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Geoscientific Model Development,

RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

Thank you for the review of the manuscript. We are very grateful for your careful and insightful comments, which have
contributed to the improvement of the original manuscript. We have worked hard to incorporate the feedback into the revised
manuscript and have detailed here our thoughts and any changes made for each comment individually below. We hope you find
the response and changes satisfactory.

A revised manuscript has also been provided, along with a LaTex-diff document highlighting changes. Due to the re-structuring
of the manuscript the LaTex-diff document is difficult to follow, so a brief summary of the main changes is described here:

1. The structure has been updated to a more conventional format to align with the reviewers comments. To make this work
some sections have been moved to the appendix.

Old structure:

1.1 Introduction
1.2 Bias in Climate Models

1.2.1 Bias in Random Variables
1.2.2 Bias with Spatially Varying Parameters
1.2.3 Bias Correction

1.3 Bias Prediction Methodology
1.3.1 Model Overview
1.3.2 Specific Model Example
1.3.3 Capturing Spatial Structure with Gaussian Processes

1.4 Simulated Examples
1.4.1 Shared Latent Generating Processes: Non Hierarchical Ex-

ample
1.4.1.1 Data Generation
1.4.1.2 Results

1.4.2 Bayesian Framework: Hierarchical Example
1.4.2.1 Data Generation
1.4.2.2 Results

1.5 Discussion
1.6 Conclusion
1.7 Appendix

1.7.1 Posterior and Posterior Predictives
1.7.2 Data Generation
1.7.3 Prior and Posterior Distribution Examples

New structure:

1.1 Introduction

1.2 Methodology

1.3 Data Generation

1.3.1 Non Hierarchical Examples: Data Generation

1.3.2 Hierarchical Example: Data Generation

1.4 Results

1.4.1 Non Hierarchical Examples: Results

1.4.2 Hierarchical Example: Results

1.5 Discussion

1.6 Conclusion

1.7 Appendix

1.7.1 Bias in Climate Models

1.7.2 Capturing Spatial Structure with Gaussian Processes

1.7.3 Posterior and Posterior Predictive Formulation

1.7.4 Specific Example with Temperature

1.7.5 Shared and Single Process Model Comparison

1.7.6 Prior and Posterior Hyper-Parameter Distributions

2. All sections have been partially re-written to align with the new structure and to further improve clarity on some points
for the reader. Some additional paragraphs are included to align with specific reviewer’s comments

3. Figures and Tables have been partially adjusted to further improve clarity and consistency with the re-written text.
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1. Referee 1

1.1. Concerns
1.1.1

RC:
1. The experiments and results are only on simulated data. While the experiments are beneficial in understanding how the
model would perform under different data distributions, the benefits of the framework on real observed / climate model data
have not been validated.

AR:
It’s agreed that applying the framework to simulated examples only doesn’t validate the effectiveness of the methodology against
real-world datasets. However, the aim of this paper, which is already ambitious is to provide an initial proof of concept against
three simplified and varied simulated case studies and with the expectation that further papers will validate the methodology
against real-world case studies. Extending the current paper to include a real-world scenario would involve extensive additional
work, such as intricate data cleaning, processing and exploration of the variables under study, as well as the expansion of our
methodology to incorporate mean functions dependent on relevant spatial predictors like elevation and finally writing around
the specific importance of results to the field of study. This would add significant added complexity to an already complex
manuscript and we believe it is better suited to inclusion in a separate paper. It is believed including this in the current paper
would over-complicate an already long paper and so instead we have made adjustments to the abstract and discussion to make it
clear that future pieces of work validating against real-world applications are important:

Relevant adjustment to abstract:

This paper focuses on one-dimensional simulated examples for clarity, although the code implementation is developed
to also work on multi-dimensional input data, encouraging follow-on real-world application studies that will further
validate performance and remaining limitations. The Bayesian framework supports uncertainty propagation under model
adaptations required for specific applications, providing a flexible approach that increases the scope to data assimilation
tasks more generally.

Relevant adjustments to discussion:

The simulated examples presented provide an initial proof of concept, although future studies validating the method-
ology against real-world applications are important for understanding the remaining limitations and areas for further
development. The current primary limitation is expected to be that the underlying spatial covariance structures are
assumed stationary. That is that the covariance length scale is assumed constant across the domain, whereas for real-world
applications over large and complex topographic domains the length scale will be expected to change depending on
the specific topography of the region. Further development of the methodology to incorporate non-stationary kernels
would therefore be valuable, although is beyond the scope of this paper. Another important limitation to consider is the
assumption that the bias is time independent. In situations where the bias varies gradually through time and uniformly
across the domain, the methodology can be further developed such that the mean function of the GPs is modelled
with a time dependency. If the bias varies in time non-uniformly across the domain, spatiotemporal GPs will need to
be considered, which is again beyond the scope of this paper. Secondary limitations, include the assumption that the
unbiased and biased components of the PDF parameter values are independent. In situations where there is a dependence
between these components, the methodology presented is still expected to perform adequately, although information is
lost by not modelling the dependency explicitly. Additionally, many real-world applications will necessitate specific
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model adjustments, such as incorporating a mean function dependent on factors like elevation and latitude. Finally, the
computational complexity of the model is an important remaining consideration, with inference time of GPs scaling as
the cube of the number of data points. Incorporating techniques from the literature such as using sparse variational GPs
(SVGP) (Hensman et al., 2015), nearest-neighbor GPs (NNGP) (Datta et al., 2016) or upscaling the climate model output,
while outside the scope of this paper, will aid computational performance under demanding real-world scenarios and will
facilitate further model development.

