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Abstract: Nitrogen-containing organic compounds (NOCs) are abundant and 25 

important aerosol components, deeply involving in global nitrogen cycle. However, the 26 

sources and formation processes of NOCs remain largely unknown, particularly in the 27 

city (Urumqi, China) farthest from the ocean worldwide. Here, NOCs in PM2.5 collected 28 

in Urumqi over a one-year period were characterized by ultrahigh-resolution mass 29 

spectrometry. The abundance of CHON compounds (mainly poor-O unsaturated 30 

aliphatic-like species) in the positive ion mode was higher in the warm period than in 31 

the cold period, which was largely attributed to the contribution of fresh biomass 32 

material combustion (e.g., forest fires) associated with amidation of unsaturated fatty 33 

acids in the warm period, rather than the oxidation processes. However, CHON 34 

compounds (mainly nitro-aromatic species) in the negative ion mode increased 35 

significantly in the cold period, which was tightly related to old-age biomass 36 

combustion (e.g., dry straws) in wintertime Urumqi. For CHN compounds, we found 37 

that alkyl nitriles and aromatic CNH compounds showed higher abundance in the warm 38 

and cold periods, respectively. It further confirmed different impacts of the combustion 39 

of fresh- and old-age biomass materials on NOC compositions. Our results clarify the 40 

mechanisms by which fresh and old-age biomass materials emitted different NOCs. 41 

 42 

Keywords: Aerosols, Organic nitrogen, Molecular composition, Fresh biomass, Old-43 

age biomass 44 

 45 

 46 

https://doi.org/10.5194/egusphere-2023-2514
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



3 
 

1. Introduction 47 

 Fine particulate matter (PM2.5) is a typical atmospheric pollutant, which can affect 48 

the global climate system, as well as urban air quality and human health (Seinfeld et al., 49 

2016; Wang et al., 2021a). Organic aerosol (OA) contributes significantly (20‒90%) to 50 

PM2.5 mass concentration in most polluted areas worldwide (Zhang et al., 2007; Han et 51 

al., 2023). However, up to 77% of molecules in OA include nitrogen-containing 52 

functional groups (Ditto et al., 2020; Kenagy et al., 2021), which has been suggested to 53 

play important roles in the formation, transformation, acidity, and hygroscopicity of OA 54 

(Xu et al., 2020; Wang et al., 2017b; Laskin et al., 2009). Moreover, the modified forms 55 

of some nitrogen-containing organic compounds (NOCs) and volatile organic 56 

compounds (VOCs) by ozone (O3), hydroxyl radical (•OH), and nitrogen oxide (NOx) 57 

can lead to an increase in the health hazards of OA, among which nitrated amino acids 58 

and nitrated polycyclic aromatic hydrocarbons are two representative hazards (Franze 59 

et al., 2005; Bandowe and Meusel, 2017). Thus, the identification of aerosol NOCs at 60 

the molecular level is important for improving our understanding of the precursors, 61 

sources, and formation processes of nitrogen-containing OA. 62 

Previous observations in urban, rural, marine, and forest areas have suggested that 63 

the molecular composition and relative abundance of aerosol NOCs were spatially 64 

different (Samy and Hays, 2013; Jiang et al., 2022; Lin et al., 2012; Xu et al., 2023). 65 

These differences can be mainly attributed to the diverse sources and formation 66 

mechanisms of aerosol NOCs. Commonly reported primary sources include 67 

combustion process releases and natural emissions (e.g., soils, plant debris, pollen, and 68 
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ocean) (Song et al., 2022; Wang et al., 2017b; Cape et al., 2011; Lin et al., 2023). In 69 

addition, aerosol NOCs can also be tightly associated with secondary formation 70 

processes involving the reactions of reactive nitrogen with VOCs or particle-phase 71 

CHO compounds (Bandowe and Meusel, 2017; Zarzana et al., 2012; Laskin et al., 72 

2014). For example, laboratory experiments have suggested that the oxidation of 73 

isoprene and α-/β-pinene in the presence of NOx can result in the formation of organic 74 

nitrates (e.g., methacryloyl peroxynitrate, dihydroxynitrates, and monohydroxynitrates) 75 

(Surratt et al., 2010; Rollins et al., 2012; Nguyen et al., 2015). The reduced nitrogen 76 

species (e.g., NH3, NH4
+, and organic amines) have been demonstrated to contribute to 77 

the formation of NOCs through "carbonyl-to-imine" transformations in the laboratory 78 

experiments (Zarzana et al., 2012; Laskin et al., 2014). In the field observation studies, 79 

NOCs in particulate matter were analyzed at the molecular level to indicate on their 80 

sources and formation mechanisms (Jiang et al., 2022; Lin et al., 2012; Zhong et al., 81 

2023). Xu et al. (2023) characterized the variations of molecular compositions in urban 82 

road PM2.5, suggesting that organic nitrates increased largely through the interactions 83 

of atmospheric oxidants, reactive gas-phase organics, and aerosol liquid water. Several 84 

field studies conducted in Beijing (China) and Guangzhou (China) also suggested that 85 

the molecular compositions and formation of NOCs were tightly associated with the 86 

environmental conditions (Jiang et al., 2022; Lin et al., 2012; Xie et al., 2020). 87 

Generally, most of studies on aerosol NOCs were performed in economically developed 88 

regions, as well as in forest and marine areas (Jiang et al., 2022; Wang et al., 2017a; 89 

