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Thank you for the further review of the revised manuscript. We are very grateful for your time and have worked hard to
incorporate the additional feedback into the revised manuscript. The response is detailed here and we hope that you find
the further enhancements to the paper satisfactory. A revised manuscript is provided, along with a LaTex-diff document
highlighting changes.

1. Referee 2 Further Comments

RC:
1. I appreciate that the proposed method would potentially help correct the bias of climate model outputs by preserving
the covariance structure. Extensive experimentation on synthetic data under different distributional assumptions has
also helped me better understand how the framework improves over a single-process model. However, it has not been
convincingly argued that the synthetic experiments represent real-world scenarios or that the synthetic data experiments
reveal how the model may perform on real climate model data. It is still unclear if the proposed methodology would be
useful in real-world scenarios.

AR:
We thank the reviewer for their constructive comment and have edited the manuscript accordingly to further highlight the
applicability of the methodology to real-world data sets. To start, additional writing (highlighted in blue below) is included in
Sect. 3.1 of the manuscript further describing how the simulated scenarios are related to different potential real-world cases,
using the study of Lima et al.,|2021as an example.

Relevant text from data generation section (added text highlighted in blue):

Data is generated for three scenarios chosen to represent different potential real-world situations, illustrated in Fig. 3.
The first scenario (Fig. 3a) represents an example case where it is expected that there is ample data provided in the
form of in situ observations to capture the features of the underlying complete realisation of ¢y without significant
added value provided from inclusion of the climate model output during inference. The second scenario (Fig. 3b) is
an adjustment where the in situ observations are relatively sparse and the underlying bias is relatively smooth. In this
situation the climate model output should provide significant added value in estimating ¢y across the domain since it is
only afflicted by a comparatively simple bias that is easy to estimate. The final scenario (Fig. 3c) also involves sparse in
situ observational data but with a reduced smoothness of the bias compared to the other scenarios. In this scenario the
climate model output should provide added value in estimating ¢y across the domain but this will be limited compared to
scenario two due to the difficulty of disaggregating the components and estimating the comparatively more complex bias.

In practice, real-world datasets are likely to be a combination of these scenarios. For example, the methodology in Lima
et al.,|2021|is applied to bias correcting precipitation over a domain covering South Korea and the surrounding ocean.
Over the land, there is a sufficient spatial density of observational rainfall gauges to adequately capture the spatial features




of the unbiased underlying field from the observations alone (similar to scenario A). Over the ocean, rainfall gauges
are very sparse and so its important to consider the spatial patterns observed from the climate model output (similar to
scenario B). Not accounting for the spatial features seen in the climate model output over the ocean results in undesirable
extrapolation over this region, as seen in the results presented in Lima et al., This undesirable property is something
that is addressed by the methodology proposed in this paper, as illustrated by results for scenario B given in Sect. 4.1.

In addition to this, further writing has been included in the introduction detailing the flexibility and applicability of using GPs
for modelling real-world datasets. Reference is made to papers from relevant text in the literature, including Zhang et al., 2021}

Lima et al.,|2021| and Wang and Chaib-draa, 2017

Relevant added text to introduction:

While simple simulated scenarios are focused on in this paper, the applicability of GPs for modelling complex spa-
tial patterns seen in real-world climatology is already illustrated in Zhang et al., 2021] and Lima et al., 2021} The
non-parametric nature of GPs makes the model flexible and able to capture complex non-linear spatial relationships.
Additionally, features of GPs such as uncertainty estimation, sensible extrapolation, kernel customisation and the ability
to produce accurate predictions with limited data are desirable for real-world case studies. Finally, advancements in
approximate inference methods have improved the scalability of GPs, improving the applicability to large climate data
sets, as demonstrated in Wang and Chaib-draa, In addition to the main results presented in Sect. 4, to further
demonstrate the flexibility and applicability of the methodology presented in this paper to potential real-world scenarios,
some additional simulated scenarios are created with added complexity and results presented in appendix G. These
additional scenarios test the robustness of the model to potential real-world situations where not all the assumptions of
the model will necessarily completely hold.