Additionally, it is recognised that the title of the paper is potentially misleading with the focus being on the application and so
adjustment is made from ‘Bias Correction of Climate Models using a Bayesian Hierarchical Model’ to ‘Bayesian Hierarchical
Model for Bias Correcting Climate Models’. This hopefully puts more focus on the model development.

1.1.2

RC:
2. The clarity of the paper can be improved. Addressing these concerns may make it easier to follow the discussion in the
paper.

• In several places, the term “model” can be clarified. For instance, if it is the climate model or the GP model that is
being discussed.

• Phrases like “spatially varying parameter of the PDF for the climate model output” are a little unclear. Does this
refer to the hyper-parameters from the GP model?

AR:
We thank the reviewer for this suggestion and have edited the manuscript accordingly. Many small adjustments have been made
to sentences that could be perceived as ambiguous and in particular attention has been made to always include context around
the term ‘model’ for clarity. For example, the full terms ‘climate model’, ‘hierarchical model’ and ‘shared process model’ are
all used rather than just using ‘model’ to make it clear what is being referred to.

Phrases like ‘spatially varying parameter of the PDF for the climate model output’ have been shortened to just ‘parameter of the
PDF for the climate model’ to improve clarity. For example, if at each site the PDF of the data is considered normal then this
gives Z(si) ∼ N (µ(si), σ(si)), where either of the parameters µ(si)and σ(si) are what we are referring to in the previous
sentence. When we are referring to the parameters of the latent GPs we’ve made sure to always use the term ‘hyper-parameters’
for consistency.

1.1.3

RC:
3. Figures 3 and 5 have not been discussed as part of the main results/discussion. It is unclear how these figures factor into
the main discussion.

AR:
Figures 3 and 5 were part of the methodology section. Figure 3a is intended to help the reader visualise how the covariance
decays with distance for a given length scale and 3b to visualise how conditioning on data impacts the GP distribution, see
lines 261-262 of original manuscript: ‘In Fig. 3, an example of how the covariance decays with distance is given for the RBF
kernel and realisations of a conditioned GP with the equivalent kernel are illustrated.’ Figure 5 has now been removed but was
originally intended to just provide an illustration of the nature of realisations from GPs.
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To further improve clarity to the reader a more convention structure has been adopted with a single ‘Results’ section and
with the subsection 3.3 ‘Capturing Spatial Structure with Gaussian Processes’ (that contains Fig. 3 and 5 and was part of the
methodology) now moved to the appendix to improve the flow of the main part of the paper. Figure 3 is now Fig. B1 and Fig. 5
is removed since it is unnecessary with the new ‘Data Generation’ section of the revised manuscript.

1.1.4

RC:
4. It is unclear if the authors are separating the train and test set to evaluate the model performance for the GP models.
Training on test set may result in overfitting and high R2 scores.

AR:
We thank the reviewer for identifying this area for further clarification and have edited the manuscript accordingly. A specific
section on ‘Data Generation’ for the simulated examples has been added to the paper (Sect. 3), where the train and test sets
are discussed. The key point is to recognise that the unbiased parameters are observed at locations sy, denoted as ϕY (sy),
while the biased parameters are observed at locations sz , denoted as ϕZ(sz); both comprise the training set. The objective
is to assess how effectively we can recover the unbiased parameters at locations where the biased parameters were observed,
denoted as ϕY (sz), which constitutes the testing set. The distinction from conventional training and testing sets arises from
having different sources of information, each with distinct sampling units.

For the non-hierarchical examples, where R2 scores are computed, the following paragraph describes the training and test sets:

For each scenario, a sample of the parameters ϕY (s
⋆) and ϕB(s

⋆) is taken from the distributions GPϕY
and GPϕB

at
regularly spaced, high-resolution intervals. These samples are referred to here as complete realisations and represent
underlying fields for each parameter across the domain. The complete realisations of ϕY (s

⋆) are sampled at lower-
resolution, randomised locations, with the addition of some noise, to provide direct simulated ‘in situ observations’ of the
parameter ϕY (sy). In order to simulate input data for the parameter ϕZ(sz) of the climate model output, the complete
realisations of ϕY (s

⋆) and ϕB(s
⋆) are sampled at regularly spaced intervals to provide ϕY (sz) and ϕB(sz), then the

sum of these samples at each location is taken to give ϕZ(sz). The input data for inference is then ϕY (sy) and ϕZ(sz)
and can be considered as the training set, while the underlying realisations generated for ϕY (sz) are the test set used for
validating the model performance.

Additionally, in the results section, some writing is included to explain how the R2 score is computed:

The relative performance of the shared and single process models is quantified by computing R2 scores between the
predictions of ϕY (sz) and the actual values used in generating the data (although not used in training), with results
presented in Table 4.

That is the model performance is evaluated at the climate model locations (sz) but for estimates of the unbiased PDF parameter
ϕY (sz), which is not the same as the input data ϕY (sy) and ϕZ(sz). It is logical to measure performance by estimates of the
unbiased parameter at the simulated climate model locations, since this is what is needed for bias correction.