Ditto et al., 2022b; Altieri et al., 2016; Miyazaki et al., 2014). In contrast, few studies 90 
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have investigated the sources and atmospheric transformation of NOCs in the northwest 91 

border urban of China (e.g., Urumqi) with fragile ecology and harsh environmental 92 

conditions (e.g., cold winter and dry summer), which may hinder our comprehensive 93 

and in-depth understanding of the formation process of NOCs in ambient aerosols. 94 

Biomass burning emissions were widely reported in the source identification of 95 

aerosol NOCs in northern and southwestern China because of heating and cooking 96 

needs (Zhong et al., 2023; Wang et al., 2021c; Chen et al., 2017). A recent observation 97 

study in urban Tianjin suggested that most CHON compounds in wintertime PM2.5 98 

originated from biomass burning (Zhong et al., 2023). The CHN2 compounds have been 99 

identified in biomass burning OA (BBOA) (Laskin et al., 2009; Wang et al., 2017b). 100 

Moreover, the high temperature generated by biomass burning can facilitate the release 101 

of ammonia, a process which caused the reaction of carboxylic acids (e.g., oleic acid) 102 

with ammonia to form amides and alkyl nitriles (Radzi Bin Abas et al., 2004; Simoneit 103 

et al., 2003). Interestingly, we found that biomass burning in rural China typically 104 

includes both fresh biomass materials (e.g., forest fires) and old-age biomass materials 105 

(e.g., straw after autumn harvest, fallen leaf, and deadwood). Fresh biomass is rich in 106 

oils and proteins, whereas old-age biomass materials are usually oligotrophic due to the 107 

transfer of nutrients to tender tissues or fruits (Jian et al., 2016; Xu and Xiao, 2017). 108 

Thus, NOCs released from different types of biomass combustion may vary in 109 

molecular compositions. However, there are large gaps in our current knowledge about 110 

the impacts of fresh and old-age biomass burning on NOCs in ambient aerosols. 111 

Urumqi (northwest China) is the largest inland city farthest from the ocean in the 112 

https://doi.org/10.5194/egusphere-2023-2514
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

world, which is becoming increasingly prominent due to the national strategy of the 113 

"One Belt, One Road". The city and neighboring countries have a dry summer that can 114 

easily trigger forest fires (Bátori et al., 2018; Xu et al., 2021), while the winter is very 115 

cold with intensive old-age biomass and fuel combustion for heating (Ren et al., 2017). 116 

In this study, we presented one-year ambient measurements of the chemical 117 

compositions in PM2.5 collected from Urumqi. The specific aims of this study are (1) to 118 

investigate the molecular-level speciation of functionalized organic nitrogen 119 

compounds via a high-resolution mass spectrometry with positive (ESI+) and negative 120 

(ESI−) ionizations and (2) to investigate the potential sources and formation processes 121 

for NOCs with a special focus on the relative influences of fresh and old-age biomass 122 

burning. 123 

 124 

2. Materials and methods 125 

2.1. Study site description and sample collection 126 

The study was conducted in Urumqi city with an average altitude of 800 m. The 127 

region has an arid temperate continental climate with an annual mean temperature of 128 

7.4 ± 13.9 °C and an annual mean rainfall of 27.8 mm. The sampling site is located in 129 

the suburban area (Boda campus of Xinjiang University) of the city (87.75°E, 43.86°N) 130 

(Figure S1), which is characterized by low population and traffic density. This is 131 

because Urumqi is relatively vast and sparsely populated compared to developed 132 

coastal cities in China (Qizhi et al., 2016). Additionally, the area is surrounded by 133 

mountains on three sides, resulting in the difficulty in diffusion of air pollutants. The 134 
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dominant forest trees in this area are Picea schrenkiana, Betula tianschanica Rupr., 135 

Populus talassica Kom., and Ulmus pumila L.. The dry climate and strong sunlight in 136 

the warm period (18.81 ± 6.4°C, Table S1) would be the main culprits of forest fires in 137 

the local and nearby areas. In the cold period (‒1.96 ± 11.26°C) (Table S1), the 138 

centralized heating and old-age biomass burning may be the main contributors of local 139 

air pollution. Thus, it provides an unexpected opportunity to investigate the potentially 140 

differential impacts of fresh and old-age biomass burning on aerosol NOCs. 141 

 A high-volume air sampler (Series 2031, Laoying, China) was set up on the 142 

rooftop of a building (School of Geology and Mining Engineering, Xinjiang University). 143 

PM2.5 samples (n = 73) were collected every 5 days with a duration of ∼24 h onto 144 

prebaked (450 °C for ∼ 10 h) quartz fiber filters (Pallflex, Pall Corporation, USA) from 145 

1 March 2018 to 26 February 2019. One blank filter was collected every month (n = 146 

12). All filter samples were stored at −30°C until further analysis. The meteorological 147 

data (e.g., temperature and relative humidity) and the concentrations of O3 and NOx 148 

were daily recorded from the adjacent environmental monitoring station during the 149 

sampling campaigns. In addition, the trajectories (72 h) of air masses arriving at the 150 

sampling site at each sampling event were calculated to investigate the potential 151 

influence of pollutant transport on aerosol NOCs. 152 

 153 

2.2. Chemical analysis 154 

A portion of each filter sample was extracted twice using methanol (LC-MS grade, 155 

CNW Technologies Ltd.) under sonication in a chilled ice slurry (~4 °C). The extracted 156 
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solutions were filtered through a polytetrafluoroethylene syringe filter (0.22 μm, CNW 157 

