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Abstract. Long-term ozone (Os) changes in the middle to upper troposphere are critical to climate radiative forcing

and tropospheric O3 pollution. Yet, these changes remain poorly quantified through observations in East Asia.
Concerns also persist regarding the data quality of the ozonesondes available at the World Ozone and Ultraviolet
Data Center (WOUDC) for this region. This study aims to address these gaps by analyzing O3 soundings at four
sites along the northwestern Pacific coastal region over the past three decades, and assessing their consistency with
an atmospheric chemistry-climate model simulation. Utilizing the European Centre for Medium-Range Weather
Forecasts (ECMWF) — Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry
(EMAC) nudged simulations, it is demonstrated that trends between model and ozonesonde measurements are

overall consistent, thereby gaining confidence in the model’s ability to simulate Oy trends and confirming the

utility of potentially imperfect observational data. A notable increase in O3 mixing ratio around 0.29-0.82 ppb a™!
extending from the middle to upper troposphere is observed in both observations and model simulations between

1990 and 2020, primarily during spring and summer. The timing of these O3 fongues, is delayed when moving
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from south to north along the measurement sites, transitioning from late spring to summer. Investigation into the

drivers of these trends using tagged model tracers reveals that O, of stratospheric origin (O3S) dominates the
absolute O3 mixing ratios over the middle-to-upper troposphere in the subtropics, contributing to the observed O3

increases by up to 96% (40%) during winter (summer), whereas O, of tropospheric origin (OsT) governs the

absolute value throughout the tropical troposphere and contributes generally much more than 60% to the positive

Os changes, especially during summer and autumn. During winter, and spring, a decrease of O3S is partly

counterbalanced by an increase of OsT in the tropical troposphere. This study highlights that the enhanced
downward transport of stratospheric O; into the troposphere in the subtropics and a surge of tropospheric source
O3 in the tropics are the two key factors driving the enhancement of Os in the middle-upper troposphere along the

Northwest Pacific region.

Keywords: EMAC model, ozone sounding, stratospheric intrusion, tropospheric ozone
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1. Introduction

Stratospheric intrusions and photochemical production are two major contributors to tropospheric ozone (O3, Ding
and Wang, 2006; Neu et al., 2014; Williams et al., 2019; Zhao et al., 2021). The stratosphere accommodates 90%
of the total Os in the atmosphere. As the largest natural source, downward transport of Os-enriched air from the
stratosphere exerts an important impact particularly on the seasonality of tropospheric Os (Williams et al., 2019).

Free tropospheric, Os increases of 7% (measured as a partial column between 3-9 km) between 2005 and 2010 over

China have been identified as a consequence of increased O3 precursor emissions and enhanced downward
transport from stratospheric O3 (Verstraeten et al., 2015). While photochemical production is highly dependent on
anthropogenic emissions, the impact of stratospheric intrusions on tropospheric O3 is mainly governed by inter-

annual variability and climate-driven changes in the atmospheric circulation (Neu et al., 2014; Albers et al., 2018).

Compared to the gpatio-temporal, variations of O in the lower troposphere, the gvolution, in the middle-upper _

troposphere and their underlying causes remain inadequately quantified, largely due to scarcity of long-term,

vertically resolved observational data.

Chemistry-climate modeling studies demonstrate that climate variability in the atmospheric circulation such as an+
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enhanced Brewer-Dobson circulation {BDC) can promote greater seasonal build-up of, Os jn the gxtratropical |

lowermost stratosphere during winter (Ray et al., 1999; Sudo et al., 2003; Konopka et al., 2015; Ploeger & Birner.

2016; Young et al., 2018; Akritidis et al., 2019; Griffiths et al., 2020; Liao et al., 2021). Subsequent stratospheric
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intrusions can then lead to the increased stratosphere-troposphere exchange of Os as a result of this enrichment.

particularly in spring when the lowermost stratospheric reservoir of Os reservoir reaches its annual maximum and

is seasonally “flushed” thereafter (Hegglin and Shepherd, 2007: Bonisch et al., 2009). However, this process

depends on changes in the BDC's deep and shallow branches. Strengthening of the deep branch increases

lowermost stratospheric Oz while strengthening of the shallow branch favors enhanced transport and mixing of

low-Os_air from the tropical upper troposphere (Plumb, 2002; Bonisch et al., 2009). A study using a coupled

atmosphere-ocean _model with jnteractive, stratospheric chemistry, projects a 20—30% increase in global
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stratosphere-to-troposphere transport (STT) O3 flux from 1965 to 2095, as the result of an accelerated stratospheric
BDC, under an intermediate climate change scenario (Hegglin and Shepherd, 2009). Furthermore, chemistry-
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climate models (CCMs) predict an even larger increase of the STT Os flux (25-80%) under climate change {‘

scenarios such as RCP8.5 (Collins, 2003; Sudo et al., 2003; Meul et al., 2018). Notably, Williams et al. (2019)

identified an enhanced STT Oypver Asia and the Pacific region during 1980-2010 based on two different CCMs.

The shallow branch of BDC is associated with the breaking of synoptic and planetary-scale waves in the

subtropical lower stratosphere (Plumb, 2002; Birner and Bonisch, 2011). Several small-scale processes in

proximity to the tropopause lead to irreversible STT events, including Rossby wave breaking, tropospheric
cyclones, cut-off lows, and tropopause folding events (Holton et al., 1995). On a regional basis, including East
Asia and its coastal area, subtropical westerly jets modulate the location, timing, and frequency of tropopause folds
(Sprenger et al., 2003; Albers et al., 2018). Satellite measurements of O3 and water vapor over six years were used

to quantify the impact of a changing stratospheric circulation on tropospheric O3 in the northern hemisphere (Neu

et al., 2014). These observation-based results support the modeling studies that the intensified stratospheric BDC,

tends to enhance the impact of the stratospheric intrusions on tropospheric Os. However, the conclusions drawn
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from the numerical studies have not yet been validated through long-term Os measurements, particularly Os-

sounding data (Trickl et al., 2011).

