Dear reviewers,

We'd like to thank you for the careful consideration of our paper. We have incorporated
your revisions and believe the paper is much stronger for it. Many suggestions have led
to the inclusion of new figures which elucidate the strengths and weaknesses of the
proposed technique.

The major changes are listed below. Some minor changes are also listed below; the
rest are listed with the responses to reviewer comments.

Major Changes

e Added a new section (4.7) and four new figures on the relationship between
cloud horizontal/vertical extent and model skill.

e Added a new section (4.8) and a new figure to illustrate the relationship between
terrain/region type (land, sea, mixed), altitude, and model skill.

e Added a new appendix (B) and a new figure (B1) with more qualitative examples.

e Added a new appendix (D) and a new figure (D1) which delves into the
relationship between solar geometry and model skill. We found that solar
geometry and model skill were largely uncorrelated.

e Moved the part about per-layer feature depths to its own section, correcting a
mistake about the simple CNN depths

Minor Changes:

e Changed “open-source” to “publicly available” when describing the dataset in the
abstract

e Added missing references to tables and figures

e Added a paragraph at the start of section 4 discussing Figure 3.

e Filenames have been added to the qualitative figures (3 and B1)



RC1: 'Comment on egusphere-2023-2392', Anonymous Referee #2, 05 Feb 2024
General Comments:

This work trains a hierarchy of deep learning models to predict 3D cloud volume. It
uses multi-angle, multi-spectral polarimetric imagery as the input and is trained against
W-band cloud-radar measurements. This paper is a good fit for atmospheric
measurement techniques, as it demonstrates a new technique for processing multi-
angle observations that will benefit several upcoming satellite missions. The
methodology also appears sound. However, | think that the results can be explored in
more depth to provide more insight into the performance of the technique and the
information content of the measurements. | therefore recommend major revisions to
the paper to accommodate additional analysis suggested below.

Specific Comments:

The performance of the technique (dice score) is only categorized by altitude which
provides limited insight into the factors controlling the technique and the information
content of the measurements. | suggest additional analysis below to solidify the
support for several key discussion points in the paper.

The results should be stratified by region/surface type and perhaps solar zenith angle.
The authors mention a strong sensitivity to region/surface in principle but do not
quantify it in their own results.

We added a new section (4.8) and a new figure (11) which explores surface type.

As for solar zenith angle, we found no meaningful relationship between it and our
model’s skill (see below plots). However, we did include a new appendix (D) which
stratifies results by solar zenith and solar azimuth. These results indicate there is little
meaningful relationship between solar geometry and skill.
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Furthermore, | think that the ability to detect the cloud base/volume in thick or multi-
layered scenes should be explicitly explored by quantifying skill as a function of
cumulative optical depth from the TOA measured by CALIOP and/or by categorizing by
nth layer as identified by CLDCLASS-LIDAR (or similar) product. The authors mention
this in their discussion, but it is not quantified. Quantifying this will highlight whether or
not the POLDER measurements are able to extract the signal of distinct cloud layers
within the same column from their multi-angle signatures and would be a valuable
contribution.

Secondarily, | wonder about the role of cloud-horizontal-size, and how it varies by
altitude, in setting the performance of the technique. | imagine that performance
degrades for clouds that become unresolved by the multi-angle measurements.

It would be valuable if the authors could quantify this as it might provide some
guidance on how the performance of the technique may extrapolate to higher-
resolution measurements (e.g. PACE/AOS) as more and more clouds will be ‘resolved’
by the multi-angle imagery.

We added a new section (4.7) and four new figures (7, 8, 9, 10) on the relationship
between vertical / horizontal extent and skill.

Our expanded analysis does not use cloud optical depth but rather the geometric
depth of clouds from CLDCLASS. This is because we do not have ready access to a
reference optical depth data set - the CALIOP lidar saturates at moderate optical
thicknesses, and the CloudSat radar profiles are not directly interpretable as a visible-
wavelength optical thickness (nor are they readily available on the Caltrack reference
grid). We believe that examining physical cloud depth provides sufficient context for
the understanding of the behavior of the NN model.

The authors mention poor performance when CALIOP observations are included in the
training data due to the abundance of optically thin clouds (Line 105). This seems like
an important point, and so it would be useful to describe exactly the properties of
these clouds (i.e. what is the definition of ‘optically thin?). Does this include optically
thin low clouds - to which passive sensors are actually more sensitive? Or does it
primarily result from very thin (tau < 0.3) cirrus clouds?