Technologies GmbH). Subsequently, the extracts were concentrated to 300 μL with a 158 

gentle stream of gaseous nitrogen (Shanghai Likang Gas Co., Ltd). The final extracts 159 

were divided into two parts, which were analyzed separately as described in previous 160 

study (Wang et al., 2021b) under ESI+ and ESI− modes using an UPLC-ESI-QToFMS 161 

(Xevo G2-XS QToFMS, Waters) system. It should be pointed out that UPLC-ESI-MS 162 

(i.e., TOF-only) was used to identify molecular formulas of organic matter, while the 163 

functional groups of the target molecule formulas were deciphered by UPLC-ESI-164 

MS/MS (i.e., tandem mass spectrometry). Ions obtained from m/z 50‒700 were 165 

assigned molecule formulas via assuming hydrogen or sodium adducts in ESI+ mode 166 

and deprotonation in ESI− mode. Detailed chromatographic conditions, parameter 167 

selection, and quality control were displayed in the Supplement (Sect. S1). Notably, 168 

there may be differences in ionization efficiencies between compound types. However, 169 

the exact impacts of ionization efficiency on multifunctional compounds in a complex 170 

mixture are uncertain and difficult to evaluate (Ditto et al., 2022b; Yang et al., 2023). 171 

Thus, the intercomparison across compound relative abundance without considering 172 

potentially differentiated ionization efficiency was conducted in this study, which was 173 

similar to many previous studies (Xu et al., 2023; Jiang et al., 2022). 174 

For the measurement of inorganic ions, a portion of each filter sample was 175 

ultrasonically extracted with Milli-Q water (18 MΩ cm) in an ice-water bath (~4 °C). 176 

The extract solutions were then filtered via a polytetrafluoroethylene syringe filter (0.22 177 

μm, Millipore, Billerica, MA). The concentrations of water-soluble inorganic ions 178 
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including NO3
‒, SO4

2‒, Cl‒, Ca2+, Mg2+, Na+, and NH4
+ in the samples were determined 179 

using an ion chromatograph system (Dionex Aquion, Thermo Scientific, USA) (Xu et 180 

al., 2022a; Lin et al., 2023). 181 

 182 

2.3. Compound categorization and predictions of ALW, pH, and hydroxyl radical. 183 

The molecular formulas identified by UPLC-ESI-QToFMS were classified into 184 

several major compound classes based on their elemental compositions (i.e., C, H, O, 185 

and N), primarily including CHO, CHON, and CHN groups in the ESI+ mode and CHO 186 

and CHON groups in the ESI‒ mode (Wang et al., 2017b). All of the detected molecules 187 

were reported as neutral molecules, unless stated otherwise. The double-bond 188 

equivalent (DBE) and carbon oxidation state (OSC) were calculated to reflect the 189 

unsaturation degree of the organics and the composition evolution of organics that 190 

underwent oxidation processes, respectively (details in Sect. S2) (Kroll et al., 2011; Xu 191 

et al., 2023). Additionally, the modified aromaticity index (AImod) was also calculated 192 

to indicate the aromaticity of organic compounds (details in Sect. S2) (Koch and 193 

Dittmar, 2006). 194 

A thermodynamic model (ISORROPIA-II) was applied to predict the mass 195 

concentration of aerosol liquid water (ALW) and the value of pH with particle-phase 196 

ion concentrations as well as ambient temperature and relative humidity as the inputs, 197 

as detailed in our previous publications (Xu et al., 2020; Xu et al., 2023; Xu et al., 198 

2022b). The concentrations of ambient •OH were predicted using empirical formula 199 

(Ehhalt and Rohrer, 2000; Wang et al., 2020). 200 
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 201 

3. Results and discussion 202 

3.1. Overall molecular characterization of organic aerosols 203 

Figures 1a and 1c show the mass spectra of organic compounds detected in ESI+ 204 

and ESI−, respectively. More compounds were identified in ESI+ (1885 molecular 205 

formulas) than in ESI− (438 molecular formulas) (Table S2), which was similar to 206 

previous reports about the molecular characteristic of biomass burning aerosols and 207 

urban aerosols (Jiang et al., 2022; Wang et al., 2017b). The molecular weights of the 208 

compounds with relatively high signal intensity mainly ranged from 100 Da to 500 Da 209 

in ESI+, which was larger than those (100‒300 Da) observed in the urban (Changchun, 210 

Guangzhou, and Shanghai) (Wang et al., 2021a) and agriculture (Suixi) (Wang et al., 211 

2017b) regions of China. In contrast, the species with the strong signal intensity fell 212 

between 100 Da and 300 Da in ESI−. This mass range detected in Urumqi organic 213 

aerosols was comparable to previous observations in urban aerosols (Han et al., 2023) 214 

but significantly lower than that in firework-related urban aerosols (300‒400 Da) (Xie 215 

et al., 2020). On average, the molecular number and relative abundance of CHON 216 

compounds (150‒500 Da) were dominant in ESI+, accounting for 45.99% of the total 217 

molecular number and 62.70 ± 6.83% of the total signal intensity (Figures 1a and 218 