From 1990 onwards, a significant amount of the anthropogenic emissions responsible for Os formation have shifted
from North America and Europe to Asia (Granier et al., 2011; Cooper et al., 2014; Zhang et al., 2016). In East
Asia, the overall long-term trend of the daytime average near-surface O3 is 0.45 ppb a’!, contrasting with a trend
of = 0.28 ppb a! in North America in the summertime (April-September) during 2000-2014 (Chang et al., 2017).
Several studies have documented the increase in emissions of O3 precursors at few sites available for evaluating
the long-term trends across East Asia (Ma et al., 2016; Sun et al., 2016; Xu et al., 2016; Wang et al., 2017). On
the other hand, some regions in East Asia have seen a decline in precursor emissions after 2004, such as Beijing,
Hong Kong, and Japan due to local emission control efforts (Krotkov et al., 2016; Liu et al., 2016; Miyazaki et al.,
2017; van der A etal., 2017). Elevated NO> emissions over megacities in China were possibly transported to Japan,
potentially offsetting the local emission control efforts (Duncan et al., 2016). Further research is required to
understand the long-term changes in tropospheric Os, especially in East Asia, where rapid economic growth

coincides with strict environmental regulations.

In this study, we present thirty years of O3 observations from balloon soundings with a focus on latitudinal

differences. To this end, observations from four sounding sites are analyzed together with model simulation results
to quantify the long-term trends of middle-upper tropospheric Os and contributions of different origins along the
northwestern Pacific coastal region. We are particularly interested in the regional difference near 30°N, the
transition zone between the Hadley and Ferrel circulation cells, where the subtropical jet (STJ) prevails and
tropopause folding is frequently observed (Skerlak et al., 2015; Zhao et al., 2021). The specific questions to be
addressed by this study are 1) How do O; trends in the middle-upper troposphere vary with latitude and season
over the northwestern Pacific coastal regions and are these observed trends consistent with those derived from a

chemistry-climate model? 2) To what extent are these tropospheric O3 changes linked to stratospheric influences?

And 3) to what extent are these tropospheric O3 changes linked to tropospheric sources, i.e. photochemical O3,

production due to biogenic and anthropogenic precursor emissions? The study aims to provide observational
evidence to validate and constrain the CCMs’ predictions of climate-change impact on tropospheric O3 in East

Asia (e.g., Williams et al., 2019) where such information is still lacking.

2. Data and method

2.1 Ozonesonde observations

Around thirty years of Os-sounding data at four sites along the northwestern Pacific coastal regions (Sapporo,
Tsukuba, Naha, and Hong Kong) are used to characterize spatiotemporal variations of Os in the troposphere.
Ozonesondes were launched around 14:00 local standard time (LST) once a week, which corresponds to the time
when photochemical production reaches its daily maximum (Oltmans et al., 2004). The ozonesonde measurements
include Os partial pressure, temperature, relative humidity, wind speed, and wind direction. Vertical O3
measurements range from the surface to the middle stratosphere approaching 30 km. The Hong Kong site has
continually operated the electrochemical concentration cell (ECC) instrument since the beginning of its record.

For the three sites in Japan, the Os-sounding data were measured by Carbon-iodine (CI) ozonesondes with 10-
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second recording intervals before 2009 and changed to the ECC instrument with 2-second recording intervals. Th

operating principle of CI ozonesondes and ECC ozonesondes both are based on the reaction of O3 to potassium

iodide solution wherein free iodine is liberated (Johnson et al., 2002; Witte et al., 2018). However, the transition

of the measurement technology from CI to ECC around 2009 Jed, to uncertainties and an overestimation of the

long-term Os trends,due to a step-change in the yesulting timeseries (Figure S1). Cross;evaluation of OMI data

and the ozonesonde observation at the Japan sites jndeed showed, that CI ozonesonde measurements_of

tropospheric O3 columns, are negatively biased relative to ECC measurements by 2—4 DU compared with the OMI |
1

data (Bak et al., 2019). A correction factor was applied to the O3 profiles during the CI measurement period to

remedy the problem. However, the applied factors were found to inaccurately impact observed tropospheric O3

values (Morris et al., 2013). Removing the correction factor in the CI measurements can improve the consistency

of ozonesondes with OMI data (Morris et al. 2013). We thus removed the correction factor applied to the original ‘i :

ozonesonde data available from the WOUDC for these three Japanese-sounding stations hereinafter. After

removing the correction factors during the observation period, the corrected datasets show no notable step-changes

around 2009 at the Japanese sites anymore (Figure S2). [t is worth noting that the conclusion we draw from current

available long-term ozonesonde pbservations, has limitations on the long-term trends but still has important

implications on the understanding of tropospheric O3 changes and model evaluations. The weekly launch i‘

frequency of the ozonesondes has been validated as reliable in representing long-term Os trends, as evidenced by

comparing them with near-surface O; trends at hourly time resolution (Liao et al., 2021). A summary of
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ozonesonde-site location and data availability is presented in Table 1 and Figure 1.,

We limit our analyses of tropospheric and lower-stratospheric O3 profiles to altitudes below 18 km and remove

duplicate O3 values during the descent period at the same heights in the time series to prevent redundant

measurements as well as to reduce, the yincertainty, of solution evaporation and loss due to the, O3 sounding balloon |

S

bursting and/or tumbling through the atmosphere, Os profiles with continuous data missing more than a 200m

vertical coverage are excluded. The selected valid O3 profiles with 10s or 2s recording intervals are linearly

interpolated into 10m vertical intervals and then averaged into 50m data points. The O; profiles after the quality

control with 50m vertical resolution are used for further analysis.

