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Abstract. The existing climate change scenario calls for immediate intervention to curb rising greenhouse gas emissions. An

improved understanding of the regional distributions of carbon sources and sinks under the perturbed climate system is vital

for assisting the above mitigation efforts. The current uncertainties in estimation can potentially be reduced by employing

a multi-data modelling system capable of representing atmospheric tracer transport adequately. This study focuses on the

mesoscale transport patterns that can affect atmospheric tracer distribution and examines how well they are represented in the5

meteorological models employed. We investigate the capability of the Weather Research and Forecasting (WRF) model to

predict meteorological fields such as temperature, humidity, wind, and planetary boundary layer height (PBLH) by comparing

different model simulations with surface and vertical profile observations available at urban and rural stations, Cochin and

Gadanki, and with global reanalysis data over India. Combining different model schemes and data products allows us to

present a model ensemble of 11 members. Using these ensemble simulations, the impacts of changes in physics schemes,10

initial and boundary conditions, and spatial resolutions on meteorology and, consequently, on CO2 mixing ratio simulations

are quantified. Most simulations capture variations in temperature and moisture very well (R2> 0.75). The wind (R2> 0.75 for

height above 2 km) and PBLH simulations (R2> 0.75 for daytime) are also reasonably correlated with the observations. The

sensitivity to changing planetary boundary layer (PBL) schemes and land surface model (LSM) schemes on meteorological

and CO2 mixing ratio simulations is significant, thereby producing higher inter-model differences between experiments. Our15

analysis provides an assessment of expected CO2 transport errors when using WRF-like models in the inverse modelling

framework. We emphasise the importance of treating these errors in the carbon data assimilation system to utilize the full

potential of the measurements and conclude that WRF can be utilised as a potential transport model for the regional carbon

flux estimations in India.

1

https://doi.org/10.5194/egusphere-2023-2334
Preprint. Discussion started: 6 March 2024
c© Author(s) 2024. CC BY 4.0 License.



1 Introduction20

Evidently, anthropogenic perturbations play a major role in causing the current climate crisis by emitting an unprecedented

rate of greenhouse gases (GHGs) into the atmosphere. Monitoring GHG emissions, predominantly carbon dioxide (CO2)

and methane (CH4) and their future projections have thus become paramount for climate change mitigation and adequate

policy implementation, focusing on the sustainable development of humankind (Friedlingstein et al., 2020). Combinations

of different approaches are required to estimate the anthropogenic and natural sources and sinks of carbon over a region. A25

multi-data modelling system that combines emission inventories constructed through “bottom-up” approaches, measurements

of carbon exchange fluxes, and observations of atmospheric mixing ratios has the potential to improve our understanding of

carbon sources and sinks (Bergamaschi et al., 2018; Rödenbeck et al., 2018; Inness et al., 2019). An essential component of

the modelling system mentioned above is an atmospheric tracer transport model that predicts the distribution of atmospheric

concentrations on a given set of surface fluxes.30

The interplay between weather patterns and surface fluxes significantly modulates long-lived greenhouse gases, such as CO2

and CH4. The observed variability of these gases is often correlated with the dominant mesoscale weather events in the region

(e.g. Van der Molen and Dolman, 2007; Pillai et al., 2016; Parazoo et al., 2008; Lin and Gerbig, 2005; Hedelius et al., 2018;

Keppel-Aleks et al., 2011; Agustí-Panareda et al., 2019; Vellalassery et al., 2021; Torres et al., 2019). On a regional scale,

tracer transport models employed at coarse resolution often fail to resolve this observed variability (Ahmadov et al., 2009;35

Gurney et al., 2003). To capture this variability associated with mesoscale events, the tracer transport model needs to advance

its Numerical Weather Prediction (NWP) capability and assimilate different meteorological observations. Recent developments

in assimilating accurate meteorological information such as air temperature, wind speed, and vertical mixing in the NWP have

increased the confidence levels of transport models (Hersbach et al., 2020).

As part of India’s emission monitoring and verification in line with the Paris Agreement, we aim to develop a high-resolution40

modelling framework that provides optimal estimates of CO2 fluxes by linking atmospheric concentrations to their surface

sources and sinks. In this framework, we use a numerical weather prediction model, the Weather Research and Forecasting

(WRF). The WRF model is a fully compressible non-hydrostatic model with terrain-following hydrostatic pressure as its ver-

tical coordinate and Arakawa C-grid staggering (Skamarock and Klemp, 2008) which can provide meteorological information

to this high-resolution modeling framework.45

The present study focuses on the mesoscale transport patterns that affect tracer transport. We investigate the ability of the