Table S2). CHO compounds were the second most abundant categories (28.76 ± 4.75% 219 

of the total signal intensity), followed by CHN compounds. However, previous 220 

observations conducted in Shanghai, Guangzhou, and Changchun suggested that the 221 

compounds in ESI+ were dominated by CHN and CHON species (Wang et al., 2021a). 222 
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In ESI−, although the number of CHON compounds was less than CHO, the relative 223 

abundance of CHON compounds (150‒250 Da) was higher (Figures 1d and Table 224 

S2). The finding was consistent with the results obtained in Shanghai and Changchun 225 

but different from the case in Guangzhou (Wang et al., 2021a). The average H/C ratios 226 

of CHO (1.62−1.66) and CHON (1.79−1.83) compounds in ESI+ mode (Table S3) 227 

were higher than those (0.94−1.13 and 1.27−1.47) in Changchun, Shanghai, and 228 

Guangzhou (Wang et al., 2021a). However, the average O/C ratios of CHO (0.25−0.3) 229 

and CHON (0.22−0.3) compounds in ESI+ mode (Table S3) were less than those 230 

(0.42−0.43 and 0.27−0.45) in the urban areas (Shanghai and Guangzhou) (Wang et al., 231 

2021a). Overall, these dissimilarities in molecular characteristics of organic aerosols 232 

between Urumqi and other areas may be attributed to their different sources and 233 

formation mechanisms. 234 

Figures 1b and 1d show the time series of the fractional distributions of various 235 

organic matter categories in different ion modes. The abundance of CHO compounds 236 

in ESI+ exhibited a temporal variation similar to that of CHON compounds (r = 0.51, 237 

P < 0.01), with increased levels in the warm period. This indicated that CHO 238 

compounds may be important precursors for the formation of NOCs or that they have 239 

similar origins. Previous simulation experiment has demonstrated that higher 240 

temperatures can result in an increase in the concentration of the oxygenated organic 241 

molecules, while lower temperatures can allow less oxidized species to condense 242 

(Stolzenburg et al., 2018; Frege et al., 2018). In addition, solar radiation and 243 

atmospheric oxidation capacity are also important factors promoting the formation of 244 
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more oxygenated organic molecules (Li et al., 2022; Liu et al., 2022). Air temperature, 245 

radiation, and atmospheric oxidation capacity were much higher in the warm period 246 

than in the cold period in Urumqi (Table S1) (Wan et al., 2021), which may be partly 247 

responsible for increased abundances of CHO and CHON compounds in the warm 248 

period. However, the abundance of CHN compounds tended to increase from the warm 249 

period to the cold period. Since the ESI+ mode is highly sensitive to protonatable 250 

species, organic amines were expected to predominate the CHN compounds (Han et al., 251 

2023; Wang et al., 2021a). It is well documented that the formation of amine salt in the 252 

particle phase is tightly associated with aerosol acidity and water (Liu et al., 2023). 253 

Thus, the reduced pH value and increased ALW level in the cold period (Table S1) 254 

provided greater potential for converting gaseous amines into particles. 255 

In ESI− mode, the abundances of CHON and CHO exhibited a significantly 256 

increased level in the cold period (Figure 1d), a variation pattern which was completely 257 

opposite to the case in ESI+ mode. The ESI− mode is more sensitive to deprotonatable 258 

compounds, such as nitrophenols, organic nitrates, organosulfates, and organic acids 259 

(Jiang et al., 2022; Lin et al., 2012). The formations of these compounds were highly 260 

impacted by ALW and aerosol acidity (Ma et al., 2021; Smith et al., 2014; Zhou et al., 261 

2023; Xu et al., 2023). However, Urumqi has dry and dusty weather, particularly in 262 

warm period, resulting in a quite low ALW concentration (1.86 ± 1.90 μg m−3) in the 263 

warm period (Table S1). Moreover, the calculated mean pH values were 6 during the 264 

warm period without considering the influence of gaseous ammonia (Table S1). 265 

Previous studies have suggested that a bias correction of 1 unit should be considered 266 
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for the prediction of aerosol pH when lacking of ammonia measurements (Guo et al., 267 

2015; Wang et al., 2021c). This implied that the actual aerosol acidity in the warm 268 

period in Urumqi should be neutral or slightly alkaline. Obviously, the aerosol 269 

characteristics of the warm period in Urumqi may hinder the formation of these organic 270 

compounds measured in ESI− mode. In contrast, the increased ALW concentration and 271 

decreased pH value during the cold period can facilitate the formation of CHO and 272 

CHON compounds through the partitioning of gas-phase species to the particles and 273 

subsequent aqueous phase reactions (Xu et al., 2020; Xu et al., 2023). Furthermore, the 274 

total signal intensity of CHO compounds was significantly correlated with that of 275 

CHON (r = 0.62, P < 0.01), indicating that they may have similar origins or that CHO 276 

compounds may serve as important precursors for CHON compound formation. It 277 

should be noted that this study mainly focuses on NOCs, therefore sulfur-containing 278 

species were not discussed. In general, the differentiated seasonal variation patterns for 279 

the different types of NOCs measured here can be attributed to the unique 280 

meteorological conditions in Urumqi and different ionization mechanisms in ESI+ and 281 

ESI− modes. The sources and formation mechanisms of NOCs will be further discussed 282 

in the following sections. 283 

 284 

3.2. Seasonally differential sources and formation mechanisms of CHON 285 

compounds 286 

CHON compounds can be products of reactions between CHO species and 287 

reactive nitrogen species (NOx, NH3, and NH4
+) (Lee et al., 2016; De Haan et al., 2017), 288 
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as also partly implied by significant positive correlations (r = 0.51‒0.62, P < 0.01) 289 

between total signal intensity of CHO and CHON compounds in both ESI+ and ESI− 290 

modes. Thus, CHO compounds were further classified based on their OSC values to 291 

preliminarily explore their origins and linkages with CHON compound formation 292 