Due to the latitudinal differences and the seasonal variations in tropopause height across the four Os-sounding
observation sites, it is inappropriate to apply a specific height as the tropopause height. We thus employ the World
Meteorological Organization lapse rate tropopause definition to calculate the tropopause height (hereafter called
Z1) for each site and Os profile. The Z:is defined as the level at which the lapse rate decreases to 2 K km™' or less,
provided that the average lapse rate between this level and all higher levels within 2 km does not exceed 2 K km™!

(WMO, 1957).

To better compare O3 levels and trends at different latitudes within the troposphere, we normalize the height of
each Os profile into 0~1 by dividing the altitude by the tropopause height Zi. The upper troposphere (UT) is then
defined by the normalized height (Z/Z) range between 0.7 and 0.9. The middle troposphere (MT) and lower
troposphere (LT) are 0.4~0.6 and 0~0.2 Z/Z, respectively.
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Tsukuba, and (d) Sapporo. The continuous line shows the number of ozonesondes launched per year. The bars show
the corresponding number per season. The dashed line indi the ber of valid des reaching up to 18 km
altitude.
Table 1. Location of Os-sounding sites, measurement periods, and total data available along the northwestern Pacific
coastal region.
Station Latitude Longitude Elevation (m) Period Total data Valid data (18km) <« (Formatted Table
Sapporo 43.10°N 141.30°E 19 1990-2017 1167 1159(99%) CF tted: Font color: Toxt 1
Tsukuba 36.06°N 140.13°E 31 1990-2020 1564 1556(99%) ormatted: Font color: 1ex
Naha 26.20°N 127.70°E 27 1990-2017 1137 1114(98%) (Formatted: Font color: Text 1
Hong Kong 22.31°N 114.17°E 66 2000-2020 929 863(93%)

A

2.2 EMAC model and simulation setup

In this study, the European Centre for Medium-Range Weather Forecasts (ECMWF) — Hamburg
(ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model is utilized to
investigate the long-term changes of tropospheric Os and to quantify the relative contributions of different driving
factors. The EMAC model is a global model that considers the interaction of chemistry and dynamic processes

between the surface and the middle atmosphere (Jockel et al., 2016). The yeference simulation with specific

) (Formatted: Font color: Text 1

dynamics (REF-D1) results from the EMAC model are used in this study,(Jockel et al., 2024a; Jockel et al., 2024b),

The REF-DI experiment is a hindcast simulation of the atmospheric state, using a prescribed sea surface

temperature and sea ice from observations along with forcing for the extra-terrestrial solar flux, long-lived

greenhouse gasses, and Os-depleting substances, stratospheric acrosols, and an imposed quasi-biennial oscillation

that approximate the observed variations over the historical period to the fullest extent possible, The hindcast

simulations are performed from 1980 to 2019 with the specific dynamicsnudging by Newtonian relaxation towards
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ECMWF ERA-5 reanalysis meteorological data (Hersbach et al., 2020), including temperature, logarithm of

surface pressure, divergence, and vorticity.

The simulations are conducted at a T42 (triangular) spectral resolution corresponding to an approximately 2.8° X, .

2.8° quadratic Gaussian grid, 90 hybrid sigma pressure vertical levels from surface up to 0.01 hPa, and with a 720s
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time step length (Jockel et al., 2016). EMAC uses chemical submodels, the Module Efficiently Calculating the
Chemistry of Atmosphere (MECCA, Sander et al., 2011) and the scavenging submodel (SCAV, Tost et al., 2006)
to describe comprehensive chemical reaction mechanisms in gas and liquid phases that include O3, CHs, HOx and
NOx chemistry, non-methane hydrocarbon (NMHC) chemistry up to Cs and isoprene, halogen (Cl and Br)

chemistry, and sulfur chemistry.

Emissions of lightning NOx, soil NOx, and isoprene (C5HS) are calculated online for EMAC using the submodels

LNOx (Tost et al., 2007) and online-emissions (ONEMIS),(Kerkweg et al., 2006; Jockel et al., 2016), respectively.

EMAC simulates the photolysis (submodel JVAL, Sander et al., 2014) and shortwave radiation schemes
(FUBRAD, Kunze et al., 2014) consistently, with particular regard to the evolution of the 11-year solar cycle

(Morgenstern et al., 2017).  For anthropogenic emissions, mixing ratios of greenhouse gases, Oydepleting

substances (ODS), and other boundary conditions, the EMAC model setup follows the Chemistry—Climate Model
Initiative (CCMI) 2020 protocol of the refD1 hindcast simulations (SPARC, 2021).

- (Formatted: Font color: Text 1

The EMAC model provides the diagnostic tracer OsS to directly measure the stratosphere-to-troposphere exchange
of Os. The O3S tracer is transported across the tropopause into the troposphere and is removed by tropospheric O3
reactions (Jockel et al., 2006; Jockel et al., 2016). When O3S re-enters the stratosphere, it is re-initialized (Roelofs
and Lelieveld, 1997). The tropospheric O3 source (OsT) is here calculated as tropospheric O3 minus stratospheric
03 (0T =03 - 0sS).