1.1.5

RC:
5. The abstract and introduction talk about several potential benefits of the model. In the current structuring, it is a little
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difficult to follow along which statements correspond with validated claims in the paper and which statements are just
potential benefits / future directions. More emphasis on statements that support the results presented in the result section
may strengthen the case for the proposed framework.

AR:
It is agreed that more emphasis on statements supported directly by the results is desirable. The abstract has been restructured
and re-written in places to hopefully reflect this, in particular see this part:

This paper proposes a novel Bayesian bias correction framework that propagates uncertainty robustly and models
underlying spatial covariance patterns. Shared latent Gaussian processes are assumed between the in situ observations
and climate model output with the aim of partially preserving the covariance structure from the climate model after
bias correction, which is based on well-established physical laws. Results demonstrate added value in modelling shared
generating processes under several simulated scenarios, with most value added for the case of sparse in situ observations
and smooth underlying bias. Additionally, the propagation of uncertainty to a simulated final bias corrected time series
is illustrated, which is of key importance to a range of stakeholders, from climate scientists engaged in impact studies,
decision makers trying to understand the likelihood of particular scenarios and individuals involved in climate change
adaption strategies where accurate risk assessment is required for optimal resource allocation.

The robust uncertainty propagation and modelling of spatial covariance patterns are inherent properties of the model. Results
illustrate these properties as well as focusing on the added value provided by considering shared latent GPs between in situ
observations and the climate model output.

1.1.6

RC:
6. Similarly, in the discussion section, it may be helpful to separate the potential directions / future work in a separate
paragraph.

AR:
It’s agreed that having a separate paragraph where current limitations and potential future directions is discussed would be
useful for the reader. This has now been incorporated into the discussion section, where the following paragraph has been
added:

The simulated examples presented provide an initial proof of concept, although future studies validating the method-
ology against real-world applications are important for understanding the remaining limitations and areas for further
development. The current primary limitation is expected to be that the underlying spatial covariance structures are
assumed stationary. That is that the covariance length scale is assumed constant across the domain, whereas for real-world
applications over large and complex topographic domains the length scale will be expected to change depending on
the specific topography of the region. Further development of the methodology to incorporate non-stationary kernels
would therefore be valuable, although is beyond the scope of this paper. Another important limitation to consider is the
assumption that the bias is time independent. In situations where the bias varies gradually through time and uniformly
across the domain, the methodology can be further developed such that the mean function of the GPs is modelled
with a time dependency. If the bias varies in time non-uniformly across the domain, spatiotemporal GPs will need to
be considered, which is again beyond the scope of this paper. Secondary limitations, include the assumption that the
unbiased and biased components of the PDF parameter values are independent. In situations where there is a dependence
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between these components, the methodology presented is still expected to perform adequately, although information is
lost by not modelling the dependency explicitly. Additionally, many real-world applications will necessitate specific
model adjustments, such as incorporating a mean function dependent on factors like elevation and latitude. Finally, the
computational complexity of the model is an important remaining consideration, with inference time of GPs scaling as
the cube of the number of data points. Incorporating techniques from the literature such as using sparse variational GPs
(SVGP) (Hensman et al., 2015), nearest-neighbor GPs (NNGP) (Datta et al., 2016) or upscaling the climate model output,
while outside the scope of this paper, will aid computational performance under demanding real-world scenarios and will
facilitate further model development.

1.2. Questions
1.2.1

RC:
1. Why is the uncertainty not being plotted for the phi z case in Figures 7 and 9?

AR:
It is correct that for Fig. 7 & 10 (numbering before revision, where the posterior predictive distributions are plotted) we do not
currently include predictions on ϕZ , although we could. The reason for this is because the purpose of the hierarchical model is
primarily to split up the biased signal ϕZ(sz) into it’s unbiased ϕY (sz) and biased components ϕB(sz). To make this more
clear in the figure it is deemed best to only show these predictions. Estimating ϕZ(sz) itself is simple due to the high temporal
coverage of climate model output and so predictions would line up closely to the true values with low uncertainty, not being of
much interest to the reader.

1.2.2

RC:
2. Is the model performance evaluated on the train set itself?

AR:
The training dataset and the test dataset are different. In the non-hierarchical examples the input data are the PDF parameter
values of ϕY (sy) and ϕZ(sz). Performance is evaluated against posterior predictive estimates of the unbiased PDF parameter
values at the locations of the simulated climate model output ϕY (sz). A section has been added to the main paper on this for
further clarity to the reader, see AR: 1.1.4.

1.2.3

RC:
3. How is the “robustness” of uncertainty propagation being evaluated?

AR:
The statement that having a Bayesian framework allows robust uncertainty propagation refers to how predictions inherently
capture uncertainty in each component of the framework in a mathematically justified way. Meaning that any adjustments to the
methodology, such as including a mean function in the GPs, can be made while inherently retaining mathematically justified
uncertainty propagation. The uncertainty estimates in predictions of the unbiased PDF parameter values at the climate model
locations ϕY (sz) are evaluated as reasonable by comparison to the true underlying values, which are computed as part of the
data generation.
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1.2.4

RC:
4. There may be concerns relating to the computational complexity of the framework. Since the three terms are modelled as
exact GPs, the time and space complexity will grow quickly for larger datasets. Are there any variants/modifications to the
framework that are being studied to overcome these challenges?