WRF model to predict the winds and other meteorological parameters as part of a broad goal of deriving Indian CO2 sources

and sinks via inverse modelling. The error in the wind components is one of the significant sources of uncertainty in tracer

transport (Hedelius et al., 2018). The biases in simulating temperature variability contribute to the uncertainty in deriving

responses of ecosystem respiration and net primary productivity (NPP) (Wang et al., 2013) in cases where biosphere models50

use modelled meteorological fields. The WRF model has several dynamics, and planetary boundary layer (PBL) modules, and

other physical schemes that are suitable for multiple climate conditions. Several studies have investigated the sensitivity of

the WRF model to different schemes and parameterizations, with very little agreement regarding which combination gives
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the best model performance (Misenis et al., 2006; Li and Pu, 2008; Hu et al., 2010; Sharma et al., 2017; Coniglio et al.,

2010; Meyer et al.; Yver et al., 2013). The difference in findings is mostly associated with differences in the study region,55

surface characteristics, and weather patterns associated with each of them. For example, Feng et al. (2016) showed that the

evolution of PBL and associated wind simulations improved greatly for the Los Angeles Basin using a combination of the

PBL scheme Mellor-Yamada-Nakanishi-Niino (Nakanishi and Niino, 2004) and a single-layer urban canopy model (SLUCM).

Lian et al. (2018) used the WRF model over Paris at 3 km resolution to examine its potential to resolve urban meteorology

in comparison with the European Center for Medium-Range Weather Forecast (ECMWF; Hersbach et al. (2020)) data at60

16 km resolution. Along with a selection of PBL schemes, they also used Four-Dimensional Data Assimilation (FDDA) in

WRF, which approximates the modelled values toward the observations using forcing terms in the equations. A considerable

improvement in WRF meteorology has been found with the use of such objective analysis and nudging tools. For the Indian

domain, recent studies have used the WRF model and evaluated it against observational and reanalysis data (Gunwani and

Mohan, 2017; Bhati and Mohan, 2018; Raju et al., 2015; Mohan and Sati, 2016; Ragi et al., 2020; Kalra et al., 2019; Chawla65

et al., 2018; Sivan et al., 2021). Most of these studies are either spatially or temporally limited, with a focus on monsoonal

patterns and precipitation, or not examining the impact of transport uncertainty on trace gas concentrations.

In this study, we present a detailed analysis for evaluating WRF using available standard near-surface and vertical profiles of

meteorological variables (temperature, relative humidity, and wind components) from two geographically unique observation

stations over India, Cochin (10.04 °N, 76.33 °E; an urban coastal site) and Gadanki (13.45 °N, 79.2 °E; a rural site). An70

evaluation using independent reanalysis data is also performed at the regional level. A set of numerical simulations using a

combination of different schemes and parameterizations is devised to assess their impact on model biases. The following four

main questions are addressed: 1. What are the spatial and temporal error characteristics of the model in capturing the diurnal

and monthly variability of temperature, relative humidity, PBL, and winds (both near the surface and upper air) across India?

2. How do the differences in model schemes, parameterizations, and horizontal resolution affect transport errors? 3. What are75

the sensitivities of the modelled variables to the initial reanalysis fields? 4. How do these transport errors affect the simulation

of the CO2 enhancement?

A description of the observations and the set of simulations generated in this study are presented in Sect. 2. Section 3

provides the quantitative error characteristics of the WRF model when evaluated with observations, including verification with

other reanalysis products. An assessment of errors in tracer transport simulations owing to transport model uncertainties is80

also presented. Section 4 discusses the impact assessments while varying the model schemes, horizontal resolution, and initial

reanalysis products. Finally, Sect. 5 provides the conclusions and implications of our results for CO2 transport.

2 Data and Methodology

2.1 Observations

The vertical profiles of available meteorological variables from radiosonde, Stratosphere-Troposphere (ST), and MicroWave85

Radiometer (MWR) were used to analyze the efficiency of the model in capturing the observed vertical variations. We also
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used surface observations of meteorological variables from an Automatic Weather Station (AWS). Observational data for

Cochin were obtained from the Advanced Centre for Atmospheric Radar Research (ACARR). The data used for Gadanki

were obtained from the National Atmospheric Research Laboratory (NARL) (website: https://www.narl.gov.in/; last access: 10

March 2023) and are available to the public. Table 1 provides an overview of the geographical features of the study locations90

and observational data used in this study.

Table 1. Characteristics of the study region. *Discrete observation data.

Station Cochin Gadanki

Location (lat, lon) 10.04° N, 76.33° E 13.45° N, 79.2° E

State Kerala Andhra Pradesh

Altitude (amsl) 0 m 375 m

Vegetation Mixed agricultural pattern Mixed agricultural pattern

Topography Tropical, Coastal station Hilly region, Complex terrain

Seasons Winter (Dec-Jan), Winter (Dec-Jan)

Summer/Pre-monsoon (Mar–May), Summer/pre-monsoon (Mar–May),

Monsoon (Jun-Sept) and Monsoon (Jun-Sept) and

Post-monsoon (Oct-Nov). Post-monsoon (Oct-Nov).