To better compare the model results with the observations, the simulation data is extracted from the grid boxes
nearest to the observation sites. Specifically, 200 hPa is chosen for Hong Kong and Naha, and 400 hPa for Tsukuba
and Sapporo to represent the upper troposphere. The middle troposphere is defined at 500hPa, while the lower
troposphere is represented by 850 hPa in the model results. To assess the statistical significance of the differences,

a paired two-sided t-test (p<0.05) is conducted for comparison.

3. Results
3.1 Observational changes at different stations

3.1.1 Climatological distribution of tropospheric O3,
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The four sites all show a distinct tongue-shaped pattern in top-down direction characterized by high concentrations

of O3 greater than 70 ppb, each exhibiting peak levels in distinct months. The O3, tongue extends from the lower ; '
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stratosphere to the middle troposphere, even further spreading downward to the lower troposphere. In subtropical

regions such as Hong Kong and Naha, the O;, tongue starts to appear in early spring. Their appearance becomes
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progressively delayed when moving towards higher latitudes, with peak occurrences observed in Tsukuba during
June and Sapporo in July (Figure 2c-d). For the mid-latitudes over the Pacific region, the incidence of stratospheric

intrusions has been found to have a strong correlation with the location of the STJ (Zhao et al., 2021). The

northward shift of the STJ with seasons agrees well with the occurrence of the O; tongues, in different months over |
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On the other hand, the four sites display distinct month-height cross-section distribution patterns of Os. In near-
tropical regions such as Hong Kong and Naha during the summer, a relatively "clean" layer with O3 mixing ratios
less than 40 ppbv extends from the surface to about 5.0 km above the ground level (AGL). Such a structure,
characterized by low concentrations in the lower troposphere is not observed at the other two high-latitude sites.

The unfavorable meteorological conditions linked to the East Asian monsoon such as,a strong wind, precipitation,

~( Deleted: like

and less radiation could lead to significant O3 scavenging and less photochemical production. This suggests that

the East Asian summer monsoon has a more significant impact on Os vertical structures at lower latitude sites
compared to high latitude sites. Meanwhile, it is noticed that high O3 mixing ratios appear within the atmospheric
boundary layer (ABL) (0.7-1.6km according to Su et al., (2017)) in Hong Kong in autumn (Figure 2a), which
represents the combined effect of local emissions and regional transport. During this season, the prevailing winds
are predominantly from northwest to north, which could bring elevated levels of O3 and its precursors from the

Pearl River Delta region, a major manufacturing base in China, to Hong Kong (Ding et al., 2013; Lin et al., 2021).
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JFigure 2. Month-height cross sections of monthly mean O; at four Os: ding sites, (a) Hong Kong, (b) Naha, (c)
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Tsukuba, and (d) Sapporo, from 1990 to 2017/2020 (2000 to 2020 for Hong Kong). Black dash lines indicate the multi-

: CFormatted: Font color: Text 1

year average tropopause height,calculated by observations according to the WMO lapse rate tropopause definition,

3.1.2 Long-term trends in different layers of the troposphere

Figure 3 presents the long-term trends of Os in the upper, middle, and lower troposphere. In general, O3 in the
upper troposphere shows larger increases during boreal spring and summer than autumn and winter among the
four sites except for Hong Kong. The largest Os trends are observed at Naha with an increase of 0.82 ppb a™! during
the summer and at Tsukuba (0.63 ppb a') during the spring (at a 95% confidence level). Hong Kong only shows
a significant O3 increase in spring with 0.60 ppb a™! while Tsukuba exhibits extensive Os increase except winter.

For the Sapporo site, substantial positive O3 changes are observed during summer but not statistically significant

7

( Formatted: Normal, Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border), Between : (No
border), Tab stops: 8,25 cm, Centered + 16,51 cm, Right

(Formatted: Font color: Text 1

NN

(Deleted: q )

(Deleted: .
(Formatted: Font color: Text 1

AN NI




B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29

B30

¢ (Formatted: Font color: Black )

due to large temporal variabilities. This finding implies the importance of STJ in the change of Os in the upper
troposphere at Naha and Tsukuba. The locations are situated within the transitional zone between the Hadley and

Ferrel circulation cells in spring and summer, as illustrated in Figure S3, This influence appears more pronounced

in comparison to the other two sites, namely Hong Kong and Sapporo, which are situated further from this

transitional zone.

Moving to the middle troposphere, Naha and Tsukuba consistently display an O3 increase during all four seasons.

= (Deleted: S2

= CDeleted: ozone

The changes at these two sites in spring, summer, and autumn are more evident than those at the other two sites
and winter. This suggests a potential strengthened contribution from regional transport and stratospheric intrusion
for these two sites. In addition, lightning-produced NOx emissions contribute to major events of O3 in the middle-
upper troposphere over convection active regions (Liu et al., 2002; Zhang et al, 2012). How those factors contribute
to Os enhancement remains a question for further investigations.

In the lower troposphere, substantial Os increases are observed at all sites in spring except Tsukuba. Os
enhancement in the lower troposphere over Hong Kong during springtime is associated with either equatorial
Northern Hemisphere biomass burning in Africa or Southeast Asian biomass burning (Oltmans et al., 2004). The
Tsukuba site experienced a slight decrease in summer over the past three decades. Such a decrease could be

primarily attributed to the changes in anthropogenic emissions in East Asia (Li et al, 2019).
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JFigure 3. Long-term

column), Middle Troposphere (defined as 0.4-0.6 tropopause normalized height.

econd column), and Lower

Troposphere (defined as 0-0.2 tropopause normalized height, third column) in boreal spring (MAM, red lines),
(JJA, yellow lines), autumn (SON, black lines), and winter (DJF, blue lines) at Hong Kong (al-a3), Naha (b1-b3),

Tsukuba (c1-c3), and Sapporo (d1-d3). Trends with a star symbol (*) indicate significance at the 95% confidence level.