AR:
It’s correct that the computational complexity of GPs scale as the cube of the number of data points, so the time for inference of
the model’s parameters quickly becomes an important consideration when extended to real-world scenarios. A section has been
added on this at the end of the discussion:

Finally, the computational complexity of the model is an important remaining consideration, with inference time of
GPs scaling as the cube of the number of data points. Incorporating techniques from the literature such as using sparse
variational GPs (SVGP) (Hensman et al., 2015), nearest-neighbor GPs (NNGP) (Datta et al., 2016) or upscaling the
climate model output, while outside the scope of this paper, will aid computational performance under demanding
real-world scenarios and will facilitate further model development.

As mentioned there are various methods in the literature for improving the computational cost of GPs, such as SVGPs (Hensman
et al., 2015) and NNGPs (Datta et al., 2016). While implementing these is outside the scope of this initial paper and would add
significant complexity, it’s an area for future development.

1.2.5

RC:
5. Since simulated data is being used, are the model performances averaged over several repetitions?

AR:
In the paper the model performance is not evaluated over multiple repetitions of simulated data for each scenario. This is not
done as it is believed it would not add much to the findings and discussion. The findings for each of the case studies makes
logical sense and the studies are not intended to provide a comprehensive overview of performance, just an initial proof of
concept. It is agreed that adding repetitions would improve the accuracy of R2 scores for each scenario but it is believed this
wouldn’t have much effect on interpretation.

1.2.6

RC:
6. Does the proposed framework use quantile mapping along with GP modeling for bias correction?

AR:
This is correct, after making predictions on the unbiased PDF parameter values at the climate model output locations ϕY (sz),
quantile mapping is then used to apply the final bias correction to the climate data. To make this more clear to the reader a
figure has been included in the methodology showing the key steps of the framework proposed:
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1.2.7

RC:
7. How many iterations were used for the MCMC sampling?

AR:
For the MCMC sampling 1000 iterations were used for warm-up and then 2000 samples taken. This was found to be adequate
for convergence. Some writing has been added to the results section to reflect this.

Inference is done in a Bayesian framework using MCMC and the No-U-Turn Sampler (NUTS) algorithm (Hoffman and
Gelman, 2014) implemented in Numpyro (Phan et al., 2019). For the MCMC sampling 1000 iterations were used for
warm-up and then 2000 samples taken, which was found to be adequate for convergence.

1.3. Other Comments:
1.3.1

RC:
1. The paper can benefit from more discussion on how uncertainty estimates are impacted by bias correction.

AR:
Regional climate model output for a variable over a region often doesn’t include an uncertainty (Carter et al., 2022). In this
paper bias correction is applied considering output from a single climate model simulation without any estimated uncertainty. In
the bias correction methodology proposed, estimates of the unbiased parameters of the PDF, derived from in situ observations
and the climate model output itself are made and it is the uncertainty in the estimates of the unbiased PDF parameters that is
captured and propagated to the resulting bias corrected time series.

Considering cases where uncertainty is provided in the original RCM output, through for example running multiple climate
model simulations and creating an ensemble, is outside the scope of this initial piece of work. Future studies could extend
the methodology to address this by for example averaging the nk ensemble members and introducing an error term, such that

z̄si =

∑nk

k=1 zk,si

nk
+ esi .
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1.3.2

RC:
2. It is unclear to what extent the quantile mapping mitigates the bias and to what extent the proposed GP framework is
useful in bias correction.

AR:
The framework proposed for bias correction in this paper consists of the following steps:

1. Apply MCMC inference on the hierarchical model to obtain estimates of the PDF parameters ϕY (sy) and ϕZ(sz), as
well as estimates of the hyper-parameters θY and θB for the generating spatial processes (GPs).

2. Sample from the posterior predictive distribution P (ϕY (sz)|y, z) to get estimates of the unbiased PDF parameters at the
climate model grid cells.

3. Use the samples of ϕY (sz) and ϕZ(sz) to apply quantile mapping to the climate model time series at each grid cell,
resulting in a bias corrected output with uncertainty bands.

Quantile mapping is only applied in step 3 after being able to predict, with uncertainty, the unbiased parameters ϕY (·) at location
sz . Quantile mapping is applied on the climate model output to match the PDF of the data onto that of the estimated unbiased
PDF. The quantiles of the climate model data are remapped onto the quantiles of the observed data, thus bias correcting the
output. The GPs allow estimates of the unbiased parameters to be made at the climate model output locations while considering
the underlying spatial covariance between points, providing a natural and flexible way to consider the spatial structure in the
parameters. To make this overall framework more clear, the methodology section has been re-written and includes discussion
of quantile mapping (see below) along with a figure showing all the key steps of the framework (see AR: 1.2.6).

After obtaining multiple realisations of ϕY (sz) and ϕZ(sz) quantile mapping is then used to bias correct the climate
model time series at every grid cell location. Specifically, for each value of the time series from the climate model output
at a given point (zs′i,j), this involves finding the percentile of that value using the parameters ϕZ(s

′
i) and then mapping

the value onto the corresponding value of the equivalent percentile of the PDF estimated for the unbiased process, defined
through the parameters ϕY (s

′
i). The cumulative density function (CDF) returns the percentile of a given value and the

inverse CDF returns the value corresponding to a given percentile, which results in the following correction function
ẑsi,j = F−1

Ysi
(FZsi

(zsi,j)), where F represents the CDF at a specific site. The CDF can be estimated as an integral over
the parametric form assumed for the PDF. The Bayesian hierarchical model presented provides a collection of realisations
for ϕY (sz) and ϕZ(sz) from an underlying latent distribution. Applying quantile mapping with each set of realisations
then results in a collection of bias corrected time series, with an expectation and uncertainty.