(Figures 2a and 2b). In ESI+ mode, the OSC values of the detected CHO compounds 293 

(−1.75 to 0.5) were higher than those of primary vehicle exhausts (−2.0 to −1.9) (Aiken 294 

et al., 2008), likely indicating a weak (or indirect) contribution of primary vehicle 295 

exhausts to CHO molecules in Urumqi. The signal intensity of BBOA dominated the 296 

total OA signal intensity and was higher in the warm period than in the cold period 297 

(Figure 2e). However, previous studies conducted in China (e.g., Beijing, Xi'an, 298 

Shanghai, and Liaocheng) suggested that biomass burning was more significant in the 299 

cold seasons (Li et al., 2023; Wang et al., 2017a; Chen et al., 2017; Wang et al., 2009; 300 

Wang et al., 2018). Furthermore, we found that the oxygen-poor unsaturated aliphatic 301 

compounds showed a high signal intensity in the warm period and that the signal 302 

intensities of all categories of compounds in the warm period were weakly correlated 303 

with atmospheric oxidants (i.e., O3 and •OH) (r < 0.1, P > 0.05). Thus, the formation or 304 

source of CHO compounds in the warm period may not be mainly controlled by high 305 

atmospheric oxidation, but rather by biomass burning, which was distinguished from 306 

previous reports (Duan et al., 2020; Kondo et al., 2007). This consideration was also 307 

supported by the fact that there were significantly more fire spots in the warm period 308 

than in the cold period (Figure 3). It should be noted that the materials used for biomass 309 

burning in the cold period in rural China are typically old-age plant tissues (Figure S3), 310 
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while biomass burning in the warm season is mainly attributed to forest fires or 311 

wildfires (relatively fresh biomass). Accordingly, a large number of fresh biomass 312 

material burning occurred from April to October each year in the neighboring countries 313 

(e.g., Kazakhstan) (Xu et al., 2021) or regions of Urumqi (due to drought) (Figure 3) 314 

may be largely responsible for high CHO compound abundance in the warm period. 315 

The CHO species in ESI− had higher OSC (‒1.85 to 1.1) than those in ESI+ 316 

(Figures 2c and 2d), which was consistent with a recent study conducted in Guangzhou, 317 

China (Zou et al., 2023). The predominant subgroups of CHO in ESI− were BBOA and 318 

semivolatile oxidized OA (SV-OOA), which was different from the observation in 319 

Shanghai (dominated by SV-OOA and low-volatility oxidized OA) (Wang et al., 2017a). 320 

Additionally, some specific saturated and unsaturated aliphatic CHO substances (i.e., 321 

C12‒18HnO2) in ESI− showed higher abundance in the warm season than in the cold 322 

season, which was contrary to the variation pattern of other CHO compounds. These 323 

C12‒18HnO2 compounds were found to be mainly fatty acids, such as stearic acid 324 

(C18H36O2), oleic acid (C18H34O2), linolelaidic acid (C18H32O2), palmitic acid 325 

(C16H32O2), and palmitoleic acid (C16H30O2) (Figure S4), all of which usually 326 

accumulate in plants, particularly Suaeda aralocaspica (W. Hogg and T. Gillan, 1984; 327 

Wang et al., 2011). Interestingly, this plant was widely distributed in Central Asia as 328 

well as in the southern edge of the Junggar Basin in Xinjiang, China (Wang et al., 2011). 329 

Although fatty acids can also originate from food cooking (Zhao et al., 2007), there 330 

seems to be no seasonal differences in cooking behavior locally. Thus, these results 331 

further confirmed our consideration that the abundance of CHO compounds in the 332 
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warm period was highly impacted by fresh biomass material burning (e.g., forest fires 333 

or wildfires). 334 

CHON molecules in ESI+ were mainly identified as unsaturated aliphatic-like 335 

compounds with poor oxygen (Figures 4a and 4b), accounting for more than 70% of 336 

the total signal intensities of CHON species (Figure S5). The signal intensity of CHON 337 

species in ESI+ was greater in the warm period than in the cold period (Figure 4e). 338 

Moreover, BBOA contributed to 56.9 % of the total CHON signal intensity in the warm 339 

period (Figure S6). These characteristics of CHON compounds were similar to those 340 

of CHO. Considering a significant positive correlation (r = 0.62, P < 0.01) between the 341 

total signal intensity of CHO and CHON compounds in ESI+, we thus concluded that 342 

primary sources (i.e., fresh biomass material burning) were also one of the main sources 343 

of CHON compounds. In this study, CHON compounds with O/N < 3 contributed 76.48 344 

± 1.11% of total CHON species in ESI+ (Figure S7), which was much larger than the 345 

results observed in urban Tianjin in winter (less than 20%) (Zhong et al., 2023). In 346 

particular, C16H33ON, C18H37ON, C18H35ON, C18H33ON, C18H31ON, and C20H33ON 347 

showed a high abundance, together accounting for 55.04 ± 7.09 % of the total CHON 348 

abundance (Table S4). The carbon number of these compounds was consistent with 349 

that of fatty acids mentioned above; moreover, their abundances showed a positive 350 

correlation (r = 0.43‒0.81, P < 0.01) with the abundances of corresponding fatty acids 351 

in the warm period. In contrast, these CHON compounds only showed a weak 352 

correlation (r = −0.24 ~ 0.33) with atmospheric oxidants (e.g., •OH, O3, and NOx). Thus, 353 

the formation mechanism of biomass burning-related NOCs in Urumqi during the warm 354 
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period may be the interaction between fatty acids and reduced nitrogen species (e.g., 355 

