

1 **Measurement report: Characteristics of**
2 **nitrogen-containing organics in PM_{2.5} in Urumqi,**
3 **northwest China: differential impacts of**
4 **combustion of fresh and old-age biomass**
5 **materials**

6

7 Yi-Jia Ma¹, Yu Xu^{2,*}, Ting Yang¹, Hong-Wei Xiao², Hua-Yun Xiao²

8

9 ¹School of Environmental Science and Engineering, Shanghai Jiao Tong University,
10 Shanghai 200240, China

11 ²School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
12 China

13

14

15

16

17

18

*Corresponding authors

19

Yu Xu

20

E-mail: xuyu360@sjtu.edu.cn

21

22

23

24

25 **Abstract:** Nitrogen-containing organic compounds (NOCs) are abundant and
26 important aerosol components deeply involved in the global nitrogen cycle. However,
27 the sources and formation processes of NOCs remain largely unknown, particularly in
28 the city (Urumqi, China) farthest from the ocean worldwide. Here, NOCs in PM_{2.5}
29 collected in Urumqi over a one-year period were characterized by ultrahigh-resolution
30 mass spectrometry. The abundance of CHON compounds (mainly oxygen-poor
31 unsaturated aliphatic-like species) in the positive ion mode was higher in the warm
32 period than in the cold period, which was largely attributed to the contribution of fresh
33 biomass material combustion (e.g., forest fires) associated with amidation of
34 unsaturated fatty acids in the warm period, rather than the oxidation processes. However,
35 CHON compounds (mainly nitro-aromatic species) in the negative ion mode increased
36 significantly in the cold period, which was tightly related to old-age biomass
37 combustion (e.g., dry straws) in wintertime Urumqi. For CHN compounds, alkyl nitriles
38 and aromatic species showed higher abundance in the warm and cold periods,
39 respectively. Alkyl nitriles can be derived from fresh biomass material combustion
40 associated with the dehydration of amides (the main CHON compounds in the warm
41 period). In contrast, aromatic species were tightly related to old-age biomass burning.
42 These findings further suggested different impacts of the combustion of fresh- and old-
43 age biomass materials on NOC compositions in different seasons. The overall results
44 shed light on the mechanisms by which fresh and old-age biomass materials release
45 different NOCs during combustion.

46 **Keywords:** Aerosols, Organic nitrogen, Molecular composition, Fresh biomass, Old-

47 age biomass

48

49 **1. Introduction**

50 Fine particulate matter (PM_{2.5}) is a typical atmospheric pollutant that can affect the
51 global climate system, as well as urban air quality and human health (Seinfeld et al.,
52 2016; Wang et al., 2021a). Organic aerosol (OA) contributes significantly (20–90%) to
53 PM_{2.5} mass concentration in most polluted areas worldwide (Zhang et al., 2007; Han et
54 al., 2023). Up to 77% of molecules in OA include nitrogen-containing functional groups
55 (Ditto et al., 2020; Kenagy et al., 2021), which have been suggested to play important
56 roles in the formation, transformation, acidity, and hygroscopicity of OA (Xu et al.,
57 2020; Wang et al., 2017b; Laskin et al., 2009). Moreover, the further oxidation or
58 nitrification of some nitrogen-containing organic compounds (NOCs) and volatile
59 organic compounds (VOCs) by ozone (O₃), hydroxyl radical (•OH), and nitrogen oxides
60 (NO_x) can lead to an increase in the health hazards of OA (Franze et al., 2005; Bandowe
61 and Meusel, 2017). Nitrated amino acids and nitrated PAHs are two representative
62 hazard NOCs (Franze et al., 2005; Bandowe and Meusel, 2017). Thus, the identification
63 of aerosol NOCs at the molecular level is important for improving our understanding
64 of the precursors, sources, and formation processes of nitrogen-containing OA.

65 Previous observations in urban, rural, marine, and forest areas have suggested that
66 the molecular composition and relative abundance of aerosol NOCs were spatially
67 different (Samy and Hays, 2013; Jiang et al., 2022; Lin et al., 2012; Xu et al., 2023;
68 Zeng et al., 2021; Zhang et al., 2022; Zeng et al., 2020). These differences can be mainly

69 attributed to the diverse sources and formation mechanisms of aerosol NOCs.

70 Commonly reported primary sources include combustion process releases and natural

71 emissions (e.g., soils, plant debris, pollen, and ocean) (Song et al., 2022; Wang et al.,

72 2017b; Cape et al., 2011; Lin et al., 2023). In addition, aerosol NOCs can also be tightly

73 associated with secondary formation processes involving the reactions of reactive

74 nitrogen with VOCs or particle-phase CHO compounds (Bandowe and Meusel, 2017;

75 Zarzana et al., 2012; Laskin et al., 2014). For example, laboratory experiments have

76 found that the oxidation of isoprene and α -/ β -pinene in the presence of NO_x can result

77 in the formation of organic nitrates (e.g., methacryloyl peroxy nitrate, dihydroxynitrates,

78 and monohydroxynitrates) (Surratt et al., 2010; Rollins et al., 2012; Nguyen et al., 2015).

79 The reduced nitrogen species (e.g., NH_3 , NH_4^+ , and organic amines) have been

80 demonstrated to contribute to the formation of NOCs through "carbonyl-to-imine"

81 transformations in the laboratory experiments (Zarzana et al., 2012; Laskin et al., 2014).

82 In the field observation studies, NOCs in particulate matter were analyzed at the

83 molecular level to indicate their sources and formation mechanisms (Jiang et al., 2022;

84 Lin et al., 2012; Zhong et al., 2023). Xu et al. (2023) characterized the variations of

85 molecular compositions in urban road $\text{PM}_{2.5}$, suggesting that organic nitrates increased

86 largely through the interactions of atmospheric oxidants, reactive gas-phase organics,

87 and aerosol liquid water. Several field studies conducted in Beijing (China) and

88 Guangzhou (China) also suggested that the molecular compositions and formation of

89 NOCs were tightly associated with environmental conditions (Jiang et al., 2022; Lin et

90 al., 2012; Xie et al., 2020). Generally, most studies on aerosol NOCs were performed

91 in economically developed regions, as well as in forest and marine areas (Jiang et al.,
92 2022; Wang et al., 2017a; Ditto et al., 2022b; Altieri et al., 2016; Xu et al., 2020; Liu et
93 al., 2023; Zhang et al., 2022; Zeng et al., 2020). In contrast, few studies have
94 investigated the sources and atmospheric transformation of NOCs in the northwest
95 border urban of China (e.g., Urumqi) with fragile ecology and harsh environmental
96 conditions (e.g., cold winter and dry summer), which may hinder our comprehensive
97 and in-depth understanding of the formation process of NOCs in ambient aerosols.

98 Biomass burning emissions were widely reported in the source identification of
99 aerosol NOCs in northern and southwestern China because of heating and cooking
100 needs (Zhong et al., 2023; Wang et al., 2021c; Chen et al., 2017). A recent observation
101 study in urban Tianjin suggested that most CHON compounds in wintertime PM_{2.5}
102 originated from biomass burning (Zhong et al., 2023). The CHN₂ compounds have been
103 identified in biomass burning OA (BBOA) (Laskin et al., 2009; Wang et al., 2017b).
104 Moreover, the high temperature generated by biomass burning can facilitate the release
105 of ammonia, a process that caused the reaction of carboxylic acids (e.g., oleic acid) with
106 ammonia to form amides and alkyl nitriles (Radzi Bin Abas et al., 2004; Simoneit et al.,
107 2003). Interestingly, we found that biomass burning in rural China typically includes
108 fresh biomass materials (e.g., forest fires) and old-age biomass materials (e.g., straw
109 after autumn harvest, fallen leaf, and deadwood). Fresh biomass is rich in oils and
110 proteins, whereas old-age biomass materials are usually oligotrophic due to the transfer
111 of nutrients to tender tissues or fruits (Jian et al., 2016; Xu and Xiao, 2017). Thus, NOCs
112 released from different types of biomass combustion may vary in molecular

113 compositions. However, there are large gaps in our current knowledge about the
114 impacts of fresh and old-age biomass burning on NOCs in ambient aerosols.

115 Urumqi (northwest China) is the largest inland city farthest from the ocean in the
116 world, which is becoming increasingly prominent due to the national strategy of the
117 "One Belt, One Road." The city and neighboring countries have a dry summer that can
118 easily trigger forest fires (Bátori et al., 2018; Xu et al., 2021), while the winter is
119 freezing with intensive old-age biomass and fuel combustion for heating (Ren et al.,
120 2017). In this study, we presented one-year ambient measurements of the chemical
121 compositions in PM_{2.5} collected from Urumqi. The specific aims of this study are (1) to
122 investigate the molecular-level speciation of functionalized organic nitrogen
123 compounds via high-resolution mass spectrometry with positive (ESI+) and negative
124 (ESI-) ionizations and (2) to investigate the potential sources and formation processes
125 for NOCs with a special focus on the relative influences of fresh and old-age biomass
126 burning in different seasons.

127

128 **2. Materials and methods**

129 **2.1. Study site description and sample collection**

130 The study was conducted in Urumqi city, which has an average altitude of 800 m.
131 The region has an arid temperate continental climate with an annual mean temperature
132 of 7.4 ± 13.9 °C and an annual mean rainfall of 27.8 mm. The sampling site is located
133 in the suburban area (Boda campus of Xinjiang University) of the city (87.75°E,
134 43.86°N) (**Figure S1**), which is characterized by low population and traffic density.

135 This is because Urumqi is relatively vast and sparsely populated compared to developed
136 coastal cities in China (Qizhi et al., 2016). Additionally, the area is surrounded by
137 mountains on three sides, resulting in the difficulty in diffusing air pollutants. The
138 dominant forest trees in this area are *Picea schrenkiana*, *Betula tianschanica* Rupr.,
139 *Populus talassica* Kom., and *Ulmus pumila* L.. The dry climate and strong sunlight in
140 the warm period ($18.81 \pm 6.4^{\circ}\text{C}$, **Table S1**) would be the main culprits of forest fires in
141 the local and nearby areas. In the cold period ($-1.96 \pm 11.26^{\circ}\text{C}$) (**Table S1**), the
142 centralized heating and old-age biomass burning may be the main contributors to local
143 air pollution. Thus, it provides an unexpected opportunity to investigate the potentially
144 differential impacts of fresh and old-age biomass burning on aerosol NOCs.

145 A high-volume air sampler (Series 2031, Laoying, China) was set up on the
146 rooftop of a building (School of Geology and Mining Engineering, Xinjiang University).
147 PM_{2.5} samples ($n = 73$) were collected every five days with a duration of ~ 24 h onto
148 prebaked (450°C for ~ 10 h) quartz fiber filters (Pallflex, Pall Corporation, USA) from
149 1 March 2018 to 26 February 2019. One blank filter was collected every month ($n =$
150 12). All filter samples were stored at -30°C until further analysis. During the sampling
151 campaigns, the meteorological data (e.g., temperature and relative humidity) and the
152 concentrations of O₃ and NO_x were recorded hourly from the adjacent environmental
153 monitoring station. These hourly data were then averaged to obtain daily values to
154 match the sampling time of PM_{2.5}. In addition, the trajectories (72 h) of air masses
155 arriving at the sampling site at each sampling event were calculated to investigate the
156 potential influence of pollutant transport on aerosol NOCs.

157

158 **2.2. Chemical analysis**

159 A portion of each filter sample was extracted twice using 3 mL methanol (LC-MS
160 grade, CNW Technologies Ltd.) under sonication in a chilled ice slurry (~4 °C). The
161 extracted solutions were filtered through a polytetrafluoroethylene syringe filter (0.22
162 µm, CNW Technologies GmbH). Subsequently, the extracts were concentrated to 300
163 µL with a gentle stream of gaseous nitrogen (Shanghai Likang Gas Co., Ltd). The final
164 extracts were analyzed using an ultra-performance liquid chromatography quadrupole
165 time-of-flight mass spectrometry equipped with an electrospray ionization (ESI) source
166 (UPLC-ESI-QToFMS, Waters Acquity Xevo G2-XS) in both ESI+ and ESI- modes
167 (Wang et al., 2021b). It should be pointed out that UPLC-ESI-MS (i.e., TOF-only) was
168 used to identify molecular formulas of organic matter, while the functional groups of
169 the target molecule formulas were deciphered by UPLC-ESI-MS/MS (i.e., tandem mass
170 spectrometry). Ions obtained from *m/z* 50–700 were assigned molecule formulas by
171 assuming hydrogen or sodium adducts in ESI+ mode and deprotonation in ESI- mode.
172 Detailed chromatographic conditions, parameter selection, and quality control were
173 displayed in the Supplement (Sect. S1). Notably, there may be differences in ionization
174 efficiencies between compound types. However, the exact impacts of ionization
175 efficiency on multifunctional compounds in a complex mixture are uncertain and
176 difficult to evaluate (Ditto et al., 2022b; Yang et al., 2023). Thus, the intercomparison
177 across compound relative abundance without considering potentially differentiated
178 ionization efficiency was conducted in this study, which was similar to many previous

179 studies (Xu et al., 2023; Jiang et al., 2022).