1.3.3

RC:
3. In the abstract, it is suggested that the model provides value addition that is more than that of “alternative approaches.” A
comparative analysis with the alternative approaches may help substantiate this claim.

AR:
It’s agreed this is important and a comparison is given for the non-hierarchical examples (Sect. 4.1 of updated manuscript)
against the most relevant similar approach identified in the literature (Lima et al., 2021). An appendix section ‘Shared and
Single Process Model Comparison’ has been included to illustrate the difference in the two approaches.

9



1.3.4

RC:
4. Appendix equations A1 to A11 were really helpful and can potentially be included in the main section

AR:
It’s good that this section was helpful in explaining the methodology. We’ve re-written the methodology to include elements of
this section (A1-A11) as suggested. The posterior and posterior predictive formulations (A12-A29) are kept in the appendix to
keep the main part of the paper more approachable for researchers without an expertise in statistics.
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2. Referee 2

2.1. Main Comments
2.1.1

RC:
1. Manuscript Structure: The reviewer recommends a comprehensive revision of the submitted manuscript to adhere to a
conventional structure, encompassing introduction, data, methodology, results, discussion, and conclusion. The current
manuscript structure leads to repetitive content, with similar discussions occurring in sections such as 2.3 and later in
section 3, particularly regarding the limitations of pre-existing bias correction approaches. To improve continuity, the
reviewer suggests maintaining focus within each section, as the current nested content creates a discontinuous logic flow
that may be challenging for readers to follow.

AR:
We thank the reviewer for their constructive comment and have edited the manuscript accordingly. The paper has undergone a
comprehensive restructuring, adhering to a more conventional structure as recommended, and sections have been re-written to
remove repetitive content and to improve the flow. The old and new structures are shown below:

Old structure:

1. Introduction
2. Bias in Climate Models

2.1 Bias in Random Variables
2.2 Bias with Spatially Varying Parameters
2.3 Bias Correction

3. Bias Prediction Methodology

3.1 Model Overview
3.2 Specific Model Example
3.3 Capturing Spatial Structure with Gaussian Processes

4. Simulated Examples

4.1 Shared Latent Generating Processes: Non Hierarchical Exam-
ple

4.1.1 Data Generation
4.1.2 Results

4.2 Bayesian Framework: Hierarchical Example
4.2.1 Data Generation
4.2.2 Results

5. Discussion
6. Conclusion
7. Appendix

7.1 Posterior and Posterior Predictives
7.2 Data Generation
7.3 Prior and Posterior Distribution Examples

New structure:

1. Introduction

2. Methodology

3. Data Generation

3.1 Non Hierarchical Examples: Data Generation

3.2 Hierarchical Example: Data Generation

4. Results

4.1 Non Hierarchical Examples: Results

4.2 Hierarchical Example: Results

5. Discussion

6. Conclusion

7. Appendix

7.1 Bias in Climate Models

7.2 Capturing Spatial Structure with Gaussian Processes

7.3 Posterior and Posterior Predictive Formulation

7.4 Specific Example with Temperature

7.5 Shared and Single Process Model Comparison

7.6 Prior and Posterior Hyper-Parameter Distributions
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2.1.2

RC:
2. Novelty: The reviewer observes that the novelty of the submitted manuscript is not adequately emphasized. In the
submitted manuscript, only a handful of bias correction related work were mentioned in the introduction section. However,
none of the cited works applied the Bayesian-related technique for bias correction. The reviewer believes that there should
be more literature available that are related to this study. Notably, the authors themselves acknowledge the foundation of the
submitted work on Lima et al. (2021) in section 3. However, the reviewer is left questioning the relationship between Lima
et al. (2021) and the current study. To mitigate potential confusion and provide a more comprehensive background, the
reviewer recommends introducing this information more explicitly. This comment echoes concerns outlined in detail in
Comment #1.

AR:
It’s agreed that it’s important to make comparisons to other techniques, such as Lima et al. (2021), clear to the reader from an
early point. This is done in section 2.3 (old format) but in alignment with the referees suggestion the paper has been restructured
and the information instead included in the introduction to hopefully emphasise the novelty adequately.

The approach presented builds on that of Lima et al., 2021, which models the in situ observational data as generated
from a GP and uses quantile mapping (Qian and Chang, 2021) to apply the correction to the climate model output. In
Lima et al., 2021 the spatial covariance structure of the climate model output is not considered and uncertainty is not
propagated to the final bias corrected time series. The novelty of the approach proposed here is that shared latent GPs are
modelled between the climate model output and the in situ observational data, which aims to incorporate information
from the physically realistic spatial patterns of the climate model output in predictions of the unbiased field. Additionally,
uncertainty is propagated through the quantile mapping step, which results in uncertainty bands on the bias corrected
output. The approach is developed with the focus of applying bias correction to regions with sparse in situ observations,
such as over Antarctica, where capturing uncertainty in the correction is of key importance and where including data
from all sources during inference is particularly valuable. Performance under simulated scenarios with differing data
density and underlying covariance length scales is evaluated in this paper and the potential added value assessed when
compared with the approach in Lima et al., 2021.