We updated line 105 to clarify that the issues with CALIOP primarily arise from cirrus
clouds.

| also would suggest the opposite issue in the training of the technique may also exist,
which is that POLDER is actually sensitive to many clouds that are not flagged by the
radar despite having a substantial optical signal (Chan and Comiso, 2011), which may



result in poor skill. My guess is that including CALIOP in the training data may actually
improve skill at low altitudes with appropriate filtering of the training data.

This is certainly possible. We added a note in the text, as well as a reference to the
Chan and Comiso paper. Modifying the proposed method to work for CALIOP +
CloudSat data would be an interesting future project. As it would likely require
significant filtering of the training data, as well as potential modifications to the
optimization procedure, we consider it beyond the scope of this work.

The authors describe several different network architectures which take stacked multi-
angle imagery registered to the surface. My understanding is that a CNN requires wide
enough filters and a deep enough number of layers to encode non-local information.
When combining multi-angle features there should be a simple relationship between
the disparity in pixel-space and the required depth/width of the network. These
arguments would suggest a relatively small amount of non-local information available
from POLDER, supported by the relative skill of the models, but not for higher-
resolution measurements. | think it would be valuable for the authors to comment on
the selection of model architectures for these sorts of problems and describe what
they might do for (PACE/AQS).

We addressed the comment about architecture selection by adding a paragraph at the
beginning of section 3.2 (Architectures) which further justifies why we approached
architecture selection in the way we did, including the concept of a receptive field. We
also added one sentence to each architecture paragraph explaining the hypothesis
behind its selection, in terms of spatial context and model depth. Finally, we added a
short paragraph at the end of the discussion section connecting what higher-resolution
products in PACE and AOS will mean for architecture selection.

We would slightly disagree about the ‘relatively small amount of non-local information
available from POLDER. Yes, there is only a small gap in skill between the simple
convolutional network and the U-Net. But even with only 5 convolutional layers (3x3
kernels), the receptive field of the simple convolutional network works out to 11x11, so
66-77km on the surface (although the effective receptive field will be somewhat
smaller). We suspect some of the (significant) difference between the single pixel
model and the simple convolutional model is due to the addition of this spatial context.
The U-Net, by design, has a receptive field that covers the entire image. It is unclear
how much of the (small) skill difference between the simple convolutional network and
UNet is due to the receptive field / effective receptive field and how much is due to
other properties of the architecture. An interesting follow-up work might involve a
thorough comparison of many different architectures at this task, to isolate which



principles of CNN design translate from the ground-level imagery domain, and which
principles do not.

Technical Comments:

Line 7: The comment about “limiting assumptions” requires some justification as
polarized 3D RT is an asymptotically accurate approximation of EM in the atmosphere.
Computationally expensive, for sure.

We removed the comment about “limiting assumptions.” You are right that it requires
more justification. That justification doesn't belong in an abstract.

Line 9: This pre-processed dataset doesn’t seem that generally relevant, given that it is
a single dataset, rather than a tool that can operate on and harmonize many different
datatypes. Perhaps, this should not be emphasized as strongly in the abstract?

We chose to focus on the dataset as an independent contribution as it enables other
researchers to more easily follow up on our work. Datasets are often strongly
emphasized in machine learning papers, for this reason, and we want to advertise the
availability of data to any readers who might otherwise only read the abstract.

Line 19 & 20: Some more specificity/references here would be good e.g. radiative
effects / hydrological cycle etc.

This is a good idea; we added a line and a citation about cloud radiative effects in the
introduction.

Line 22: “is of utmost importance” rather than “will be"?
Thank you for the catch; this has been corrected.
Line 44: References for multi-layer errors. (Mitra et al., 2021; Holz et al., 2008)

Line 46: Also worth mentioning CPR’'s & CALIOP's sensitivity issues/differences for thin,
liquid clouds (Christensen et al., 2013; Chan and Comiso, 2011)

Line 42 - 56: There is a wide variety of work that employs statistical techniques to
retrieve 3D cloud structure beyond Bruning et al., 2023 ranging from local nearest-
neighbor matching from Barker et al., 2011 for 3D reconstruction to generative
adversarial networks trained on MODIS-A-train pairs (Leinonen et al., 2019; Barker et
al., 2011).



Thank you for the references. These have been added to the text.

