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Abstract: Nitrogen-containing organic compounds (NOCs) are abundant and 25 

important aerosol components deeply involved in the global nitrogen cycle. However, 26 

the sources and formation processes of NOCs remain largely unknown, particularly in 27 

the city (Urumqi, China) farthest from the ocean worldwide. Here, NOCs in PM2.5 28 

collected in Urumqi over a one-year period were characterized by ultrahigh-resolution 29 

mass spectrometry. The abundance of CHON compounds (mainly oxygen-poor 30 

unsaturated aliphatic-like species) in the positive ion mode was higher in the warm 31 

period than in the cold period, which was largely attributed to the contribution of fresh 32 

biomass material combustion (e.g., forest fires) associated with amidation of 33 

unsaturated fatty acids in the warm period, rather than the oxidation processes. However, 34 

CHON compounds (mainly nitro-aromatic species) in the negative ion mode increased 35 

significantly in the cold period, which was tightly related to old-age biomass 36 

combustion (e.g., dry straws) in wintertime Urumqi. For CHN compounds, alkyl nitriles 37 

and aromatic species showed higher abundance in the warm and cold periods, 38 

respectively. Alkyl nitriles can be derived from fresh biomass material combustion 39 

associated with the dehydration of amides (the main CHON compounds in the warm 40 

period). In contrast, aromatic species were tightly related to old-age biomass burning. 41 

These findings further suggested different impacts of the combustion of fresh- and old-42 

age biomass materials on NOC compositions in different seasons. The overall results 43 

shed light on the mechanisms by which fresh and old-age biomass materials release 44 

different NOCs during combustion. 45 

Keywords: Aerosols, Organic nitrogen, Molecular composition, Fresh biomass, Old-46 
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age biomass 47 

 48 

1. Introduction 49 

Fine particulate matter (PM2.5) is a typical atmospheric pollutant that can affect the 50 

global climate system, as well as urban air quality and human health (Seinfeld et al., 51 

2016; Wang et al., 2021a). Organic aerosol (OA) contributes significantly (20‒90%) to 52 

PM2.5 mass concentration in most polluted areas worldwide (Zhang et al., 2007; Han et 53 

al., 2023). Up to 77% of molecules in OA include nitrogen-containing functional groups 54 

(Ditto et al., 2020; Kenagy et al., 2021), which have been suggested to play important 55 

roles in the formation, transformation, acidity, and hygroscopicity of OA (Xu et al., 56 

2020; Wang et al., 2017b; Laskin et al., 2009). Moreover, the further oxidation or 57 

nitrification of some nitrogen-containing organic compounds (NOCs) and volatile 58 

organic compounds (VOCs) by ozone (O3), hydroxyl radical (•OH), and nitrogen oxides 59 

(NOx) can lead to an increase in the health hazards of OA (Franze et al., 2005; Bandowe 60 

and Meusel, 2017). Nitrated amino acids and nitrated PAHs are two representative 61 

hazard NOCs (Franze et al., 2005; Bandowe and Meusel, 2017). Thus, the identification 62 

of aerosol NOCs at the molecular level is important for improving our understanding 63 

of the precursors, sources, and formation processes of nitrogen-containing OA. 64 

Previous observations in urban, rural, marine, and forest areas have suggested that 65 

the molecular composition and relative abundance of aerosol NOCs were spatially 66 

different (Samy and Hays, 2013; Jiang et al., 2022; Lin et al., 2012; Xu et al., 2023; 67 

Zeng et al., 2021; Zhang et al., 2022; Zeng et al., 2020). These differences can be mainly 68 
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attributed to the diverse sources and formation mechanisms of aerosol NOCs. 69 

Commonly reported primary sources include combustion process releases and natural 70 

emissions (e.g., soils, plant debris, pollen, and ocean) (Song et al., 2022; Wang et al., 71 

2017b; Cape et al., 2011; Lin et al., 2023). In addition, aerosol NOCs can also be tightly 72 

associated with secondary formation processes involving the reactions of reactive 73 

nitrogen with VOCs or particle-phase CHO compounds (Bandowe and Meusel, 2017; 74 

Zarzana et al., 2012; Laskin et al., 2014). For example, laboratory experiments have 75 

found that the oxidation of isoprene and α-/β-pinene in the presence of NOx can result 76 

in the formation of organic nitrates (e.g., methacryloyl peroxynitrate, dihydroxynitrates, 77 

and monohydroxynitrates) (Surratt et al., 2010; Rollins et al., 2012; Nguyen et al., 2015). 78 

The reduced nitrogen species (e.g., NH3, NH4
+, and organic amines) have been 79 

demonstrated to contribute to the formation of NOCs through "carbonyl-to-imine" 80 

transformations in the laboratory experiments (Zarzana et al., 2012; Laskin et al., 2014). 81 

In the field observation studies, NOCs in particulate matter were analyzed at the 82 

molecular level to indicate their sources and formation mechanisms (Jiang et al., 2022; 83 

Lin et al., 2012; Zhong et al., 2023). Xu et al. (2023) characterized the variations of 84 

molecular compositions in urban road PM2.5, suggesting that organic nitrates increased 85 

largely through the interactions of atmospheric oxidants, reactive gas-phase organics, 86 

and aerosol liquid water. Several field studies conducted in Beijing (China) and 87 

Guangzhou (China) also suggested that the molecular compositions and formation of 88 

NOCs were tightly associated with environmental conditions (Jiang et al., 2022; Lin et 89 

al., 2012; Xie et al., 2020). Generally, most studies on aerosol NOCs were performed 90 
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in economically developed regions, as well as in forest and marine areas (Jiang et al., 91 