Additionally, a section has been added to the appendix, which the reader is referred to further clarify the difference between the
approach suggested and that applied in Lima et al., 2021, see below.
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2.1.3

RC:
3. Experiment design: Asides from comment#1 where it is suggested the author re-organize the manuscript, the reviewer
suggests conducting experiments with the proposed technique using real climate model output. Experiments on climate
model output could better highlight the strength and further verify the effectiveness of the proposed techniques.

AR:
It is agreed that applying the proposed framework to a real-world case study would provide valuable insights into the strengths
and limitations of the proposed methodology, although this is considered outside the scope of the paper, which provides an
initial proof of concept. As mentioned in response AR:1.1.1, the aim of this paper, which is already ambitious is to provide an
initial proof of concept against three simplified and varied simulated case studies and with the expectation that further papers
will validate the methodology against real-world case studies. Extending the current paper to include a real-world scenario
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would involve extensive additional work, such as intricate data cleaning, processing and exploration of the variables under
study, as well as the expansion of our methodology to incorporate mean functions dependent on relevant spatial predictors like
elevation and finally writing around the specific importance of results to the field of study. This would add significant added
complexity to an already complex manuscript and we believe it is better suited to inclusion in a separate paper. It is believed
including this in the current paper would over-complicate an already long paper and so instead we have made adjustments to
the abstract and discussion to make it clear that future pieces of work validating against real-world applications are important:

Relevant adjustment to abstract:

This paper focuses on one-dimensional simulated examples for clarity, although the code implementation is developed
to also work on multi-dimensional input data, encouraging follow-on real-world application studies that will further
validate performance and remaining limitations. The Bayesian framework supports uncertainty propagation under model
adaptations required for specific applications, providing a flexible approach that increases the scope to data assimilation
tasks more generally.

Relevant adjustments to discussion:

The simulated examples presented provide an initial proof of concept, although future studies validating the method-
ology against real-world applications are important for understanding the remaining limitations and areas for further
development. The current primary limitation is expected to be that the underlying spatial covariance structures are
assumed stationary. That is that the covariance length scale is assumed constant across the domain, whereas for real-world
applications over large and complex topographic domains the length scale will be expected to change depending on
the specific topography of the region. Further development of the methodology to incorporate non-stationary kernels
would therefore be valuable, although is beyond the scope of this paper. Another important limitation to consider is the
assumption that the bias is time independent. In situations where the bias varies gradually through time and uniformly
across the domain, the methodology can be further developed such that the mean function of the GPs is modelled
with a time dependency. If the bias varies in time non-uniformly across the domain, spatiotemporal GPs will need to
be considered, which is again beyond the scope of this paper. Secondary limitations, include the assumption that the
unbiased and biased components of the PDF parameter values are independent. In situations where there is a dependence
between these components, the methodology presented is still expected to perform adequately, although information is
lost by not modelling the dependency explicitly. Additionally, many real-world applications will necessitate specific
model adjustments, such as incorporating a mean function dependent on factors like elevation and latitude. Finally, the
computational complexity of the model is an important remaining consideration, with inference time of GPs scaling as
the cube of the number of data points. Incorporating techniques from the literature such as using sparse variational GPs
(SVGP) (Hensman et al., 2015), nearest-neighbor GPs (NNGP) (Datta et al., 2016) or upscaling the climate model output,
while outside the scope of this paper, will aid computational performance under demanding real-world scenarios and will
facilitate further model development.

Additionally, as also mentioned in response AR:1.1.1 it is recognised that the title of the paper is potentially misleading with
the focus being on the application and so adjustment is made from ‘Bias Correction of Climate Models using a Bayesian
Hierarchical Model’ to ‘Bayesian Hierarchical Model for Bias Correcting Climate Models’. This hopefully puts more focus on
the model development.

2.1.4

RC:
4. Methodology: It appears to the reviewer that the methodology of the submitted study should be better introduced and
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clearly explained. It appears to the reviewer that important information is missing which prevents the audience from
following and telling the scientific and technical values of the proposed bias correction approach. For instance, to the
reviewer’s understanding the non-hierarchical single process model and the non-hierarchical shared process model are the
benchmarks to compare with the proposed hierarchical shared process Bayes model. However, within the entire methodology
section (i.e., Sections 2 and 3), the definition of “single process model” is not clearly explained (only described with one
sentence in line 331). Then later in the result section, the term “single process model” suddenly appeared which caused the
reviewer to be confused. The reviewer went to the Appendix A to look for an answer but did success as the formulation of
the “single hierarchical model” seems undescribed. The reviewer also finds it hard to understand why the link function is
necessary to transform the parameter space of the standard deviation to the same as the sample space (Section 3.2). Is that a
common practice for Bayesian models? The reviewer thinks a more detailed explanation will be helpful.

AR:
We thank the reviewer for identifying this area for further clarification and have edited the manuscript accordingly. The
manuscript has been comprehensively re-structured and re-written for clarity as recommended. In particular, the methodology
section now includes a diagram showing the key steps of the framework proposed (see AR:1.2.6) and a data generation section
is now included where the purpose of the simulated examples is discussed along with what comparisons are made. Additionally,
further clarification on what the single process model refers to is provided in the results section and in the appendix section
‘Shared and Single Process Model Comparison’, see AR:1.3.3.