180 For the measurement of inorganic ions, a portion of each filter sample was
181 ultrasonically extracted with Milli-Q water (18 MΩ cm) (3 mL) in an ice-water bath
182 (~4 °C). The extract solutions were then filtered via a polytetrafluoroethylene syringe
183 filter (0.22 μm, Millipore, Billerica, MA). The concentrations of water-soluble
184 inorganic ions, including NO₃[−], SO₄^{2−}, Cl[−], Ca²⁺, Mg²⁺, Na⁺, and NH₄⁺ in the samples
185 were determined using an ion chromatograph system (Dionex Aquion, Thermo
186 Scientific, USA) (Xu et al., 2022a; Lin et al., 2023).

187

188 **2.3. Compound categorization and predictions of ALW, pH, and hydroxyl radical**

189 The molecular formulas identified by UPLC-ESI-QToFMS were classified into
190 several major compound classes based on their elemental compositions (i.e., C, H, O,
191 and N), primarily including CHO, CHON, and CHN groups in the ESI+ mode and CHO,
192 CHON, CHOS and CHONS groups in the ESI− mode (Wang et al., 2017b). CHOS and
193 CHONS compounds were also detected in the ESI− mode, with numbers of 398 and
194 112, respectively (**Table S2**). As this study focused mainly on NOCs, sulfur-containing
195 species were not discussed. Unless stated otherwise, all of the detected molecules were
196 reported as neutral molecules. The double-bond equivalent (DBE) and carbon oxidation
197 state (OS_C) were calculated to reflect the unsaturation degree of the organics and the
198 composition evolution of organics that underwent oxidation processes, respectively
199 (details in **Sect. S2**) (Kroll et al., 2011; Xu et al., 2023). The identified compounds can
200 be further classified into four subgroups based on the number of carbon atoms and OS_C

201 value (Kroll et al., 2011; Xu et al., 2023). Briefly, semi-volatile oxidized organic aerosol
202 (SV-OOA) and low-volatility oxidized organic aerosol (LV-OOA) were associated with
203 multi-step oxidation reactions, with OS_C values between -1 and $+1$ and molecular
204 formulas less than 13 carbon atoms. BBOA has OS_C values ranging from -0.5 to -1.5
205 and more than seven carbon atoms. Compounds with OS_C values less than -1 and
206 carbon atoms above 20 may be related to hydrocarbon-like organic aerosol (HOA).
207 Additionally, the modified aromaticity index (AI_{mod}) was also calculated to indicate the
208 aromaticity of organic compounds (details in **Sect. S2**) (Koch and Dittmar, 2006). The
209 van Krevelen diagrams and AI_{mod} values have been proposed to further classify organic
210 matter categories (Xu et al., 2023; Su et al., 2021), according to which the identified
211 five subgroups included saturated-like molecules (Sa, $H/C \geq 2.0$), unsaturated aliphatic-
212 like molecules (UA, $1.5 \leq H/C < 2.0$), highly unsaturated-like molecules (HU, $AI_{mod} \leq$
213 0.5 and $H/C < 1.5$), highly aromatic-like molecules (HA, $0.5 < AI_{mod} \leq 0.66$), and
214 polycyclic aromatic-like molecules (PA, $AI_{mod} > 0.66$). Furthermore, it has been
215 suggested that the above subgroups can be subdivided into O-poor and O-rich
216 compounds depending on their O/C ratio (**Table S8**) (Merder et al., 2020; Zhong et al.,
217 2023).

218 A thermodynamic model (ISORROPIA-II) was applied to predict the mass
219 concentration of aerosol liquid water (ALW) and the value of pH with particle-phase
220 ion concentrations as well as ambient temperature and relative humidity as the inputs,
221 as detailed in our previous publications (Xu et al., 2020; Xu et al., 2023; Xu et al.,
222 2022b). The model output results based on our data set showed that 94% and 90% of

223 NO_3^- were in the aerosol phase in the cold and warm periods, respectively. Hence, the
224 predictions of pH and ALW were conducted without considering gaseous nitric acid
225 (Guo et al., 2015; Wang et al., 2021c). 78% and 21% of NH_4^+ were in the aerosol phase
226 in the cold and warm periods, respectively. Moreover, it is important to note that
227 gaseous NH_3 measurements were not conducted and ammonia partitioning was not
228 considered in this study. Thus, a bias correction of 1 pH unit was applied to calculate
229 the aerosol pH values (Guo et al., 2015; Wang et al., 2021c). The concentrations of
230 ambient $\cdot\text{OH}$ were predicted using empirical formula (Ehhalt and Rohrer, 2000; Wang
231 et al., 2020).

232

233 **3. Results and discussion**

234 **3.1. Overall molecular characterization of organic aerosols**

235 **Figures 1a and 1c** show the mass spectra of organic compounds detected in ESI+
236 and ESI-, respectively. More compounds were identified in ESI+ (1885 molecular
237 formulas) than in ESI- (1091 molecular formulas) (**Table S2**), which was similar to
238 previous reports about the molecular characteristic of biomass burning aerosols and
239 urban aerosols (Jiang et al., 2022; Wang et al., 2017b). The molecular weights of the
240 compounds with relatively high signal intensity mainly ranged from 100 Da to 500 Da
241 in ESI+, which was larger than those (100–300 Da) observed in the urban (Changchun,
242 Guangzhou, and Shanghai) (Wang et al., 2021a) and agriculture (Suixi) (Wang et al.,
243 2017b) regions of China. In contrast, the species with the strong signal intensity fell
244 between 100 Da and 300 Da in ESI-. This mass range detected in Urumqi organic

aerosols was comparable to previous observations in urban (Xi'an) aerosols (Han et al., 2023) but significantly lower than that in firework-related urban (Beijing) aerosols (300–400 Da) (Xie et al., 2020). On average, the molecular number and relative abundance of CHON compounds (150–500 Da) were dominant in ESI+, accounting for 45.57% of the total molecular number and $62.70 \pm 6.83\%$ of the total signal intensity (**Figures 1a** and **Table S2**). CHO compounds were the second most abundant categories ($28.76 \pm 4.75\%$ of the total signal intensity), followed by CHN compounds. However, previous observations conducted in Shanghai, Guangzhou, and Changchun suggested that the compounds in ESI+ were dominated by CHN and CHON species (Wang et al., 2021a). In ESI–, although the number of CHON compounds was less than CHO, the relative abundance of CHON compounds (150–250 Da) was higher (**Figures 1d** and **Table S2**). The finding was consistent with the results obtained in Shanghai and Changchun but different from the case in Guangzhou (Wang et al., 2021a). The average H/C ratios of CHO (1.62–1.66) and CHON (1.79–1.83) compounds in ESI+ mode (**Table S3**) were higher than those (0.94–1.13 for CHO and 1.27–1.47 for CHON) in Changchun, Shanghai, and Guangzhou (Wang et al., 2021a). However, the average O/C ratios of CHO (0.25–0.3) and CHON (0.22–0.3) compounds in ESI+ mode (**Table S3**) were less than those (0.42–0.43 for CHO and 0.27–0.45 for CHON) in the urban areas (Shanghai and Guangzhou) (Wang et al., 2021a). Overall, these dissimilarities in molecular characteristics of organic aerosols between Urumqi and other areas may be attributed to their different sources and formation mechanisms.

267 **Figures 1b and 1d** show the time series of the fractional distributions of various
268 organic matter categories in different ion modes. The abundance of CHO compounds
269 in ESI+ exhibited a temporal variation similar to that of CHON compounds ($r = 0.51$,
270 $P < 0.01$), with increased levels in the warm period. This indicated that CHO
271 compounds may be important precursors for the formation of NOCs (via reactions in
272 the gas- and/or particle-phases) or that they have similar origins. Previous simulation
273 experiments have demonstrated that higher temperatures increase the concentration of
274 oxygenated organic molecules, while lower temperatures can allow less oxidized
275 species to condense (Stolzenburg et al., 2018; Frege et al., 2018). In addition, solar
276 radiation and atmospheric oxidation capacity are also important factors promoting the
277 formation of more oxygenated organic molecules (Li et al., 2022; Liu et al., 2022). Air
278 temperature, radiation, and atmospheric oxidation capacity were much higher in the
279 warm period than in the cold period in Urumqi (**Table S1**) (Wan et al., 2021), which
280 may be partly responsible for increased abundances of CHO and CHON compounds in
281 the warm period. However, the abundance of CHN compounds tended to increase from
282 the warm period to the cold period. Since the ESI+ mode is highly sensitive to
283 protonatable species, organic amines were expected to predominate the CHN
284 compounds (Han et al., 2023; Wang et al., 2021a). It is well documented that the
285 formation of amine salt in the particle phase is tightly associated with aerosol acidity
286 and water (Liu et al., 2023). Thus, the reduced pH value and increased ALW level in
287 the cold period (**Table S1**) provided greater potential for converting gaseous amines
288 into particles.

289 In ESI- mode, the abundances of CHON and CHO compounds exhibited a
290 significantly increased level in the cold period (**Figure 1d**), a variation pattern which
291 was completely opposite to the case in ESI+ mode. The ESI- mode is more sensitive
292 to deprotonatable compounds like nitrophenols, organic nitrates, organosulfates, and
293 organic acids (Jiang et al., 2022; Lin et al., 2012). The formations of these compounds
294 were highly impacted by ALW and aerosol acidity (Ma et al., 2021; Smith et al., 2014;
295 Zhou et al., 2023; Xu et al., 2023). However, Urumqi has dry and dusty weather,
296 particularly in warm period, resulting in a quite low ALW concentration (1.86 ± 1.90
297 $\mu\text{g m}^{-3}$) in the warm period (**Table S1**). Moreover, the calculated mean pH value was
298 6.86 ± 1.71 (**Table S1**) during the warm period, which implies that the fine aerosol
299 particles in the warm period in Urumqi was neutral or slightly alkaline. Obviously, the
300 aerosol characteristics of the warm period in Urumqi may hinder the formation of these
301 organic compounds measured in ESI- mode. In contrast, the increased ALW
302 concentration and decreased pH value during the cold period can facilitate the
303 formation of CHO and CHON compounds through the partitioning of gas-phase species
304 to the particles and subsequent aqueous phase reactions (Xu et al., 2020; Xu et al., 2023).
305 Furthermore, the total signal intensity of CHO compounds was significantly correlated
306 with that of CHON ($r = 0.62, P < 0.01$), indicating that they may have similar origins
307 or that CHO compounds may serve as important precursors for CHON compound
308 formation. In general, the differentiated seasonal variation patterns for the different
309 types of NOCs measured here can be attributed to the unique meteorological conditions
310 in Urumqi and different ionization mechanisms in ESI+ and ESI- modes. The sources

311 and formation mechanisms of NOCs will be further discussed in the following sections.

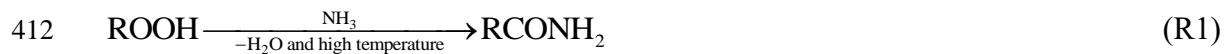
312

313 **3.2. Seasonally differential sources and formation mechanisms of CHON**
314 **compounds**

315 CHON compounds can be derived from the reactions between CHO species and
316 reactive nitrogen species (NO_x , NH_3 , and NH_4^+) (Lee et al., 2016; De Haan et al., 2017),
317 as also partly implied by significant positive correlations ($r = 0.51\text{--}0.62$, $P < 0.01$)
318 between total signal intensity of CHO and CHON compounds in both ESI+ and ESI-
319 modes. Thus, CHO compounds were further classified based on their OS_C values to
320 preliminarily explore their origins and linkages with CHON compound formation
321 (**Figures 2a and 2b**). In ESI+ mode, the OS_C values of the detected CHO compounds
322 (-1.75 to 0.5) were higher than those of primary vehicle exhausts (-2.0 to -1.9) (Aiken
323 et al., 2008), likely indicating a weak (or indirect) contribution of primary vehicle
324 exhausts to CHO molecules in Urumqi. The signal intensity of BBOA dominated the
325 total OA signal intensity and was higher in the warm period than in the cold period
326 (**Figure 2e**). However, previous studies conducted in China (e.g., Beijing, Xi'an,
327 Shanghai, and Liaocheng) suggested that biomass burning was more significant in the
328 cold seasons (Li et al., 2023; Wang et al., 2017a; Chen et al., 2017; Wang et al., 2009;
329 Wang et al., 2018; Zhang et al., 2022). Furthermore, we found that the oxygen-poor
330 unsaturated aliphatic compounds showed a high signal intensity in the warm period and
331 that the signal intensities of all categories of compounds in the warm period were
332 weakly correlated with atmospheric oxidants (i.e., O_3 and $\cdot\text{OH}$) ($r < 0.1$, $P > 0.05$).