2022; Wang et al., 2017a; Ditto et al., 2022b; Altieri et al., 2016; Xu et al., 2020; Liu et 92 

al., 2023; Zhang et al., 2022; Zeng et al., 2020).In contrast, few studies have 93 

investigated the sources and atmospheric transformation of NOCs in the northwest 94 

border urban of China (e.g., Urumqi) with fragile ecology and harsh environmental 95 

conditions (e.g., cold winter and dry summer), which may hinder our comprehensive 96 

and in-depth understanding of the formation process of NOCs in ambient aerosols. 97 

Biomass burning emissions were widely reported in the source identification of 98 

aerosol NOCs in northern and southwestern China because of heating and cooking 99 

needs (Zhong et al., 2023; Wang et al., 2021c; Chen et al., 2017). A recent observation 100 

study in urban Tianjin suggested that most CHON compounds in wintertime PM2.5 101 

originated from biomass burning (Zhong et al., 2023). The CHN2 compounds have been 102 

identified in biomass burning OA (BBOA) (Laskin et al., 2009; Wang et al., 2017b). 103 

Moreover, the high temperature generated by biomass burning can facilitate the release 104 

of ammonia, a process that caused the reaction of carboxylic acids (e.g., oleic acid) with 105 

ammonia to form amides and alkyl nitriles (Radzi Bin Abas et al., 2004; Simoneit et al., 106 

2003). Interestingly, we found that biomass burning in rural China typically includes 107 

fresh biomass materials (e.g., forest fires) and old-age biomass materials (e.g., straw 108 

after autumn harvest, fallen leaf, and deadwood). Fresh biomass is rich in oils and 109 

proteins, whereas old-age biomass materials are usually oligotrophic due to the transfer 110 

of nutrients to tender tissues or fruits (Jian et al., 2016; Xu and Xiao, 2017). Thus, NOCs 111 

released from different types of biomass combustion may vary in molecular 112 
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compositions. However, there are large gaps in our current knowledge about the 113 

impacts of fresh and old-age biomass burning on NOCs in ambient aerosols. 114 

Urumqi (northwest China) is the largest inland city farthest from the ocean in the 115 

world, which is becoming increasingly prominent due to the national strategy of the 116 

"One Belt, One Road." The city and neighboring countries have a dry summer that can 117 

easily trigger forest fires (Bátori et al., 2018; Xu et al., 2021), while the winter is 118 

freezing with intensive old-age biomass and fuel combustion for heating (Ren et al., 119 

2017). In this study, we presented one-year ambient measurements of the chemical 120 

compositions in PM2.5 collected from Urumqi. The specific aims of this study are (1) to 121 

investigate the molecular-level speciation of functionalized organic nitrogen 122 

compounds via high-resolution mass spectrometry with positive (ESI+) and negative 123 

(ESI−) ionizations and (2) to investigate the potential sources and formation processes 124 

for NOCs with a special focus on the relative influences of fresh and old-age biomass 125 

burning in different seasons. 126 

 127 

2. Materials and methods 128 

2.1. Study site description and sample collection 129 

The study was conducted in Urumqi city, which has an average altitude of 800 m. 130 

The region has an arid temperate continental climate with an annual mean temperature 131 

of 7.4 ± 13.9 °C and an annual mean rainfall of 27.8 mm. The sampling site is located 132 

in the suburban area (Boda campus of Xinjiang University) of the city (87.75°E, 133 

43.86°N) (Figure S1), which is characterized by low population and traffic density. 134 
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This is because Urumqi is relatively vast and sparsely populated compared to developed 135 

coastal cities in China (Qizhi et al., 2016). Additionally, the area is surrounded by 136 

mountains on three sides, resulting in the difficulty in diffusing air pollutants. The 137 

dominant forest trees in this area are Picea schrenkiana, Betula tianschanica Rupr., 138 

Populus talassica Kom., and Ulmus pumila L.. The dry climate and strong sunlight in 139 

the warm period (18.81 ± 6.4°C, Table S1) would be the main culprits of forest fires in 140 

the local and nearby areas. In the cold period (‒1.96 ± 11.26°C) (Table S1), the 141 

centralized heating and old-age biomass burning may be the main contributors to local 142 

air pollution. Thus, it provides an unexpected opportunity to investigate the potentially 143 

differential impacts of fresh and old-age biomass burning on aerosol NOCs. 144 

 A high-volume air sampler (Series 2031, Laoying, China) was set up on the 145 

rooftop of a building (School of Geology and Mining Engineering, Xinjiang University). 146 

PM2.5 samples (n = 73) were collected every five days with a duration of ∼24 h onto 147 

prebaked (450 °C for ∼ 10 h) quartz fiber filters (Pallflex, Pall Corporation, USA) from 148 

1 March 2018 to 26 February 2019. One blank filter was collected every month (n = 149 

12). All filter samples were stored at −30°C until further analysis. During the sampling 150 

campaigns, the meteorological data (e.g., temperature and relative humidity) and the 151 

concentrations of O3 and NOx were recorded hourly from the adjacent environmental 152 

monitoring station. These hourly data were then averaged to obtain daily values to 153 

match the sampling time of PM2.5.  In addition, the trajectories (72 h) of air masses 154 

arriving at the sampling site at each sampling event were calculated to investigate the 155 

potential influence of pollutant transport on aerosol NOCs. 156 
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 157 

2.2. Chemical analysis 158 

A portion of each filter sample was extracted twice using 3 mL methanol (LC-MS 159 

grade, CNW Technologies Ltd.) under sonication in a chilled ice slurry (~4 °C). The 160 

extracted solutions were filtered through a polytetrafluoroethylene syringe filter (0.22 161 

μm, CNW Technologies GmbH). Subsequently, the extracts were concentrated to 300 162 

μL with a gentle stream of gaseous nitrogen (Shanghai Likang Gas Co., Ltd). The final 163 

extracts were analyzed using an ultra-performance liquid chromatography quadrupole 164 

time-of-flight mass spectrometry equipped with an electrospray ionization (ESI) source 165 

