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Abstract. Climate models, derived from process understanding, are essential tools in the study of climate change and its wide-
ranging impactsen-the-biesphere. Hindcast and future simulations provide comprehensive spatiotemporal estimates of climatol-
ogy that are frequently employed within the environmental sciences community, although the output can be afflicted with bias
that impedes direct interpretation. Bias-correction-approaches-using-observational-data-aim-Post-processing, bias correction
approaches utilise observational data to address this challenge-Hewever;-approaches-, although are typically criticised for not
being physwally justified and not considering uncertainty in the correction. %ea%peeﬁ—afeﬁafﬂetdaﬂwﬂpe%amﬁea%e%

tssue&%hfeﬂg&fheﬁeve}epmeﬂ%eﬁwma novel Bayesian hiefafehieakmede}—t%%pfeeheﬁeﬂ—%e—nwde}

models

bias correction framework that propagates uncertainty robustly and

underlying spatial covariance patterns;-. Shared latent Gaussian processes are assumed between the in situ observations and

climate model output with the aim of partially preserving the covariance structure from the climate model after bias correction,

which is based on well-established physical laws.

added value in modelling shared generating processes under several simulated scenarios, with most value added ever-alternative
approaches—in—for the case of sparse in situ observations and smooth underlying bias. A—major-benefit-of-the-medetis—the
robust-Additionally, the propagation of uncertainty to a simulated final bias corrected time series is illustrated, which is of

key importance to a range of stakeholders, from climate scientists engaged in impact studies, decision makers trying to un-
derstand the likelihood of particular scenarios and individuals involved in climate change adaption strategies where accurate
risk assessment is required for optimal resource allocation. This paper focuses on one-dimensional simulated examples for
clarity, although the code implementation is developed to also work on multi-dimensional input data, encouraging follow-on
real-world application studies that will further validate performance and remaining limitations. The Bayesian framework



25 supports uncertainty propagation under model adaptations required for specific applications, providing a flexible approach
that increases the scope to data assimilation tasks more generally.
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1 Introduction

Climate models are invaluable in the study of climate change and its impacts (Bader et al., 2008; Flato et al., 2013). Formulated
from physical laws and with parameterisation and process understanding derived from past observations; climate models pro-
vide comprehensive spatiotemporal estimates of our past, current and future climate under different emission scenarios. Global
climate models (GCMs) simulate important climatological features and drivers such as storm tracks and the El Nifio—Southern
Oscillation (ENSO) (Greeves et al., 2007; Guilyardi et al., 2009). In addition, independently developed GCMs agree on the
future direction of travel for many important features such as global temperature rise under continued net-positive emission
scenarios (Tebaldi et al., 2021). However, GCMs are computationally expensive to run and also exhibit significant system-
atic errors, particularly on regional scales (Cattiaux et al., 2013; Flato et al., 2013). Regional climate models (RCMs) aim to
dynamically downscale GCMs and more accurately represent climatology for specific regions of interest and have parameteri-
sation, tuning and additional physical schemes optimised to the region (Giorgi, 2019; Doblas-Reyes et al., 2021). Despite this,
significant systematic errors remain, particularly for regions with complex climatology and with sparse in situ observations
available to inform process understanding, such as over Antarctica (Carter et al., 2022). These systematic errors inhibit the
direct interpretation of climate model output, particularly important in impact assessments (Ehret et al., 2012; Liu et al., 2014;
Sippel et al., 2016).

There are many fundamental causes of systematic errors in climate models, including: the absence or imperfect represen-
tation of physical processes; errors in initialisation; influence of boundary conditions and finite resolution (Giorgi, 2019).
The inherent complexity and computationally expensive nature of climate models makes direct reduction of systematic errors
through climate model development and tuning challenging (Hourdin et al., 2017). End-Additionally, end users are typically
interested in only a narrow aspect of the output (e.g. possibly only one or two variables), which the climate model is unlikely

to be specifically tuned for. Post-processing, bias correction techniques allow improvements to the consistency, quality and

value of climate model output, specific to the end user’s focus of interest, with manageable computational cost and without
requirement of in-depth knowledge behind the climate model itself (Ehret et al., 2012). Different-end-users—arefocused-on

of-the-output-such—as-theeovartanee-strueture Transfer functions are derived between the climate model output and in situ
observational data to correct components such as the mean (Das et al., 2022) or probability density functions (PDFs) of the

data (Qian and Chang, 2021). This paper feHew%eem%m%&ppmaeh«te#ee&%focuses on providing a novel framework
Wsystematlc errors in the parameters y y DE

PDE of the climate model

output at each grid point.
One of the fundamental issues often attached to post-processing bias correction is the lack of justification based on known

physical laws and process understanding (Ehret et al., 2012; Maraun, 2016). Transfer-functions-are-derived-that-are-applied
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and associated covariance structure from the climate model, which is consistent with accepted physical laws, is typically not
considered and so not preserved. Resulting corrected fields may exhibit too smooth or sharply varying behaviour over the region
and discontinuities near observations. In addition, many approaches of bias correction fail to adequately handle uncertainties
or estimate them at all. Reliable uncertainty estimation is valuable for inclusion in impact studies to inform resulting decision
making. This is especially true for regimes with tipping points, such as ice shelf collapse over Antarctica, where uncertainties
in the climatology can cause a regime shift (DeConto and Pollard, 2016).

In this paper these issues are partially addressed through the development of a fully Bayesian approach-using-a-hierarchicat

straeture-and-hierarchical approach to bias correction. Parameter uncertainties are propagated through the hierarchical model
and underlying spatial covariance structures are captured with latent Gaussian processes (GP)-is-propesed-for-bias-correction;

is-derived-both-from-observations-and the-GPs) for both in situ observations and the climate model output.
The approach presented builds on that of Lima et al. (2021), which models the in situ observational data as generated from a
GP and uses quantile mapping (Qian and Chang, 2021) to apply the correction to the climate model output. In Lima et al, (2021)
the spatial covariance structure of the climate model output is not considered and uncertainty is not propagated to the final bias
corrected time series. The novelty of the approach proposed here is that shared latent GPs are modelled between the climate
model output and the in situ observational data, which aims to incorporate information from the physically realistic spatial
patterns of the climate model output in predictions of the unbiased field. Additionally, uncertainty is propagated through the
quantile mapping step, which results in uncertainty bands on the bias corrected output. The approach is developed with the

focus of applying bias correction to regions with sparse in situ observations, such as over Antarctica, where capturing un-
certainty in the correction is of key importance and where including data from all sources during inference is particularly

valuable.