NH3) rather than the oxidation pathway involving CHO compounds and NOx. 356 

A recent laboratory study has suggested that NH3 produced during the thermal 357 

degradation of amino acids can react with oleic acid from the pyrolysis of triglycerides 358 

to form amides (R1) (Ditto et al., 2022a). As discussed above, the combustion of fresh 359 

biomass materials (e.g., forest fires or wildfires) can release abundant fatty acids. In 360 

addition, wildfires can also emit large amounts of NH3, with an average emission factor 361 

more than twice NH3 emission factor of agricultural fires (Tomsche et al., 2023). 362 

According to MS/MS analysis (Table S5), potential fatty acid-derived NOCs were 363 

indeed identified as amides. Thus, we proposed that the high temperature generated 364 

during wildfires or forest fires provides suitable conditions for the reaction of 365 

carboxylic acids and NH3 to from amides. The specific process was presented in Figure 366 

5 (Pathway 1). It has been suggested that atmospheric oxidants can oxidize olefins (R2 367 

and R3) to form hydroxyl nitrates and carbonyl nitrates (Perring et al., 2013). Therefore, 368 

fatty acids (oleic acid as a representative) released from fresh biomass material burning 369 

may also rely on oxidation pathways to form NOCs (Figure 5, Pathway 2). It is worth 370 

noting that some products with double bonds after the amidation of unsaturated fatty 371 

acids can continue to undergo the reactions of R2 and R3 in the atmosphere, resulting 372 

in the formation of nitrooxy amides (Figure 5, Pathway 3). However, we found that the 373 

abundance of oleic acid-derived amides via Pathway 1 in the warm period was more 374 

than 100 times higher than that of NOCs with ‒ONH2 (thus, the impact of ionization 375 

efficiency is expected to be less than 100 times) from Pathways 3. In the cold period, 376 
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the abundance of fatty acids-derived amides decreased dramatically (Figure 5 and 377 

Figure S8). Thus, the overall results demonstrated that the combustion of fresh biomass 378 

materials indeed contributed significantly to aerosol NOCs (e.g., amides) in the warm 379 

period in Urumqi. 380 

RCOOH
 NH3, -H2O, High temperature  
→                     RCONH2                                                                                    (R1) 381 

RH
 •OH  
→    R• 

  O2   
→   RO2•  

  NO   
→    RONO2                                                                                           (R2) 382 

R1=R2

  NO3•  
→    R1(ONO2)-R2•

  O2   
→  R1(ONO2)-R2O2•

RO2,  NO3  
→       R1(ONO2)-R2(O)        (R3) 383 

The CHON species detected in ESI− were mainly aromatic-like compounds, 384 

whose signal intensities were significantly greater in the cold period than in the warm 385 

period (Figures 4c,4e and Figure S5). Moreover, we found that several nitro-aromatic 386 

compounds, including C6H5O3N, C6H5O4N, C7H7O3N, C7H7O4N, C7H5O5N, C8H9O3N 387 

(confirmed by their authentic standards in the LC/MS analysis), contributed up to 50% 388 

of the total CHON (ESI− mode) intensity (Table S6). Other NOCs with relatively high 389 

signal intensity were mainly O4-6N2 species (contributed up to 25%), such as C6H4O5N2, 390 

C7H4O7N2, C7H6O5N2, and C7H6O6N2, which have been suggested to be associated with 391 

secondary photochemical or multiphase chemical processes (Harrison et al., 2005; 392 

Cecinato et al., 2005; Salvador et al., 2021). However, the abovementioned nitro-393 

aromatic compounds including C6H5O3N (nitrophenol), C6H5O4N (nitrocatechol), 394 

C7H7O3N (methyl-nitrophenol), C7H7O4N (methyl-nitrocatechol) were primarily 395 

identified as tracers of straw and wood burning (old-age biomass materials commonly 396 

used in suburban and rural China) (Iinuma et al., 2010; Kourtchev et al., 2016). A study 397 
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about molecular characterization (ESI− mode) of water-soluble aerosols emitted from 398 

the combustion of old-age biomass materials (i.e., dry corn straw, rice straw, and pine 399 

branches) and coal showed that OA from old-age biomass burning typically contained 400 

much more nitro compounds and/or organonitrates than that from coal, while OA from 401 

coal-smoke contained more sulfur-containing compounds (Song et al., 2018). Thus, the 402 

old-age biomass burning associated with winter heating rather than coal combustion 403 

may contribute a significant amount of aerosol NOCs (e.g., nitrophenols) in wintertime 404 

Urumqi. However, it does not necessarily suggest that the importance of multiphase 405 

chemistry in the formation of NOCs was ignorable, as indicated by relatively high 406 

signal intensity of O4-6N2 species. In general, the differential molecular characteristics 407 

of CHON species in different seasons in Urumqi can largely attributed to different 408 

impacts of the combustion of fresh- and old-age biomass materials. 409 

 410 

3.3. CHN Molecule Evidence of Fresh and Old-age Biomass Burning in Different 411 

Periods.  412 

Figures 6a and 6b present the van Krevelen diagram of CHN compounds in the 413 

cold and warm periods. The CHN1 compounds with relatively high signal intensity 414 

mainly contained 7‒20 carbon atoms, among which C5H5N(CH2)n, C9H7N(CH2)n, and 415 