(UPLC-ESI-QToFMS, Waters Acquity Xevo G2-XS) in both ESI+ and ESI− modes 166 

(Wang et al., 2021b). It should be pointed out that UPLC-ESI-MS (i.e., TOF-only) was 167 

used to identify molecular formulas of organic matter, while the functional groups of 168 

the target molecule formulas were deciphered by UPLC-ESI-MS/MS (i.e., tandem mass 169 

spectrometry). Ions obtained from m/z 50‒700 were assigned molecule formulas by 170 

assuming hydrogen or sodium adducts in ESI+ mode and deprotonation in ESI− mode. 171 

Detailed chromatographic conditions, parameter selection, and quality control were 172 

displayed in the Supplement (Sect. S1). Notably, there may be differences in ionization 173 

efficiencies between compound types. However, the exact impacts of ionization 174 

efficiency on multifunctional compounds in a complex mixture are uncertain and 175 

difficult to evaluate (Ditto et al., 2022b; Yang et al., 2023). Thus, the intercomparison 176 

across compound relative abundance without considering potentially differentiated 177 

ionization efficiency was conducted in this study, which was similar to many previous 178 
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studies (Xu et al., 2023; Jiang et al., 2022). 179 

For the measurement of inorganic ions, a portion of each filter sample was 180 

ultrasonically extracted with Milli-Q water (18 MΩ cm) (3 mL) in an ice-water bath 181 

(~4 °C). The extract solutions were then filtered via a polytetrafluoroethylene syringe 182 

filter (0.22 μm, Millipore, Billerica, MA). The concentrations of water-soluble 183 

inorganic ions, including NO3
‒, SO4

2‒, Cl‒, Ca2+, Mg2+, Na+, and NH4
+ in the samples 184 

were determined using an ion chromatograph system (Dionex Aquion, Thermo 185 

Scientific, USA) (Xu et al., 2022a; Lin et al., 2023). 186 

 187 

2.3. Compound categorization and predictions of ALW, pH, and hydroxyl radical 188 

The molecular formulas identified by UPLC-ESI-QToFMS were classified into 189 

several major compound classes based on their elemental compositions (i.e., C, H, O, 190 

and N), primarily including CHO, CHON, and CHN groups in the ESI+ mode and CHO, 191 

CHON, CHOS and CHONS groups in the ESI‒ mode (Wang et al., 2017b). CHOS and 192 

CHONS compounds were also detected in the ESI‒ mode, with numbers of 398 and 193 

112, respectively (Table S2). As this study focused mainly on NOCs, sulfur-containing 194 

species were not discussed. Unless stated otherwise, all of the detected molecules were 195 

reported as neutral molecules. The double-bond equivalent (DBE) and carbon oxidation 196 

state (OSC) were calculated to reflect the unsaturation degree of the organics and the 197 

composition evolution of organics that underwent oxidation processes, respectively 198 

(details in Sect. S2) (Kroll et al., 2011; Xu et al., 2023). The identified compounds can 199 

be further classified into four subgroups based on the number of carbon atoms and OSC 200 
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value (Kroll et al., 2011; Xu et al., 2023). Briefly, semi-volatile oxidized organic aerosol 201 

(SV-OOA) and low-volatility oxidized organic aerosol (LV-OOA) were associated with 202 

multi-step oxidation reactions, with OSC values between ‒1 and +1 and molecular 203 

formulas less than 13 carbon atoms. BBOA has OSC values ranging from ‒0.5 to ‒1.5 204 

and more than seven carbon atmos. Compounds with OSC values less than ‒1 and 205 

carbon atoms above 20 may be related to hydrocarbon-like organic aerosol (HOA). 206 

Additionally, the modified aromaticity index (AImod) was also calculated to indicate the 207 

aromaticity of organic compounds (details in Sect. S2) (Koch and Dittmar, 2006). The 208 

van Krevelen diagrams and AImod values have been proposed to further classify organic 209 

matter categories (Xu et al., 2023; Su et al., 2021), according to which the identified 210 

five subgroups included saturated-like molecules (Sa, H/C ≥ 2.0), unsaturated aliphatic-211 

like molecules (UA, 1.5 ≤ H/C < 2.0), highly unsaturated-like molecules (HU, AImod ≤ 212 

0.5 and H/C < 1.5), highly aromatic-like molecules (HA, 0.5 < AImod ≤ 0.66), and 213 

polycyclic aromatic-like molecules (PA, AImod > 0.66). Furthermore, it has been 214 

suggested that the above subgroups can be subdivided into O-poor and O-rich 215 

compounds depending on their O/C ratio (Table S8) (Merder et al., 2020; Zhong et al., 216 

2023). 217 

A thermodynamic model (ISORROPIA-II) was applied to predict the mass 218 

concentration of aerosol liquid water (ALW) and the value of pH with particle-phase 219 

ion concentrations as well as ambient temperature and relative humidity as the inputs, 220 

as detailed in our previous publications (Xu et al., 2020; Xu et al., 2023; Xu et al., 221 

2022b). The model output results based on our data set showed that 94% and 90% of 222 
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NO3
‒ were in the aerosol phase in the cold and warm periods, respectively. Hence, the 223 

predictions of pH and ALW were conducted without considering gaseous nitric acid 224 

(Guo et al., 2015; Wang et al., 2021c). 78% and 21% of NH4
+ were in the aerosol phase 225 

in the cold and warm periods, respectively. Moreover, it is important to note that 226 

gaseous NH3 measurements were not conducted and ammonia partitioning was not 227 

considered in this study. Thus, a bias correction of 1 pH unit was applied to calculate 228 

the aerosol pH values (Guo et al., 2015; Wang et al., 2021c). The concentrations of 229 

ambient •OH were predicted using empirical formula (Ehhalt and Rohrer, 2000; Wang 230 

et al., 2020). 231 

 232 

3. Results and discussion 233 

3.1. Overall molecular characterization of organic aerosols 234 

Figures 1a and 1c show the mass spectra of organic compounds detected in ESI+ 235 

and ESI−, respectively. More compounds were identified in ESI+ (1885 molecular 236 

formulas) than in ESI− (1091 molecular formulas) (Table S2), which was similar to 237 

previous reports about the molecular characteristic of biomass burning aerosols and 238 

urban aerosols (Jiang et al., 2022; Wang et al., 2017b). The molecular weights of the 239 

compounds with relatively high signal intensity mainly ranged from 100 Da to 500 Da 240 

in ESI+, which was larger than those (100‒300 Da) observed in the urban (Changchun, 241 