Urban / Rural Urban area Rural area

Instruments used MWR, Radiosonde, AWS and ST Radar Radiosonde and AWS

Meteorological variables used Horizontal wind components, Horizontal wind components,

wind speed, wind direction, wind speed, wind direction,

temperature and moisture. temperature and moisture.

Time period of data used MWR: 09-29 May, AWS: 09-29 May, AWS: 1-31 May,

STR: 26 days* in May, Radiosonde: 13 days* in May 2017. Radiosonde: 25 days* .

Reference Samson et al. (2016), Mohanakumar et al. (2018), Nath et al. (2010)

Mathew et al. (2021)

2.1.1 ST Radar

The STR at the ACARR, Cochin, operates at 205 MHz with a bandwidth of 5 MHz (Samson et al., 2016). The∼200 MHz band

radar has a height coverage from 0.315 km to 20 km and beyond. This study used mode-1 of the STR (45 m vertical resolution,

0.315 km to 8 km altitude) measurements. The STR measures horizontal and vertical wind components continuously at 9-95

minute intervals, and data are available for approximately 26 days in May 2017. The data are mostly continuous from the

forenoon to evening hours and throughout the day for some days (Samson et al., 2016). Kottayil et al. (2016) validated STR

data with collocated radiosonde observations for 1 to 6 km and reported the ability of STR to provide good quality atmospheric

wind measurements for the given range.
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Table 2. Summary of physics schemes and parameterizations of the numerical experiments used in the study.

Set 1 PBL + SL

Expt 1 Microphysics – WSM3, Longwave radiation – RRTM, MYNN3 + MYNN

Expt 2 Shortwave radiation – Dudhia, LSM – Unified Noah LSM, YSU + Revised MM5

Expt 3 Cumulus parameterization – Grell Freitas (GF) MYJ + Eta Similarity

Expt 4 ACM2 + Revised MM5

Set 2 LSM

Expt 5 Microphysics – WSM3, Longwave radiation – RRTM, RUC

Expt 6 Shortwave radiation – Dudhia, Noah – MP, PBL – MYNN3,

Expt 7 Cumulus parameterization – Grell Freitas (GF) SL – MYNN, CLM4

Set 3 LSM+Urban Model

Expt 8 Microphysics – WSM3, Longwave radiation – RRTM, Unified Noah+UCM

Expt 9 Shortwave radiation – Dudhia, Noah-MP+UCM

Cumulus parameterization – Grell Freitas (GF),

PBL – MYNN3, SL – MYNN.

Set 4 Nested run

Expt 6 Microphysics – WSM3, Longwave radiation – RRTM, Single domain, 10 km ✕ 10 km

Expt 10 LSM – Noah – MP, Outer domain, 9 km ✕ 9 km,

Shortwave radiation – Dudhia, Inner domain, 3 km ✕ 3 km

Cumulus parameterization – Grell Freitas (GF),

PBL – MYNN3, SL – MYNN

Set 5 Initial condition

Expt 6 Microphysics – WSM3, Longwave radiation – RRTM, ERA-5

Expt 11 Shortwave radiation - Dudhia, SL - MYNN NCEP FNL (Final) operational

Cumulus parameterization – Grell Freitas (GF), global analysis and forecast data.

LSM - Noah – MP, PBL – MYNN3

2.1.2 GPS Radiosonde100

The Global Positioning System (GPS) sonde (GRAW, DFM-09), used for upper air studies at ACARR, Cochin measures the

altitude, pressure, temperature, relative humidity, wind speed, wind direction, and geographical position (latitude/longitude).

The sonde measurements are made using an ultra-modern and resistant ceramic temperature sensor, humidity sensor, and the
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integrated GPS module that determines the position, wind direction, and wind speed. The flights were around 14:00 LT and

gave continuous observation every five seconds until the balloon burst. Intermittent data for 13 days in May 2017 were used in105

this study (Mohanakumar et al., 2018). We also used observations from a high-resolution GPS radiosonde (RD-11G, Meisei)

provided by the NARL at Gadanki (Nath et al., 2010). A majority of these radiosondes were launched during afternoon hours

(approximately 17.30 LT) and provided vertical profiles of temperature, pressure, relative humidity, wind speed, wind direction,

and geographical position up to the balloon-burst altitude (approximately 30 to 35 km). The present study utilized all available

radiosonde vertical profiles (25 days) at 16.30 and 17.30 LT in May 2017 from Gadanki.110

2.1.3 Microwave Radiometer

We used MWR profiler data obtained as part of a monsoon onset campaign (MONset, 2017), jointly organized by ACARR and

the Indian Institute of Tropical Meteorology (IITM), Pune (Mathew et al., 2021). The Radiometer model MP-3000A was used

for the campaign. The instrument provides vertical profiles of temperature and moisture continuously every couple of minutes

with a 50 m resolution for 0 to 1 km height, 100 m for 1 to 2 km, and 250 m for 2 to 10 km. The data were continuously115

available from 10 to 29 May 2017.