Line 48: “The introduction of uncertainty as a part of stereo algorithms must be
weighed against the benefit of a wider swath.” | don't quite understand this sentence.
Perhaps, “the introduction of uncertainty into the retrieved cloud top height as a result
of applying stereo.” If this is the statement, then | would disagree. All retrievals have
uncertainties and stereo tends to be more precise than the mono-angle radiometric
alternatives. The tradeoff is also in terms of cost. A multi-angle camera is much
cheaper than a lidar.

We removed the misleading sentence - it was originally intended to emphasize the
uncertainty of stereo but fails to account for the relative uncertainty of stereo vs. other
retrievals.

Line 62: It would be helpful to reference some examples of these applications, even if
they are for surface remote sensing, for example.

Line 65 - 70: (Castro et al., 2020) might also be referenced here as an example of high-
resolution cloud stereo.

Thank you, this reference has been included.
Line 63: Putting the exact POLDER resolution here would be helpful.
The exact POLDER resolution has been added.

Line 78: 3DeepCT does not perform a segmentation task. It is not retrieving a binary
mask, it is regressing for the 3D liquid water content. The more sophisticated extension
of this work may be of interest in terms of model architectures which explicitly handle
the multiple projections of multi-angle imagery (Ronen et al., 2022).

You are correct - and this has been corrected. We also added a reference to the Ronen
et al. paper.

Line 95: Should this be “16 viewing angles from which a point on the Earth can be
observed”?

We changed “pixel” to “point on the Earth.”

Line 242: A reference for the increasing powers of two in number-of-filters per layer
would be helpful.



Added a short justification, referencing the relationship between powers of two and
the down-sampling caused by 2x2 max pooling operations. A discussion of the many
reasons for increasing by powers of two would require its entire own section and is
beyond the scope of this paper.
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This work explores the applicability of deep learning models to predict 3D cloud
masking. Using multi-spectral, multi-angle polarimetry, three models are trained, each
with increasing complexity, to output a vertical profile (radar-based). The proposed
approach is novel and combined with the data set makes for a compelling addition to
this line of work. However, the limited analyses do not fully exhibit the performance of
the models nor do they help in evaluating the influence of geometry. Additionally, the
text often does not connect the physical world to the machine learning techniques and
terminology and could use revisions to help the general reader understand why such
an approach could be seen as beneficial as opposed to traditional ones. If some of the
changes listed below are adopted, | believe the paper would be stronger and advocate
the approach better. | recommend accepting the paper upon major revisions.

Specific Comments:

While the background and methodology are explained very well, the current iteration
lacks a few key points and analyses. Perhaps the most glaring issue lies with the lack of
mention or any explanation for Figure 3 which is arguably the most important figure to
capture the performance of the models. Based on this figure alone, one could perform
more analyses using histograms and heatmaps (details about further analyses below).

Thank you for pointing this out. We added a reference to figure 3 in the text. We also
added an appendix (B) with more qualitative examples, and line 315-316 comments on
these results. Four new figures (7, 8, 9, 10) also address this comment, to a certain
extent.

The Dice score, while familiar to a machine learning (ML) audience, is not a commonly
used term in remote sensing or the geosciences. The physical interpretation of the Dice
score is not presented in the text which makes it harder to see the use of such a metric.
The authors should add more context around the similarity scores and how the Dice
score plays into it along with examples of what a Dice score for a given pair of images
would mean in a practical sense. In the same vein, the authors report Dice score only
as a percentage, which is slightly misleading, especially since accuracy is also another
metric employed here. It should be reported as a fraction/decimal and if needed,
explained further by converting to percentages.

Thank you for this comment, and we relate to this sentiment. Unfortunately, the Dice
score is not very intuitive, as it lacks a fundamental physical interpretation besides its
relationship to the intersection-over-union of two sets. Equation 3 presents the Dice
score in these terms, as well as relating it to true/false positives/negatives.
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The Dice score is used for the reasons discussed in lines 330-333: “... several
advantages over pixel-wise accuracy metrics, including its tolerance to infrequent
positive samples and that it penalizes differences in location more than differences in
size.” As the paper is already quite long, we chose not to add more figures to explain
the Dice score. The references included in section 4.1 have lengthy discussions of the
Dice score.

Dice score is interchangeably represented as a decimal or as a percentage in the image
segmentation literature. We find that the difference is not meaningful, except for that it
is easier for the reader to compare the accuracy and Dice score numbers when both
are expressed as percentages.