Guangzhou, and Shanghai) (Wang et al., 2021a) and agriculture (Suixi) (Wang et al., 242 

2017b) regions of China. In contrast, the species with the strong signal intensity fell 243 

between 100 Da and 300 Da in ESI−. This mass range detected in Urumqi organic 244 
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aerosols was comparable to previous observations in urban (Xi’an) aerosols (Han et 245 

al., 2023) but significantly lower than that in firework-related urban (Beijing) aerosols 246 

(300‒400 Da) (Xie et al., 2020). On average, the molecular number and relative 247 

abundance of CHON compounds (150‒500 Da) were dominant in ESI+, accounting 248 

for 45.57% of the total molecular number and 62.70 ± 6.83% of the total signal 249 

intensity (Figures 1a and Table S2). CHO compounds were the second most abundant 250 

categories (28.76 ± 4.75% of the total signal intensity), followed by CHN compounds. 251 

However, previous observations conducted in Shanghai, Guangzhou, and Changchun 252 

suggested that the compounds in ESI+ were dominated by CHN and CHON species 253 

(Wang et al., 2021a). In ESI−, although the number of CHON compounds was less 254 

than CHO, the relative abundance of CHON compounds (150‒250 Da) was higher 255 

(Figures 1d and Table S2). The finding was consistent with the results obtained in 256 

Shanghai and Changchun but different from the case in Guangzhou (Wang et al., 257 

2021a). The average H/C ratios of CHO (1.62−1.66) and CHON (1.79−1.83) 258 

compounds in ESI+ mode (Table S3) were higher than those (0.94−1.13 for CHO and 259 

1.27−1.47 for CHON) in Changchun, Shanghai, and Guangzhou (Wang et al., 2021a). 260 

However, the average O/C ratios of CHO (0.25−0.3) and CHON (0.22−0.3) 261 

compounds in ESI+ mode (Table S3) were less than those (0.42−0.43 for CHO and 262 

0.27−0.45 for CHON) in the urban areas (Shanghai and Guangzhou) (Wang et al., 263 

2021a). Overall, these dissimilarities in molecular characteristics of organic aerosols 264 

between Urumqi and other areas may be attributed to their different sources and 265 

formation mechanisms. 266 
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Figures 1b and 1d show the time series of the fractional distributions of various 267 

organic matter categories in different ion modes. The abundance of CHO compounds 268 

in ESI+ exhibited a temporal variation similar to that of CHON compounds (r = 0.51, 269 

P < 0.01), with increased levels in the warm period. This indicated that CHO 270 

compounds may be important precursors for the formation of NOCs (via reactions in 271 

the gas- and/or particle-phases) or that they have similar origins. Previous simulation 272 

experiments have demonstrated that higher temperatures increase the concentration of 273 

oxygenated organic molecules, while lower temperatures can allow less oxidized 274 

species to condense (Stolzenburg et al., 2018; Frege et al., 2018). In addition, solar 275 

radiation and atmospheric oxidation capacity are also important factors promoting the 276 

formation of more oxygenated organic molecules (Li et al., 2022; Liu et al., 2022). Air 277 

temperature, radiation, and atmospheric oxidation capacity were much higher in the 278 

warm period than in the cold period in Urumqi (Table S1) (Wan et al., 2021), which 279 

may be partly responsible for increased abundances of CHO and CHON compounds in 280 

the warm period. However, the abundance of CHN compounds tended to increase from 281 

the warm period to the cold period. Since the ESI+ mode is highly sensitive to 282 

protonatable species, organic amines were expected to predominate the CHN 283 

compounds (Han et al., 2023; Wang et al., 2021a). It is well documented that the 284 

formation of amine salt in the particle phase is tightly associated with aerosol acidity 285 

and water (Liu et al., 2023). Thus, the reduced pH value and increased ALW level in 286 

the cold period (Table S1) provided greater potential for converting gaseous amines 287 

into particles. 288 
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In ESI− mode, the abundances of CHON and CHO compounds exhibited a 289 

significantly increased level in the cold period (Figure 1d), a variation pattern which 290 

was completely opposite to the case in ESI+ mode. The ESI− mode is more sensitive 291 

to deprotonatable compounds like nitrophenols, organic nitrates, organosulfates, and 292 

organic acids (Jiang et al., 2022; Lin et al., 2012). The formations of these compounds 293 

were highly impacted by ALW and aerosol acidity (Ma et al., 2021; Smith et al., 2014; 294 

Zhou et al., 2023; Xu et al., 2023). However, Urumqi has dry and dusty weather, 295 

particularly in warm period, resulting in a quite low ALW concentration (1.86 ± 1.90 296 

μg m−3) in the warm period (Table S1). Moreover, the calculated mean pH value was 297 

6.86 ± 1.71 (Table S1) during the warm period, which implies that the fine aerosol 298 

particles in the warm period in Urumqi was neutral or slightly alkaline. Obviously, the 299 

aerosol characteristics of the warm period in Urumqi may hinder the formation of these 300 

organic compounds measured in ESI− mode. In contrast, the increased ALW 301 

concentration and decreased pH value during the cold period can facilitate the 302 

formation of CHO and CHON compounds through the partitioning of gas-phase species 303 

to the particles and subsequent aqueous phase reactions (Xu et al., 2020; Xu et al., 2023). 304 