The purpose of the link function is also now clarified in the methodology: ‘A link function is used for the case where the
parameter space is not the same as the sample space for GP’. Further explained in the specific example in the appendix:

In the case of the standard deviation the parameter space (σ(s) ∈ R>0) is not the same as the sample space of a GP
(R) and so a link function is applied log(σ(s)) = σ̃(s) ∈ R. The transformed parameters are then modelled as being
generated from GPs: σ̃Y (s) ∼ GP(mσ̃Y

, kRBF (s, s
′|vσ̃Y

, lσ̃Y
)) and σ̃B(s) ∼ GP(mσ̃B

, kRBF (s, s
′|vσ̃B

, lσ̃B
)).

Snippets from data generation section:

Simulated examples are generated that highlight the advantage of two key features of the methodology over other
approaches in the literature: modelling shared spatial covariance between the in situ data and climate model output
through the inclusion of a shared generating latent process (Sect. 3.1) and the Bayesian hierarchical framework with
uncertainty propagation (Sect. 3.2).

Snippet from results section:

The shared latent process model presented in this paper is fit to the three non-hierarchical example scenarios, as discussed
in Sect. 3.1. Input data for ϕY (sy) and ϕZ(sz) are provided and the hyper-parameters for the latent GPs that generate
the unbiased and biased components inferred. Comparisons in estimates of the hyper-parameters for the unbiased process
(mϕY

, vϕY
and lϕY

) are made to the approach of only fitting to the in situ data, referred to here as the single process
approach since the latent process generating the bias is not modelled. The difference between the shared and single
process approaches is detailed further in appendix E.

2.2. Minor Comments
2.2.1

RC:
1. The time series plot in Figure 11 exclusively illustrates the performance of the proposed Bayesian framework. The
reviewer suggests including the performance of benchmark techniques in the same figure to facilitate comparisons.
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AR:
The performance of the proposed model for estimating the unbiased PDF parameters at the climate model locations ϕY (sz) is
evaluated for non-hierarchical and hierarchical examples, with results presented in section 4.1 and 4.2 of the revised manuscript.
Figures 6 and 7, as well as tables 3, 4 and 5 all illustrate performance. Figure 11 (now Fig. 8 in revised manuscript), illustrates
how once ϕY (sz) is estimated, the uncertainty in the estimates can be propagated through quantile mapping to the final bias
corrected time series. The manuscript has been comprehensively restructured to have a more conventional structure, with for
example a single results section that hopefully further improves clarity to the reader about what each plot is showing. The
methodology section is also updated to help provide further clarity on the key steps of the framework, see AR: 2.1.1.
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3. Referee 3

3.1. Main Comments
3.1.1

RC:
1. I definitely agree with other two reviewers that the manuscript is wordy and lengthy in its current shape. Specifically,
there are some technical assumptions that are more or less mentioned in every single section (e.g. sum of GP is still a GP,
bias is assumed to be independent from the in-situ observations, etc). I suggest authors revise their manuscript such that
there can be a section that focuses on describing the assumptions they use in their method.

AR:
It’s agreed that the original manuscript had technical assumptions repeated in multiple sections. The manuscript has been
revised such that a more conventional structure is adopted (see AR:2.1.1) where less repetition of assumptions is needed. In this
new format, assumptions/modelling choices clearly described in the methodology, including time independence of the bias and
independence between the unbiased and biased PDF parameter values. This is not in the form of a stand alone section as it is
believed introducing each assumption at the corresponding relevant part of the methodology helps understanding.

In a probabilistic framework, the in situ observations and climate model output are treated as realisations from latent
spatiotemporal stochastic processes, denoted as {Y (s, t) : s ∈ S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T } respectively.
Stochastic processes are sequences of random variables indexed by a set, which in this case are the spatial and temporal
coordinates in the domain (S ,T ). The observed data is then considered a realisation of the joint distribution over a finite
set of random variables across the domain. For the purpose of evaluating the time-independent component of the climate
model bias, the random variables are treated as independent and identically distributed across time. That is the collection
of temporal data for a given spatial location can be considered as multiple realisations from the same random variable. The
random variables for each location are distributed respectively as Y (s) ∼ fY (ϕY (s)) and Z(s) ∼ fY (ϕZ(s)), where
ϕY (s) and ϕZ(s) represent the collection of parameters that describe the PDF. For example, if the PDF is approximated
as normal then ϕ(s) = [µ(s), σ(s)].The disparity between each of the PDF parameters for the in situ observations and
climate model at each site then gives a measure of bias.

The PDF parameters are each modelled as being generated from latent stochastic processes {ϕY (s)} and {ϕZ(s)}. The
latent processes that generate the parameters for climate model are considered composed of two independent processes,
one that also generates the equivalent parameters for the in situ observations and another that generates some bias, such
that {ϕZ(s)} = {ϕY (s)}+ {ϕB(s)}. The family of GPs are chosen for the latent processes.

3.1.2

RC:
2. Given that the authors are about to clarify and shorten their assumptions, it is still of great interest whether the proposed
method can work if the assumptions are slightly violated. Now the experiments are conducted using fully synthetic/simulated
data that strictly follows the assumptions. I suggest authors prepare an example where it is not abundantly clear whether
the assumptions still hold (a real data example), or at least generate synthetic data that intentionally violates the assumption.
Some really strict assumptions in my opinion are:

(i) the bias is independent of the in-situ observations
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(ii) the bias is time independent

For example, if the authors can conduct still a synthetic experiment where the generated bias is slightly dependent on the
time and climate model output, and run their algorithm against this case, this would make the proposed algorithm stronger.
Another option for the authors is to refer to existing literature and argue that some of the assumptions hold for most cases
in real applications.

