::::::::
remaining

:::::::::
limitations

::::
and

::::
areas

:::
for

::::::
further

::::::::::::
development.

:::
The

:::::::
current

:::::::
primary

::::::::
limitation

::
is
::::::::

expected
:::

to
::
be

::::
that

:::
the

::::::::::
underlying

::::::
spatial

:::::::::
covariance

:::::::::
structures

:::
are

::::::::
assumed

:::::::::
stationary.

::::
That

::
is

::::
that

:::
the

:::::::::
covariance

::::::
length

:::::
scale

::
is

::::::::
assumed

:::::::
constant

::::::
across

:::
the

:::::::
domain,

::::::::
whereas

:::
for

:::::::::
real-world

::::::::::
applications

:::::
over

::::
large

::::
and

:::::::
complex

::::::::::
topographic

::::::::
domains

:::
the

::::::
length

::::
scale

::::
will

:::
be

::::::::
expected

::
to

::::::
change

:::::::::
depending

:::
on

:::
the

:::::::
specific

::::::::::
topography

::
of

:::
the

::::::
region.

:::::::
Further

:::::::::::
development

::
of

:::
the

::::::::::::
methodology

::
to

::::::::::
incorporate

::::::::::::
non-stationary

::::::
kernels

::::::
would

::::::::
therefore

:::
be

::::::::
valuable,445

:::::::
although

::
is

:::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper.

:::::::
Another

:::::::::
important

::::::::
limitation

:::
to

:::::::
consider

::
is

:::
the

::::::::::
assumption

::::
that

:::
the

::::
bias

::
is

::::
time

::::::::::
independent.

:::
In

::::::::
situations

:::::
where

::::
the

:::
bias

::::::
varies

::::::::
gradually

:::::::
through

::::
time

::::
and

::::::::
uniformly

::::::
across

:::
the

:::::::
domain,

::::
the

:::::::::::
methodology

:::
can

::
be

::::::
further

:::::::::
developed

:::::
such

:::
that

:::
the

:::::
mean

::::::::
function

::
of

:::
the

::::
GPs

::
is
::::::::
modelled

:::::
with

:
a
::::
time

:::::::::::
dependency.

::
If

:::
the

::::
bias

:::::
varies

:::
in

::::
time

::::::::::::
non-uniformly

:::::
across

:::
the

:::::::
domain,

::::::::::::
spatiotemporal

::::
GPs

::::
will

::::
need

::
to

::
be

::::::::::
considered,

:::::
which

::
is
:::::
again

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper.

:::::::::
Secondary

::::::::::
limitations,

::::::
include

:::
the

::::::::::
assumption

:::
that

::::
the

:::::::
unbiased

::::
and

::::::
biased

::::::::::
components

::
of

:::
the

::::
PDF

:::::::::
parameter

::::::
values450

::
are

:::::::::::
independent.

:::
In

::::::::
situations

::::::
where

:::::
there

::
is

:
a
:::::::::::

dependence
:::::::
between

:::::
these

:::::::::::
components,

:::
the

:::::::::::
methodology

:::::::::
presented

::
is

::::
still

:::::::
expected

::
to

:::::::
perform

::::::::::
adequately,

:::::::
although

::::::::::
information

::
is
::::
lost

::
by

:::
not

:::::::::
modelling

:::
the

::::::::::
dependency

:::::::::
explicitly.

:::::::::::
Additionally,

:::::
many

::::::::
real-world

::::::::::
applications

::::
will

:::::::::
necessitate

:::::::
specific

:::::
model

::::::::::
adjustments,

::::
such

:::
as

:::::::::::
incorporating

:
a
:::::
mean

:::::::
function

::::::::
dependent

:::
on

::::::
factors

:::
like

::::::::
elevation

:::
and

:::::::
latitude.

:::::::
Finally,

:::
the

::::::::::::
computational

::::::::::
complexity

::
of

:::
the

:::::
model

::
is
:::
an

::::::::
important

:::::::::
remaining

::::::::::::
consideration,

::::
with

:::::::
inference

::::
time

::
of

::::
GPs

::::::
scaling

::
as

:::
the

::::
cube

::
of

:::
the

:::::::
number

::
of

::::
data

:::::
points.