Furthermore, the total signal intensity of CHO compounds was significantly correlated 305 

with that of CHON (r = 0.62, P < 0.01), indicating that they may have similar origins 306 

or that CHO compounds may serve as important precursors for CHON compound 307 

formation. In general, the differentiated seasonal variation patterns for the different 308 

types of NOCs measured here can be attributed to the unique meteorological conditions 309 

in Urumqi and different ionization mechanisms in ESI+ and ESI− modes. The sources 310 
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and formation mechanisms of NOCs will be further discussed in the following sections. 311 

 312 

3.2. Seasonally differential sources and formation mechanisms of CHON 313 

compounds 314 

CHON compounds can be derived from the reactions between CHO species and 315 

reactive nitrogen species (NOx, NH3, and NH4
+) (Lee et al., 2016; De Haan et al., 2017), 316 

as also partly implied by significant positive correlations (r = 0.51‒0.62, P < 0.01) 317 

between total signal intensity of CHO and CHON compounds in both ESI+ and ESI− 318 

modes. Thus, CHO compounds were further classified based on their OSC values to 319 

preliminarily explore their origins and linkages with CHON compound formation 320 

(Figures 2a and 2b). In ESI+ mode, the OSC values of the detected CHO compounds 321 

(−1.75 to 0.5) were higher than those of primary vehicle exhausts (−2.0 to −1.9) (Aiken 322 

et al., 2008), likely indicating a weak (or indirect) contribution of primary vehicle 323 

exhausts to CHO molecules in Urumqi. The signal intensity of BBOA dominated the 324 

total OA signal intensity and was higher in the warm period than in the cold period 325 

(Figure 2e). However, previous studies conducted in China (e.g., Beijing, Xi'an, 326 

Shanghai, and Liaocheng) suggested that biomass burning was more significant in the 327 

cold seasons (Li et al., 2023; Wang et al., 2017a; Chen et al., 2017; Wang et al., 2009; 328 

Wang et al., 2018; Zhang et al., 2022). Furthermore, we found that the oxygen-poor 329 

unsaturated aliphatic compounds showed a high signal intensity in the warm period and 330 

that the signal intensities of all categories of compounds in the warm period were 331 

weakly correlated with atmospheric oxidants (i.e., O3 and •OH) (r < 0.1, P > 0.05). 332 
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Thus, the formation or source of CHO compounds in the warm period may not be 333 

mainly controlled by high atmospheric oxidation but rather by biomass burning, which 334 

was distinguished from previous reports (Duan et al., 2020; Kondo et al., 2007; Zhang 335 

et al., 2023). This consideration was also supported by the fact that there were 336 

significantly more fire spots in the warm period than in the cold period (Figure 3). It 337 

should be noted that the materials used for biomass burning in the cold period in rural 338 

China are typically old-age plant tissues, such as dead branches of pine trees, dead 339 

branches of shrubs, corn straw, and rice straw (Figure S3), while biomass burning in 340 

the warm season is mainly attributed to forest fires or wildfires (relatively fresh 341 

biomass). Accordingly, a large number of fresh biomass material burning occurred from 342 

April to October each year in the neighboring countries (e.g., Kazakhstan) (Xu et al., 343 

2021) or regions of Urumqi (due to drought) (Figure 3) may be largely responsible for 344 

high CHO compound abundance in the warm period. 345 

The CHO species in ESI− had higher OSC (‒1.85 to 1.1) than those in ESI+ (‒1.85 346 

to 0.25) (Figures 2c and 2d), which was consistent with a recent study conducted in 347 

Guangzhou, China (Zou et al., 2023). The predominant subgroups of CHO in ESI− 348 

were BBOA (66.4% of total signal intensity) and SV-OOA (23.1% of total signal 349 

intensity), which was different from the observation in Shanghai (dominated by SV-350 

OOA and LV-OOA) (Wang et al., 2017a). Additionally, some specific saturated and 351 

unsaturated aliphatic CHO substances (i.e., C12‒18HnO2) in ESI− showed higher 352 

abundance in the warm season than in the cold season, which was contrary to the 353 

variation pattern of other CHO compounds. These C12‒18HnO2 compounds were found 354 
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to be mainly fatty acids, such as stearic acid (C18H36O2), oleic acid (C18H34O2), 355 

linolelaidic acid (C18H32O2), palmitic acid (C16H32O2), and palmitoleic acid (C16H30O2) 356 

(Figure S4), all of which usually accumulate in plants, particularly Suaeda 357 

aralocaspica (W. Hogg and T. Gillan, 1984; Wang et al., 2011). Interestingly, this plant 358 

was widely distributed in Central Asia as well as on the southern edge of the Junggar 359 

Basin in Xinjiang, China (Wang et al., 2011). Although fatty acids can also originate 360 

from food cooking (Zhao et al., 2007), there seem to be no seasonal differences in 361 

cooking behavior locally. Thus, these results further confirmed our consideration that 362 

the abundance of CHO compounds in the warm period was highly impacted by fresh 363 

biomass material burning (e.g., forest fires or wildfires). 364 

CHON molecules in ESI+ were mainly identified as unsaturated aliphatic-like 365 

compounds that are oxygen poor (Figures 4a and 4b), accounting for more than 70% 366 

of the total signal intensities of CHON species (Figure S5). The signal intensity of 367 

CHON species in ESI+ was greater in the warm period than in the cold period (Figure 368 