333 Thus, the formation or source of CHO compounds in the warm period may not be
334 mainly controlled by high atmospheric oxidation but rather by biomass burning, which
335 was distinguished from previous reports (Duan et al., 2020; Kondo et al., 2007; Zhang
336 et al., 2023). This consideration was also supported by the fact that there were
337 significantly more fire spots in the warm period than in the cold period (**Figure 3**). It
338 should be noted that the materials used for biomass burning in the cold period in rural
339 China are typically old-age plant tissues, such as dead branches of pine trees, dead
340 branches of shrubs, corn straw, and rice straw (**Figure S3**), while biomass burning in
341 the warm season is mainly attributed to forest fires or wildfires (relatively fresh
342 biomass). Accordingly, a large number of fresh biomass material burning occurred from
343 April to October each year in the neighboring countries (e.g., Kazakhstan) (Xu et al.,
344 2021) or regions of Urumqi (due to drought) (**Figure 3**) may be largely responsible for
345 high CHO compound abundance in the warm period.

346 The CHO species in ESI- had higher OS_C (-1.85 to 1.1) than those in ESI+ (-1.85
347 to 0.25) (**Figures 2c and 2d**), which was consistent with a recent study conducted in
348 Guangzhou, China (Zou et al., 2023). The predominant subgroups of CHO in ESI-
349 were BBOA (66.4% of total signal intensity) and SV-OOA (23.1% of total signal
350 intensity), which was different from the observation in Shanghai (dominated by SV-
351 OOA and LV-OOA) (Wang et al., 2017a). Additionally, some specific saturated and
352 unsaturated aliphatic CHO substances (i.e., C₁₂₋₁₈H_nO₂) in ESI- showed higher
353 abundance in the warm season than in the cold season, which was contrary to the
354 variation pattern of other CHO compounds. These C₁₂₋₁₈H_nO₂ compounds were found


355 to be mainly fatty acids, such as stearic acid ($C_{18}H_{36}O_2$), oleic acid ($C_{18}H_{34}O_2$),
356 linolelaidic acid ($C_{18}H_{32}O_2$), palmitic acid ($C_{16}H_{32}O_2$), and palmitoleic acid ($C_{16}H_{30}O_2$)
357 (**Figure S4**), all of which usually accumulate in plants, particularly *Suaeda*
358 *aralocaspica* (W. Hogg and T. Gillan, 1984; Wang et al., 2011). Interestingly, this plant
359 was widely distributed in Central Asia as well as on the southern edge of the Junggar
360 Basin in Xinjiang, China (Wang et al., 2011). Although fatty acids can also originate
361 from food cooking (Zhao et al., 2007), there seem to be no seasonal differences in
362 cooking behavior locally. Thus, these results further confirmed our consideration that
363 the abundance of CHO compounds in the warm period was highly impacted by fresh
364 biomass material burning (e.g., forest fires or wildfires).

365 CHON molecules in ESI+ were mainly identified as unsaturated aliphatic-like
366 compounds that are oxygen poor (**Figures 4a and 4b**), accounting for more than 70%
367 of the total signal intensities of CHON species (**Figure S5**). The signal intensity of
368 CHON species in ESI+ was greater in the warm period than in the cold period (**Figure**
369 **4e**). Moreover, BBOA contributed to 56.9 % of the total CHON signal intensity in the
370 warm period (**Figure S6**). These characteristics of CHON compounds were similar to
371 those of CHO. Considering a significant positive correlation ($r = 0.62$, $P < 0.01$)
372 between the total signal intensity of CHO and CHON compounds in ESI+, we thus
373 concluded that primary sources (i.e., fresh biomass material burning) were also one of
374 the main sources of CHON compounds. In this study, CHON compounds with O/N <
375 3 contributed $76.48 \pm 1.11\%$ of total CHON species in ESI+ (**Figure S7**), which was
376 much larger than the results observed in urban Tianjin in winter (less than 20%) (Zhong

377 et al., 2023). In particular, C₁₆H₃₃ON, C₁₈H₃₇ON, C₁₈H₃₅ON, C₁₈H₃₃ON, C₁₈H₃₁ON, 378 and C₂₀H₃₃ON showed a high abundance, together accounting for 55.04 ± 7.09 % of 379 the total CHON abundance (**Table S4**). The carbon number of these compounds was 380 consistent with that of fatty acids mentioned above; moreover, their abundances showed 381 a positive correlation ($r = 0.43\text{--}0.81$, $P < 0.01$) with the abundances of corresponding 382 fatty acids in the warm period. In contrast, these CHON compounds only showed a 383 weak correlation ($r = -0.24 \sim 0.33$) with atmospheric oxidants (e.g., •OH, O₃, and NO_x). 384 Thus, the formation mechanism of biomass burning-related NOCs in Urumqi during 385 the warm period may be the interaction between fatty acids and reduced nitrogen 386 species (e.g., NH₃) rather than the oxidation pathway involving CHO compounds and 387 NO_x.

388 A recent laboratory study has suggested that NH₃ produced during the thermal 389 degradation of amino acids can react with oleic acid from the pyrolysis of triglycerides 390 to form amides (R1) (Ditto et al., 2022a). As discussed above, the combustion of fresh 391 biomass materials (e.g., forest fires or wildfires) can release abundant fatty acids. In 392 addition, wildfires can also emit large amounts of NH₃, with an average emission factor 393 more than twice the NH₃ emission factor of agricultural fires (Tomsche et al., 2023). 394 According to MS/MS analysis (**Table S5**), potential fatty acid-derived NOCs were 395 indeed identified as amides. Thus, we proposed that the high temperature generated 396 during wildfires or forest fires provides suitable conditions for the reaction of 397 carboxylic acids and NH₃ to form amides. The specific process was presented in **Figure** 398 **5** (Pathway 1). It has been suggested that atmospheric oxidants can oxidize olefins (R2

399 and R3) to form hydroxyl nitrates and carbonyl nitrates (Perring et al., 2013). Therefore,
 400 fatty acids (oleic acid as a representative) released from fresh biomass material burning
 401 may also rely on oxidation pathways to form NOCs (**Figure 5**, Pathway 2). It is worth
 402 noting that some products with double bonds after the amidation of unsaturated fatty
 403 acids can continue to undergo the reactions of R2 and R3 in the atmosphere, resulting
 404 in the formation of nitrooxy amides (**Figure 5**, Pathway 3). However, we found that the
 405 abundance of oleic acid-derived amides via Pathway 1 in the warm period was more
 406 than 100 times higher than that of NOCs with $-ONH_2$ (thus, the impact of ionization
 407 efficiency is expected to be less than 100 times) from Pathways 3. In the cold period,
 408 the abundance of fatty acids-derived amides decreased dramatically (**Figure 5** and
 409 **Figure S8**). Thus, the overall results demonstrated that the combustion of fresh biomass
 410 materials indeed contributed significantly to aerosol NOCs (e.g., amides) in the warm
 411 period in Urumqi.

415 The CHON species detected in ESI $^-$ were mainly aromatic-like compounds,
 416 whose signal intensities were significantly greater in the cold period than in the warm
 417 period (**Figures 4c,4e** and **Figure S5**). Moreover, we found that several nitro-aromatic
 418 compounds, including $C_6H_5O_3N$, $C_6H_5O_4N$, $C_7H_7O_3N$, $C_7H_7O_4N$, $C_7H_5O_5N$, and
 419 $C_8H_9O_3N$ (confirmed by their authentic standards in the LC/MS analysis), contributed

420 up to 50% of the total CHON (ESI- mode) intensity (**Table S6**). Other NOCs with
421 relatively high signal intensity were mainly O_{4.6}N₂ species (contributed up to 25%),
422 such as C₆H₄O₅N₂, C₇H₄O₇N₂, C₇H₆O₅N₂, and C₇H₆O₆N₂, which have been suggested
423 to be associated with secondary photochemical or multiphase chemical processes
424 (Harrison et al., 2005; Cecinato et al., 2005; Salvador et al., 2021). However, the
425 abovementioned nitro-aromatic compounds including C₆H₅O₃N (nitrophenol),
426 C₆H₅O₄N (nitrocatechol), C₇H₇O₃N (methyl-nitrophenol), and C₇H₇O₄N (methyl-
427 nitrocatechol) were primarily identified as tracers of straw and wood burning (old-age
428 biomass materials commonly used in suburban and rural China) (Iinuma et al., 2010;
429 Kourtchev et al., 2016). A study about molecular characterization (ESI- mode) of
430 water-soluble aerosols emitted from the combustion of old-age biomass materials (i.e.,
431 dry corn straw, rice straw, and pine branches) and coal showed that OA from old-age
432 biomass burning typically contained much more nitro compounds and/or organonitrates
433 than that from coal, while OA from coal-smoke contained more sulfur-containing
434 compounds (Song et al., 2018). Thus, the old-age biomass burning associated with
435 winter heating rather than coal combustion may contribute a significant amount of
436 aerosol NOCs (e.g., nitrophenols) in wintertime Urumqi. However, it does not
437 necessarily suggest that the importance of multiphase chemistry in the formation of
438 NOCs was ignorable, as indicated by relatively high signal intensity of O_{4.6}N₂ species.
439 In general, the differential molecular characteristics of CHON species in different
440 seasons in Urumqi can largely attributed to different impacts of the combustion of fresh-
441 and old-age biomass materials.

442

443 **3.3. CHN molecule evidence of fresh and old-age biomass burning in different**
444 **periods.**

445 **Figures 6a and 6b** present the van Krevelen diagram of CHN compounds in the
446 cold and warm periods. The CHN₁ compounds with relatively high signal intensity
447 mainly contained 7–20 carbon atoms, among which C₅H₅N(CH₂)_n, C₉H₇N(CH₂)_n, and
448 C₁₃H₉N(CH₂)_n were dominant ($78.68 \pm 7.59\%$ of the total signal intensity of CHN₁
449 compounds in the cold period, **Table S7**). C₅H₅N(CH₂)_n could be identified as pyridine
450 and its homologues, which have been detected in freshly discharged BBOA (Dou et al.,
451 2015). Additionally, the abundance of C₅H₅N(CH₂)_n was positively correlated with that
452 of C₉H₇N(CH₂)_n, C₁₃H₉N(CH₂)_n, and nitro-aromatic compounds mentioned above ($r =$
453 0.46–0.81, $P < 0.01$), particularly in the cold period with old-age biomass burning for
454 heating. We further found that both the total signal intensity and aromaticity of CHN₁
455 species were much higher in the cold period (AI_{mod} of 0.52) than in the warm period
456 (AI_{mod} of 0.35) (**Figure 6** and **Figure S9**). It has been suggested that old-age leaves
457 contain more aromatic compounds compared to fresh leaves (Jian et al., 2016). Thus,
458 the overall results implied that old-age biomass burning had an important contribution
459 to the variation of CHN₁ compounds. In particular, the intensity of CHN₁ compounds
460 was significantly negatively correlated with the concentration of O₃ and ·OH ($r = -0.44$
461 ~ -0.53 , $P < 0.01$), suggesting that atmospheric oxidation processes were the potential
462 pathway for amine removal rather than the sources of particle amine salts (Zahardis et
463 al., 2008; Qiu and Zhang, 2013). This result differed from the previous case, which

464 showed that the formation processes of CHN₁ and its homologs in Guangzhou (South
465 China) were tightly related to photo-oxidation processes (Jiang et al., 2022). The CHN₂
466 species showed a similar temporal variation pattern to the CHN₁ species. Moreover, the
467 abundances of total CHN₂ and major components (C₈₋₁₁H₈N₂(CH₂)_n, C₁₀H₁₄N₂(CH₂)_n,
468 C₁₀H₁₆N₂(CH₂)_n and C₅H₈N₂(CH₂)_n) were positively correlated with that of total CHN₁
469 ($r = 0.55\text{--}0.90$, $P < 0.01$), but negatively correlated with the concentration of O₃
470 and ·OH ($r = -0.43 \sim -0.60$, $P < 0.01$). Clearly, old-age biomass burning, particularly
471 in the cold period, also exerted significant impacts on the abundance of CHN₂
472 compounds, which was also supported by several previous studies (Laskin et al., 2009;
473 Wang et al., 2017b; Song et al., 2022). A study about molecular characterization (ESI+
474 mode) of humic-like substances emitted from the combustion of old-age biomass
475 materials (i.e., dry corn straw, rice straw, and pine branches) and coals showed that OA
476 from old-age biomass burning typically contained much more CHN₂ compounds (55–
477 64%) than that from coal (20–37%), while OA from coal-smoke showed more CHN₁
478 compounds (78–84%) compared to that from old-age biomass materials (15–22%)
479 (Song et al., 2022). In this study, the signal intensity of CHN₁ compounds in the cold
480 period was about 40% higher than that in the warm period, while that of CHN₂
481 compounds showed a 160% increase from the warm period to the cold period. Thus,
482 although the contribution of fossil fuel (e.g., coal) combustion to NOCs in the cold
483 period cannot be ignored, our results at least suggested that the biomass burning-derived
484 CHN compounds showed a more significant increase compared to coal combustion-
485 derived compounds from the warm period to the cold period in Urumqi.