::::::::::::
Incorporating

:::::::::
techniques

::::
such

::
as

::::
using

::::::
sparse

:::::::::
variational455
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:::
GPs

:::
or

::::::::
upscaling

:::
the

::::::
climate

::::::
model

::::::
output,

:::::
while

:::::::
outside

:::
the

:::::
scope

::
of

::::
this

:::::
paper,

::::
will

:::
aid

::::::::::::
computational

:::::::::::
performance

:::::
under

:::::::::
demanding

:::::::::
real-world

::::::::
scenarios

:::
and

::::
will

:::::::
facilitate

::::::
further

::::::
model

:::::::::::
development.

6 Conclusion

Current approaches for bias prediction and correction do not aim to preserve the spatial covariance structure of the climate

model output (Ehret et al., 2012). Climate models are fundamentally based on established physical laws and so the covariance460

structures are desirable since it is reasonable to assume that they are physically realistic. In addition, current approaches

:::
and

:
typically either neglect uncertainty or inadequately model uncertainty propagation through the model. In this paper a

:::::::::::::::
(Ehret et al., 2012)

:
.
::::
This

:::::
paper

:::::::
presents

:
a
:::::
novel

:
fully Bayesian hierarchical model

::::::::
framework

:
for bias correction is presented

where
::::
with

::::::::::
uncertainty

::::::::::
propagation

:::
and

:
latent GP distributions are used to capture and preserve underlying covariance struc-

tures. The Bayesian nature allows robust uncertainty propagation under a flexible modelling framework where the model is465

easily expanded for specific real-world scenarios, increasing the scope of the work
::
In

::::
this

:::::::::
framework

::::
bias

:
is
::::::::::
considered

::
in

:::
the

:::::::::
parameters

::
of

:::
the

::::::::::::::
time-independent

::::
PDF

::
at
::::
each

::::
site.

::::::::
Estimates

:::
of

::
the

::::::::
unbiased

::::
PDF

:::::::::
parameters

:::
are

:::::
made

::
at

:::
the

::::::
climate

::::::
model

:::::::
locations

::::
and

::::
then

::::::
quantile

::::::::
mapping

::
is

::::::
applied

::
to

:::::::
produce

:::
the

::::
final

::::
bias

::::::::
corrected

::::
time

:::::
series.

::::
The

:::::::
novelty

::
of

:::
the

:::::::
approach

::::
lies

::
in

:::
the

::::
fully

::::::::
Bayesian

::::::::::::::
implementation,

::::::::
assuming

::::::
shared

:::::
latent

::::
GPs

:::::::
between

:::
the

::
in

::::
situ

::::
data

:::
and

:::::::
climate

:::::
model

::::::
output

::::
and

::
in

::::::::::
propagating

:::::::::
uncertainty

:::::::
through

:::
the

:::::::
quantile

:::::::
mapping

::::
step.470

Simple simulated examples are chosen to illustrate the key features of the model
:::::::::
framework. In Sect. ??

::
4.1, results are

displayed for a non-hierarchical example
:::::::
examples

:
where the focus is on illustrating the nature of GPs and how assuming a

shared latent GP between
::::::::
advantage

:::
of

::::::::
modelling

::::::
spatial

:::::::::
covariance

::
in
:::::

both the in situ data and climate model outputallows

inference on the unbiased field from both sources of data
:
,
::::::::
assuming

:::::
shared

:::::
latent

::::
GPs. This is shown to be particularly important

in the case of sparse data and a simple bias
::
in

:::
situ

:::::::::::
observations

:::
and

::::
bias

::::
that

:::::
varies

::::::::
smoothly

::::::
across

:::
the

:::::::
domain, where the475

climate model output provides significant value added in predictions
::::
itself

:::::::
provides

:::::::::
significant

::::::
added

:::::
value

::
in

:::::::::
predictions

:::
of

::
the

::::::::
unbiased

::::
PDF

::::::::::
parameters. In Sect. ??