C13H9N(CH2)n were dominant (78.68 ± 7.59 % of the total signal intensity of CHN1 416 

compounds in the cold period, Table S7). C5H5N(CH2)n could be identified as pyridine 417 

and its homologues, which have been detected in freshly discharged BBOA (Dou et al., 418 

2015). Additionally, the abundance of C5H5N(CH2)n was positively correlated with that 419 
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of C9H7N(CH2)n, C13H9N(CH2)n, and nitro-aromatic compounds mentioned above (r = 420 

0.46−0.81, P < 0.01), particularly in the cold period with old-age biomass burning for 421 

heating. We further found that both the total signal intensity and aromaticity of CHN1 422 

species was much higher in the cold period (AImod of 0.52) than in the warm period 423 

(AImod of 0.35) (Figure 6 and Figure S9). It has been suggested that old-age leaves 424 

contain more aromatic compounds compared to fresh leaves (Jian et al., 2016). Thus, 425 

the overall results implied that old-age biomass burning had an important contribution 426 

to the variation of CHN1 compounds. In particular, the intensity of CHN1 compounds 427 

was significantly negatively correlated with the concentration of O3 and ·OH (r = −0.44 428 

~ −0.53, P < 0.01), suggesting that atmospheric oxidation processes were the potential 429 

pathway for amine removal rather than the sources of particle amine salts (Zahardis et 430 

al., 2008; Qiu and Zhang, 2013). This result was different from the previous case 431 

showing the formation processes of CHN1 and its homologs in Guangzhou (South China) 432 

were tightly related to photo-oxidation processes (Jiang et al., 2022). The CHN2 species 433 

showed a similar temporal variation pattern to the CHN1 species. Moreover, the 434 

abundances of total CHN2 and major components (C8-11H8N2(CH2)n, C10H14N2(CH2)n, 435 

C10H16N2(CH2)n and C5H8N2(CH2)n) were positively correlated with that of total CHN1 436 

(r = 0.55−0.90, P < 0.01), but negatively correlated with the concentration of O3 437 

and ·OH (r = −0.43 ~ −0.60, P < 0.01). Clearly, old-age biomass burning, particularly 438 

in the cold period, also exerted significant impacts on the abundance of CHN2 439 

compounds, which was also supported by several previous studies (Laskin et al., 2009; 440 

Wang et al., 2017b; Song et al., 2022). 441 
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Interestingly, we found some CHN species with 16‒20 carbon atoms showed 442 

higher abundance in the warm period than in the cold period, a pattern of which was 443 

opposite to that of all other CNH compounds (Figure 6c). These C16‒20N1Hx 444 

compounds were further identified as alkyl nitriles (Table S5) (Simoneit et al., 2003). 445 

In addition, the carbon number of the identified alkyl nitriles was consistent with those 446 

of amides previously proposed to be produced by fresh biomass burning. Thus, we 447 

proposed that fresh biomass material burning in the warm period may provide a 448 

continuous high-temperature environment to promote the dehydration of amides 449 

(Figure 5, Pathway 4). These alkyl nitriles with double bonds can continue to undergo 450 

the reactions of R2 and R3 (Figure 5, Pathway 5). However, the signal intensity of the 451 

nitrooxy products in the warm period was insignificantly correlated with the 452 

concentration of O3, ·OH, and NOx (P > 0.05), likely indicating a weak influence of 453 

atmospheric oxidation on alkyl nitrile removal in this site. The high-temperature 454 

dehydration of amides (e.g., erucamide) to form alkyl nitriles (e.g., erucyl nitrile) has 455 

been demonstrated by Simoneit et al. (Simoneit et al., 2003) in a laboratory simulation 456 

experiment. A study on BBOA also showed that alkyl nitriles can be serve as indicators 457 

of biomass burning in the ambient atmosphere (Radzi Bin Abas et al., 2004). 458 

Furthermore, the abundance of identified alkyl nitriles initially increased from March 459 

and peaked in September and October (Figure S10), a pattern of which was consistent 460 

with the interannual variation in wildfire areas (more in the warm period) in Central 461 

Asian countries (Xu et al., 2021). Although cooking is also a potential source of alkyl 462 

nitriles (Schauer et al., 1999), this activity does not have seasonal differences. In 463 
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contrast, the dramatically increased abundance of aromatic CNH compounds in the cold 464 

period (Figure S9) can be attributed to the aqueous reactions of amines emitted from 465 

old-age biomass material and coal combustion with acidic substances, as indicated by 466 

significant correlations (r = 0.61−0.95, P < 0.01) between total CHN abundance and 467 

SO4
2− and NO3

− concentrations. These findings further confirmed that the NOCs from 468 

the combustion of fresh biomass materials in the warm period in suburban Urumqi were 469 

compositionally different from those from old-age biomass burning in the cold period. 470 

 471 

4 Conclusions 472 

The complexity of NOCs restricts our understanding of its sources and formation 473 

processes. In this study, the molecular compositions of organic aerosols in PM2.5 474 

collected in Urumqi over a one-year period were systematically characterized in both 475 