Interestingly, we found some CHN species with 16–20 carbon atoms showed higher abundance in the warm period than in the cold period, a pattern opposite to that of all other CNH compounds (**Figure 6c**). These $C_{16-20}N_1H_x$ compounds were further identified as alkyl nitriles (**Table S5**) (Simoneit et al., 2003). In addition, the carbon number of the identified alkyl nitriles was consistent with those of amides previously proposed to be produced by fresh biomass burning. Thus, we proposed that fresh biomass material burning in the warm period may provide a continuous high-temperature environment to promote the dehydration of amides (**Figure 5**, Pathway 4). These alkyl nitriles with double bonds can continue to undergo the reactions of R2 and R3 (**Figure 5**, Pathway 5). However, the signal intensity of the nitrooxy products in the warm period was insignificantly correlated with the concentration of O_3 , $\cdot OH$, and NO_x ($P > 0.05$), likely indicating a weak influence of atmospheric oxidation on alkyl nitrile removal in this site. The high-temperature dehydration of amides (e.g., erucamide) to form alkyl nitriles (e.g., erucyl nitrile) has been demonstrated by Simoneit et al. (2003) in a laboratory simulation experiment. A study on BBOA also showed that alkyl nitriles can be serve as indicators of biomass burning in the ambient atmosphere (Radzi Bin Abas et al., 2004). Furthermore, the abundance of identified alkyl nitriles initially increased from March and peaked in September and October (**Figure S10**), a pattern which was consistent with the interannual variation in wildfire areas (more in the warm period) in Central Asian countries (Xu et al., 2021). Although cooking is also a potential source of alkyl nitriles (Schauer et al., 1999), this activity does not have seasonal differences. In contrast, the dramatically increased abundance of aromatic CNH

508 compounds in the cold period (**Figure S9**) can be attributed to the aqueous reactions of
509 amines emitted from old-age biomass material and coal combustion with acidic
510 substances, as indicated by significant correlations ($r = 0.61\text{--}0.95$, $P < 0.01$) between
511 total CHN abundance and SO_4^{2-} and NO_3^- concentrations. These findings further
512 confirmed that the NOCs from the combustion of fresh biomass materials in the warm
513 period in suburban Urumqi were compositionally different from those from old-age
514 biomass burning in the cold period.

515

516 **4. Conclusions**

517 The complexity of NOCs restricts our understanding of its sources and formation
518 processes. In this study, the molecular compositions of organic aerosols in $\text{PM}_{2.5}$
519 collected in Urumqi over a one-year period were systematically characterized in both
520 ESI- and ESI+ modes, with a major focus on NOCs. A large amount of NOCs were
521 identified, showing that NOCs in relatively highly oxidative and reduced forms can be
522 roughly distinguished via these two ionization modes. Based on the identification of
523 molecular markers of amides and alkyl nitriles (much higher in the warm period) and
524 the analysis of their formation mechanisms (less contribution of atmospheric oxidation),
525 we highlighted the important contribution of combustion of fresh biomass materials
526 such as forest fires and wildfires to NOCs in the warm season in Urumqi. In contrast,
527 the dramatically increased abundances of aromatic CNH compounds and nitro-aromatic
528 CHON compounds (mainly nitrophenols) in the cold period were tightly associated
529 with the impacts of old-age biomass material burning. These results were illustrated in

530 a diagram (**Figure 7**).

531 Biomass materials in rural China were typically old-age plant tissues, as
532 mentioned above. Fresh biomass materials (e.g., green vegetation) with the enrichment
533 of oils and proteins can exist in forest fires or wildfires. Indeed, previous studies have
534 suggested that biomass burning can lead to the formation of aerosol amines and nitriles.
535 However, field observation studies have yet to pay attention to the differences in aerosol
536 NOCs emitted from the combustion of fresh and old-age biomass materials. For the
537 first time, our results reveal that fresh biomass material combustion can contribute more
538 amines and nitriles than old-age biomass material combustion. Generally, this study
539 provides field evidence on the differential impacts of the combustion of fresh and old-
540 age biomass materials on aerosol NOCs, improving our current understanding of the
541 molecular compositions of organic nitrogen aerosols in a vast territory with a sparse
542 population in Northwest China. Moreover, according to the fact that the studied site is
543 highly affected by combustion emissions of different types of biomass materials, future
544 work is needed to deeply understand the quantitative contributions of different types of
545 biomass burning to OA in China.

546

547 **Data availability.** The data in this study are available at
548 <https://doi.org/10.5281/zenodo.10453929>

549

550 **Competing interests.** The authors declare no conflicts of interest relevant to this study.

551

552 **Supplement.** Details of chemical analysis and data processing, eight tables (Tables
553 S1–S8), and ten extensive figures (Figures S1–S10).

554

555 **Author contributions.** YX designed the study. YJM, TY, and HWX performed field
556 measurements and sample collection; YJM and TY performed chemical analysis; YX
557 and YJM performed data analysis; YX and YJM wrote the original manuscript; and YX,
558 YJM, HWX, and HYX reviewed and edited the manuscript.

559

560 **Financial support.** This study was kindly supported by the National Natural Science
561 Foundation of China through grant 42303081 (Y. Xu) and Shanghai “Science and
562 Technology Innovation Action Plan” Shanghai Sailing Program through grant
563 22YF1418700 (Y. Xu).

564

565 **References**

566 Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty,
567 K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn,
568 A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R.,
569 Prevot, A. S., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J.
570 L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with
571 high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42,
572 4478-4485, <https://doi.org/10.1021/es703009q>, 2008.

573 Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings, M. G.:

574 Marine biogenic source of atmospheric organic nitrogen in the subtropical North
575 Atlantic, P. Natl. Acad. Sci. USA, 113, 925-930,
576 <https://doi.org/10.1073/pnas.1516847113>, 2016.

577 Bandowe, B. A. M. and Meusel, H.: Nitrated polycyclic aromatic hydrocarbons
578 (nitro-PAHs) in the environment – A review, *Sci. Total Environ.*, 581-582, 237-257,
579 <https://doi.org/10.1016/j.scitotenv.2016.12.115>, 2017.

580 Bátori, Z., Erdős, L., Kelemen, A., Deák, B., Valkó, O., Gallé, R., Bragina, T. M.,
581 Kiss, P. J., Kröel-Dulay, G., and Tölgyesi, C.: Diversity patterns in sandy forest-steppes:
582 a comparative study from the western and central Palaearctic, *Biodivers. Conserv.*, 27,
583 1011-1030, <https://doi.org/10.1007/s10531-017-1477-7>, 2018.

584 Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen in the
585 atmosphere — Where does it come from? A review of sources and methods, *Atmos.*
586 *Res.*, 102, 30-48, <https://doi.org/10.1016/j.atmosres.2011.07.009>, 2011.

587 Cecinato, A., Di Palo, V., Pomata, D., Tomasi Scianò, M. C., and Possanzini, M.:
588 Measurement of phase-distributed nitrophenols in Rome ambient air, *Chemosphere*, 59,
589 679-683, <https://doi.org/10.1016/j.chemosphere.2004.10.045>, 2005.

590 Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J.,
591 Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F.,
592 Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A review of biomass burning:
593 Emissions and impacts on air quality, health and climate in China, *Sci. Total Environ.*,
594 579, 1000-1034, <https://doi.org/10.1016/j.scitotenv.2016.11.025>, 2017.

595 De Haan, D. O., Hawkins, L. N., Welsh, H. G., Pednekar, R., Casar, J. R.,

596 Pennington, E. A., de Loera, A., Jimenez, N. G., Symons, M. A., Zauscher, M., Pajunoja,
597 A., Caponi, L., Cazaunau, M., Formenti, P., Gratien, A., Pangui, E., and Doussin, J.-F.:
598 Brown Carbon Production in Ammonium- or Amine-Containing Aerosol Particles by
599 Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling, *Environ. Sci.
600 Technol.*, 51, 7458-7466, <https://doi.org/10.1021/acs.est.7b00159>, 2017.

601 Ditto, J. C., Abbatt, J. P. D., and Chan, A. W. H.: Gas- and Particle-Phase Amide
602 Emissions from Cooking: Mechanisms and Air Quality Impacts, *Environ. Sci. Technol.*,
603 56, 7741-7750, <https://doi.org/10.1021/acs.est.2c01409>, 2022a.

604 Ditto, J. C., Machesky, J., and Gentner, D. R.: Analysis of reduced and oxidized
605 nitrogen-containing organic compounds at a coastal site in summer and winter, *Atmos.
606 Chem. Phys.*, 22, 3045-3065, <https://doi.org/10.5194/acp-22-3045-2022>, 2022b.

607 Ditto, J. C., Joo, T., Slade, J. H., Shepson, P. B., Ng, N. L., and Gentner, D. R.:
608 Nontargeted Tandem Mass Spectrometry Analysis Reveals Diversity and Variability in
609 Aerosol Functional Groups across Multiple Sites, Seasons, and Times of Day, *Environ.
610 Sci. Technol. Lett.*, 7, 60-69, <https://doi.org/10.1021/acs.estlett.9b00702>, 2020.

611 Dou, J., Lin, P., Kuang, B.-Y., and Yu, J. Z.: Reactive Oxygen Species Production
612 Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by
613 Pyridine, Imidazole, and Their Derivatives, *Environ. Sci. Technol.*, 49, 6457-6465,
614 <https://doi.org/10.1021/es5059378>, 2015.

615 Duan, J., Huang, R. J., Li, Y., Chen, Q., Zheng, Y., Chen, Y., Lin, C., Ni, H., Wang,
616 M., Ovadnevaite, J., Ceburnis, D., Chen, C., Worsnop, D. R., Hoffmann, T., O'Dowd,
617 C., and Cao, J.: Summertime and wintertime atmospheric processes of secondary

618 aerosol in Beijing, *Atmos. Chem. Phys.*, 20, 3793-3807, <https://doi.org/10.5194/acp-20-3793-2020>, 2020.

619

620 Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar UV, *J. Geophys. Res.-Atmos.*, 105, 3565-3571, <https://doi.org/10.1029/1999JD901070>, 2000.

621

622 Franz, T., Weller, M. G., Niessner, R., and Pöschl, U.: Protein Nitration by

623 Polluted Air, *Environ. Sci. Technol.*, 39, 1673-1678, <https://doi.org/10.1021/es0488737>,

624 2005.

625 Frege, C., Ortega, I. K., Rissanen, M. P., Praplan, A. P., Steiner, G., Heinritzi, M.,

626 Ahonen, L., Amorim, A., Bernhammer, A. K., Bianchi, F., Brilke, S., Breitenlechner,

627 M., Dada, L., Dias, A., Duplissy, J., Ehrhart, S., El-Haddad, I., Fischer, L., Fuchs, C.,

628 Garmash, O., Gonin, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kirkby, J.,

629 Kürten, A., Lehtipalo, K., Leiminger, M., Mauldin, R. L., Molteni, U., Nichman, L.,

630 Petäjä, T., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Stolzenburg, D., Tomé,

631 A., Vogel, A. L., Wagner, A. C., Wagner, R., Xiao, M., Yan, C., Ye, P., Curtius, J.,

632 Donahue, N. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Winkler, P. M., Dommen,

633 J., and Baltensperger, U.: Influence of temperature on the molecular composition of

634 ions and charged clusters during pure biogenic nucleation, *Atmos. Chem. Phys.*, 18, 65-79, <https://doi.org/10.5194/acp-18-65-2018>, 2018.