2.1.4 AWS

The AWS at ACARR, Cochin uses a Campbell Scientific data logger (Campbell Scientific, Inc.), with a data logger (CR3000)

and sensors for air temperature and relative humidity (Vaisala HMP45), wind speed and direction (RM Young 05103), air

pressure (RM Young 61302 V), and a net radiometer (Kipp & Zonen, model CNR4-B) (Manoj et al., 2021). The AWS provides120

surface-level data of meteorological parameters such as air temperature, relative humidity, wind speed, surface pressure, and

net solar radiation, with a temporal resolution of one minute. The data from 9 to 29 May 2017 were used for this study.

The AWS setup at Gadanki under the Indian Space Research Organization (ISRO) initiative provides surface meteorological

parameters. The wind speed, wind direction, air temperature, air humidity, and atmospheric pressure (Reddy et al., 2015) at the

surface were recorded every second and provided as hourly mean data. The hourly mean data of these surface parameters from125

1 to 31 May 2017 for Gadanki were also used to analyze the model performance in simulating observed surface features.

2.2 Model set-up

2.2.1 General configuration

In this study, version 3.9.1.1 of Advanced Research WRF (ARW; Skamarock and Klemp (2008)) was used to generate the

simulations for 2017 from May 01, 00 UTC to May 31, 18 UTC. A set of 11 model experiments (Table 2) were designed for130

the current study, in which the model re-initialization was set to 30 h, and a model spin-up time of the initial 6 h was allowed.

The fifth-generation ECMWF reanalysis data ERA5 (Hersbach et al., 2020) with hourly intervals, 31 km grid resolution, and a

vertical resolution of 91 levels up to a height of 21 km were used to provide the initial and boundary conditions for the model

ensemble members (simulation experiments) from 1 to 10 (hereafter referred to Expt. with corresponding numbers).
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For Expt. 11, the National Centers for Environmental Prediction (NCEP FNL (Final)) operational global analysis and135

forecast data on 0.25°✕ 0.25° grids and 32 vertical levels prepared operationally every six hours (https://doi.org/10.5065/

D65Q4T4Z; last access: 10 March 2023) was used as initial and boundary conditions. All models were run with a spatial

resolution of ∼10 km, enclosing the entire Indian subcontinent, as shown in Fig. 1 for all ensemble members except Expt. 10.

In Expt. 10, an outer domain covering the same region but with a resolution of ∼9 km ✕ 9 km was embedded with a two-way

nested domain of horizontal resolution ∼3 km ✕ 3 km that included the study sites of Cochin and Gadanki (inner domain).140

All models were run with a vertical resolution of 39 levels from the surface and reached up to a height of ∼20 km with 8

levels within 1.5 km from the surface. Static land-use data with a temporal resolution of 30 s provided by MODIS were also

used. The time integration in the model uses the third-order Runge–Kutta scheme and the spatial discretization uses second-to

sixth-order schemes.

2.2.2 Numerical experiments145

In this study, we analysed the sensitivity of model forecasts towards different physical schemes and parameterizations used,

primarily the PBL schemes (Set 1), Land Surface Models (LSM) (Set 2), and Urban Model (UM) (Set 3) (See Table 2). In

addition, we examined the impact of horizontal resolution (Set 4) and different initial and boundary conditions (Set 5) on

the meteorological variables (See Table 2). The PBL scheme parameterizes the unresolved turbulent vertical fluxes of heat,

momentum, and moisture within the planetary boundary layer and throughout the atmosphere. Some PBL schemes are tied to150

particular Surface Layer (SL) schemes available in the WRF model, so a fixed surface layer scheme cannot be used (Skamarock

and Klemp, 2008). Thus, we used four different pairs of PBL and SL schemes for the first set of simulation experiments,

whereas all other physics schemes were fixed. The microphysics scheme used was the WSM3 (WRF Single-Moment Class

3) scheme, which is suitable for mesoscale grid processes (Hong et al., 2004), and the cumulus parameterization used was

the Grell-Freitas scheme (GF) (Grell and Freitas, 2014). The radiation physics schemes used were Dudhia (Dudhia, 1989)155

and RRTM (Mlawer et al., 1997) for shortwave and longwave radiation, respectively. The Unified Noah LSM (Mukul Tewari

et al., 2004) was coupled with the WRF for parameterization of land surface processes, and no urban models were coupled

with WRF for these sets of experiments. The PBL schemes used were the Mellor-Yamada-Nakanishi-Niino Level 3 (MYNN3)

scheme (Nakanishi and Niino, 2006, 2009), Yonsei University (YSU) Scheme (Hong et al., 2004), Mellor-Yamada-Janjic