Finally, a whole new section of the appendix is created to illustrate the applicability of the methodology under additional
scenarios with added complexity and where some of the assumptions of the model are partially broken, as might be the case in
real-world scenarios. The results from this section show the model proposed is robust and behaves desirably with potentially
challenging features of real-world datasets. Despite this, importance is placed on how the purpose of this paper is not to
provide a final fixed model, instead aiming to provide a flexible Bayesian framework where additional complexities present in
real-world applications can be assessed on a case-by-case basis and further model adjustments made where needed to account
for specific features of the real-world dataset.

Additional Sect. G of the appendix:

Real-world scenarios are expected to have more complex spatial features than the simulated examples presented in Sect.
4.1, with some of the assumptions of the model expected to be partially broken, such as stationarity and independence
of the latent processes. To explore the performance of the methodology under scenarios with more complex spatial
features, as in real-world problems, results for several additional simulated examples (A-D) are presented in Fig. G1.
The hyper-parameter values used to generate the data are presented in Table G1, while the summary statistics for the
posterior distributions after fitting the model proposed in this paper are presented in Table G2.

Scenario A represents a potential real-world scenario where the covariance length scale changes across the domain. This
could be due to topographic features and a shift from relatively smooth topography to sharp mountainous terrain. For this
scenario, the length scale of the latent unbiased process changes abruptly at z = 50 with a length scale of 5 for z < 50
and a length scale of 1 for z > 50. The length scale of the biased process is left constant across the domain in scenario A,
although in scenario B it is made to also change abruptly at z = 50 to show a case where the latent spatial structure of
the bias is also dependent on an extra factor such as topography.

Scenario C represents the potential real-world scenario where there are multiple sources of variation in the climate with




different covariance length scales. An example of this could be the combined influence of large-scale upper-atmosphere
circulation patterns and small-scale topographic changes over the domain. The data is generated from the unbiased
process after defining the kernel as the sum of two independent components, one with a variance of 1 and length scale of
3 and the other with a variance of 0.2 and length scale of 0.6. Finally, scenario D represents a potential real-world case
where the bias in the parameter of study is dependent on the parameter value itself, as might be the case if for example
the output from temperature sensors were skewed by over-heating. This correlation is induced between the bias and the
unbiased process by generating the data for the bias as the sum of ¢5(s) = 0.2 % ¢y (s) + ¢p,,, (s), where ¢, , (s) is
an independent bias as generated in the other examples.

The result of fitting the model presented in this paper to each scenario is displayed in Table G2 and Fig. G1. From Table
G2 it is clear that in cases where multiple length scales are used in generating the data, the expected value of the assumed
single length scale is in-between the true values tending more to the smallest length scale. The reason the expectation of
the single length scale tends towards the shorter values present in generating the data is hypothesised to be the result of
more spatial features (peaks and troughs) being present for the shorter length scale component. The model is better able
to explain the data observed with a length scale closer to the shortest value present and the 95% credible interval for the
single length scale does not necessarily cover the multiple values used in generating the data.

In Fig. G1 it can be seen that, despite the additional complexities, the predictions on the unbiased parameter and on the
bias are reasonable and capture the main spatial patterns. This demonstrates the flexibility of GPs and the robustness of
the methodology proposed to fit different types of real-world data where some of the assumptions made in the model
partially don’t hold. Some features of the results due to not fully capturing the dependencies involved in generating the
data are described here. In scenario A the length scale of the unbiased process is estimated close to the value used in
generating the data for = > 50, which results in greater uncertainty than expected between nearby observations in the
region x < 50 where the length scale is greater. For example, in the extrapolation range of x < 0 the prediction in the
unbiased parameter values returns sharply to the mean and with uncertainty independent of observed points, whereas
if the length scale was correctly estimated in this region the predictions would remain dependent on the data observed
at z = 0 — 10 for longer. The same is true in scenario B with the addition of the estimates of the bias being effected,
making disaggregating the climate model output into an unbiased and biased component more challenging, as seen at
x = 30. In scenario C again by only modelling a single length scale for the unbiased process, disaggregating the climate
model output into its two components is effected and the longer length scale peak present at = 20 is attributed to the
bias incorrectly. Finally in scenario D, not accounting for the correlation between the unbiased values and the bias results
in a slightly greater uncertainty in predictions than could be achieved by incorporating this relationship.