:::
4.2, results are presented for a hierarchical case and focus is on illustrating how the

model propagates uncertainty between the different levels and to the final parameter predictions that are used in bias correction.

Uncertainty in the parameter estimates is easily propagated in bias correction of the time series from
:::::::
unbiased

::::
PDF

:::::::::
parameter

:::::::::
predictions

::
at the climate model at every location through the existing approach of quantile mapping. This

:::::::
locations.

::
In

::::::::
addition,480

:
a
::::::::
simulated

:::::::
example

::
of

::::::::::
propagating

::::
this

:::::::::
uncertainty

:::::::
through

:::::::
quantile

:::::::
mapping

::
is

::::
then

::::::::
provided

::
to

::::::::::
demonstrate

::::
how

:::
this

:
results

in a bias corrected time series with uncertainty bands, which is desirable for use in impact studies that compute predictions on

responses to climate change and for informing decisions based on these. This is especially true in
:::::::
decision

:::::::
making.

::::::::::
Adequately

::::::::
modelling

::::::::::
uncertainty

::
in

:::
the

:::
bias

::::::::
corrected

::::
time

:::::
series

::
is

::::::::
expected

::
to

::
be

:::::::::
especially

::::::::
important

::::
over areas where the climatology

is hard to model and in situ observations are sparse, such as Antarctica, meaning the uncertainty is expected to be significant485

(Carter et al., 2022).

The model presented is
::::
over

:::::::::
Antarctica

::::::::::::::::
(Carter et al., 2022)

:
.
:::
The

::::::::::
framework

::::::::
presented

:::::::
provides

:
a step towards adequately

capturing uncertainty and incorporating underlying spatial covariance structures from the climate model in bias correction. The
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primary limitation is the assumption that the spatial structure of the site-level parameters can be adequately modelled through

a stationary GP. Over large and complex topographic regions it is likely that the covariance length scale will vary across the490

domain and this is something that will need assessing for each specific application. Additionally, many real-world applications

will necessitate specific model adjustments, such as incorporating a mean function dependent on factors like elevation and

latitude, handling non-Gaussian data, and accounting for other bias structures. Future papers validating the framework proposed

in this paper against a range of
:::::
While

:::::
initial

::::::
results

:::
are

:::::::::
promising,

::::::
further

::::::
studies

::::::
applied

::
to

:
real-world applications, assessing

the added value of the approach as well as remaining limitations, is an important next step
::::::
datasets

:::
are

::::::::
important

:::
to

::::::
further495

::::::
validate

:::
the

:::::::::
approach

:::
and

:::::::
explore

:::::::::
remaining

:::::::::
limitations. The Bayesian approach adopted means

::::::::::::
implementation

::::::::
provides

:
a
:::::::
flexible

::::::::
modelling

::::::::::
framework,

::::::
where

:
adjustments to the methodology

::::::
needed

:
for specific applications can be made with

uncertainty inherently propagated adequately
:::::
while

::::::::
inherently

::::::::::
propagating

::::::::::
uncertainty.

Code and data availability. The code used to generate the simulated data, fit the model, make predictions and create the figures/tables is

available at: https://doi.org/10.5281/zenodo.10053653 (Carter, a).500

The data used to create the plots is available at: https://doi.org/10.5281/zenodo.10053531 (Carter, b).
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(a) Scenario 1

Scenario 1 Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

:::::::
Dependent

::::::
Variable

::::
Model

:::::::
Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In Situ

Unbiased PDF

Parameter φY

Kernel Variance vφY
1.0 0.67 0.67 0.02 2.46 1.25 0.30 0.73 1.86 1.04 0.31 0.57 1.69

In Situ Kernel Lengthscale lφY
3.0 15.00 8.66 3.09 36.12 2.96 0.06 2.85 3.08 2.73 0.20 2.32 3.10

In Situ Mean Constant mφY
1.0 0.00 2.00 -3.92 3.92 1.14 0.28 0.61 1.68 1.23 0.26 0.74 1.76