Additionally, some of the ML terminology is either not explained in full or lacks a
rooting in the physical world (details in the technical comments). On the other hand,
one of the central parts of a paper leveraging deep learning is the architecture and
while the authors detail this in the text, figures on the architectures of the 3 models (or
at least the simple-CNN and U-Net) would be more beneficial. While Figures 2 and A1
help, they are more schematic flows than architectures. Itis recommended that
another appendix be added to this paper to delve deeper into the ML terminology as
well as more details and figures on the architectures and hyperparameters (although
one could see the benefit of including a figure of the architecture within the main text).

Thanks for the feedback - sometimes it is difficult to know to what extent to explain
some of these ML concepts. We've added some more explanations as you requested in

the technical comments.
100 x 100 x 226

As for the architecture diagrams, we decided not to include them for U-Net
as we did not want to imply that our modifications to U-Net were anything

more than trivial. The U-Net paper cited in the text already has a great
diagram, and the only important difference in our implementation is the
feature depths, which are described in depth in section 3.2.4. A diagram for
our simple CNN is not much more informative than simply knowing the
feature depths; a 3x3 convolutional kernel with padding of 1 does nothing to
change the feature width / height. Only the depth changes. We include a quick 100 x 100 x 132
diagram of the simple CNN to the right. The tensor’s size during the forward
pass is shown in black, with the convolutional parameter sizes in the green

boxes, listed in order of input depth, output depth, kernel height, kernel 100x 100x 101

100 x 100 x 59

100 x 100 x 226

100 x 100 x 173




Overall, the paper leans heavily into ML with some impressive results. However, |
expected more analyses to be performed. For instance, the authors mention that
training is performed on various sensor properties but do not show any quantifiable
analysis on some important factors. Results based on solar geometries would a)
provide insight into the model's invariance or dependence on them, and b) quantify the
effect of the geometrical corrections applied earlier in the data set. Another and more
important analysis could be based on the types of clouds (stratified by phase, optical
thickness, etc.), particularly relevant since instruments like CALIOP are known to have
issues with thin clouds and would provide another perspective into instrument vs.
algorithmic errors. Finally, there is a lack of explanation on how exactly this leads in to
AOS and PACE. Since both missions will have higher resolution sensors compared to
POLDER and the abstract makes mention of these missions, a more detailed discussion
on how this work might translate is warranted.

These are good points. The point on important factors, we hope, has been addressed

by the addition of figures 7, 8,9, 10, 11, B1, and D1. For solar zenith, see the figures in

the response to RC1, as well as appendix D. We found no strong relationship between
solar geometry and model skill. As for cloud types, (new) figures 7, 8, 9, and 10 analyze
the role of cloud horizontal and vertical extent.

We added lines 476-479 to discuss the relationship between this work and the higher
resolution sensors on PACE and AOS.

Technical Comments:

1. Line 78: 3DeepCT does not perform a segmentation task but rather a regression.
Thank you, this has been corrected.

2. Line 125: The term “test set” might be unfamiliar to those not working with
machine learning. It is recommended that the authors add a sentence stating that
the test set is not seen by the model during training or validation, and is,
therefore, the true test of the model's performance.

Lines 131-135 contain an explanation of the training / validation / testing set
conventions in machine learning. “Neither parameters nor hyperparameters
should be optimized with respect to the test set, which is the final measure of a
method's efficacy.”

3. Line 277: What experiments is this referring to? A sentence prior to this should be
added to clarify as it makes subsequent text harder to understand.
The same training procedure (loss, optimizer, number of epochs, etc) is used for all
experiments.



4. Line 281: No explanation is provided as to why the model performed worse with
data augmentation. Could the authors elaborate and if so, add that to the text?
Even if the exact reason is not known the readers and the applied machine
learning community would appreciate more specifics on why/why not.

You raise a good point. We added a hypothesis for why data augmentation
worsened performance (lines 306-309).

5. Line 288: Again, the term “binary cross-entropy loss” would benefit from a brief
explanation as to how it optimizes the network better than other loss functions.
We added an explanation (lines 300-303).

6. Line 293 and line 315: Which tables and figures? The reader should not be
expected to hunt for the relevant table and figures
This was an oversight and has been corrected, thank you.

7. Line 294: The first two sentences of this paragraph should be moved up to the
start of section 3.4 where it is relevant and needed. Then, this should be recapped
in this section to transition to the thresholding.

The model’s output is treated slightly differently when used by the loss function
and the evaluation function. We intentionally separated these so that the loss
function is described in the approach section and the evaluation function is
described in the results section, where it is immediately relevant.

Citation: https://doi.org/10.5194/egusphere-2023-2392-RC2