simulated scenarios with differing data density and latent-underlying covariance length scales —with-results-and-diseussion

presentedin-Seet—4-is evaluated in this paper and the potential added value assessed when compared with the approach in
Fhe-modelis-developed-Developing the bias correction approach in a flexible Bayesian framework ;-where-adjustmentsmeans
further adjustments/advancements that are necessary for real-world scenarios can easily be incorporated while maintaining

robust uncertainty propagation. For example, extra predictors, such as elevation and latitude, can be included either in the

mean function or covariance matrix of the latent GPs. Alternatively, the model could be expanded to incorporate a temporal
component of the bias accounting for variability across different seasons. This flexibility is important and increases the scope

of the work, allowing the medel-methodology to be applied to a wide range of scenarios, including for example application
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to many different meteorological fields and also combining observation data from different instruments rather than necessarily
with respect to climate model output. Additionally, the Bayesian framework allows incorporation of domain specific, expert

knowledge of different data sources and their uncertainties through the choice of prior distributions.

2 Methodology

2.1 Moedel-Overview

In a probabilistic framework, the in situ observations and climate model output are treated as realisations from latent spatiotem-
poral stochastic processes, denoted as {Y'(s,t): s € S,t € T} and {Z(s,t) : s € S,t € T } yrespectively. Stochastic processes
are sequences of random variables indexed by a set, which in this case are the spatial and temporal coordinates in the domain
(S, 7).

data is then considered a realisation of the joint distribution over a finite set of random variables across the domain.

For the purpose of biaspredictionevaluating the time-independent component of the climate model bias, the random vari-
ables are treated as independent and identically distributed across time;—sueh—that-. That is the collection of temporal data

i.4.d.

i.i.d.

for a given 1o on-s. Y (s, ¢+ b

s—spatial location can be considered as multiple

realisations from the same random variable. The random variables for each location are distributed respectively as Y (s) ~ [0}

and Z(s) ~ s)), where s) and s) represent the collection of parameters that describe the PDF. For example

if the PDF is approximated as normal then ¢(s) = [u(s),o(s)]|.The disparity between each of the PDF parameters for the in

situ observations and climate model at each site then gives a measure of bias. The goal is to estimate the parameters ¢ (s)

S
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The-disparity-between-the-spatiatly-varying parameters-¢, (s) at the climate model grid points to quantify the bias and to
apply quantile mapping to bias correct the climate model output. Gaussian processes are used to model the underlying spatial
covariance structure of the parameters, which is required to estimate ¢y (s) and-¢o{s)-in-the site-level-marginal-distributions
HHeHoOn- OB {8 =0 Py (S )Pz (51~ rattvery; param S-assoctatea—-w i a oteroutptt-oz (= afn—o
defined-as-a-funetion-of-away from the location of the in situ observations. Further discussion around the definition of bias in
climate models is provided in appendix ??.

Consider a collection of 72y in situ observational sites, where for each site i there exists m; measurements of some property.
In addition, consider gridded output from a climate model at 72, locations, where at each location there exists . measurements

same property.

The data can then be represented through the following:

syt ™
Yo, “Weto Vo] 2)
z=lz 20 ] 3)
2 Tl @

By (5,) [0, (). (50 ®)
by(s:) =lbz (1), Pz(5,)] ©
The PDF parameters are each modelled as being generated from latent stochastic processes {¢dy (s)} and s)}. The

latent processes that generate the parameters for climate model are considered composed of two independent processes, one
that also generates the equivalent parameters for the in situ observations and another that generates some bias, such that

swith-{p,(s)} = s)i+ s) . The family of GPs are chosen for the latent processes. A link function is used
for the case where the parameter space is not the same as the sample space for GPs. Considering the case of no link function

the following can then be written:
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03(5)2GP (e, g

95(8)~GP (1 106s) ®
92(5)2GP (1 00y 1855) ©)

g a ara a 5

of the-parameters-o;=h{¢;)-so-that-all-parametersean-for the generating processes are given by 0. and 8, . respectively.

The hyper-parameters used in this paper consist of a mean constant, kernel variance and kernel lengthscale. Note the additive
be represented by the i i

roperty of GPs allows s) to also

-pro ased-to-mode atial-dependen

covariances are computed from the sum of the relative values from the independent processes. Further discussion around the
roperties of GPs is provided in appendix ??. The hierarchical model is then-the-foHowing—with-dependeneies-illustrated
through the plate diagram shown in Fig. 1.

Y(s,t) [ @y (s) ~ Fy(oy(s))
Z(s:1) | @4 () "X Fr(@y(s))

¢z.:(s) = ¢y.i(s)+ ¢p.i(s) if correct support,

2
Q
~
)
o
b

In addition, a specific example where the PDFs are approximated as normal is presented in appendix ??.
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Site Level PDFs Parameters and Bias

Data
Site (s; € S)

0

Figure 1. Plate diagram illustrating the full hierarchical model. The random variables for the in-situ observations Y (s) and climate model

output Z(s) have PDFs with the collection of parameters ¢y (s) and s) respectively, where s) is modelled as the sum of s) and
some independent bias s). The parameters ¢+ (s) and the corresponding bias s) are each themselves modelled over the domain as

enerated from Gaussian processes with hyper-parameters 8y and @ .

Inference on the parameters of site-level-and-spatial-distributions-of-the-the hierarchical model given the data is applied in a

Bayesian hierarchical-framework, where parameters of the model are themselves treated as random variables with distributions.
The distribution prior to conditioning on any data is known as the prior distribution and allows the incorporation of a domain
specific expert’s knowledge in the estimates of the parameters. The updated distribution after conditioning on the observed data

is known as the posterior and is approximated using Markov chain Monte Carlo (MCMC) methods, which provide samples

espeecially important-foreorreeting-of the parameters from the distribution P(¢y(s,),@2(8:):06y.:04,14,2). Estimates of
the parameters ¢y and ¢, at any set of new locations 8 can then be made by constructing the posterior predictive distribution,
in particular for the purpose of bias correction estimates of ¢y at the climate model locations can be made by sampling from
the posterior predictive distribution of P(¢y(s:)|y.2)..
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After obtaining multiple realisations of s.) and s.) quantile mapping is then used to bias correct the climate model

time series at every grid cell location. Specifically, for each value of the time series from the climate model output sinee

ere’s-a-broad-range-of users-interested-in-different-vartables-and-domains-with-varying levels-of complexityat a given point
2z« +), this involves finding the percentile of that value using the parameters s’) and then mapping the value onto the

corresponding value of the equivalent percentile of the PDF estimated for the unbiased process, defined through the parameters

s’). The cumulative density function (CDF) returns the percentile of a given value and the inverse CDF returns the value

iven percentile, which results in the following correction function 3.. . = Fyv ' (F, (z...)), where F

0

corresponding to a

represents the CDF at a specific site. The CDF can be estimated as an integral over the parametric form assumed for the PDF.