4e). Moreover, BBOA contributed to 56.9 % of the total CHON signal intensity in the 369 

warm period (Figure S6). These characteristics of CHON compounds were similar to 370 

those of CHO. Considering a significant positive correlation (r = 0.62, P < 0.01) 371 

between the total signal intensity of CHO and CHON compounds in ESI+, we thus 372 

concluded that primary sources (i.e., fresh biomass material burning) were also one of 373 

the main sources of CHON compounds. In this study, CHON compounds with O/N < 374 

3 contributed 76.48 ± 1.11% of total CHON species in ESI+ (Figure S7), which was 375 

much larger than the results observed in urban Tianjin in winter (less than 20%) (Zhong 376 
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et al., 2023). In particular, C16H33ON, C18H37ON, C18H35ON, C18H33ON, C18H31ON, 377 

and C20H33ON showed a high abundance, together accounting for 55.04 ± 7.09 % of 378 

the total CHON abundance (Table S4). The carbon number of these compounds was 379 

consistent with that of fatty acids mentioned above; moreover, their abundances showed 380 

a positive correlation (r = 0.43‒0.81, P < 0.01) with the abundances of corresponding 381 

fatty acids in the warm period. In contrast, these CHON compounds only showed a 382 

weak correlation (r = −0.24 ~ 0.33) with atmospheric oxidants (e.g., •OH, O3, and NOx). 383 

Thus, the formation mechanism of biomass burning-related NOCs in Urumqi during 384 

the warm period may be the interaction between fatty acids and reduced nitrogen 385 

species (e.g., NH3) rather than the oxidation pathway involving CHO compounds and 386 

NOx. 387 

A recent laboratory study has suggested that NH3 produced during the thermal 388 

degradation of amino acids can react with oleic acid from the pyrolysis of triglycerides 389 

to form amides (R1) (Ditto et al., 2022a). As discussed above, the combustion of fresh 390 

biomass materials (e.g., forest fires or wildfires) can release abundant fatty acids. In 391 

addition, wildfires can also emit large amounts of NH3, with an average emission factor 392 

more than twice the NH3 emission factor of agricultural fires (Tomsche et al., 2023). 393 

According to MS/MS analysis (Table S5), potential fatty acid-derived NOCs were 394 

indeed identified as amides. Thus, we proposed that the high temperature generated 395 

during wildfires or forest fires provides suitable conditions for the reaction of 396 

carboxylic acids and NH3 to form amides. The specific process was presented in Figure 397 

5 (Pathway 1). It has been suggested that atmospheric oxidants can oxidize olefins (R2 398 
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and R3) to form hydroxyl nitrates and carbonyl nitrates (Perring et al., 2013). Therefore, 399 

fatty acids (oleic acid as a representative) released from fresh biomass material burning 400 

may also rely on oxidation pathways to form NOCs (Figure 5, Pathway 2). It is worth 401 

noting that some products with double bonds after the amidation of unsaturated fatty 402 

acids can continue to undergo the reactions of R2 and R3 in the atmosphere, resulting 403 

in the formation of nitrooxy amides (Figure 5, Pathway 3). However, we found that the 404 

abundance of oleic acid-derived amides via Pathway 1 in the warm period was more 405 

than 100 times higher than that of NOCs with ‒ONH2 (thus, the impact of ionization 406 

efficiency is expected to be less than 100 times) from Pathways 3. In the cold period, 407 

the abundance of fatty acids-derived amides decreased dramatically (Figure 5 and 408 

Figure S8). Thus, the overall results demonstrated that the combustion of fresh biomass 409 

materials indeed contributed significantly to aerosol NOCs (e.g., amides) in the warm 410 

period in Urumqi. 411 

3

2

NH

2H O and high temperature
ROOH RCONH

−
⎯⎯⎯⎯⎯⎯⎯⎯→                                                                                            (R1) 412 

2O•OH NO

2 2RH R RO RONO⎯⎯⎯→ ⎯⎯→ ⎯⎯→                                                                                    (R2) 413 

R1=R2

  NO3•  
→    R1(ONO2)-R2•

  O2  
→  R1(ONO2)-R2O2•

 RO2•, NO3•  
→        R1(ONO2)-R2(O)     (R3) 414 

The CHON species detected in ESI− were mainly aromatic-like compounds, 415 

whose signal intensities were significantly greater in the cold period than in the warm 416 

period (Figures 4c,4e and Figure S5). Moreover, we found that several nitro-aromatic 417 

compounds, including C6H5O3N, C6H5O4N, C7H7O3N, C7H7O4N, C7H5O5N, and 418 

C8H9O3N (confirmed by their authentic standards in the LC/MS analysis), contributed 419 
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up to 50% of the total CHON (ESI− mode) intensity (Table S6). Other NOCs with 420 

relatively high signal intensity were mainly O4-6N2 species (contributed up to 25%), 421 

such as C6H4O5N2, C7H4O7N2, C7H6O5N2, and C7H6O6N2, which have been suggested 422 

to be associated with secondary photochemical or multiphase chemical processes 423 

(Harrison et al., 2005; Cecinato et al., 2005; Salvador et al., 2021). However, the 424 

abovementioned nitro-aromatic compounds including C6H5O3N (nitrophenol), 425 

C6H5O4N (nitrocatechol), C7H7O3N (methyl-nitrophenol), and C7H7O4N (methyl-426 

nitrocatechol) were primarily identified as tracers of straw and wood burning (old-age 427 

biomass materials commonly used in suburban and rural China) (Iinuma et al., 2010; 428 

Kourtchev et al., 2016). A study about molecular characterization (ESI− mode) of 429 

water-soluble aerosols emitted from the combustion of old-age biomass materials (i.e., 430 

dry corn straw, rice straw, and pine branches) and coal showed that OA from old-age 431 

biomass burning typically contained much more nitro compounds and/or organonitrates 432 

than that from coal, while OA from coal-smoke contained more sulfur-containing 433 

compounds (Song et al., 2018). Thus, the old-age biomass burning associated with 434 

winter heating rather than coal combustion may contribute a significant amount of 435 

aerosol NOCs (e.g., nitrophenols) in wintertime Urumqi. However, it does not 436 

necessarily suggest that the importance of multiphase chemistry in the formation of 437 

NOCs was ignorable, as indicated by relatively high signal intensity of O4-6N2 species. 438 

In general, the differential molecular characteristics of CHON species in different 439 

seasons in Urumqi can largely attributed to different impacts of the combustion of fresh- 440 

and old-age biomass materials. 441 
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 442 