AR:
It’s agreed that having some further discussion in the paper around the assumptions of the framework and remaining limitations
regarding real-world scenarios is important. A paragraph discussing the assumptions and limitations of the methodology has
been added to the discussion section of the paper, which hopefully addresses this adequately, see below and AR 1.1.6. The
focus of the paper is primarily on providing a proof of concept around the approach of modelling underlying spatial covariance
patterns and in fully propagating uncertainty to the end output. Addressing additional factors such as time independence of the
bias, discussed extensively in papers such as Ehret et al., 2012; Maraun, 2012; Maurer et al., 2013; Chen et al., 2015, is outside
the scope of the paper. Additionally, in cases where dependence is shown between the values of the unbiased PDF parameters
of the in situ observations, while modelling this dependence would improve estimates, it is beyond the scope of this initial
paper and a thorough analysis of this would be expected to over-complicate the results.

Section added to discussion on limitations:

The simulated examples presented provide an initial proof of concept, although future studies validating the method-
ology against real-world applications are important for understanding the remaining limitations and areas for further
development. The current primary limitation is expected to be that the underlying spatial covariance structures are
assumed stationary. That is that the covariance length scale is assumed constant across the domain, whereas for real-world
applications over large and complex topographic domains the length scale will be expected to change depending on
the specific topography of the region. Further development of the methodology to incorporate non-stationary kernels
would therefore be valuable, although is beyond the scope of this paper. Another important limitation to consider is the
assumption that the bias is time independent. In situations where the bias varies gradually through time and uniformly
across the domain, the methodology can be further developed such that the mean function of the GPs is modelled
with a time dependency. If the bias varies in time non-uniformly across the domain, spatiotemporal GPs will need to
be considered, which is again beyond the scope of this paper. Secondary limitations, include the assumption that the
unbiased and biased components of the PDF parameter values are independent. In situations where there is a dependence
between these components, the methodology presented is still expected to perform adequately, although information is
lost by not modelling the dependency explicitly. Additionally, many real-world applications will necessitate specific
model adjustments, such as incorporating a mean function dependent on factors like elevation and latitude. Finally, the
computational complexity of the model is an important remaining consideration, with inference time of GPs scaling as
the cube of the number of data points. Incorporating techniques from the literature such as using sparse variational GPs
(SVGP) (Hensman et al., 2015), nearest-neighbor GPs (NNGP) (Datta et al., 2016) or upscaling the climate model output,
while outside the scope of this paper, will aid computational performance under demanding real-world scenarios and will
facilitate further model development.

3.1.3

RC:
3. In terms of the structure of the manuscript, I personally have to understand the contribution of the manuscript until I
start reading line 290 in page 12. It would help if the authors can make this clear very early in the manuscript.

AR:
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It is agreed that further clarity could be provided on the specific contributions of the methodology from an early point in the
manuscript. A section has been added to the introduction to address this, as also mentioned in AR:2.1.2.

The approach presented builds on that of Lima et al., 2021, which models the in situ observational data as generated
from a GP and uses quantile mapping (Qian and Chang, 2021) to apply the correction to the climate model output. In
Lima et al., 2021 the spatial covariance structure of the climate model output is not considered and uncertainty is not
propagated to the final bias corrected time series. The novelty of the approach proposed here is that shared latent GPs are
modelled between the climate model output and the in situ observational data, which aims to incorporate information
from the physically realistic spatial patterns of the climate model output in predictions of the unbiased field. Additionally,
uncertainty is propagated through the quantile mapping step, which results in uncertainty bands on the bias corrected
output. The approach is developed with the focus of applying bias correction to regions with sparse in situ observations,
such as over Antarctica, where capturing uncertainty in the correction is of key importance and where including data
from all sources during inference is particularly valuable. Performance under simulated scenarios with differing data
density and underlying covariance length scales is evaluated in this paper and the potential added value assessed when
compared with the approach in Lima et al., 2021.

3.2. Minor Comments
3.2.1

RC:
1. Is “1 process" just doing a GP for Y and “2 process" doing both GP for Y and Z? It is not very clear when I read through
Figure 7 and its associated experiment section.

AR:
It is agreed some further clarification on this could be provided. The ‘1 process’ model does indeed just consider a single
generating GP for the observational data Y . The ‘2 process’ model considers generating processes for both Y and the climate
model output Z. As also mentioned in AR:1.3.3 a section has been added to the appendix, which the reader is referred to further
clarify the difference between the approach suggested and that applied in Lima et al., 2021, see below.
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3.2.2

RC:
2. Line 115: “the their" is a typo

AR:
Thanks, this sentence has been removed as part of the re-writing and re-structuring.

3.2.3

RC:
3. I personally find that Appendix A is easier to follow than some of the text in the main body. Authors may want to consider
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restructuring the manuscript

AR:
Thanks for this feedback, it is agreed that using parts of section A in the main body will further help with clarity. We’ve
re-written the methodology to include elements of this section (A1-A11) as suggested. The posterior and posterior predictive
formulations (A12-A29) are kept in the appendix to keep the main part of the paper more approachable for researchers without
an expertise in statistics.
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