The Bayesian hierarchical model presented provides a collection of realisations for s.) and s.) from an underlyin

latent distribution. Applying quantile mapping with each set of realisations then results in a collection of bias corrected time

series, with an expectation and uncertainty. The full framework for bias correction proposed in this paper is then illustrated in

Fig. 2. The formulation for the posterior and posterior predictive is given in appendix ??.

CPPIY MCMC inference D / \ /Use the samples of ¢y (SZ)D

) ) ) Sample from the posterior
hierarchical model to obtain o ®(s) to apply quantile mapping
) by (5,) and &, (5.) predictive distribution he el del
estimates o Sy) an Sz), to the climate model time series at
H Z P PPy (s:)|y,2) to get estimates i
as well as estimates of the . each grid cell, resulting in a bias
of the unbiased PDF parameters at
hyper-parameters 6y and 85 for ) . corrected output with uncertainty
the climate model grid cells.

\the generating spatial procey \ J \ bands. J

Figure 2. The full bias correction framework proposed in this paper broken down into the key steps.

3 Simulated-ExamplesData Generation

The goal of the model-hierarchical model in Fig. 1 is primarily to estimate, with reliable uncertainties, the true unbiased values
of the PDF parameters at each location of the climate model output so bias correction can be applied. The-medel-additionally

D structure o Se-para s-and btas—Results-are-presented-to-Simulated examples are generated that

highlight the advantage of two key features of the methodology over other approaches in the literature: modelling shared spatial

covariance between the in situ data and climate model output through the inclusion of a shared generating latent process (Sect.
3-13.1) and the Bayesian hierarchical nature-and-framework with uncertainty propagation (Sect. 3-23.2). One dimensional
simulated examples are chosen for clarity in illustrating these features, although it is noted the implementation works for

higher dimensional domains as is useful in real-world scenarios.
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3.1 SharedLatent-Generating Processes: Non-Hierarchical Foxample
3.1 Non-Hierarchical Examples: Data Generation

A-To illustrate the potential advantage of modelling shared generating spatial processes, non-hierarchical example-is presented
where-direet-examples are generated for simplicity. Direct measurements are assumed for one parameter of the PDFs for the
in situ observations ¢v{s)-¢y (s,) and for the climate model output ¢»{s)¢(s.). The goal is to predict the parameter-¢y{5)
aeross-the-spatial- domain-unbiased parameter at the climate model locations ¢y (s, ) using information from both the-simutated
ﬁ%ﬁb%#ﬁﬂ%&%ﬁﬁmd%ﬁﬁég@mw@iﬁg which are related through ¢»—=-¢v—¢5-

s)= S)+
Comparison is made to the approach of 1nferr1ng fjavés—)—_pﬁs%m&om the in situ data alone ¢y (s, ), as in Lima et al.

(2021).

?-Relative performance is evaluated for three alternative simulated

scenarios that correspond to different possible real-world situations.

The-simulated-data-in-this-example-The data is generated assuming the elepeﬁdeﬂeybmodel in F1g 4-and-therelationship

opacrossthe-domain-1, where the GPs are taken with constant mean and an RBF—kefﬁelr—"Fhe—hypef-pafameteﬂ—ef—fhe%e—]—a{eﬂf
WMMMI%WMW%%WWWQ
of the hyper-parameters used to generate the data and the number of si
observations under the different scenarios is given in Table —The-prior-distributions-1._

For each scenario, a sample of the parameters a

The-three-seenarios-¢y (s*) and s*) is taken from the distributions GP,.. and GP, . at regularly spaced, high-resolution
intervals. These samples are referred to here as complete realisations and represent underlying fields for each parameter
across the domain. Direct “observations’ of the parameter ¢y (s,,) from the underlying field are simulated at lower-resolution,
randomised locations after conditioning the distribution GP,, on the complete realisation and introducing some noise. In order

to simulate input data for the parameter s, ) of the climate model output, samples are first generated for s.) and s

at regularly spaced intervals after conditioning the distributions GP,. and GP, . on the complete realisations, then the sum

of these samples at each location is taken to give ¢,(s.). The input data ¢y (s,) and s. ) can be considered as the trainin

set, while the underlying realisations generated for s_ ) are the test set used for validating the model performance.
Data is generated for three scenarios chosen to represent different potential real-world situationsand-the-data-generated-for
eachis-shown, illustrated in Fig. 3. The first scenario (Fig. 3a) represents an example case where it is expected that there is

LN A A
ample data provided in the form of in situ observations to capture the features of the underlying complete realisation of ¢y
without significant added value provided from inclusion of the climate model output during inference. The second scenario
(Fig. 3b) is an adjustment where the in situ observations are relatively sparse and the underlying bias is relatively smooth. In

this situation the climate model output should provide significant added value in estimating ¢y across the domain since it is

10



only afflicted by a comparatively simple bias that is easy to estimate. The final scenario (Fig. 3¢) also involves sparse in situ
observational data but with a reduced smoothness of the bias compared to the other scenarios. In this scenario the climate
model output should provide added value in estimating ¢y across the domain but this will be limited compared to scenario two

250 due to the difficulty of disaggregating the components and estimating the comparatively more complex bias.