(MYJ) scheme (Janjić, 1990, 1994), and Asymmetrical Convective Model version 2 (ACM2) scheme (Pleim, 2007). The160

surface fluxes required for the PBL scheme are provided by the surface layer and land surface schemes. By convention, while

the Revised MM5 surface layer (Jiménez et al., 2012) scheme is tied to the YSU and ACM2 PBL schemes, the Eta Similarity

scheme (Janjić, 1990, 1994; Janić, 2001) with the MYJ PBL scheme, and the MYNN scheme is used along with the MYNN3

PBL scheme.

Land surface processes strongly affect weather and climate from local to regional and global scales by controlling the165

surface energy balance and water balance (Zhao and Li, 2015). LSM provides heat and moisture fluxes over land to provide

a lower boundary condition for vertical transport in the PBL scheme. These sensible heat and latent energy fluxes depend on

surface meteorology, radiative forcing, soil properties, and land use type. Thus, an accurate description of the land surface and
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Figure 1. Map of model domains and the location of observational sites used in the study overlaid on topographical height. The parent

domain covers the entire region shown, and the inner domain covers the polygon shown inside the parent domain. The left and right figures

show the land use land cover map using ESRI global LULC 10m map (2020) surrounding the observational sites.

vegetation characteristics is needed in any numerical weather prediction model for better performance (Wharton et al., 2013).

The second set of experiments was designed by fixing them onto a single PBL and SL pair and changing the LSMs. Here, we170

fixed the PBL-SL scheme pair in Expt. 1, and the land surface models used included (Expt(s). 5 to 7) RUC (Benjamin et al.,

2004), Noah-MP (multi-physics) (Niu et al., 2011; Yang et al., 2011), and Community Land Surface Model (CLM4; Lawrence

et al. (2011); Jin and Wen (2012); Lu and Kueppers (2012); Subin et al. (2011); Oleson et al. (2010)), in addition to the Unified

Noah LSM used earlier in Expt. 1.

Land Use Land Cover (LULC) change, urban geometry, and anthropogenic heat emissions in urban areas affect the surface175

energy budget by creating heat islands, generally inducing lower winds and modifying wind direction (Lee et al., 2011; Bonac-

quisti et al., 2006). In Set 3 of the experiments, we coupled the Urban Canopy Model (UCM; Kusaka et al. (2001); Kusaka

and Kimura (2004); Chen et al. (2004)) to both Noah LSMs, that is, Unified Noah (Expt. 1), and Noah multiphysics (Expt. 6).

Thus Expt. 8 and 9 are the same as Expt. 1 and 6, respectively, are coupled with an urban model (UCM). Accounting for urban
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effects in high-resolution meteorological fields may improve emission estimates by better modelling CO2 concentrations over180

large urban areas (Feng et al., 2016; Nehrkorn et al., 2013).

Using a fixed set of physics schemes as in Expt. 6, we conducted two additional WRF runs (Expt. 10 & 11), each considering

a different aspect other than the physical parameterizations and schemes, which are the impacts caused by a higher horizontal

resolution and a different set of initial conditions. In this set, WRF was run (a) with a nested domain covering the study sites

of Cochin and Gadanki (Expt. 10). The inner domain has two-way nesting with a horizontal resolution of 3 km, and the parent185

domain covers the same region as earlier, with a resolution of 9 km and (b) the same as Expt. 6, but with a different set of

initial and boundary conditions provided by the NCEP FNL (Final) operational global analysis and forecast data (Expt. 11). A

summary of the numerical experiments is provided in Table 2.

2.3 Gridded data and reanalysis products

Daily gridded maximum and minimum temperature data at 1° × 1° spatial resolution provided by the Indian Meteorological190

Department (IMD) were used to evaluate the spatial temperature representation by the models. This dataset uses quality-

controlled temperature data from hundreds of stations across India, which are interpolated into grids using a modified version

of Shepard’s angular distance weighting algorithm (Shepard, 1968). Daily maximum and minimum temperature data for May

2017 that are limited to the Indian domain were used in this study. Further information can be found in Srivastava et al. (2009).

We used the ERA-Interim reanalysis dataset (Berrisford et al., 2011), namely ’Surface or single level’ data for May 2017195

that includes 2D parameters such as temperature at 2m, wind speed, and wind direction at 10 m. The dataset has a spatial

resolution of 0.125°✕0.125° and a temporal resolution of 3 h (Uppala et al., 2008; Dee et al., 2011). Such a comparison with

the model experiments allows us to examine how the physics schemes of the regional model modify the initial data with time

and what differences arise with the change in version.