635

636 Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J. R., Carlton,

637 A. G., Lee, S. H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle

638 water and pH in the southeastern United States, *Atmos. Chem. Phys.*, 15, 5211-5228,

639 <https://doi.org/10.5194/acp-15-5211-2015>, 2015.

640 Han, Y., Zhang, X., Li, L., Lin, Y., Zhu, C., Zhang, N., Wang, Q., and Cao, J.:
641 Enhanced Production of Organosulfur Species during a Severe Winter Haze Episode in
642 the Guanzhong Basin of Northwest China, Environ. Sci. Technol.,
643 <https://doi.org/10.1021/acs.est.3c02914>, 2023.

644 Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Iulian Olariu,
645 R.: Nitrated phenols in the atmosphere: a review, Atmos. Environ., 39, 231-248,
646 <https://doi.org/10.1016/j.atmosenv.2004.09.044>, 2005.

647 Iinuma, Y., Böge, O., Gräfe, R., and Herrmann, H.: Methyl-Nitrocatechols:
648 Atmospheric Tracer Compounds for Biomass Burning Secondary Organic Aerosols,
649 Environ. Sci. Technol., 44, 8453-8459, <https://doi.org/10.1021/es102938a>, 2010.

650 Jian, Q., Boyer, T. H., Yang, X., Xia, B., and Yang, X.: Characteristics and DBP
651 formation of dissolved organic matter from leachates of fresh and aged leaf litter,
652 Chemosphere, 152, 335-344, <https://doi.org/10.1016/j.chemosphere.2016.02.107>, 2016.

653 Jiang, H., Li, J., Tang, J., Zhao, S., Chen, Y., Tian, C., Zhang, X., Jiang, B., Liao,
654 Y., and Zhang, G.: Factors Influencing the Molecular Compositions and Distributions
655 of Atmospheric Nitrogen-Containing Compounds, J. Geophys. Res.-Atmos., 127,
656 e2021JD036284, <https://doi.org/10.1029/2021JD036284>, 2022.

657 Kenagy, H. S., Romer Present, P. S., Wooldridge, P. J., Nault, B. A., Campuzano-
658 Jost, P., Day, D. A., Jimenez, J. L., Zare, A., Pye, H. O. T., Yu, J., Song, C. H., Blake,
659 D. R., Woo, J.-H., Kim, Y., and Cohen, R. C.: Contribution of Organic Nitrates to
660 Organic Aerosol over South Korea during KORUS-AQ, Environ. Sci. Technol., 55,
661 16326-16338, <https://doi.org/10.1021/acs.est.1c05521>, 2021.

662 Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for high-
663 resolution mass data of natural organic matter, *Rapid Commun. Mass Spectrom.*, 20,
664 926-932, <https://doi.org/10.1002/rcm.2386>, 2006.

665 Kondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R. J., Jimenez, J.
666 L., Zhang, Q., and Worsnop, D. R.: Oxygenated and water-soluble organic aerosols in
667 Tokyo, *J. Geophys. Res.-Atmos.*, 112, <https://doi.org/10.1029/2006JD007056>, 2007.

668 Kourtchev, I., Godoi, R. H. M., Connors, S., Levine, J. G., Archibald, A. T., Godoi,
669 A. F. L., Paralovo, S. L., Barbosa, C. G. G., Souza, R. A. F., Manzi, A. O., Seco, R.,
670 Sjostedt, S., Park, J. H., Guenther, A., Kim, S., Smith, J., Martin, S. T., and Kalberer,
671 M.: Molecular composition of organic aerosols in central Amazonia: an ultra-high-
672 resolution mass spectrometry study, *Atmos. Chem. Phys.*, 16, 11899-11913,
673 <https://doi.org/10.5194/acp-16-11899-2016>, 2016.

674 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R.,
675 Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E.
676 R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric
677 for describing the chemistry of atmospheric organic aerosol, *Nat. Chem.*, 3, 133-139,
678 <https://doi.org/10.1038/nchem.948>, 2011.

679 Laskin, A., Smith, J. S., and Laskin, J.: Molecular Characterization of Nitrogen-
680 Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution
681 Mass Spectrometry, *Environ. Sci. Technol.*, 43, 3764-3771,
682 <https://doi.org/10.1021/es803456n>, 2009.

683 Laskin, J., Laskin, A., Nizkorodov, S. A., Roach, P., Eckert, P., Gilles, M. K., Wang,

684 B., Lee, H. J., and Hu, Q.: Molecular Selectivity of Brown Carbon Chromophores,
685 Environ. Sci. Technol., 48, 12047-12055, <https://doi.org/10.1021/es503432r>, 2014.

686 Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer,
687 P., Cohen, R. C., Iyer, S., Kurtén, T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez,
688 J. L., Xu, L., Ng, N. L., Guo, H., Weber, R. J., Wild, R. J., Brown, S. S., Koss, A., de
689 Gouw, J., Olson, K., Goldstein, A. H., Seco, R., Kim, S., McAvey, K., Shepson, P. B.,
690 Starn, T., Baumann, K., Edgerton, E. S., Liu, J., Shilling, J. E., Miller, D. O., Brune, W.,
691 Schobesberger, S., D'Ambro, E. L., and Thornton, J. A.: Highly functionalized organic
692 nitrates in the southeast United States: Contribution to secondary organic aerosol and
693 reactive nitrogen budgets, P. Natl. Acad. Sci. USA, 113, 1516-1521,
694 <https://doi.org/10.1073/pnas.1508108113>, 2016.

695 Li, S., Liu, D., Kong, S., Wu, Y., Hu, K., Zheng, H., Cheng, Y., Zheng, S., Jiang,
696 X., Ding, S., Hu, D., Liu, Q., Tian, P., Zhao, D., and Sheng, J.: Evolution of source
697 attributed organic aerosols and gases in a megacity of central China, Atmos. Chem.
698 Phys., 22, 6937-6951, <https://doi.org/10.5194/acp-22-6937-2022>, 2022.

699 Li, Y., Chen, M., Wang, Y., Huang, T., Wang, G., Li, Z., Li, J., Meng, J., and Hou,
700 Z.: Seasonal characteristics and provenance of organic aerosols in the urban atmosphere
701 of Liaocheng in the North China Plain: Significant effect of biomass burning,
702 Particuology, 75, 185-198, <https://doi.org/10.1016/j.partic.2022.07.012>, 2023.

703 Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental Composition of
704 HULIS in the Pearl River Delta Region, China: Results Inferred from Positive and
705 Negative Electrospray High Resolution Mass Spectrometric Data, Environ. Sci.

706 Technol., 46, 7454-7462, <https://doi.org/10.1021/es300285d>, 2012.

707 Lin, X., Xu, Y., Zhu, R.-G., Xiao, H.-W., and Xiao, H.-Y.: Proteinaceous Matter in
708 PM_{2.5} in Suburban Guiyang, Southwestern China: Decreased Importance in Long-
709 Range Transport and Atmospheric Degradation, J. Geophys. Res.-Atmos., 128,
710 e2023JD038516, <https://doi.org/10.1029/2023JD038516>, 2023.

711 Liu, T., Xu, Y., Sun, Q.-B., Xiao, H.-W., Zhu, R.-G., Li, C.-X., Li, Z.-Y., Zhang,
712 K.-Q., Sun, C.-X., and Xiao, H.-Y.: Characteristics, Origins, and Atmospheric
713 Processes of Amines in Fine Aerosol Particles in Winter in China, J. Geophys. Res.-
714 Atmos., 128, e2023JD038974, <https://doi.org/10.1029/2023JD038974>, 2023.

715 Liu, T., Hong, Y., Li, M., Xu, L., Chen, J., Bian, Y., Yang, C., Dan, Y., Zhang, Y.,
716 Xue, L., Zhao, M., Huang, Z., and Wang, H.: Atmospheric oxidation capacity and ozone
717 pollution mechanism in a coastal city of southeastern China: analysis of a typical
718 photochemical episode by an observation-based model, Atmos. Chem. Phys., 22, 2173-
719 2190, <https://doi.org/10.5194/acp-22-2173-2022>, 2022.

720 Ma, L., Guzman, C., Niedek, C., Tran, T., Zhang, Q., and Anastasio, C.: Kinetics
721 and Mass Yields of Aqueous Secondary Organic Aerosol from Highly Substituted
722 Phenols Reacting with a Triplet Excited State, Environ. Sci. Technol., 55, 5772-5781,
723 <https://doi.org/10.1021/acs.est.1c00575>, 2021.

724 Merder, J., Freund, J. A., Feudel, U., Hansen, C. T., Hawkes, J. A., Jacob, B.,
725 Klaproth, K., Niggemann, J., Noriega-Ortega, B. E., Osterholz, H., Rossel, P. E., Seidel,
726 M., Singer, G., Stubbins, A., Waska, H., and Dittmar, T.: ICBM-OCEAN: Processing
727 Ultrahigh-Resolution Mass Spectrometry Data of Complex Molecular Mixtures, Anal.

728 Chem., 92, 6832-6838, <https://dx.doi.org/10.1021/acs.analchem.9b05659>, 2020.

729 Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H., Zhang, X.,

730 Kjaergaard, H. G., Surratt, J. D., Lin, P., Laskin, A., Seinfeld, J. H., and Wennberg, P.

731 O.: Mechanism of the hydroxyl radical oxidation of methacryloyl peroxy nitrate (MPAN)

732 and its pathway toward secondary organic aerosol formation in the atmosphere, Phys.

733 Chem. Chem. Phys., 17, 17914-17926, <https://doi.org/10.1039/C5CP02001H>, 2015.

734 Perring, A. E., Pusede, S. E., and Cohen, R. C.: An Observational Perspective on

735 the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and

736 Secondary Organic Aerosol, Chem. Rev., 113, 5848-5870,

737 <https://doi.org/10.1021/cr300520x>, 2013.

738 Qiu, C. and Zhang, R.: Multiphase chemistry of atmospheric amines, Phys. Chem.

739 Chem. Phys., 15, 5738-5752, <https://doi.org/10.1039/C3CP43446j>, 2013.

740 Qizhi, M., Ying, L., Kang, W., and Qingfei, Z.: Spatio-Temporal Changes of

741 Population Density and Urbanization Pattern in China(2000–2010), China City Plan.

742 Rev., 25, 8-14, 2016.

743 Radzi Bin Abas, M., Rahman, N. A., Omar, N. Y. M. J., Maah, M. J., Abu Samah,

744 A., Oros, D. R., Otto, A., and Simoneit, B. R. T.: Organic composition of aerosol

745 particulate matter during a haze episode in Kuala Lumpur, Malaysia, Atmos. Environ.,

746 38, 4223-4241, <https://doi.org/10.1016/j.atmosenv.2004.01.048>, 2004.

747 Ren, Y., Wang, G., Wu, C., Wang, J., Li, J., Zhang, L., Han, Y., Liu, L., Cao, C.,

748 Cao, J., He, Q., and Liu, X.: Changes in concentration, composition and source

749 contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi,

750 Atmos. Environ., 148, 306-315, <https://doi.org/10.1016/j.atmosenv.2016.10.053>, 2017.

751 Rollins, A. W., Browne, E. C., Min, K.-E., Pusede, S. E., Wooldridge, P. J., Gentner,
752 D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and Cohen, R. C.: Evidence
753 for NO_x Control over Nighttime SOA Formation, Science, 337, 1210-1212,
754 <https://doi.org/10.1126/science.1221520>, 2012.

755 Salvador, C. M. G., Tang, R., Priestley, M., Li, L., Tsiligiannis, E., Le Breton, M.,
756 Zhu, W., Zeng, L., Wang, H., Yu, Y., Hu, M., Guo, S., and Hallquist, M.: Ambient nitro-
757 aromatic compounds – biomass burning versus secondary formation in rural China,
758 Atmos. Chem. Phys., 21, 1389-1406, <https://doi.org/10.5194/acp-21-1389-2021>, 2021.

759 Samy, S. and Hays, M. D.: Quantitative LC-MS for water-soluble heterocyclic
760 amines in fine aerosols (PM_{2.5}) at Duke Forest, USA, Atmos. Environ., 72, 77-80,
761 <https://doi.org/10.1016/j.atmosenv.2013.02.032>, 2013.