3.3. CHN molecule evidence of fresh and old-age biomass burning in different 443 

periods.  444 

Figures 6a and 6b present the van Krevelen diagram of CHN compounds in the 445 

cold and warm periods. The CHN1 compounds with relatively high signal intensity 446 

mainly contained 7‒20 carbon atoms, among which C5H5N(CH2)n, C9H7N(CH2)n, and 447 

C13H9N(CH2)n were dominant (78.68 ± 7.59 % of the total signal intensity of CHN1 448 

compounds in the cold period, Table S7). C5H5N(CH2)n could be identified as pyridine 449 

and its homologues, which have been detected in freshly discharged BBOA (Dou et al., 450 

2015). Additionally, the abundance of C5H5N(CH2)n was positively correlated with that 451 

of C9H7N(CH2)n, C13H9N(CH2)n, and nitro-aromatic compounds mentioned above (r = 452 

0.46−0.81, P < 0.01), particularly in the cold period with old-age biomass burning for 453 

heating. We further found that both the total signal intensity and aromaticity of CHN1 454 

species were much higher in the cold period (AImod of 0.52) than in the warm period 455 

(AImod of 0.35) (Figure 6 and Figure S9). It has been suggested that old-age leaves 456 

contain more aromatic compounds compared to fresh leaves (Jian et al., 2016). Thus, 457 

the overall results implied that old-age biomass burning had an important contribution 458 

to the variation of CHN1 compounds. In particular, the intensity of CHN1 compounds 459 

was significantly negatively correlated with the concentration of O3 and ·OH (r = −0.44 460 

~ −0.53, P < 0.01), suggesting that atmospheric oxidation processes were the potential 461 

pathway for amine removal rather than the sources of particle amine salts (Zahardis et 462 

al., 2008; Qiu and Zhang, 2013). This result differed from the previous case, which 463 
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showed that the formation processes of CHN1 and its homologs in Guangzhou (South 464 

China) were tightly related to photo-oxidation processes (Jiang et al., 2022). The CHN2 465 

species showed a similar temporal variation pattern to the CHN1 species. Moreover, the 466 

abundances of total CHN2 and major components (C8-11H8N2(CH2)n, C10H14N2(CH2)n, 467 

C10H16N2(CH2)n and C5H8N2(CH2)n) were positively correlated with that of total CHN1 468 

(r = 0.55−0.90, P < 0.01), but negatively correlated with the concentration of O3 469 

and ·OH (r = −0.43 ~ −0.60, P < 0.01). Clearly, old-age biomass burning, particularly 470 

in the cold period, also exerted significant impacts on the abundance of CHN2 471 

compounds, which was also supported by several previous studies (Laskin et al., 2009; 472 

Wang et al., 2017b; Song et al., 2022). A study about molecular characterization (ESI+ 473 

mode) of humic-like substances emitted from the combustion of old-age biomass 474 

materials (i.e., dry corn straw, rice straw, and pine branches) and coals showed that OA 475 

from old-age biomass burning typically contained much more CHN2 compounds (55‒476 

64%) than that from coal (20‒37%), while OA from coal-smoke showed more CHN1 477 

compounds (78‒84%) compared to that from old-age biomass materials (15‒22%) 478 

(Song et al., 2022). In this study, the signal intensity of CHN1 compounds in the cold 479 

period was about 40% higher than that in the warm period, while that of CHN2 480 

compounds showed a 160% increase from the warm period to the cold period. Thus, 481 

although the contribution of fossil fuel (e.g., coal) combustion to NOCs in the cold 482 

period cannot be ignored, our results at least suggested that the biomass burning-derived 483 

CHN compounds showed a more significant increase compared to coal combustion-484 

derived compounds from the warm period to the cold period in Urumqi. 485 
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Interestingly, we found some CHN species with 16‒20 carbon atoms showed 486 

higher abundance in the warm period than in the cold period, a pattern opposite to that 487 

of all other CNH compounds (Figure 6c). These C16‒20N1Hx compounds were further 488 

identified as alkyl nitriles (Table S5) (Simoneit et al., 2003). In addition, the carbon 489 

number of the identified alkyl nitriles was consistent with those of amides previously 490 

proposed to be produced by fresh biomass burning. Thus, we proposed that fresh 491 

biomass material burning in the warm period may provide a continuous high-492 

temperature environment to promote the dehydration of amides (Figure 5, Pathway 4). 493 

These alkyl nitriles with double bonds can continue to undergo the reactions of R2 and 494 

R3 (Figure 5, Pathway 5). However, the signal intensity of the nitrooxy products in the 495 

warm period was insignificantly correlated with the concentration of O3, ·OH, and NOx 496 

(P > 0.05), likely indicating a weak influence of atmospheric oxidation on alkyl nitrile 497 

removal in this site. The high-temperature dehydration of amides (e.g., erucamide) to 498 

form alkyl nitriles (e.g., erucyl nitrile) has been demonstrated by Simoneit et al. (2003) 499 

in a laboratory simulation experiment. A study on BBOA also showed that alkyl nitriles 500 

can be serve as indicators of biomass burning in the ambient atmosphere (Radzi Bin 501 

Abas et al., 2004). Furthermore, the abundance of identified alkyl nitriles initially 502 

increased from March and peaked in September and October (Figure S10), a pattern 503 

which was consistent with the interannual variation in wildfire areas (more in the warm 504 

period) in Central Asian countries (Xu et al., 2021). Although cooking is also a potential 505 

source of alkyl nitriles (Schauer et al., 1999), this activity does not have seasonal 506 

differences. In contrast, the dramatically increased abundance of aromatic CNH 507 
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compounds in the cold period (Figure S9) can be attributed to the aqueous reactions of 508 

amines emitted from old-age biomass material and coal combustion with acidic 509 

substances, as indicated by significant correlations (r = 0.61−0.95, P < 0.01) between 510 

total CHN abundance and SO4
2− and NO3

− concentrations. These findings further 511 

confirmed that the NOCs from the combustion of fresh biomass materials in the warm 512 

period in suburban Urumqi were compositionally different from those from old-age 513 

biomass burning in the cold period. 514 

 515 

4. Conclusions 516 

The complexity of NOCs restricts our understanding of its sources and formation 517 

processes. In this study, the molecular compositions of organic aerosols in PM2.5 518 

collected in Urumqi over a one-year period were systematically characterized in both 519 