Dependent Variable ‘Model Parameters Scenario 1~ Scenario2  Scenario 3
a-Sita- Kernel Variance (vg,, ) 1.0 1.0 1.0
Unbiased PDF Parameter ¢y Kernel Lengthscale (14,.) 3.0 3.0 3.0
Ia-Sita- Mean Constant (mg,, ) 1.0 1.0 1.0
B L e Noise (o) 0.1 0.1 0.1
Kernel Variance (vg ;) 1.0 1.0 1.0
Bias-Bias PDF Parameter ¢ Kernel Lengthscale (14 ) 10.0 20.0 5.0
Bias- Mean Constant (m, ;) -1.0 -1.0 -1.0

20:0-+# Climate- Modet-Predietions Observations 100.0 80.0 80.0

Climate Model PDF Parameter ¢z

Table 1. A table showing the hyper-parameters of the two latent Gaussian processes used to generate the complete underlying realisations of

dv¢y (s*), ¢5-¢p(s”) and hence ¢=¢z(s*), as well as observations of év—¢dy (s,) and ¢=¢z(s.), on which inference is done for three

scenarios. The number of observations representing in-situ data and climate model output is also given.

11
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Figure 3. A figure showing simulated observed data for the PDF parameters ¢y (sy) and ¢z(s:), as well as the underlying complete

realisations for each parameter and the underlying bias (¢y (8*), ¢z (s*) and ¢ (s*)). Three scenarios are shown and correspond to data

enerated from parameters in Table 1.

Thesirmulated-datainthi
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3.2 Hierarchical Example: Data Generation

Following on from the non-hierarchical examples, to illustrate the advantage of uncertainty propagation in the Bayesian
framework a hierarchical example is generatedassumi tes i i

as-the-in-situ-, In situ data and climate model output respectively;-then-the-time-independent-PDF-are simulated at each site is
taken-as-normat-as generated from normal distributions, such that Y'(s) ~ N (uy (s),0v (s)) and Z(s) ~ N (uy (s),0v (s)) as
in appendix 2?. The following relationship is assumed for the mean parameters p7(s) = v (s) + ps(s), where g (s) is the

bias in the mean for the climate data. For the standard deviation, the parameters are first transformed using a logarithmic link
function and then the relationship 6z (s) = oy (s) + 55(s) is assumed, where G (s) is the bias in the transformed parameter.
The latent distributions that generate iy (s), up(s), 0y (s) and 65(s) across the domain are assumed as independent GPs with
constant mean and an RBF kernel. The hyper-parameters for these latent generating processes are set for a single scenario,

as given in Table - ix2 along with the number of

simulated observation locations and the number of samples per location.
A sample of the parameters

P~ . at regularly spaced, high resolution intervals. These samples are referred to as complete realisations and represent the

underlying fields for each PDF parameter across the domain.
After conditioning the latent GPs on the complete realisations a sample is generated for s,) and 0y (s,) at a selection

the case of the simulated climate model output, samples are first generated for S s.),0y(s.)and o5 (s.) at regularl

spaced intervals after conditioning the latent distributions on the complete realisations, then the sum of these samples at each
location is taken to give s.) and 0~(s.). The climate model output is then generated at each of these locations from the

corresponding normal distribution Z(s;) ~ N (11,(s;),5(s;)).
Fhere-In the generated example there are 40 locations corresponding to simulated in situ observation sites, where for each

site 20 measurements are generated. Likewise;-there-There are 80 locations corresponding to simulated climate model output
grid points and at each location 100 samples are generated. This reflects the typical scenario where the climate model output has
greater spatiotemporal coverage than in situ observations but is alse-afflicted-with-greater-afflicted with bias. In Fig. 4 examples
of the generated samples of Y (s;) and Z(s,) are shown corresponding to the nearest sites for three locations. It is clear that,
due to limited observations, there will be significant uncertainty in estimates of the mean and standard deviation parameters
at each site and it’s important this uncertainty is propagated when-estimating-the-parameters-across-the-domainto inference of
the hyper-parameters for the latent GPs and also to estimates of the unbiased PDF parameters at the climate model locations
(uy(s,) and gy (s,)). The underlying, complete realisations of the parameters #
oy (s*) and g (s*), as well as the bias trp{s)and-op{siug(s*) and or(s*), are shown in Flg 5. In addition, the empirical

mean value and standard deviation of the generated data is given-illustrated at the simulated in situ observation and climate

model sites. The goal of the hierarchical model is then to predict the unbiased values for the parameters of the PDFs at the

13



locations of the climate model output (uy (s, ) and 7y (s, )), while propagating uncertainty. An example of how the uncertaint

295 in predictions of 1y (s, ) and gy (s, ) is propagated through quantile mapping is then provided.

Dependent Variable ‘ Model Parameters ‘ Hierarchical Scenario
In-Sit——————Mean;
Kernel Variance (v, ) 1.0
In-Sildiliased PDF Mean py Kernel Lengthscale (I, ) 3.0
In-Site-Mean- Mean Constant (1, ) 1.0
Kernel Variance (fu(;%/ ) 1.0
Unbiased PDF Transformed
i stoy Vari - Kernel Lengthscale (152 ) 3.0
Variance ¢y, Y
: ; . Mean Constant (m;2 ) 1.0
Y
Bias-Mean;-
Kernel Variance (v, ;) 1.0
Bias-Mdias PDF Mean up Kernel Lengthscale (I, ) 10.0
Bias-Mean;- Mean Constant (m, ;) -1.0
Kernel Variance (v 52, ) 1.0
Bias PDF Transformed Variance
fa sf ¢ i . Kernel Lengthscale (l&%) 10.0
o
Bras—"&aﬂsfefmedg\laﬁaﬂcer Mean Constant (mz2 ) -1.0
B
# Spatiat-eeations-of- In-Sttu-Observations-Observation Sites 40.0
Unbiased Output Y ) ) ) o ) .
# Spatiat-eeations-of Climate- MedelPredietions-Observations per Site 86:6-20.0
# Samples-perLoeation-of In-Situ-Observations-Observation Sites 26:6-30.0
Climate Model Output Z ) ) o ) .
# Samples-perboeation-of Climate- Model-Predietions-Observations per Site 100.0

Table 2. A table showing the hyper-parameters used to generate the complete underlying realisations and the measurement data on which
inference is done for the hierarchical scenario. The number of sites where data is generated along with the number of samples for each site

is also given.