762 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement
763 of Emissions from Air Pollution Sources. 1. C₁ through C₂₉ Organic Compounds from
764 Meat Charbroiling, Environ. Sci. Technol., 33, 1566-1577,
765 <https://doi.org/10.1021/es980076j>, 1999.

766 Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E.
767 J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S.
768 M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy,
769 V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.:
770 Improving our fundamental understanding of the role of aerosol–cloud interactions in
771 the climate system, P. Natl. Acad. Sci. USA, 113, 5781-5790,

772 <https://doi.org/10.1073/pnas.1514043113>, 2016.

773 Simoneit, B. R. T., Rushdi, A. I., bin Abas, M. R., and Didyk, B. M.: Alkyl Amides

774 and Nitriles as Novel Tracers for Biomass Burning, *Environ. Sci. Technol.*, 37, 16-21,

775 <https://doi.org/10.1021/es020811y>, 2003.

776 Smith, J. D., Sio, V., Yu, L., Zhang, Q., and Anastasio, C.: Secondary Organic

777 Aerosol Production from Aqueous Reactions of Atmospheric Phenols with an Organic

778 Triplet Excited State, *Environ. Sci. Technol.*, 48, 1049-1057,

779 <https://doi.org/10.1021/es4045715>, 2014.

780 Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P. a.: Molecular

781 Characterization of Water-Soluble Humic like Substances in Smoke Particles Emitted

782 from Combustion of Biomass Materials and Coal Using Ultrahigh-Resolution

783 Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass

784 Spectrometry, *Environ. Sci. Technol.*, 52, 2575-2585,

785 <https://doi.org/10.1021/acs.est.7b06126>, 2018.

786 Song, J., Li, M., Zou, C., Cao, T., Fan, X., Jiang, B., Yu, Z., Jia, W., and Peng, P.

787 a.: Molecular Characterization of Nitrogen-Containing Compounds in Humic-like

788 Substances Emitted from Biomass Burning and Coal Combustion, *Environ. Sci.*

789 *Technol.*, 56, 119-130, <https://doi.org/10.1021/acs.est.1c04451>, 2022.

790 Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish, M., Simon, M.,

791 Wagner, A. C., Dada, L., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S.,

792 Baumgartner, B., Bergen, A., Bianchi, F., Breitenlechner, M., Brilke, S., Buenrostro

793 Mazon, S., Chen, D., Dias, A., Draper, D. C., Duplissy, J., El Haddad, I., Finkenzeller,

794 H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., He, X., Helm, J., Hofbauer, V.,
795 Hoyle, C. R., Kim, C., Kirkby, J., Kontkanen, J., Kürten, A., Lampilahti, J., Lawler, M.,
796 Lehtipalo, K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni, U., Nie, W.,
797 Nieminen, T., Nowak, J. B., Ojdanic, A., Onnela, A., Passananti, M., Petäjä, T.,
798 Quéléver, L. L. J., Rissanen, M. P., Sarnela, N., Schallhart, S., Tauber, C., Tomé, A.,
799 Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q.,
800 Baltensperger, U., Curtius, J., Dommen, J., Flagan, R. C., Kulmala, M., Smith, J. N.,
801 Worsnop, D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid growth of
802 organic aerosol nanoparticles over a wide tropospheric temperature range, *P. Natl. Acad.
Sci. USA*, 115, 9122-9127, <https://doi.org/10.1073/pnas.1807604115>, 2018.
803
804 Su, S., Xie, Q., Lang, Y., Cao, D., Xu, Y., Chen, J., Chen, S., Hu, W., Qi, Y., Pan,
805 X., Sun, Y., Wang, Z., Liu, C.-Q., Jiang, G., and Fu, P.: High Molecular Diversity of
806 Organic Nitrogen in Urban Snow in North China, *Environ. Sci. Technol.*, 55, 4344-
807 4356, <https://dx.doi.org/10.1021/acs.est.0c06851>, 2021.
808
809 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A.
810 J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive
811 intermediates revealed in secondary organic aerosol formation from isoprene, *P. Natl.
Acad. Sci. USA*, 107, 6640-6645, <https://doi.org/10.1073/pnas.0911114107>, 2010.
812
813 Tomsche, L., Piel, F., Mikoviny, T., Nielsen, C. J., Guo, H., Campuzano-Jost, P.,
814 Nault, B. A., Schueneman, M. K., Jimenez, J. L., Halliday, H., Diskin, G., DiGangi, J.
815 P., Nowak, J. B., Wiggins, E. B., Gargulinski, E., Soja, A. J., and Wisthaler, A.:
816 Measurement report: Emission factors of NH₃ and NH_x for wildfires and agricultural

816 fires in the United States, *Atmos. Chem. Phys.*, 23, 2331-2343,
817 <https://doi.org/10.5194/acp-23-2331-2023>, 2023.

818 W. Hogg, R. and T. Gillan, F.: Fatty acids, sterols and hydrocarbons in the leaves
819 from eleven species of mangrove, *Phytochemistry*, 23, 93-97,
820 [https://doi.org/10.1016/0031-9422\(84\)83084-8](https://doi.org/10.1016/0031-9422(84)83084-8), 1984.

821 Wan, X., Qin, F., Cui, F., Chen, W., Ding, H., and Li, C.: Correlation between the
822 distribution of solar energy resources and the cloud cover in Xinjiang, *IOP Conf. Ser.:
823 Earth Environ. Sci.*, 675, 012060, <https://doi.org/10.1088/1755-1315/675/1/012060>,
824 2021.

825 Wang, H., Wang, Q., Gao, Y., Zhou, M., Jing, S., Qiao, L., Yuan, B., Huang, D.,
826 Huang, C., Lou, S., Yan, R., de Gouw, J. A., Zhang, X., Chen, J., Chen, C., Tao, S., An,
827 J., and Li, Y.: Estimation of Secondary Organic Aerosol Formation During a
828 Photochemical Smog Episode in Shanghai, China, *J. Geophys. Res.-Atmos.*, 125,
829 e2019JD032033, <https://doi.org/10.1029/2019JD032033>, 2020.

830 Wang, K., Huang, R.-J., Brueggemann, M., Zhang, Y., Yang, L., Ni, H., Guo, J.,
831 Wang, M., Han, J., Bilde, M., Glasius, M., and Hoffmann, T.: Urban organic aerosol
832 composition in eastern China differs from north to south: molecular insight from a
833 liquid chromatography-mass spectrometry (Orbitrap) study, *Atmos. Chem. Phys.*, 21,
834 9089-9104, <https://doi.org/10.5194/acp-21-9089-2021>, 2021a.

835 Wang, L., Zhang, K., Huang, W., Han, W., and Tian, C.-Y.: Seed oil content and
836 fatty acid composition of annual halophyte *Suaeda acuminata*: A comparative study on
837 dimorphic seeds, *Afr. J. Biotechnol.*, 10, 19106-19108,

838 <https://doi.org/10.5897/ajb11.2597>, 2011.

839 Wang, Q., Shao, M., Zhang, Y., Wei, Y., Hu, M., and Guo, S.: Source
840 apportionment of fine organic aerosols in Beijing, *Atmos. Chem. Phys.*, 9, 8573-8585,
841 <https://doi.org/10.5194/acp-9-8573-2009>, 2009.

842 Wang, X., Hayeck, N., Brüggemann, M., Yao, L., Chen, H., Zhang, C., Emmelin,
843 C., Chen, J., George, C., and Wang, L.: Chemical Characteristics of Organic Aerosols
844 in Shanghai: A Study by Ultrahigh-Performance Liquid Chromatography Coupled With
845 Orbitrap Mass Spectrometry, *J. Geophys. Res.-Atmos.*, 122, 11,703-711,722,
846 <https://doi.org/10.1002/2017JD026930>, 2017a.

847 Wang, X., Shen, Z., Liu, F., Lu, D., Tao, J., Lei, Y., Zhang, Q., Zeng, Y., Xu, H.,
848 Wu, Y., Zhang, R., and Cao, J.: Saccharides in summer and winter PM_{2.5} over Xi'an,
849 Northwestern China: Sources, and yearly variations of biomass burning contribution to
850 PM_{2.5}, *Atmos. Res.*, 214, 410-417, <https://doi.org/10.1016/j.atmosres.2018.08.024>,
851 2018.

852 Wang, Y., Zhao, Y., Li, Z., Li, C., Yan, N., and Xiao, H.: Importance of Hydroxyl
853 Radical Chemistry in Isoprene Suppression of Particle Formation from α -Pinene
854 Ozonolysis, *ACS Earth Space Chem.*, 5, 487-499,
855 <https://doi.org/10.1021/acsearthspacechem.0c00294>, 2021b.

856 Wang, Y., Hu, M., Lin, P., Guo, Q., Wu, Z., Li, M., Zeng, L., Song, Y., Zeng, L.,
857 Wu, Y., Guo, S., Huang, X., and He, L.: Molecular Characterization of Nitrogen-
858 Containing Organic Compounds in Humic-like Substances Emitted from Straw
859 Residue Burning, *Environ. Sci. Technol.*, 51, 5951-5961,

860 <https://doi.org/10.1021/acs.est.7b00248>, 2017b.

861 Wang, Y., Hu, M., Hu, W., Zheng, J., Niu, H., Fang, X., Xu, N., Wu, Z., Guo, S.,

862 Wu, Y., Chen, W., Lu, S., Shao, M., Xie, S., Luo, B., and Zhang, Y.: Secondary

863 Formation of Aerosols Under Typical High-Humidity Conditions in Wintertime

864 Sichuan Basin, China: A Contrast to the North China Plain, *J. Geophys. Res.-Atmos.*,

865 126, e2021JD034560, <https://doi.org/10.1029/2021JD034560>, 2021c.

866 Xie, Q., Su, S., Chen, S., Xu, Y., Cao, D., Chen, J., Ren, L., Yue, S., Zhao, W., Sun,

867 Y., Wang, Z., Tong, H., Su, H., Cheng, Y., Kawamura, K., Jiang, G., Liu, C. Q., and Fu,

868 P.: Molecular characterization of firework-related urban aerosols using Fourier

869 transform ion cyclotron resonance mass spectrometry, *Atmos. Chem. Phys.*, 20, 6803-

870 6820, <https://doi.org/10.5194/acp-20-6803-2020>, 2020.

871 Xu, Y. and Xiao, H.: Concentrations and nitrogen isotope compositions of free

872 amino acids in *Pinus massoniana* (Lamb.) needles of different ages as indicators of

873 atmospheric nitrogen pollution, *Atmos. Environ.*, 164, 348-359,

874 <https://doi.org/10.1016/j.atmosenv.2017.06.024>, 2017.

875 Xu, Y., Lin, Z., and Wu, C.: Spatiotemporal Variation of the Burned Area and Its

876 Relationship with Climatic Factors in Central Kazakhstan, *Remote Sens.*, 13, 313,

877 <https://doi.org/10.3390/rs13020313>, 2021.

878 Xu, Y., Dong, X.-N., Xiao, H.-Y., He, C., and Wu, D.-S.: Water-Insoluble

879 Components in Rainwater in Suburban Guiyang, Southwestern China: A Potential

880 Contributor to Dissolved Organic Carbon, *J. Geophys. Res.-Atmos.*, 127,

881 e2022JD037721, <https://doi.org/10.1029/2022JD037721>, 2022a.

882 Xu, Y., Dong, X.-N., Xiao, H.-Y., Zhou, J.-X., and Wu, D.-S.: Proteinaceous
883 Matter and Liquid Water in Fine Aerosols in Nanchang, Eastern China: Seasonal
884 Variations, Sources, and Potential Connections, *J. Geophys. Res.-Atmos.*, 127,
885 e2022JD036589, <https://doi.org/10.1029/2022JD036589>, 2022b.

886 Xu, Y., Dong, X. N., He, C., Wu, D. S., Xiao, H. W., and Xiao, H. Y.: Mist cannon
887 trucks can exacerbate the formation of water-soluble organic aerosol and PM_{2.5}
888 pollution in the road environment, *Atmos. Chem. Phys.*, 23, 6775-6788,
889 <https://doi.org/10.5194/acp-23-6775-2023>, 2023.

890 Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T.,
891 Sadanaga, Y., Nakashima, Y., Sakamoto, Y., Matsuda, K., and Kajii, Y.: Aerosol Liquid
892 Water Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer
893 Aerosols in a Suburban Forest, *Environ. Sci. Technol.*, 54, 1406-1414,
894 <https://dx.doi.org/10.1021/acs.est.9b05849>, 2020.