Overall, the long-term changes in tropospheric Os displayed considerable variability, contingent on the
atmospheric layers (i.e., low, middle, and upper) and the geographical latitude of observation sites. Naha, Tsukuba,
and Sapporo exhibited an increase in the middle-upper troposphere. A substantial rise is observed in the upper
troposphere during summer over Naha (0.82 ppb a™') and spring over Tsukuba (0.63 ppb a'). When compared to
the other three sites, changes in the middle-upper troposphere over Hong Kong are smaller or negative, except
during springtime. All four sites demonstrated an increase in O3 mixing ratios across the four seasons in the lower
troposphere, except for summer in Tsukuba. Investigating the driving factors behind such differences in change
becomes one of the objectives of this study. A more comprehensive exploration of O3 origin and their contributions
to the changes in tropospheric O3 will be discussed in Section 3.2, leveraging modeling results to provide deeper

insight.

3.1.3 Changes in composite O3 cross-sections between decades

Tropospheric O3 shows a larger variability in the upper troposphere compared to the middle and lower troposphere
(Figure 3 al-d3). Such a large variability, likely driven by transport and dynamics in the tropopause region,
impedes drawing definite conclusions on long-term trends for single measurement sites with infrequent sampling.
Therefore, the aggregation of tropospheric O3 during the early and late decades is expected to provide more robust

insights.

Figure 4 illustrates the vertically resolved tropospheric Os distributions and changes between the early (the 1990s
for Naha, Tsukuba, and Sapporo; the 2000s for Hong Kong) and late (2010s) decades as a function of the month.

Their respective tropospheric Os changes over the same period (i.e., 2000s to 2010s) at the four sites are presented

1 of O in the Upper Troposphere (defined as 0.7-0.9 tropopause normalized height, first

in Figure S5, to demonstrate the consistency of the results. The time lag pattern for the Oj tongue remains the same _

from April in the southern site of Hong Kong to July in the northern site of Sapporo for the first and the last

decades (Figure 4 al-d1). However, there are noticeable increases in O3 mixing ratios and a deeper layer extension
of the O3 concentration greater than 80 ppbv from the stratosphere to the troposphere at Naha and Tsukuba over

the past several decades (Figure 4 a2-d2).

As illustrated in Figure 4 a3-d3, Naha, Tsukuba, and Sapporo exhibit significant enhancements of O3 from the

middle-upper troposphere to the lowermost stratosphere, In contrast to the three sites in Japan, Hong Kong shows

more significant O3 changes in the lower troposphere. The build-up of lowermost stratospheric (LMS) O3 happens
from the winter to spring, thus the STE flux of O3 normally reaches its peak during late spring to early summer in

the extratropical regions (e.g., Skerlak et al., 2015; Albers et al., 2018). The 05, tongue during the spring and

summer is possibly associated with enhanced contribution from stratospheric intrusions. While it may be tempting

to conclude that such an Os increase primarily originates from the stratosphere due to their proximity, observational
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B78  data alone cannot provide a definite conclusion. Additionally, different locations among the four sites may

B79  introduce further differences in O3 sources.
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B82 and Sapporo, but 2000s for Hong Kong), the last period (P2: 2010s), and the differences of O3 between P2 and P1 at
B83 (al-a3) Hong Kong, (b1-b3) Naha, (c1-c3) Tsukuba and (d1-d3) Sapporo. Black dash lines indicate the tropopause
B84  heights,calculated by observations according to the WMO lapse rate tropopause definition, Dashed lines in the a3 (Deleted; .
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B87  Figures 5b-d present a comparison of seasonally-averaged vertical O3 profiles between the 1990s and the 2010s at

B88  the Naha, Tsukuba, and Sapporo sites. A parallel analysis is conducted for Hong Kong but for a comparison
B89  between the 2000s and 2010s (Figure 5a). While the general trend indicates an increase of Os mixing ratios with
B90 altitude, with higher values during spring and summer, several noteworthy features are identified from Figure 5.
BO91  Firstly, vertical Os profiles vary with latitude and season. For instance, Hong Kong and Tsukuba show Os peaks
B92  within the ABL in autumn (black lines) and during summer (yellow lines), respectively. These peaks suggest a
B93  predominant influence of local anthropogenic emissions during the warmer months. A substantial O peak at Hong

B94  Kong is observed around 0.2 normalized height (around 3-4 km above ground level) during spring. This

B95  enhancement is attributed to a combination of stratospheric intrusions and the transboundary transport of biomass-
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burning emissions originating from Southeast Asia (Liao et al., 2021; Zhao et al., 2021). On the other hand, Naha
and Sapporo do not exhibit discernible peaks in the lower troposphere, suggesting a relatively smaller impact from

the combination of near-surface factors and stratospheric intrusions.

Secondly, the seasonal minimum O3 mixing ratios in the lower troposphere are observed during summer rather
than winter, contrasting with the middle to upper troposphere observations over Hong Kong and Naha. This

seasonal difference in the lower troposphere could be attributed to the influence of the East Asia Monsoon as

Conversely, the minimum seasonal Os mixing ratios occur during winter throughout the entire troposphere at the

other two sites.