Additionally, we used the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) (Gelaro200

et al., 2017) reanalysis data generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5) with its Atmo-

spheric Data Assimilation System (ADAS), version 5.12.4. We used assimilated meteorological fields for temperature and

wind, with a temporal resolution of 3 h and with a spatial resolution of 0.5°✕0.625° (https://gmao.gsfc.nasa.gov/; last access:

10 March 2023).

2.4 Estimation of observation-based PBL height205

We derived the Planetary Boundary Layer Height (PBLH) from available MWR data for 10 to 30 May 2017. The Holzworth

(Holzworth, 1964) and Stull (Stull, 1988) methods were used for the calculation. In the Holzworth method, the PBLH is derived

based on the potential temperature, where the surface parcel is lifted dry-adiabatically until it intersects the sounding profile.

If a surface inversion exists, the PBLH is derived based on the top of the inversion. Otherwise, it is identified as the base of a

lifted inversion (within 4 km of the above-ground level). The Stull method is similar to the Holzworth method, except for the210

use of the virtual potential temperature parcel instead of the potential temperature. The virtual temperature was calculated from

the MWR data. The above two methods have resulted in two PBLH datasets derived from the observations, hereafter referred
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to as PBLH (Holzworth) and PBLH (Stull). We also used the mean PBLH (referred to as PBLH (avg)) calculated from these

two datasets to evaluate simulated PBLH.

2.5 Data pre-processing for model evaluation215

Table 1 provides an overview of the observation datasets used in this study. For surface data analysis, we derived the diurnal

averages of the observations and simulations. The data from the MWR (See Sect. 2.1.3) were aggregated into a monthly

timescale representing 10 different time steps to evaluate the models during the day (10:30, 12:30, 14:30, 16:30, and 18:30

LT) and night (22:30, 0:30, 2:30, 4:30, and 6:30 LT). A similar daytime classification was applied to the STR data (See Sect.

2.1.1). We averaged the radiosonde data at 14:30 LT (average radiosonde flight time) from Cochin to obtain the variations at220

the monthly scale. For Gandanki, the radiosonde data between 16:30 LT and 17:30 LT were used to calculate the monthly

mean. (See Sect. 2.1.2). The vertical profile data analysis considered observed variables from the surface to a height of 8

km. Bin-wise averages of 0-1, 1-2, 2-3, ... up to 7-8 km have been performed here. Model simulations from the grids nearest

to the observational sites were used for this model-data comparison. All WRF experiments were interpolated to the nearest

observational vertical level to evaluate the vertical variation in meteorological variables. Continuous ground observations from225

AWS were considered for the surface data analysis for both sites. The simulations and the corresponding observations were

aggregated into hourly, diurnal, and monthly time scales for the analysis done throughout the study. We also examined the

coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Bias Error (MBE) between WRF ensemble

simulations and observations at a monthly scale.

To compare gridded and reanalysis data products, hourly WRF simulations were regridded to match the spatial and temporal230

resolutions of corresponding data products.

2.6 Simulation of CO2 mixing ratio

By coupling the meteorological fields derived from the 11 model simulations with the Stochastic Time Inverted Lagrangian

Transport (STILT) Model v2.3 (Lin et al., 2003; Gerbig et al., 2003; Nehrkorn et al., 2010), we made an ensemble simulation

of CO2 mixing ratio enhancements. We performed backwards STILT trajectories that are driven by 11 WRF-model ensem-235

ble members, derived the influence matrix (as a measure of the sensitivity of mixing ratios to the upstream fluxes) (Gerbig

et al., 2003; Thilakan et al., 2023; Pillai et al., 2013; Kariyathan et al., 2020), and mapped them with anthropogenic fluxes to

make ensemble simulation of CO2 mixing ratio enhancements over Cochin and Gadanki. The time-invariant annual emission

flux from the Emission Database for Global Atmospheric Research (EDGAR) (EDGAR v7.0; Crippa et al. (2020, 2021)) at

a spatial resolution of 0.1°× 0.1° was used. We utilized these simulations to assess the CO2 variability caused by the differ-240

ences in meteorological fields. The uncertainty associated with the CO2 mixing ratio simulations (11 ensemble members) was

calculated as the standard deviation of differences normalized by their mean. The quantification of variations in CO2 mixing

ratio simulations due to different model realizations is explained by the spread among each set of experiments. Set 4 is not

considered here since the WRF nested domain is much smaller than the STILT domain. To quantify the individual influence
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of variability in PBL height, wind speed, and temperature simulated by different WRF experiments on the CO2 mixing ratio245

enhancement simulations, simple linear regression analysis is also performed.