895 Yang, T., Xu, Y., Ye, Q., Ma, Y. J., Wang, Y. C., Yu, J. Z., Duan, Y. S., Li, C. X.,
896 Xiao, H. W., Li, Z. Y., Zhao, Y., and Xiao, H. Y.: Spatial and diurnal variations of aerosol
897 organosulfates in summertime Shanghai, China: potential influence of photochemical
898 processes and anthropogenic sulfate pollution, *Atmos. Chem. Phys.*, 23, 13433-13450,
899 <https://doi.org/10.5194/acp-23-13433-2023>, 2023.

900 Zahardis, J., Geddes, S., and Petrucci, G. A.: The ozonolysis of primary aliphatic
901 amines in fine particles, *Atmos. Chem. Phys.*, 8, 1181-1194,
902 <https://doi.org/10.5194/acp-8-1181-2008>, 2008.

903 Zarzana, K. J., De Haan, D. O., Freedman, M. A., Hasenkopf, C. A., and Tolbert,

904 M. A.: Optical Properties of the Products of α -Dicarbonyl and Amine Reactions in
905 Simulated Cloud Droplets, Environ. Sci. Technol., 46, 4845-4851,
906 <https://doi.org/10.1021/es2040152>, 2012.

907 Zeng, Y., Ning, Y., Shen, Z., Zhang, L., Zhang, T., Lei, Y., Zhang, Q., Li, G., Xu,
908 H., Ho, S. S. H., and Cao, J.: The Roles of N, S, and O in Molecular Absorption Features
909 of Brown Carbon in PM2.5 in a Typical Semi-Arid Megacity in Northwestern China, J.
910 Geophys. Res.-Atmos., 126, e2021JD034791, <https://doi.org/10.1029/2021JD034791>,
911 2021.

912 Zeng, Y., Shen, Z., Takahama, S., Zhang, L., Zhang, T., Lei, Y., Zhang, Q., Xu, H.,
913 Ning, Y., Huang, Y., Cao, J., and Rudolf, H.: Molecular Absorption and Evolution
914 Mechanisms of PM2.5 Brown Carbon Revealed by Electrospray Ionization Fourier
915 Transform–Ion Cyclotron Resonance Mass Spectrometry During a Severe Winter
916 Pollution Episode in Xi'an, China, Geophys. Res. Lett., 47, e2020GL087977,
917 <https://doi.org/10.1029/2020GL087977>, 2020.

918 Zhang, B., Shen, Z., He, K., Sun, J., Huang, S., Xu, H., Li, J., Ho, S. S. H., and
919 Cao, J.-j.: Insight into the Primary and Secondary Particle-Bound Methoxyphenols and
920 Nitroaromatic Compound Emissions from Solid Fuel Combustion and the Updated
921 Source Tracers, Environ. Sci. Technol., 57, 14280-14288, 10.1021/acs.est.3c04370,
922 2023.

923 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I.,
924 Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E.,
925 Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono,

926 A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann,
927 S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin,
928 R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
929 dominance of oxygenated species in organic aerosols in anthropogenically-influenced
930 Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34,
931 <https://doi.org/10.1029/2007GL029979>, 2007.

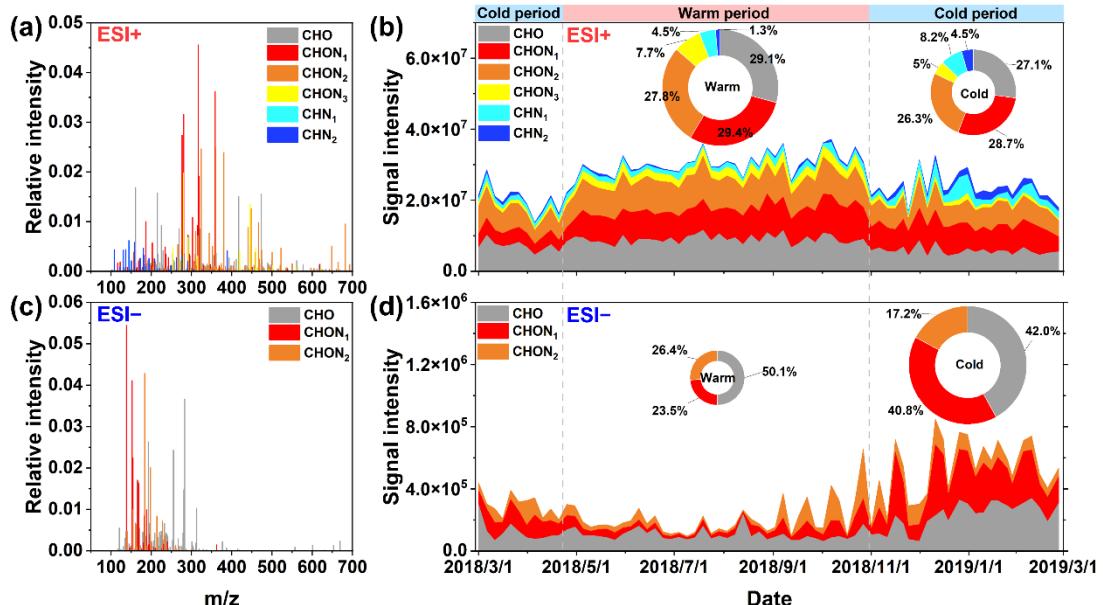
932 Zhang, T., Shen, Z., Huang, S., Lei, Y., Zeng, Y., Sun, J., Zhang, Q., Ho, S. S. H.,
933 Xu, H., and Cao, J.: Optical properties, molecular characterizations, and oxidative
934 potentials of different polarity levels of water-soluble organic matters in winter PM_{2.5}
935 in six China's megacities, Sci. Total Environ., 853, 158600,
936 <https://doi.org/10.1016/j.scitotenv.2022.158600>, 2022.

937 Zhao, Y., Hu, M., Slanina, S., and Zhang, Y.: Chemical Compositions of Fine
938 Particulate Organic Matter Emitted from Chinese Cooking, Environ. Sci. Technol., 41,
939 99-105, <https://doi.org/10.1021/es0614518>, 2007.

940 Zhong, S., Chen, S., Deng, J., Fan, Y., Zhang, Q., Xie, Q., Qi, Y., Hu, W., Wu, L.,
941 Li, X., Pavuluri, C. M., Zhu, J., Wang, X., Liu, D., Pan, X., Sun, Y., Wang, Z., Xu, Y.,
942 Tong, H., Su, H., Cheng, Y., Kawamura, K., and Fu, P.: Impact of biogenic secondary
943 organic aerosol (SOA) loading on the molecular composition of wintertime PM_{2.5} in
944 urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass
945 spectrometry, Atmos. Chem. Phys., 23, 2061-2077, <https://doi.org/10.5194/acp-23-2061-2023>, 2023.

947 Zhou, S., Guo, F., Chao, C.-Y., Yoon, S., Alvarez, S. L., Shrestha, S., Flynn, J. H.,

948 III, Usenko, S., Sheesley, R. J., and Griffin, R. J.: Marine Submicron Aerosols from the
949 Gulf of Mexico: Polluted and Acidic with Rapid Production of Sulfate and
950 Organosulfates, Environ. Sci. Technol., 57, 5149-5159,


951 <https://doi.org/10.1021/acs.est.2c05469>, 2023.

952 Zou, C., Cao, T., Li, M., Song, J., Jiang, B., Jia, W., Li, J., Ding, X., Yu, Z., Zhang,
953 G., and Peng, P.: Measurement report: Changes in light absorption and molecular
954 composition of water-soluble humic-like substances during a winter haze bloom-decay

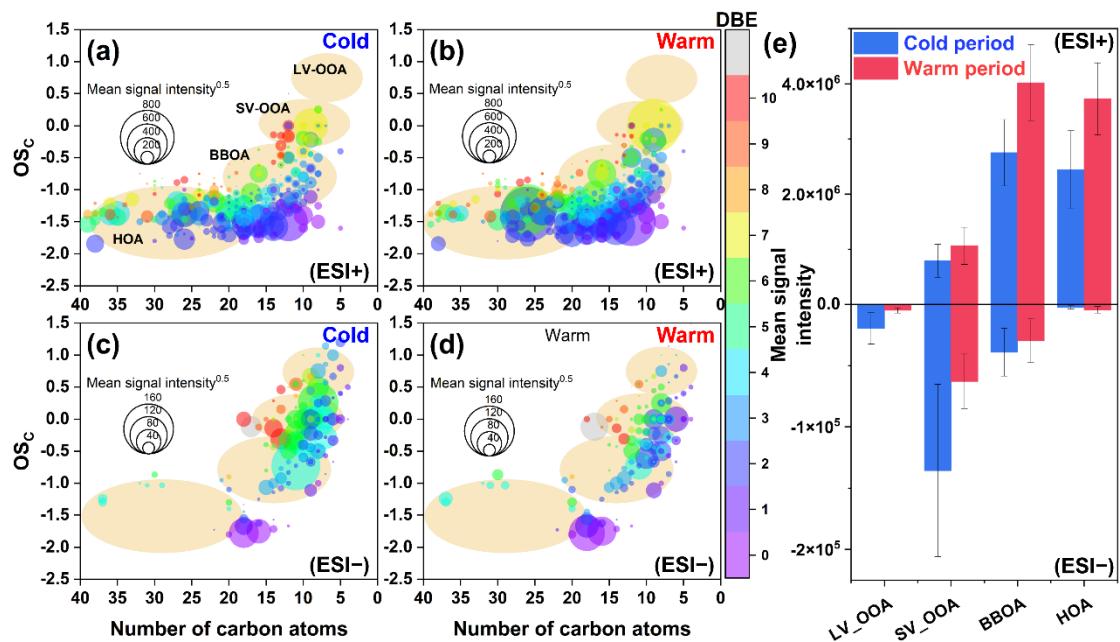
955 process in Guangzhou, China, Atmos. Chem. Phys., 23, 963-979,

956 <https://doi.org/10.5194/acp-23-963-2023>, 2023.

957

958 **Figure 1.**

959


960 **Figure 1.** The reconstructed mass spectrum distribution of the detected species in $\text{PM}_{2.5}$

961 in (a) ESI+ and (c) ESI- modes during the whole campaign. Temporal variations in the
 962 fractional distribution of classified compounds in (b) ESI+ and (d) ESI- modes. The
 963 ring diagrams inside the panel show the signal intensity fractions of classified
 964 compounds, the size of which is proportional to the total signal intensity of all species
 965 detected in $\text{PM}_{2.5}$ in different periods.

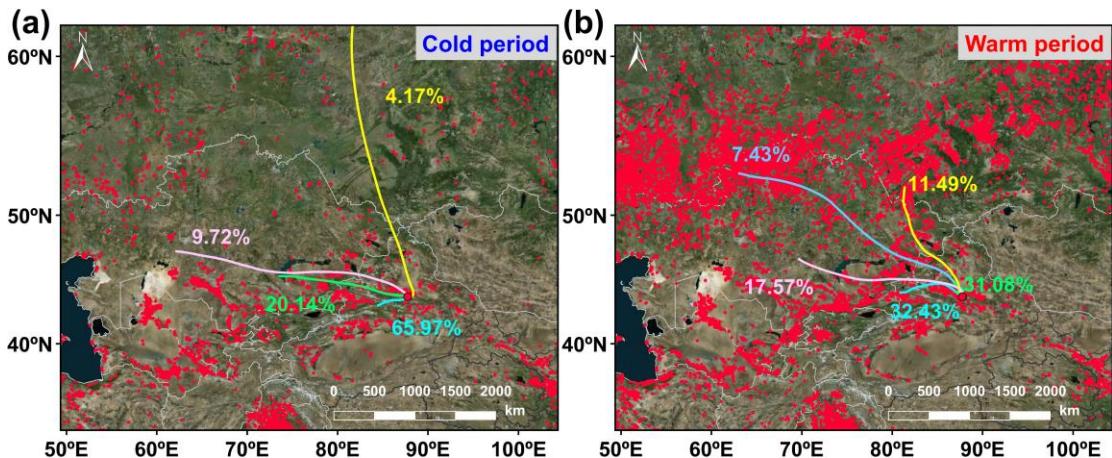
966

967

968

969 **Figure 2.**

970


971 **Figure 2.** OSc values of CHO molecules detected in (a and b) ESI+ and (c and d) ESI-
 972 modes in PM_{2.5} collected from different periods (cold vs. warm). The size and color of
 973 the circle indicate the mean signal intensity and DBE value of compounds, respectively.
 974 The light-orange background indicates the areas of LV-OOA, SV-OOA, BBOA, and
 975 HOA (Kroll et al., 2011), according to which (e) the mean signal intensity of classified
 976 compounds was calculated for samples from different periods.