14
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Figure 4. Histograms for the climate model output at three locations and the corresponding data from the nearest in situ observation site. The

locations are a) s=11.4, b) s=46.8 and c) s=79.7. The latent normal distribution the data was generated from is illustrated as a dotted line.
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4 Results

Inference-of the-parameters-of-the-models-Inference is done in a Bayesian framework using MCMC and the No-U-Turn Sampler

(NUTS) algorithm (Hoffman and Gelman, 2014) implemented in Numpyro (Phan et al., 2019). The parameters/hyper-parameters.

are treated as random variables with associated probability distributions. A prior distribution is set for each parameterhyper-parameter
300 and represents the belief on the distribution before observing any data, which typically incorporates knowledge from applica-
tion specific experts. In the examples presented, relatively non-informative priors are chosen since the data is simulated and

represents generic examples. The posterior distribution of each parameter/hyper-parameter is the updated distribution after
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observing and conditioning on the data. Estimates of the pmﬁew—@—é—wmmwm&@and the
§ 5) at new locations away from

corresponding bias ¢4

the observation sites, are then referred to as samples from the posterior predictive.

4.1 Non-Hierarchical Examples: Results

process model presented in this paper is fit to the three non-hierarchical example scenarios, as discussed in Sect. 3.1. Input
data for ¢y (s,) and the-case-where-only-the-parametersfor-¢ (s, ) are provided and the hyper-parameters for the latent GPs
that generate the unbiased and biased components inferred. Comparisons in estimates of the hyper-parameters for the unbiased
Process (14, . Vo, and Ly, ) are made to the approach of only fitting to the in situ dataare-modetled-as generated-from-a-fatent
Gausstan-proeesses, referred to here as the single process model—tn-Seet—of-the-appendix-an-itlustration-is-given-of-approach
since the latent process generating the bias is not modelled. The difference between the shared and single process approaches
MW%MWWM prior and posterior

distributions of

three different scenarios is given in Table 3.
Under all scenarios and-for-both-theshared-process—and-single-process-medels-the 95% credible interval of the posterior

for every hyper-parameter bounds the value specified in generating the data. The expectation for the posterior distribution

the hyper-parameters under the

of the shared-process-model-unbiased hyper-parameters is in general closer to the specified value than-in the shared process
model compared with the single process model and the range of the credible interval is smaller. In scenario one and three the

differences between the shared and single process models posteriors are relatively insignificant for the mean constant (12, )
and kernel variance (v, ), although the shared process model does-show-a-shows a noticeable reduction in the uncertainty of
the length-seale-for-the latentprocess-generating-¢ykernel length scale ([, ). In scenario two the difference is more significant
and clear 1mprovement is shown mbe&rm&expeefaﬁeﬂﬂﬂéﬂmeeﬁaﬁﬁye%eﬂkpaﬂfﬂete%es&ma{e&for the shared process

model-

given-After applying MCMC inference on the parameters/hyper-parameters that generate the data, referred-to-as-the-posterior
predietiveare-shewn-posterior predictive estimates are made for the unbiased PDF parameter values at the simulated locations
of the climate model (¢y (s.)). These estimates are presented in Fig. 6 for each scenario and for both the shared and single

process models.




340

345

locations-are-required Additionally, estimates of the underlying bias s) are shown for the shared process model, since the
bias is explicitly modelled. The relative ability-performance of the shared and single process models te-estimate-this-is-further

assessed-through-is quantified by computing R? scores between the predictions of s.) and the actual values used in
enerating the data, with results presented in Table 4.

In Fig. 6 it can be seen that the predictions of ¢év{s)-aeross-the-domain-¢y (s.) in the shared process case (Fig. b-dand
6d, 6e and 6f) are closer to the true underlying field and with smaller but still realistic uncertainty compared to the single

process model. In scenario one, the difference between the posterior predictive distributions for ¢y{s)-aeross—the-domain
¢y (s.) between the two approaches is not substantial, with both models performing adequately, having R? scores of 0.99 and
0.97 respectively. In scenario two, the difference between estimates of ¢v{s)-¢y (s,) between the models is significant with
R? scores of 0.99 and 0.68 for the shared and single process models respectively. Finally, in scenario three there-is-again=

s-the difference is again significant with R? scores of 0.74
and 0.52 respectively, although the-difference-is-redueed-less significant compared with scenario two.
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Figure 6. Expectation and 1o uncertainty of the posterior predictive distributions of the parameter ¢y (s.) and the corresponding bias

¢B(s.) for three scenarios. The underlying functions (complete realisations) as well as the simulated input data are also shown.
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4.2 Hierarchical Example

The model presented in this paper is fit to the hierarchical example from Sect. 3.2. The expectation, standard deviation and
95% credible intervals for the prior and posterior distributions of each parameter-hyper-parameter of the latent generatin,

processes are given in Table 5. The 95% credible interval of the posterior for every hyper-parameter bounds the value specified
in generating the data. As expected the posterior distribution for each parameter-hyper-parameter is concentrated closer to
the value specified when generating the data than the relatively non-informative prior distributions. The prior and posterior

distributions for each parameter-hyper-parameter are plot in Fig. ?? of the appendix.

Specified | Prior Distribution Posterior Dist.
PDF Parameter Model Hyper-Parameter Value Exp. Std.Dev. CIL. CIU.| Exp. Std.Dev. C.I.L. CILU.
Kernel Variance vy, 1.0 0.67 0.67 0.02 2.46 1.00 0.32 0.49 1.63
Unbiased Mean
Kernel Lengthscale I, 3.0 15.00 8.66 3.09  36.12 | 3.00 0.22 2.56 343
ny
Mean Constant m,- 1.0 0.00 2.00 -3.92 3.92 0.73 0.28 0.17 1.26
Unbiased Kernel Variance v&% 1.0 0.67 0.67 0.02 2.46 0.70 0.25 0.30 1.17
Transformed Kernel Lengthscale [ 53 3.0 15.00 8.66 3.09  36.12 | 294 0.24 247 3.40
Variance o'y Mean Constant mz2 1.0 0.00 2.00 392 392 | 112 0.24 0.66 1.6l
Kernel Variance v, 1.0 0.67 0.67 0.02 2.46 1.38 0.63 0.42 2.58
Bias Mean up Kernel Lengthscale [, 5 10.0 15.00 8.66 3.09 3612 | 12.02 3.59 5.08  18.50
Mean Constant m, -1.0 0.00 2.00 -3.92 392 | -0.78 0.56 -1.89 0.29
Bias Kernel Variance V52, 1.0 0.67 0.67 0.02 2.46 0.92 0.48 0.24 1.86
Transformed Kernel Lengthscale 15,25 10.0 15.00 8.66 3.09 36.12 | 897 1.96 507 1258
Variance 6 g Mean Constant m s -1.0 0.00 2.00 392 392 | -08 042 -1.73 -0.06