Thirdly, enhancements of Os in the middle and upper troposphere are considerably more pronounced over Naha,
Tsukuba, and Sapporo than over Hong Kong during the warm seasons (spring and summer) over the past three
decades. This enhancement is particularly significant in the upper troposphere in Naha and Tsukuba during
summer, as indicated by the dashed and solid yellow lines. In Hong Kong, enhancements are primarily observed
at the top of the ABL in spring and within the ABL in fall, corresponding to where seasonal maxima are observed.
These findings align with previous research (Huang et al., 2005; Ding et al., 2013; Liao et al., 2021; Lin et al.,
2021).
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JFigure 5. A comparison of vertical profiles of I mean O; during spring (red),

and winter (blue) at four sites (a) Hong Kong, (b) Naha, (¢) Tsukuba, and (d) Sapporo between the first and the latest

decades.

3.2 Comparison with observations and, stratospheric yersus tropospheric attribution, using EMAC{'

simulations

11

‘v,CFormatted: Font color: Text 1

g ( Deleted: Quantification of
(yellow), autumn (black), .~

4 v,(Formatted: Font color: Text 1

( Deleted: production

'(Formatted: Font color: Text 1

" Formatted: Normal, Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border), Between : (No
border), Tab stops: 8,25 cm, Centered + 16,51 cm, Right

CDeleted: , while not so clear for the seasonal difference in )
(Formatted: Font color: Text 1 )
CFormatted: Font color: Text 1 )

(Deleted: )

Formatted: Outline numbered + Level: 2 + Numbering
Style: 1, 2, 3, ... + Start at: 2 + Alignment: Left + Aligned at:
0 cm + Indent at: 0,63 cm

( Deleted: intrusion

CFormatted: Font color: Text 1

AN A A A




R (Formatted: Font color: Black )

N Formatted: Normal, Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border), Between : (No
border), Tab stops: 8,25 cm, Centered + 16,51 cm, Right

129  In order to substantiate the observational findings, we now turn to the quantification of the relative contributions

A30  ofkey drivers to the observed changes in tropospheric O3 based on the EMAC simulations.
A31

A32  3.2.1 Evaluation of EMAC simulations

A33  The EMAC simulations of Os for, different altitude ranges in

the troposphere are further evaluated with the O (Deleted: at

N34 sounding data during the study period. As illustrated in Figure 6, the majority of data points are located above the : (Formatted: Font color: Text 1
A35 1:1 line at all sites, indicating that the EMAC over-predicts Os in the troposphere, which agrees with other related CDeleted: portions of
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A39 indicated by the coefficient of determinations (R?). For instance, R? reaches the highest value of 0.75 in the lower

A40 troposphere over Naha (Figure $b3), whereas R is only about 0.23 for the middle troposphere over Hong Kong | o
A4l (Figure pa2). As for the mid-latitude sites, Tsukuba and Sapporo, the EMAC model shows a relatively good B

A42 representation of Os in the different layers of the troposphere, despite the overall overestimation, and in contrast

Aa3 to the Hong Kong and Naha sites with highest R? in the MT. It is worth noting that although EMAC generally \
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slightly less than the observations with 0.82 ppb a™! for the past three decades (Table 2). Except for Hong Kong,
the other three sites in the north have larger positive trends of O3 in the upper troposphere than in the middle and
lower troposphere from spring to autumn. Hong Kong shows a relatively large positive trend of Os in the middle

and lower troposphere compared to, other sites during the past 30 years.
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different layers of the troposphere.
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Table 2. The trends of EMAC-simulated Os (ppb a”) in the upper, and lower troposphere in different seasons
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quantitatively well. Specifically, the model captures a key feature with the O3 tongue that occurs from late spring

to early summer over four sites and their variation with latitude. The summer relatively "clean" layer with low O3

mixing ratios in the lower troposphere at the southern sites of Hong Kong and Naha is also well simulated.
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Figure 8. EMAC-simulated monthly mean Os in the 1990s and 2010s, and their differences between 2010s and 1990s at
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the four observation sites (al-a3) Hong Kong, (b1-b3) Naha, (c1-c3) Tsukuba and (d1-d3) Sapporo. The horizontal axes
denote the months of the year and the vertical axes represent the height above ground. Dots in the a3-d3, represent the _
layer with statistically significant changes according to a paired two-sided t-test (p < 0.05).

Overall, the EMAC model reasonably simulates the spatial and temporal variations in tropospheric O3 as compared
to the O3 observations at the four sounding sites. Consistency between the model and observations suggests that
the trends observed in the Japanese ozonesondes remain valuable despite uncertainties related to the transitions
between the two types of ozonesondes. Moreover, the model can effectively be used to investigate the drivers of

these trends.
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3.2.2 Changes in O3S and OsT derived from EMAC simulations

To gain deeper insights into the factors contributing to tropospheric O3, we analyze the EMAC-simulated total O3
in the troposphere, origin of O3 from the stratosphere (i.e., stratospheric intrusion, OsS), and origin of Os from the
troposphere (i.e., photochemical production in the troposphere, O3T) at the four sites, along with their latitudinal
variations (Figures 9 and 10). The layer with the large mixing ratio of O3S extending from the lower stratosphere

to the troposphere occurs in early spring af, the southern site (i.c., Hong Kong). Conversely, similar occurrences

are observed to shift to early summer in the northern site (i.e., Sapporo) (Figure 9). The seasonal buildup of mid-
latitude total O; typically unfolds from winter through late spring, followed by a decline in summer (Fioletov and

Shepherd, 2003). The seasonal lifting of the tropopause will naturally contribute to the entrainment of Os-rich air

from the stratosphere into the troposphere (Monks, 2000). Furthermore, together with dynamical processes such

as tropopause folding in the vicinity of the subtropical jet (Baray et al., 2000), stratospheric O; is transported
downward into the troposphere. Over the past 30 years, the two sites within the subtropics (Tsukuba at 36°N and
Sapporo at 43°N) exhibit larger O3S increases in the lower stratosphere and upper troposphere compared to the

other two sites situated in the near-tropical region (Hong Kong at 22°N and Naha at 26°N).