977

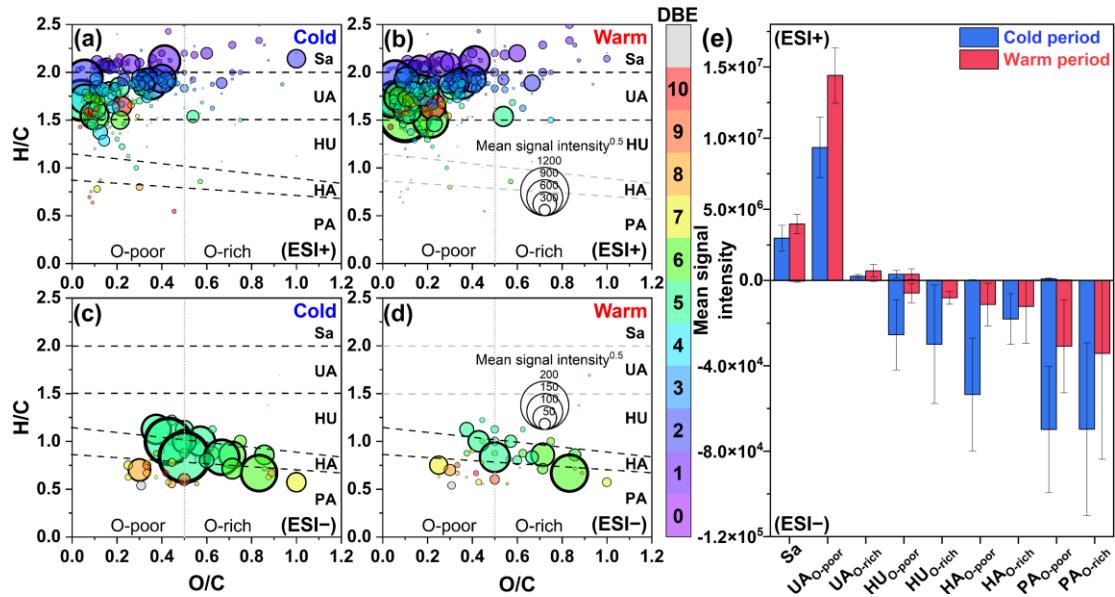
978

979

980

981 **Figure 3**

982


983 **Figure 3.** The 3-day (72 h) back trajectories illustrating the typical air mass flows to
 984 the study site during the (a) warm and (b) cool periods. Fire spots were shown in red,
 985 which was created based on NASA active fire data (VIIRS 375 m,
 986 https://firms.modaps.eosdis.nasa.gov/active_fire/). The map was derived from
 987 ©MeteoInfoMap (version 3.6.2) (Chinese Academy of Meteorological Sciences, China).

988

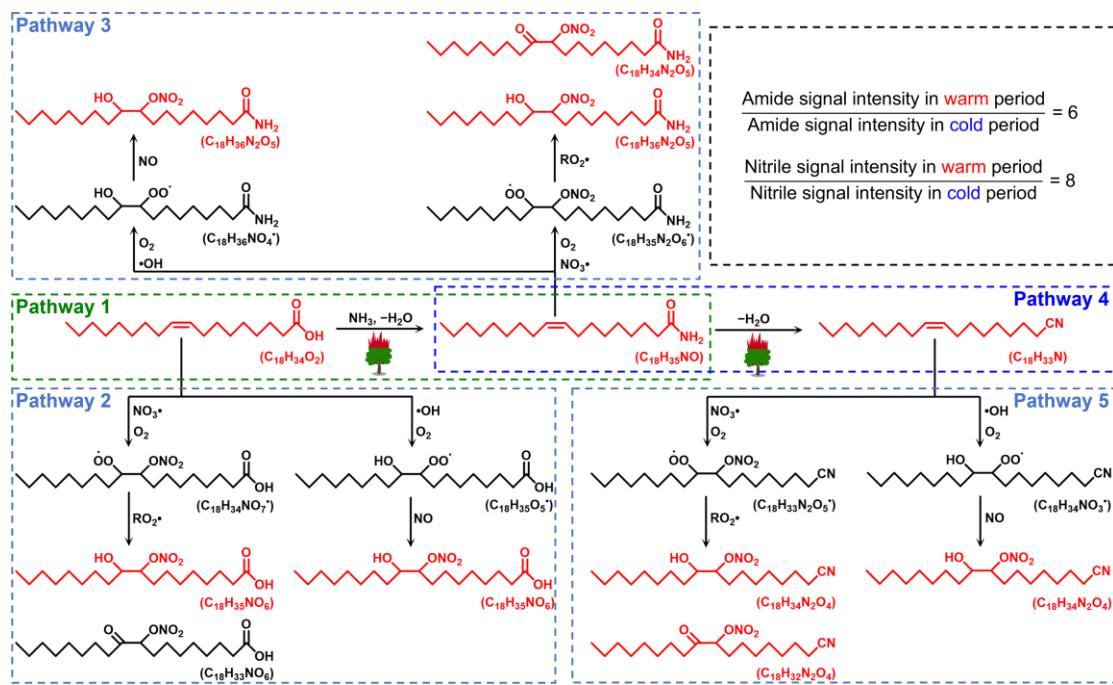
989

990

991

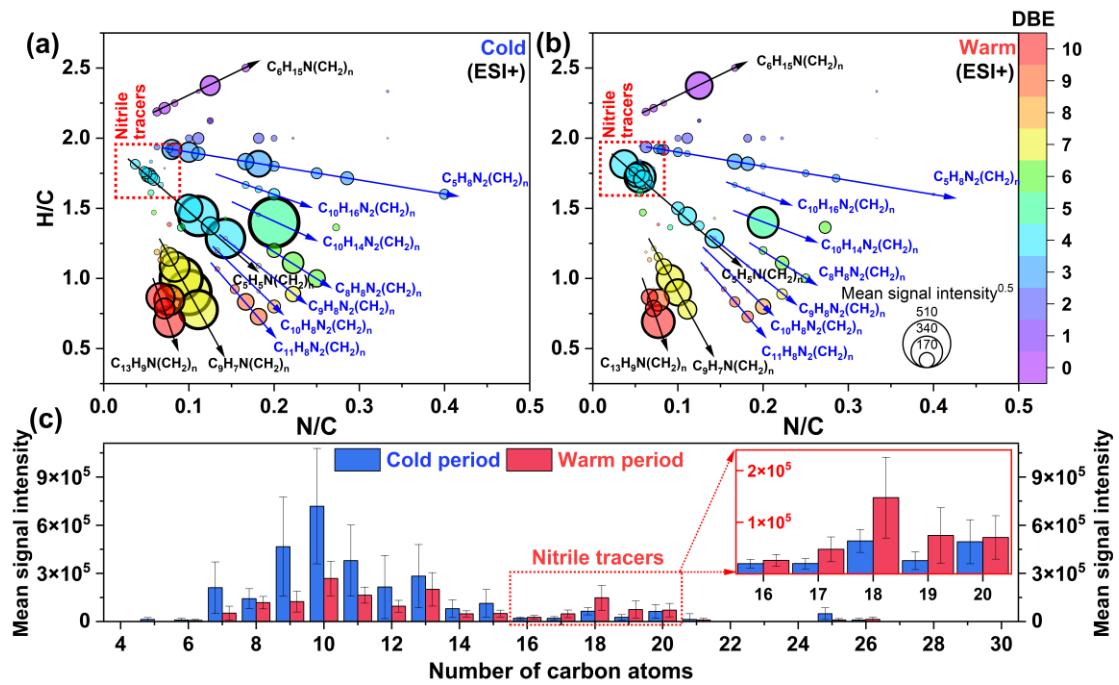
992 **Figure 4.**

993


994 **Figure 4.** Van Krevelen diagrams of CHON molecules detected in (a and b) ESI+ and
 995 (c and d) ESI- modes in PM_{2.5} collected from different periods (cold vs. warm). The
 996 subgroups in the panel include saturated-like (Sa), unsaturated aliphatic-like (UA),
 997 highly unsaturated-like (HU), highly aromatic-like (HA), and polycyclic aromatic-like
 998 (PA) compounds, further distinguishing between oxygen-poor and oxygen-rich
 999 compounds with an oxygen to carbon ratio of 0.5. The size and color of the circle
 1000 indicate the mean signal intensity and DBE value of compounds, respectively. The (e)
 1001 mean signal intensity of classified compounds was calculated for samples from
 1002 different periods.

1003

1004

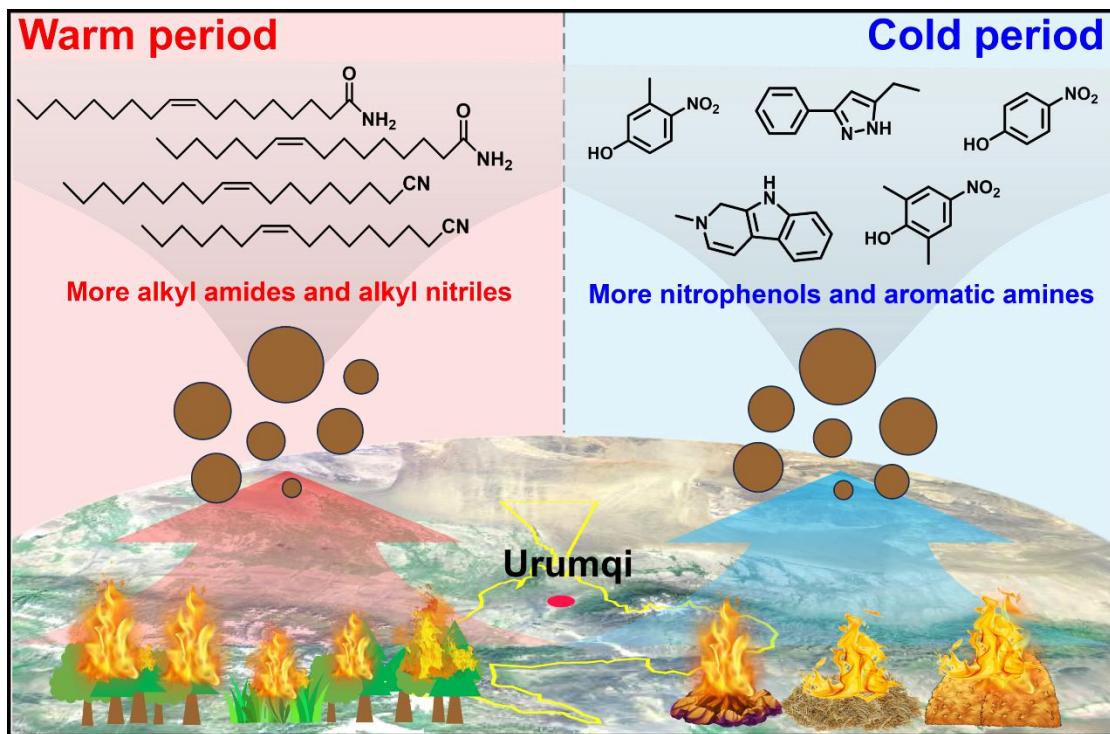

1005

1006

Figure 5.

1009 **Figure 5.** Proposed pathways for the reactions of carboxylic acids (oleic acid as a
 1010 representative) with reactive nitrogen and atmospheric oxides to form the observed
 1011 NOCs in PM_{2.5} under the influence of the high temperature generated during wildfires
 1012 or forest fires. Compounds observed in PM_{2.5} were shown in red.

1014 **Figure 6.**



1015

1016 **Figure 6.** Van Krevelen diagrams of CHN molecules detected in PM_{2.5} collected from
1017 the (a) cold and (b) warm periods. The size and color of the circle indicate the mean
1018 signal intensity and DBE value of compounds, respectively. The mean signal intensity
1019 distributions of (c) carbon atoms in CHN molecules detected in PM_{2.5} collected from
1020 the cold and warm periods

1021

1022 **Figure 7.**

1023

1024 **Figure 7.** Conceptual picture showing the differential impacts of combustion of fresh
1025 and old-age biomass materials on aerosol NOCs in suburban Urumqi. The map was
1026 derived from [©]Baidu Maps (BIDU, China).