Table 5. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation
(Std. Dev.) and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The specified value for each hyper-parameter used

to generate the data is also shown.

datais-After fitting the model, posterior predictive estimates are made of the unbiased mean and standard deviation parameters
at the simulated locations of the climate model (uy (s, ) and 0y (s.)). Additionally, estimates of the bias in the parameters are

made (pu5(s:) and g 5(s.)). These estimates along with the true underlying values are shown in Fig. —Fhe-true-underlying fields
of-the-parameters-are-also-shown;-as-are-the-7. The empirical mean and standard deviation valies-of-the samples-of simulated
in-sita-observations-and-climate-model-outputs—of the input data is also given at the locations where they are sampled. The
posteriorpredictive-appears-estimates visually appear to perform well at capturing the spatial features of the underlying fields

while-alseo-exhibiting-areasenable-and at estimating a one sigma uncertainty rangethat-bounds-the-majority-of-the-underlying
funetion. For example, in the range of s-=H5:25}s € [28, 38], where the main data source is the biased climate model output,

20



365 the prediction accurately captures the spatial features of the trae;unebserved-tatent-mean—unbiased parameters (14 (s) and
standard-deviation-oy (s)—Uneertainty-in-the-parameters-of 1+v-{$)-) with an uncertainty that bounds the true underlying value
at-the-observation-sites;-gy (s,)) due to limited samples

370

4
3 A
5 21
]
(]
€ 14
©
—
©
a 04
c
b
=17
—2 -
—3 -
1 1 1 1 1 1
(b)
4 -
—
[]
-
(]
£ 3
—
©
o
>
o 2 4
[a]
el
&
1 -
1 1 1 1 1 1
0 20 40 . 60 80 100
Location (s)
Unbiased Parameter Post.Pred. Exp. E[¢y(s;)] Unbiased Parameters Complete Realisations: uy(s*), oy(s*)
Unbiased Parameter Post.Pred. Std.Dev. o[¢y(s;)] Bias Parameters Complete Realisations: ug(s*), og(s”)
—— Bias Parameter Post.Pred. Exp. E[¢5(s;)] Climate Model Parameters Complete Realisations: pz(s*), 0z(s")
Bias Parameter Post.Pred. Std.Dev. o[¢s(s;)] x  Empirical Values from In Situ Observations: Elys, ], olys, ]
+ Empirical Values from Climate Model Output: E[zs,], olzs,]

Figure 7. A figure showing the expectation and one sigma uncertainty of the posterior predictive distribution across the domain for the

arameters

and o

S

as well as the true underlying functions.

YiSz

S2), 0y Sz

uantile mapping is applied to the climate model output for a single site (z,,) and the bias corrected time series (2,.) is

shown in Fig. 8. The site chosen is at s = 11.4 and is the same as in Fig. 4a. A generic time series for the climate model
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output and nearest in situ observations is generated from the correct mean and standard deviations of the samples. Quantile
mapping of-the-climate-model-timeseries-is performed for each posterior predictive realisation of fy{s)t{5)ov{s)and

375 {5y (8:), phz(S:), 0y (s:) and gz (s;). This results in multiple realisations of bias corrected time series with an expectation

and uncertainty.

Value

Time
% In Situ Observations ys,
+ Climate Model Output zg,
« Bias Corrected Climate Model Output Expectation E[2,]

Bias Corrected Climate Model Output 3 Sigma Uncertainty 3 - 0{2s,]

—— Bias Corrected Climate Model Output Realisations 2z,

Figure 8. Simulated time series for the climate model output at location s = 11.4 and for the nearest in situ observation site. Realisations of

the climate model bias corrected time series are shown along with the expectation and three sigma uncertainty range.

5 Discussion

380 The bias correction framework proposed in this paper models the parameters of the PDFs for the in situ observations and
climate model output across the domain using a Bayesian hierarchical model. This allows estimates to be made of the unbiased
PDF parameters at the climate model locations and quantile mapping can then be applied to bias correct the climate model time
series. The hierarchical model uses GPs to model the spatial covariance structure of the data-PDF parameters and assumes that
each parameter of the PDF-for-the-climate model output is generated from two independent Hatert-GPs—Onre-GP-GPs: One

385 that generates an unbiased component and se-alse-the-equivalent-parameterfor-the PDF-of-another that generates a bias. The
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GP that generates the unbiased component is also modelled as generating the equivalent PDF parameters for the in situ data;
while-the-other-GP-generates-a-bias—This-. This approach reflects the belief that the climate model provides skillful estimates
of these-the PDF parameters across the domain and that the spatial covariance structure, generated from equations based on
established physical laws, has similarfeatares-spatial features similar to the true underlying-struetareunbiased PDF parameter
values. The climate model output, while afflicted with bias, has-provides comprehensive spatiotemporal coverage and provides
useful information in the inference of the unbiased PDF values-parameters across the domain;-._ This is assuming the bias

signal can be adequately deconstructed from the climate model output with the use of in situ observations. Medeting-shared

n Sect. 4.1 of the results, the added value of modelling shared

latent GPs between the in situ observations and climate model output is demonstrated. This is compared with the approach
of modelling a latent GP for the in situ observations alone and inferring the unbiased PDF parameters are-inferred-from-the

[avnl

in-sitt-observations-alorewithout incorporating information from the climate model output, as in Lima et al. (2021) —Fhisis
demonstrated-in-Seet-of the results;where-and here referred to as the single process approach.

The added value is assessed for three scenarios with differing density of observations and spatial complexity of the bias
signal.

#dded-vatueis-assessed-with respeet-to-"The methods used to assess the added value include: comparisons of summary
statistics for the posterior distributions of the GP hyper-parametersef-the-tatent-GPs;-visuval-examination; visual comparisons
of the expectation and standard deviation for posterior predictive estimates of the unbiased PDF parameters across the domain;
and comparison of R? scores for the unbiased PDF parameter at the locations of the climate model output. It is shown that mest
added-value-is-provided;-across all these measures, in-the-case-of seenario-twor-the most added value is provided where the in
situ observations are sparse-compared-to-relatively sparse compared with the climate model output and the underlying bias is
relatively smooth-compared-to-spatially smooth compared with the the unbiased signal-—The-bias-can-be-estimated-with-high
aceuracy-and-preeision, as in scenario two. In this scenario, despite sparse in situ observations, since it-the bias signal varies
smoothly across the domain ;-which-alse-means-the climate model output can be disaggregated-and-the-unbiased-component
biased components. This leads to improved estimates of the unbiased PDF parameters at the climate model locations when
considering shared GPs compared with the single process approach that uses in situ observations alone, see Fig, 6.