The OsT shows seasonal maxima during the warm seasons (from March to October) throughout the troposphere
in Hong Kong, while mainly occurring in the middle to upper troposphere among three Japan sites (Figure 10). In
the lower troposphere at Hong Kong, the OsT contributes more than Oss (60-80 ppb vs. 10-20 ppb) in the separated

O3 hotspots around 2-4 km, during spring. In the tropical regions, air rises in the Hadley cell from the surface to

the upper troposphere, and further ascent into the stratosphere where it is transported to the mid-latitudes by the

BDC, (Brewer, 1949; A. Stohl et al., 2003). In this way, the tropospheric origin O3 could be further transported to

the middle-upper troposphere of middle-latitude regions.

Several factors influence O3 mixing ratios over study regions, which could potentially be responsible for the local
maxima in OsT: transport from near-surface tropospheric O3 within the upward branch of the Hadley cell into the
upper troposphere; horizontal transport from upstream polluted regions, e.g., mainland China in this study;
biomass burning related transport; enhanced mixture by active convection and lighting events; local photochemical
Os production. O3T has shown significant enhancements among the four sites over the past several decades.
However, the primary contributors to the high OsT concentrations and their enhancement vary with locations and

layers, which require further investigation.
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3.2.3 Attribution, of EMAC tropospheric O3 changes: O3S vs. O3T,
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Utilizing the reasonably realistic simulations of tropospheric O3 and their variations by the EMAC model, we can
now quantify the respective contributions of O3S and OsT to the changes in tropospheric O3 between the 2010s
and 1990s, as presented in Table 3. Overall, the increase of OsT (up to 11.09 ppb) dominates the O3 increase

throughout the troposphere at all the sites during summer. Particularly for the near-tropical sites, Hong Kong and

Naha, the increase of OsT contributes more than the O3S changes with percentage contributions greatly more than

60%, even offsetting the decrease in O3S during winter and spring. Conversely, for the subtropical sites, Tsukuba

and Sapporo, O3S emerges as the primary driver for changes in the middle-upper tropospheric O3 during winter

and spring. The contribution of OsS to observed O3 increases by up to 96% at Sapporo in DJF and 40% at Tsukuba /
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Table 3. Tropospheric O3 changes and contributions, from O3S and OsT to changes of tropospheric O3 between the 2010s and 1990s at the upper, middle, and lower troposphere (U
and LT) in different seasons. The percentage contributions of O3S and OsT to Oz changes are listed in the parentheses.
A4
Station Os changes (ppb), OsS ch (ppb) OsT changes (ppb)
MAM _JJA SON DJF MAM JJA SON DJF MAM JJA SON DJF
Hong  UT 355 12.53  7.09 040  2.03(-57%) 1.44(11%) 1.41 (20%)  —3.44 (860%) 5.58 (157%) 11.09 (89%) 5.69 (80%) 3.04 (—
Kong MT 635 9.22 7.50 0.32 .1.30 (20%) 0.96 (10%) 1.23 (16%)  —2.84(—888%)  5.06 (80%)  8.27 (90%)  6.27 (84%) 3.16 (9¢
LT 9.62 1147  6.28 2.10 0.88 (9%) 0.10 (1%) —0.13 1.24 (59%) 8.73 (91%) 11.37(99%)  6.41 (102%) 0.86 (41
(72%)
Naha UT 594 1476  7.76 131 .05 (18%) 3.81(26%) 2.98 (38%)  —1.87(—143%)  4.90 (82%) 10.95 (74%)  4.78 (62%) 3.18 (24
MT 852 6.29 6.74 2.19 2.32(27%) 0.08 (1%) 1.10 (16%)  —1.03 (—47%) 6.19 (73%)  6.22(99%)  5.64 (84%) 3.22 (14
LT 5.86 3.32 175 171 2.35 (40%) —0.19 0.07 (4%) 0.73 (43%) 3.51(60%)  3.51(106%) 1.68 (96%) 0.98 (5
(£6%)
Tsukuba UT 10.65 1145  6.35 -2.08  7.33 (69%) 4.23 (40%)  2.19(34%)  —4.59 (221%) 332(31%)  7.22 (60%)  4.15 (66%) 2.51 (=
MT  4.54 7139 5.18 2.74 1.50 (33%) 2.10 (28%) 1.39 (27%)  0.51 (19%) 3.04 (67%)  5.29(72%)  3.79 (73%) 2.23 (8]
LT 2.50 2.17 0.24 0.98 1.27 (51%) 0.44 (20%)  0.94 (392%)  0.90 (92%) 1.22 (49%) 1.74 (80%)  —0.70 (=292%)  0.08 (&
Sapporo  UT  8.66 8.58 511 4.82 6.85 (79%) 3.19(37%)  2.00(39%)  4.65(96%) 1.82 (21%)  5.40(63%)  3.11 (61%) 0.17 (4°
MT  3.80 573 3.88 227 .1.60 (42%) 1.59 (28%) 1.31 (34%) 1.62 (71%) 2.20 (58%)  4.14 (72%)  2.57 (66%) 0.65 (2¢
LT 2.37 2.80 0.27 0.60 ,1.19 (50%) 0.35 (13%)  0.71 (263%)  0.69 (115%) 1.18 (50%)  2.45(87%)  —0.45 (=163%)  —0.09 (-
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P91  [To get a more complete picture of how tropospheric O3 changes along the Northwest Pacific regions, the zonal