3 Results

3.1 Meteorological evaluation and error characteristics

3.1.1 Surface variables

The monthly averaged diurnal variations in surface temperature, relative humidity (RH), wind speed, and wind direction from250

the observational sites are shown in Fig. 2. The model simulations agree with observations in capturing the diurnal variability

in temperature for both sites (R2> 0.95 for Cochin and R2> 0.75 for Gadanki). Despite the high degree of correlation between

observation and model simulations, there exists a slight negative bias (underestimation) in the modelled surface temperature

at Cochin, irrespective of the different schemes and parameterizations used (See Fig. S1). A spread in the range of 1 °C to 3

°C (based on RMSE) from the observed mean is found in all models for these sites. A time lead of ∼2 h is seen in surface255

temperature simulations compared to observations over Gadanki, and Madala et al. (2014) also reported similar modelling

limitations. While a cold bias (∼-2 °C to -4 °C) is found during nighttime (18:30 to 4:30 LT), the daytime (5:30 to 17:30

LT) simulations exhibit a warm bias (∼1 °C to 2 °C) over Gadanki (See Fig. S1), similar to previous studies (Kadaverugu

et al., 2021; Boadh et al., 2016; Hariprasad et al., 2014; Mohan and Bhati, 2011). Daytime (RMSE= 2.1 °C, MBE = -3.5 °C)

predictions at Gadanki are slightly closer to the observations than night-time (RMSE= 2.5 °C, MBE = -2.5 °C) predictions260

with high R2 (=0.9). On the other hand, Cochin simulations of temperature are better during nighttime (daytime: RMSE= 1.8

°C, MBE = -1.7 °C; nighttime: RMSE= 0.8 °C, MBE = -0.8 °C).

The monthly mean RH at sites follows strong diurnal variability (Figs. 2c and 2d). All model experiments captured the

observed diurnal variation in RH over both locations with good correlation (R2> 0.9 for Cochin and > 0.8 for Gadanki) but

overestimated the values (MBE of 12% to 20% for Cochin and 3% to 19% for Gadanki). Higher RH values of ∼ 70-85% are265

generally observed during nighttime, compared to daytime values (∼30-60% depending on the sites). Similar to the surface

temperature, the diurnal pattern in RH at Gadanki also showed a lead of 1 to 2 h, except for Expt. 7 (See Fig. S2) and reported

a good correlation (R2> 0.9) with observations (Fig. 2d), but with a large bias. In contrast, the Expt. 7 poorly simulated diurnal

variations of RH for Cochin (R2= 0.4). The inter-model spread for RH (0.04%) is slightly greater during noon and afternoon

hours than during the rest of the time, as in the case of surface temperature (0.01%), but with a larger spread than that of270

temperature. Using different LSMs (Set 2) causes a larger variance than when PBL (Set 1) and UCMs (Set 3) are changed in

simulating surface temperature and relative humidity. The intermodal differences for RH are greater during the daytime for all

sets of experiments.

The observed diurnal variations in wind speed at Gadanki are fairly captured by the models (R2> 0.5) (Fig. 2e). All models

overestimate the diurnal variability in wind speed. Changes in PBL, LSMs, and UCMs in the WRF experimental design do not275

seem to improve the model’s ability to capture the observed diurnal patterns in wind speed. Inter-modal differences are found
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Figure 2. Mean and standard deviation in the monthly averaged diurnal variation of Temperature at 2 m and Relative Humidity at 2 m for

Cochin (a & b) and Gadanki (c & d). e & f represent the wind speed and direction at 10 m, respectively, at Gadanki. Grey shade (solid line)

shows +/- 1 standard deviation (mean) of observation, and blue, green, and salmon shades (solid lines) show the range of +/- 1 standard

deviation (mean) obtained from Set 1, 2, and 3 experiments, respectively.

to be greater when different LSMs are applied. A large inter-model spread is found in daytime, similar to previous studies

(Hariprasad et al., 2014; Kadaverugu et al., 2021; Madala et al., 2013, 2015; Sathyanadh et al., 2017). Figure 2f indicates

a poor correlation between the simulated and observed wind directions, with a RMSE range of 30° to 65°. Experiment 7

shows a slight improvement in reproducing the observed monthly diurnal pattern in wind direction (Fig. S2). Surface winds280

over Gadanki during May 2017 were predominantly south westerlies (Fig. 2f). However, most of the models simulate south

easterlies during afternoon hours (12:30 LT to 16:30 LT), showing difficulties in capturing random fluctuations in the wind

direction.
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3.1.2 Vertical Profiles

Here, we compare the vertical profiles of meteorological variables with simulations. Using MWR observations, the set-wise285

model performance (See Table 2) of temperature variability with height (for bins of equal height levels, 0-1,1-2,..7-8 km) was

analyzed. The vertical profile of mean and standard deviation of bias (model - observation) in temperature (daytime (10:30 LT)

and nighttime (22:30 LT); See Fig.3) shows underestimation (peak of ∼-2 °C in the lower levels (< 2 km) and overestimation