As the density of in situ observations is increased to similar levels as the climate model output itself, then the value added

from the climate model output in inference of the unbiased parameters is reduced, illustrated through results for scenario
one. The number of in situ observations is sufficient to adequately capture the spatial features of the underlying process
(Fig. 6a) as well as the latent spatial covariance structure, encoded through the hyper-parameter estimates of the latent GP
(Table 3). Additionally, if-as the complexity of the bias signal is increased, through for example reducing the length scale
of the latent generating process, as in scenario three, then again added value is reduced. The relatively more complex bias
structure compared with scenario two makes it more difficult to disaggregate the climate model output into its biased and
unbiased components. Whie-Despite this, while added value is reduced for scenarios one and three relative to scenario two,

incorporating the climate model output in inference is still shown to improve overall performance. Modelling the generating
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process for the bias explicitly is-alse-informative-and-also provides informative information that is potentially useful for future
climate model development.
In addition to modelling shared latent processes, another important feature of the methodology presented in this paper is

the Bayesian framework;—where-, In this framework the parameters/hyper-parameters of the hierarchical model are treated

as random variables with associated

whichisimpertantformaking-the-medelprobability distributions. Uncertainty is inherently propagated through the framework
making the code implementation flexible to further development and so applicable to a wide range of real-world applications
where-bias-prediction-isrequiredscenarios. Additionally, expertknowledge-ean-a Bayesian framework allows expert knowledge

to be incorporated in the inference through the choice of prior distributions, which is-can be especially important where the data

outio a WO H D aha—aHow O oY t a y—propag

is sparse. In Sect. 4.2, results for a simulated ene-dimensional-hierarchical example illustrate uncertainty propagation between
parameter-values-of the PDF-at-each-sample-site-and-the-vatues-of-the PDF parameter values and the hyper-parameters of the
latent generating processes. Uncertainty present in the different levels of the hierarchical model are incorporated in the final
posterior predictive estimates of the unbiased PDF parameters at the climate model locations, see Fig. 7. Multiple realisations

to_produce
multiple realisations of the final bias corrected time series, with an expectation and uncertainty range—Robust-uneertainty

illustrated in Fig. 8. Reliable uncertainty bands on
the final bias corrected time series is important for impact assessments and resulting decision making. Having-Additionall

from the posterior predictive can then be used in quantile mapping 5

having multiple realisations for the final bias corrected time series is-also-useful-for-allows further propagation of uncertainty

in process models driven by climate model output, such as land surface models (Liu et al., 2014).

The simulated examples presented provide an initial proof of concept, although future studies validating the methodology
against real-world applications are important for understanding the remaining limitations and areas for further development.
The current primary limitation is_expected to be that the underlying spatial covariance structures are assumed stationary.
That is that the covariance length scale is assumed constant across the domain, whereas for real-world applications over
large and complex topographic domains the length scale will be expected to change depending on the specific topography.
of the region. Further development of the methodology to incorporate non-stationary kernels would therefore be valuable,
although is beyond the scope of this paper. Another important limitation to consider is the assumption that the bias is time
independent. In situations where the bias varies gradually through time and uniformly across the domain, the methodology.
can be further developed such that the mean function of the GPs is modelled with a time dependency. If the bias varies in
time non-uniformly across the domain, spatiotemporal GPs will need to be considered, which is again beyond the scope of this
paper. Secondary limitations, include the assumption that the unbiased and biased components of the PDE parameter values
are independent. In situations where there is a dependence between these components, the methodology presented is still
expected to perform adequately, although information is lost by not modelling the dependency explicitly. Additionally, many.
real-world applications will necessitate specific model adjustments, such as incorporating a mean function dependent on factors
like elevation and latitude. Finally, the computational complexity of the model is an important remaining consideration, with
inference time of GPs scaling as the cube of the number of data points. Incorporating techniques such as using sparse variational
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GPs or upscaling the climate model output, while outside the scope of this paper, will aid computational performance under
demanding real-world scenarios and will facilitate further model development.

6 Conclusion

Current approaches for bias prediction and correction do not aim to preserve the spatial covariance structure of the climate

model output

and typically either neglect uncertainty or inadequately model uncertainty propagation through-the-model—In-this-paper-a

Ehret et al., 2012). This paper presents a novel fully Bayesian hierarchical medel-framework for bias correction is-presented
where-with uncertainty propagation and latent GP distributions are-used to capture and preserve underlying covariance struc-

parameters of the time-independent PDF at each site. Estimates of the unbiased PDF parameters are made at the climate model
locations and then quantile mapping is applied to produce the final bias corrected time series. The novelty of the approach lies
in the fully Bayesian implementation, assuming shared latent GPs between the in situ data and climate model output and in

Simple simulated examples are chosen to illustrate the-key features of the medelframework. In Sect. 224.1, results are
displayed for a-non-hierarchical example-examples where the focus is on illustrating the rature-of-GPs-and-how-assuming &
shared-Hatent-GP-between-advantage of modelling spatial covariance in both the in situ data and climate model outputatiows
inference-on-the-unbiased-fieldfromboth-seurces-of- data, assuming shared latent GPs. This is shown to be particularly important
in the case of sparse data-and-a-simple-bias-in situ observations and bias that varies smoothly across the domain, where the
climate model output provides—significant-vatueadded-inpredictionsitself provides significant added value in predictions of
the unbiased PDF parameters. In Sect. 224.2, results are presented for a hierarchical case and focus is on illustrating how the
model propagates uncertainty between the different levels and to the final p&r&me{e%pfeéeﬁeﬁs—ﬂaat—afeﬂsed—ﬁ%eﬁeeﬁm
r-unbiased PDE parameter

ts-locations, In addition,

a simulated example of propagating this uncertainty through quantile mapping is then provided to demonstrate how this results
in a bias corrected time series with uncertainty bands, which is desirable for use in impact studies that-compute-predictions-on

responses-to-climate-change-and for informing in-decision making. Adequatel

modelling uncertainty in the bias corrected time series is expected to be especially important over areas where the chmatology
is hard to model and in situ observations are sparse, such as

{Carteret-al52022)-
The-model-presented-is-over Antarctica (Carter et al., 2022). The framework presented provides a step towards adequately

capturing uncertainty and incorporating underlying spatial covariance structures from the climate model in bias correction. Fhe

predictions at the climate model &
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in-this-paperagainstarange-of-While initial results are promising, further studies applied to real-world applications;-assessing

datasets are important to further
validate the approach and explore remaining limitations. The Bayesian appreach-adepted-means-implementation provides
a flexible modelling framework, where adjustments to the methodology needed for specific applications can be made with

uneertainty-inherently-propagated-adequatelywhile inherently propagating uncertainty.