Overall the model is shown to perform adequately and not be over-sensitive to some of the assumptions being partially
broken, which supports the usefulness of the methodology to real-world applications. In addition, other methodologies
currently applied to bias correction are likely more affected in these complex scenarios. It is noted that the purpose of this
paper is not to provide a final fixed model however, instead aiming to provide a framework where additional complexities
present in real-world applications can be assessed on a case-by-case basis and further model adjustments made where
needed to account for specific features of the real-world dataset. The model could be modified for each scenario to take
into account the extra complexity, something that a fixed-type model for bias correction would not be able to handle.




Dependent Variable Model Parameters Scenario A Scenario B Scenario C Scenario D
Kernel Variance (v, ) 1.0 1.0 1.0& 0.2 1.0
. Kernel Lengthscale (I5,.) | 5.0 (x<50), 1.0 (x>50) 5.0 (x<50), 1.0 (x>50) 3.0&06 30
Unbiased PDF Parameter ¢y
Mean Constant (m,. ) 1.0 1.0 1.0 1.0
Noise (74,.) 0.1 0.1 0.1 0.1
# Observations 40.0 40.0 40.0 40.0
Kernel Variance (v ;) 1.0 1.0 1.0 1.0
Bias PDF Parameter ¢ Kernel Lengthscale (I, ) 10.0 10.0 (x<50), 2.0 (x>50) 10.0 10.0
Mean Constant (1m ;) -1.0 -1.0 -1.0 -1.0
Climate Model PDF Parameter ¢ ‘ # Observations | 80.0 80.0 80.0 80.0

Table G1. A table showing the hyper-parameters of the latent Gaussian processes used to generate the complete underlying realisations of

¢y (8™), &p(s”) and hence &z (s™), as well as observations of ¢y (s,) and ¢ z(s. ). on which inference is done for the additional scenarios.

The number of observations representing in-situ data and climate model output is also given.

(a) Scenario A and B

Scenario A Posterior Dist. Scenario B Posterior Dist.
Dependent Variable |Model Parameter Exp. Std. Dev. C.LL. C.LU.| Exp. Std.Dev. C.I.LL. C.I.U.
Kernel Variance vy, 087  0.17 055 118 | 085 0.18 053 120
Unbiased PDF Kernel Lengthscale [,,. | 1.06  0.06 094 1.19 | 112 007 099 1.24
Parameter ¢y Mean Constant my,,. 078  0.15 048 107 (142 017 .09 L77
Noise a4, 012  0.03 006 017 |0.15 005 005 024
. Kemel Variance vy LI5S 086 0.19 287 | 085 039 032 1.60
Pa:::e:)::m Kernel Lengthscale [, , [10.34 193 6.86 14.32 | 350 0.82 221 505
Mean Constant m -0.68 049 -1.59 034 |-079 027 -1.33  -0.25

(b) Scenario C and D

Scenario C Posterior Dist.

Scenario D Posterior Dist.

Dependent Variable | Model Parameter Exp. Std. Dev. C.ILL, C.LU.|Exp. Std.Dev. C.I.LL. CI.U.
Kernel Variance vy, 052  0.10 034 072 |0.88 023 049 133
Unbiased PDF Kemel Lengthscale [,,. | 0.75  0.08 0.61 092 [295 006 282 307
Parameter ¢y Mean Constant m.,. 1.03 011 0.81 1.25 | 093  0.26 042 144
Noise 7, 0.18  0.06 0.09 030 |0.10 002 0.07 0.3
Kernel Variance vy 057 044 0.11 138 | 042 022 0.14 0.84
Bias PDF
Kernel Lengthscale [, | 6.71 2.11 3.19 10.84 | 4.31 0.53 326 533
Parameter ¢ ;3
Mean Constant 1m. , -0.12 030 -073 044 |-002 021 -0.46  0.38

Table G2. Tables showing summary statistics for the posterior distributions including the expectation (Exp.), standard deviation (Std. Dev.)

and lower and upper bounds for the 95% credible interval (C.I. L. and C.1. U.). The prior distributions are the same non-informative distribu-

tions given in Table 3.
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Figure G1. Expectation and 1o uncertainty of the posterior predictive distributions of the parameter ¢y (8-) and the corresponding bias

¢n(s:) for three scenarios. The underlying functions (complete realisations) as w

ell as the simulated input data are also shown.
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