In Situ Observation Noise σφY
0.1 2.00 2.00 0.05 7.38 0.11 0.01 0.09 0.12 N/A N/A N/A N/A

Bias

Bias PDF

Parameter φB

Kernel Variance vφB
1.0 15.00 8.66 3.09 36.12 2.10 1.30 0.48 4.72 N/A N/A N/A N/A

Bias Kernel Lengthscale lφB
10.0 0.00 2.00 -3.92 3.92 11.45 1.28 9.07 14.00 N/A N/A N/A N/A

Bias Mean Constant mφB
-1.0 0.25 0.14 0.01 0.49 -1.00 0.64 -2.31 0.24 N/A N/A N/A N/A

(b) Scenario 2

Scenario 2 Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

:::::::
Dependent

::::::
Variable

::::
Model

:::::::
Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In Situ

Unbiased PDF

Parameter φY

Kernel Variance vφY
1.0 0.67 0.67 0.02 2.46 1.13 0.28 0.66 1.66 1.49 0.53 0.65 2.55

In Situ Kernel Lengthscale lφY
3.0 15.00 8.66 3.09 36.12 2.97 0.06 2.86 3.09 3.70 0.44 2.83 4.56

In Situ Mean Constant mφY
1.0 0.00 2.00 -3.92 3.92 0.70 0.27 0.15 1.22 0.69 0.40 -0.14 1.44

In Situ Observation Noise σφY
0.1 2.00 2.00 0.05 7.38 0.12 0.03 0.08 0.18 N/A N/A N/A N/A

Bias

Bias PDF

Parameter φB

Kernel Variance vφB
1.0 15.00 8.66 3.09 36.12 1.24 0.99 0.16 3.23 N/A N/A N/A N/A

Bias Kernel Lengthscale lφB
20.0 0.00 2.00 -3.92 3.92 23.69 5.79 12.29 34.90 N/A N/A N/A N/A

Bias Mean Constant mφB
-1.0 0.25 0.14 0.01 0.49 -0.66 0.64 -1.87 0.62 N/A N/A N/A N/A

(c) Scenario 3

Scenario 3 Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

:::::::
Dependent

::::::
Variable

::::
Model

:::::::
Parameter Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In Situ

Unbiased PDF

Parameter φY

Kernel Variance vφY
1.0 0.67 0.67 0.02 2.46 1.18 0.33 0.62 1.83 0.85 0.33 0.30 1.50

In Situ Kernel Lengthscale lφY
3.0 15.00 8.66 3.09 36.12 3.00 0.07 2.87 3.14 3.08 0.49 2.03 3.96

In Situ Mean Constant mφY
1.0 0.00 2.00 -3.92 3.92 0.95 0.30 0.35 1.53 0.90 0.29 0.33 1.48

In Situ Observation Noise σφY
0.1 2.00 2.00 0.05 7.38 0.16 0.06 0.03 0.27 N/A N/A N/A N/A

Bias

Bias PDF

Parameter φB

Kernel Variance vφB
1.0 15.00 8.66 3.09 36.12 1.50 1.02 0.28 3.56 N/A N/A N/A N/A

Bias Kernel Lengthscale lφB
5.0 0.00 2.00 -3.92 3.92 6.34 1.71 3.23 9.20 N/A N/A N/A N/A

Bias Mean Constant mφB
-1.0 0.25 0.14 0.01 0.49 -1.17 0.50 -2.11 -0.10 N/A N/A N/A N/A

Table 3. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation

(Std. Dev.) and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The posterior distributions for the shared and

single process models are given. The specified value for each parameter used to generate the data is also shown.
30



R2 Scores: Posterior Predictive Estimates of φY (sz)

Shared Process Model Single Process Model

Scenario Exp. Std.Dev. Exp. Std.Dev.

1 0.99 0.00 0.97 0.01

2 0.99 0.01 0.68 0.07

3 0.74 0.12 0.52 0.10

Table 4. A table showing the expectation and standard deviation of R2 scores for the posterior predictive estimates of the unbiased PDF

parameter at the climate model output locations φY (sz) for the shared and single process models for each scenario.
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