ESI− and ESI+ modes, with a major focus on NOCs. A large amount of NOCs were 520 

identified, showing that NOCs in relatively highly oxidative and reduced forms can be 521 

roughly distinguished via these two ionization modes. Based on the identification of 522 

molecular markers of amides and alkyl nitriles (much higher in the warm period) and 523 

the analysis of their formation mechanisms (less contribution of atmospheric oxidation), 524 

we highlighted the important contribution of combustion of fresh biomass materials 525 

such as forest fires and wildfires to NOCs in the warm season in Urumqi. In contrast, 526 

the dramatically increased abundances of aromatic CNH compounds and nitro-aromatic 527 

CHON compounds (mainly nitrophenols) in the cold period were tightly associated 528 

with the impacts of old-age biomass material burning. These results were illustrated in 529 
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a diagram (Figure 7).  530 

Biomass materials in rural China were typically old-age plant tissues, as 531 

mentioned above. Fresh biomass materials (e.g., green vegetation) with the enrichment 532 

of oils and proteins can exist in forest fires or wildfires. Indeed, previous studies have 533 

suggested that biomass burning can lead to the formation of aerosol amines and nitriles. 534 

However, field observation studies have yet to pay attention to the differences in aerosol 535 

NOCs emitted from the combustion of fresh and old-age biomass materials. For the 536 

first time, our results reveal that fresh biomass material combustion can contribute more 537 

amines and nitriles than old-age biomass material combustion. Generally, this study 538 

provides field evidence on the differential impacts of the combustion of fresh and old-539 

age biomass materials on aerosol NOCs, improving our current understanding of the 540 

molecular compositions of organic nitrogen aerosols in a vast territory with a sparse 541 

population in Northwest China. Moreover, according to the fact that the studied site is 542 

highly affected by combustion emissions of different types of biomass materials, future 543 

work is needed to deeply understand the quantitative contributions of different types of 544 

biomass burning to OA in China. 545 
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Figure 1.  958 

 959 

Figure 1. The reconstructed mass spectrum distribution of the detected species in PM2.5 960 

in (a) ESI+ and (c) ESI− modes during the whole campaign. Temporal variations in the 961 

fractional distribution of classified compounds in (b) ESI+ and (d) ESI− modes. The 962 

ring diagrams inside the panel show the signal intensity fractions of classified 963 

compounds, the size of which is proportional to the total signal intensity of all species 964 

detected in PM2.5 in different periods. 965 
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Figure 2.  969 

 970 

Figure 2. OSc values of CHO molecules detected in (a and b) ESI+ and (c and d) ESI− 971 

modes in PM2.5 collected from different periods (cold vs. warm). The size and color of 972 

the circle indicate the mean signal intensity and DBE value of compounds, respectively. 973 

The light-orange background indicates the areas of LV-OOA, SV-OOA, BBOA, and 974 

HOA (Kroll et al., 2011), according to which (e) the mean signal intensity of classified 975 

compounds was calculated for samples from different periods. 976 
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Figure 3 981 

 982 

Figure 3. The 3-day (72 h) back trajectories illustrating the typical air mass flows to 983 

the study site during the (a) warm and (b) cool periods. Fire spots were shown in red, 984 

which was created based on NASA active fire data (VIIRS 375 m, 985 

https://firms.modaps.eosdis.nasa.gov/active_fire/). The map was derived from 986 

©MeteoInfoMap (version 3.6.2) (Chinese Academy of Meteorological Sciences, China).  987 
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Figure 4.  992 

 993 

Figure 4. Van Krevelen diagrams of CHON molecules detected in (a and b) ESI+ and 994 

(c and d) ESI− modes in PM2.5 collected from different periods (cold vs. warm). The 995 

subgroups in the panel include saturated-like (Sa), unsaturated aliphatic-like (UA), 996 

highly unsaturated-like (HU), highly aromatic-like (HA), and polycyclic aromatic-like 997 

(PA) compounds, further distinguishing between oxygen-poor and oxygen-rich 998 

compounds with an oxygen to carbon ratio of 0.5. The size and color of the circle 999 

indicate the mean signal intensity and DBE value of compounds, respectively. The (e) 1000 

mean signal intensity of classified compounds was calculated for samples from 1001 

different periods. 1002 
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 1004 

 1005 
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Figure 5.  1007 

 1008 

Figure 5. Proposed pathways for the reactions of carboxylic acids (oleic acid as a 1009 

representative) with reactive nitrogen and atmospheric oxides to form the observed 1010 

NOCs in PM2.5 under the influence of the high temperature generated during wildfires 1011 

or forest fires. Compounds observed in PM2.5 were shown in red.  1012 
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Figure 6. 1014 

 1015 

Figure 6. Van Krevelen diagrams of CHN molecules detected in PM2.5 collected from 1016 

the (a) cold and (b) warm periods. The size and color of the circle indicate the mean 1017 

signal intensity and DBE value of compounds, respectively. The mean signal intensity 1018 

distributions of (c) carbon atoms in CHN molecules detected in PM2.5 collected from 1019 

the cold and warm periods 1020 
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Figure 7. 1022 

 1023 

Figure 7. Conceptual picture showing the differential impacts of combustion of fresh 1024 

and old-age biomass materials on aerosol NOCs in suburban Urumqi. The map was 1025 

derived from ©Baidu Maps (BIDU, China). 1026 