92  mean of tropospheric O3, O3S, and OsT changes are compared in Figure 11,and Figure S6, The climatological

B93  distribution of vertical tropospheric Os with latitude is determined by O3S in the subtropics and OsT in the tropics.
694

b95 Tropospheric O3 shows statistically significant positive changes from 10°N to 60°N in summer, with the maximum

AN

P96  in the middle to upper troposphere around 30°N. Similarly, OsT demonstrates a similar pattern of changes as
b97 tropospheric O3 in summer, indicating that tropospheric photochemical Os production is the primary driver of the
F98 summertime tropospheric O3 enhancement. Strengthened downward transport of stratospheric O3 primarily affects
B99  the upper troposphere in the subtropics during summer.

600

P01  Conversely, during winter and spring, the O3S significantly contributes to the enhancement of tropospheric O3 in

P02  the subtropics. Positive changes in OsT are observed south of 40°N, partly offsetting the decrease in O3S in the

P03 upper troposphere, e CDeleted:
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In this study, thirty years of ozonesonde observational data at four ozonesonde sites (Hong Kong, Naha, Tsukuba,
and Sapporo) are presented together with simulation results of the chemistry-climate model EMAC to characterize
the temporal and spatial variation patterns and the long-term changes of tropospheric O3 along the Northwest

Pacific region.

The analysis of the seasonality in O3 shows a seasonal maximum throughout the troposphere, occurring in late
Additionally, for Hong Kong and Naha, the lower tropospheric O3 exhibits a seasonal minimum. As for long-term
changes, tropospheric O3 generally increases at all four sites. Naha and Tsukuba, show larger positive trends of
O3 up to 0.82 ppb a’!, particularly in the upper and middle troposphere. The aggregation analysis between different

decades indicates that the seasonal maximum in the troposphere becomes more pronounced and deeper over time.

Based on EMAC simulations, the summer and autumn enhancement of O3 in the middle-upper troposphere is

mostly attributable to tropospheric O3 source linked to increasing pollution emissions, with percentage

contributions more than 60%. On the other hand, O3 originating from the stratosphere dominates the large portion

of middle-upper tropospheric O3 enhancement by 19-96% and 28-40% in the mid-latitude during winter and
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spring. The climatological maximum observed in the seasonality of O3 throughout the troposphere is associated

(Formatted: Font color: Text 1

with both stratosphere-troposphere exchange north of 30°N and photochemical O3 production in the troposphere

in spring. These findings corroborate the features discussed by Oltmans et al. (2004), confirming them with a

longer observational dataset based on the tagged Oj tracers in the EMAC model. Our results further confirm the

oftsetting effect of OsT increase to the decrease in O3S in the tropical troposphere during winter and spring.

While the magnitude of O; trends is well simulated with the EMAC model in most atmospheric layers,
uncertainties persist in the mean values due to various factors. These include large dynamical variability
perturbing stratosphere-to-troposphere Os transport, the influence of Os-depleting substances, uncertainties of
long-term changes in emissions, insufficient treatment of chemical processes, or inaccurate transport due to
excessive numerical diffusion in the tropopause region, etc. Additionally, uncertainties may arise from
interpolating the relatively coarse horizontal and vertical resolution of the global model data to the locations of the
observational sites. Nevertheless, the presented results indicate a satisfactory level of agreement between the

model results and the observations, allowing further disentangling of OsT versus O3S contributions.

The dynamical and chemical drivers for such long-term tropospheric changes deserve further analysis in the future.

Here, we propose geveral, mechanisms based on related research that could potentially contribute to pbserved,
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tropospheric O3 enhancements in East Asia. Regional transport is one important contributor to tropospheric O3
enhancement. Compared with the other two Japanese sites, Naha, to the east of China, is susceptible to regional
transport of air pollution from China. The prevailing westerly winds bring Os-enriched air from eastern China to
Naha, resulting in a substantial increase of O3 from the middle to upper troposphere. Internal dynamical
variabilities such as the warm phase of El Nifio-Southern Oscillation (ENSO) and the easterly phase of the Quasi-
Biennial Oscillation (QBO) are known to be closely tied to enhanced STT of O3 (Neu et al 2014, Zeng and Pyle,
2005). The ENSO/QBO-related changes can influence jet stream variations, leading to the formation of tropopause
folds through Rossby wave breaking (Albers et al 2018). Increased frequency and the northward shift of tropopause
2
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folding events are observed in the East Asia region (Figure ,S7), attributed to an increase in the zonal wind and

poleward-upward shift of the STJ driven by global warming—induced increases in greenhouse gasses (Akritidis et

al 2019, Manney and Hegglin, 2018). With increasing greenhouse gases, the BDC, tends to strengthen due to larger

zonal-mean temperature gradients and increased wave drag in the extratropical stratosphere (Shepherd and

McLandress, 2011; Neu et al 2014). This results in an increased Os reservoir over the subtropical LMS, facilitating

downward transport to the troposphere under the influence of the Pacific jet (Hegglin and Shepherd, 2009; Albers

etal 2018).

Data Availability Statement: The ozone-sounding dataset used for observational analysis in the study is publicly

available at the World Ozone and Ultraviolet Radiation Data Centre via

has been published on Zenodo, which can be freely downloaded via https://zenodo.org/records/11093806,,

Supplement: Supplementary.pdf -
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