Code and data availability. The code used to generate the simulated data, fit the model, make predictions and create the figures/tables is
available at: https://doi.org/10.5281/zenodo.10053653 (Carter, a).
The data used to create the plots is available at: https://doi.org/10.5281/zenodo.10053531 (Carter, b).
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(a) Scenario 1

Seenariot Specified | Prior Distribution Posterior Dist. (Shared Process) | Posterior Dist. (Single Process)
Dependent Variable | Model Parameter Value | Exp. Std.Dev. CI.L. CI. U.| Exp. Std.Dev. C.I.LL. C.I.U. |Exp. Std. Dev. CI. L. CI U.
h—Sitw
Kernel Variance vy, 1.0 0.67 0.67 0.02 246 | 1.25 0.30 0.73 1.86 | 1.04 0.31 0.57 1.69
IHibiased PDF Kernel Lengthscale 1, 3.0 15.00  8.66 3.09 36.12 | 2.96 0.06 285 3.08 |2.73 0.20 232 3.0
IsPgrameter ¢y Mean Constant 1m,4, 1.0 0.00 2.00 -3.92 392 | 1.14 0.28 0.61 1.68 |1.23 0.26 0.74 1.76
In-Sita-Observation- | Noise 04, 0.1 2.00 2.00 0.05 738 | 0.11 0.01 0.09 0.12 |[NJA N/A N/A  N/A
Kernel Variance vy 1.0 15.00  8.66 3.09 36.12 | 2.10 1.30 048 472 |[N/JA N/A N/A  N/A
Bias PDF
ias Kernel Lengthscale I 10.0 0.00 2.00 -3.92 392 1145 1.28 9.07 14.00 |[N/A N/A N/A  N/A
Parameter ¢
Bias- Mean Constant m -1.0 0.25 0.14 0.01 049 |-1.00 0.64 -231 024 |[N/A  N/A N/A  N/A
(b) Scenario 2
Seenario2 Specified | Prior Distribution Posterior Dist. (Shared Process) | Posterior Dist. (Single Process)
Dependent Variable | Model Parameter Value | Exp. Std. Dev. C.I.L. CI. U.| Exp. Std.Dev. C.I.L. C.I.U. |Exp. Std. Dev. C.I.L. C.I. U.
——Sitn
Kernel Variance v, 1.0 0.67 0.67 0.02 246 | 1.13 0.28 0.66 1.66 | 149 0.53 0.65 255
Idibiased PDF Kernel Lengthscale 1, 3.0 15.00 8.66 3.09 36.12 | 297 0.06 286 3.09 [3.70 044 2.83 4.56
InParameter ¢y Mean Constant m,y, 1.0 0.00 2.00 -3.92 392 | 0.70 0.27 0.15 1.22 {0.69 0.40 -0.14 144
In-Situ-Observation- | Noise 04, 0.1 2.00 2.00 0.05 7.38 | 0.12 0.03 0.08 0.18 |[NJA N/A N/A N/A
Bias-
Kernel Variance v 1.0 15.00 8.66 3.09 36.12 | 1.24 0.99 0.16 323 |[NJA N/A N/A  N/A
Bias PDF
ias Kernel Lengthscale I, 20.0 0.00 2.00 -3.92 392 (23.69 5.79 1229 3490 [N/A N/A N/A N/A
Parameter ¢ p
ias Mean Constant m -1.0 0.25 0.14 0.01 049 |-0.66 0.64 -1.87 0.62 [N/A N/A N/A N/A
(¢) Scenario 3
Seenario3 Specified | Prior Distribution Posterior Dist. (Shared Process) | Posterior Dist. (Single Process)
Dependent Variable | Model Parameter. Value | Exp. Std. Dev. C.I.L. CI. U.| Exp. Std.Dev. C.I.LL. C.I.U. |Exp. Std. Dev. CI.L. CI U.
———Sitn
Kernel Variance v, 1.0 0.67 0.67 0.02 246 | 1.18 0.33 0.62 1.83 |0.85 0.33 0.30 1.50
iBibiased PDF Kernel Lengthscale 1, 3.0 15.00 8.66 3.09 36.12 | 3.00 0.07 287 3.14 [3.08 049 203 3.96
1sPgrameter ¢y Mean Constant my,, 1.0 0.00 2.00 -3.92 392 | 0.95 0.30 0.35 1.53 {090 0.29 0.33 148
Ta-Sit-Observation- | Noise 04, 0.1 2.00 2.00 0.05 738 | 0.16 0.06 0.03 027 |[NJA N/A N/A  N/A
Kernel Variance vy 1.0 15.00 8.66 3.09 36.12 | 1.50 1.02 028 356 |[NJA N/A N/A  N/A
Bias PDF
ias Kernel Lengthscale I, 5.0 0.00 2.00 -3.92 392 | 6.34 1.71 323 920 [NJA  N/A N/A N/A
Parameter ¢
Bias- Mean Constant m -1.0 0.25 0.14 0.01 049 |-1.17 0.50 211 -0.10 [IN/A  N/A N/A N/A

Table 3. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation

(Std. Dev.) and lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The posterior distributions for the shared and

single process models are given. The specified value for each parameter used to generate the data is also shown.
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R? Scores: Posterior Predictive Estimates of ¢y (s5)
Shared Process Model Single Process Model
Scenario Exp. Std.Dev. Exp. Std.Dev.
1 0.99 0.00 0.97 0.01
2 0.99 0.01 0.68 0.07
3 0.74 0.12 0.52 0.10

Table 4. A table showing the expectation and standard deviation of R? scores for the posterior predictive estimates of the unbiased PDF

parameter at the climate model output locations ¢y () for the shared and single process models for each scenario.
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