ESI− and ESI+ modes, with a major focus on NOCs. A large amount of NOCs were 476 

identified, showing that NOCs in relatively highly oxidative and reduced forms can be 477 

roughly distinguished via these two ionization modes. Based on the identification of 478 

molecular markers of amides and alkyl nitriles (much higher in the warm period) and 479 

the analysis of their formation mechanisms (less contribution of atmospheric oxidation), 480 

we highlighted the important contribution of combustion of fresh biomass materials 481 

such as forest fires and wildfires to NOCs in the warm season in Urumqi. In contrast, 482 

the dramatically increased abundances of aromatic CNH compounds and nitro-aromatic 483 

CHON compounds (mainly nitrophenols) in the cold period were tightly associated 484 

with the impacts of old-age biomass material burning. These results were illustrated in 485 
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a diagram (Figure 7).  486 

Biomass materials in rural China were typically old-age plant tissues, as 487 

mentioned above. Fresh biomass materials (e.g., green vegetation) with the enrichment 488 

of oils and proteins can exist in forest fires or wildfires. Indeed, previous studies have 489 

suggested that biomass burning can lead to the formation of aerosol amines and nitriles. 490 

However, no field observation studies have paid attention to the differences in aerosol 491 

NOCs emitted from the combustion of fresh and old-age biomass materials. For the 492 

first time, our results reveal that fresh biomass material combustion can contribute more 493 

amines and nitriles than old-age biomass material combustion. Generally, this study 494 

provides the field evidence on the differential impacts of combustion of fresh and old-495 

age biomass materials on aerosol NOCs, improving our current understanding of the 496 

molecular compositions of organic nitrogen aerosols in a vast territory with a sparse 497 

population in Northwest China. Moreover, according to the fact that the studied site is 498 

highly affected by combustion emissions of different types of biomass materials, future 499 

work is needed to deeply understand the quantitative contributions of different types of 500 

biomass burning to OA in China. 501 
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Figure 1.  888 

 889 

Figure 1. The reconstructed mass spectrum distribution of the detected species in PM2.5 890 

in (a) ESI+ and (c) ESI− modes during the whole campaign. Temporal variations in the 891 

fractional distribution of classified compounds in (b) ESI+ and (d) ESI− modes. The 892 

ring diagrams inside the panel show the signal intensity fractions of classified 893 

compounds, the size of which is proportional to the total signal intensity of all species 894 

detected in PM2.5 in different periods. 895 
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Figure 2.  899 

 900 

Figure 2. OSc values of CHO molecules detected in (a and b) ESI+ and (c and d) ESI− 901 

modes in PM2.5 collected from different periods (cold vs. warm). The size and color of 902 

the circle indicate the mean signal intensity and DBE value of compounds, respectively. 903 

The light-orange background indicates the areas of low-volatility oxidized OA (LV-904 

OOA), semivolatile oxidized OA (SV-OOA), biomass burning-like OA (BBOA), and 905 

hydrocarbon-like OA (HOA) (Kroll et al., 2011), according to which (e) the mean signal 906 

intensity of classified compounds was calculated for samples from different periods. 907 

 908 

 909 

 910 

  911 

https://doi.org/10.5194/egusphere-2023-2514
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



44 
 

Figure 3 912 

 913 

Figure 3. The 3-day (72 h) back trajectories illustrating the typical air mass flows to 914 

the study site during the (a) warm and (b) cool periods. Fire spots were shown in red, 915 

which was created based on NASA active fire data (VIIRS 375 m, 916 

https://firms.modaps.eosdis.nasa.gov/active_fire/). The map was derived from 917 

©MeteoInfoMap (version 3.6.2) (Chinese Academy of Meteorological Sciences, China).  918 
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Figure 4.  923 

 924 

Figure 4. Van Krevelen diagrams of CHON molecules detected in (a and b) ESI+ and 925 

(c and d) ESI− modes in PM2.5 collected from different periods (cold vs. warm). The 926 

subgroups in the panel include saturated-like (Sa), unsaturated aliphatic-like (UA), 927 

highly unsaturated-like (HU), highly aromatic-like (HA), and polycyclic aromatic-like 928 

(PA) compounds, further distinguishing between oxygen-poor and oxygen-rich 929 

compounds with an oxygen to carbon ratio of 0.5. The size and color of the circle 930 

indicate the mean signal intensity and DBE value of compounds, respectively. The (e) 931 

mean signal intensity of classified compounds was calculated for samples from 932 

different periods. 933 

 934 
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Figure 5.  938 

 939 

Figure 5. Proposed pathways for the reaction of carboxylic acids (oleic acid as a 940 

representative) with ammonia to form the observed NOCs in PM2.5 under the influence 941 

of the high temperature generated during wildfires or forest fires. Compounds observed 942 

in PM2.5 were shown in red.  943 
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Figure 6. 945 

 946 

Figure 6. Van Krevelen diagrams of CHN molecules detected in PM2.5 collected from 947 

the (a) cold and (b) warm periods. The size and color of the circle indicate the mean 948 

signal intensity and DBE value of compounds, respectively. The mean signal intensity 949 

distributions of (c) carbon atoms in CHN molecules detected in PM2.5 collected from 950 

the cold and warm periods 951 
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Figure 7. 953 

 954 

Figure 7. Conceptual picture showing the differential impacts of combustion of fresh 955 

and old-age biomass materials on aerosol NOCs in suburban Urumqi. The map was 956 

derived from ©Baidu Maps (BIDU, China). 957 
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