(∼3 °C) towards higher levels (> 3 km). The nighttime profile shows an underestimation below 2 km as well. However, in

both cases, the 5 sets of experiments align more in the higher levels (> 3 km). Figure 4 considers four different periods of a290

day to account for the overall diurnal evolution of the boundary layer. The periods 07:30 to 15:30 LT (excluding 15:30 LT),

15:30 to 19:30 LT (excluding 19:30 LT), 19:30 to 01:30 LT (excluding 01:30 LT), and 01:30 to 07:30 LT (excluding 07:30 LT;

hereafter referred to as t1, t2, t3, and t4), all in local time, are considered here as the representative periods for an unstable,

unstable-to-stable, stable and stable-to-unstable boundary layer conditions respectively. A strong variation exists in the model-

observation correlation with height, and the correlation varies drastically among models irrespective of time. Comparatively295

low R2(< 0.5) values are seen for t3 and t4 (where stable conditions prevail). In general, simulated temperature profiles show

an underestimation in the lower levels and an overestimation in the middle to upper levels with MWR observations, showing no

considerable inter-model variability in the upper levels (Fig. S3). In addition, a higher daytime bias is seen when the boundary

layer is unstable (08:30 LT to 17:30 LT).

Further, a comparison with the vertical profiles is made using the available radiosonde observations (13 days) at 14:30 LT for300

May 2017 (See Sect. 2.5). The monthly averaged simulated temperature profiles agree with the observations at both sites. Apart

from the high correlation, a significant model-observation bias exists for temperature, which decreases at higher altitudes (> 4

km). All models underestimate the vertical variations in temperature at Cochin, with maximum underestimation in the ground

level (mean bias of ∼ -1.7 °C to 0.7 °C), but overestimation is found at Gadanki above ∼4.5 km. The highest correlation (R2>

0.99) is found in the middle to the upper atmosphere, together with a low RMSE and bias (< 0.5 °C). Figure 5 shows the set-wise305

vertical profile of mean and standard deviation in the bias of temperature, RH, wind speed and wind direction, respectively,

over Cochin (Fig. 5a-d) and Gadanki (Fig.5 e-g). The vertical axis shows bins of altitude 0-1,1-2,..7-8 km, corresponding to

which the mean and standard deviation of bias have been analysed. Considerable influence of different PBL, LSM, and UCMs

in simulating the vertical temperature profile is noticed over both stations (See Figs. 5a & e). The monthly averaged radiosonde

vertical profiles of RH are well represented (R2> 0.85) by the models at both locations but with a slight overestimation in the310

lower levels (0 to 2 km). Overall, we find that RH is sensitive to changes in the PBL, LSMs and UCMs (indicated as Set 1-3).

In the lower levels (up to 1.5 km), there is an overestimation of 5 to 13 % (according to the mean bias in Fig. 5b considering

Set 1-5) while it decreases to a range of -3 to -6 % at ∼ 3 km showing underestimation of RH. Models overestimate RH in

the upper levels (0 to 6 % at ∼ 7 km). Evidently, the experiments are closer to each other in the higher levels than the lower

levels. The standard deviation in bias is also higher in the bins 0-2 km. Also, the low levels at Gadanki show overestimation.315

However, in contrast to Cochin, the vertical profile mean bias in RH shows a clear pattern of overestimation until ∼ 5 km and

further underestimation (Fig. 5f). The standard deviation in bias is slightly higher above 4 km compared to the lower altitudes.
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Figure 3. Mean and standard deviation in the bias of monthly averaged vertical profile of temperature by each set of experiments at Cochin

averaged over every 1 km interval from 0 to 8 km at 2 different time steps in a) daytime (10:30 LT) and b) nighttime (22:30 LT) against

observational MWR profile. Solid vertical lines show the mean bias, and shades show the +1/-1 standard deviation of bias from the mean for

each set of experiments.

Wind simulations are better above 2 km, while the pattern is poorly captured within 0 to 2 km level. The least mean bias in

wind speed is seen at ∼4 km over Cochin and at ∼3 km over Gadanki.

Besides radiosonde observations, hourly vertical profiles of wind from the STR were analyzed over Cochin (Fig. S4). Even320

though the models capture the wind speed, the model-data mismatch is considerable in the morning. Large inter-model dif-

ferences in wind speed occur at the boundary layer, which decreases with altitude. Meanwhile, an increase in the intermodel

spread in wind speed is found in the afternoon. The correlation coefficients are greater for the higher altitude (> 2 km) profiles.

All model simulations generally underestimate wind speed. This contrasts with the behaviour of the modelled wind speed at

10 m (See Sect. 3.1.1). It is noteworthy that Expt. 7 (MYNN+CLM4 combination) captures the vertical wind speed profile325

remarkably well with high R2 values. The underestimation of wind speed and the inadequate representation of mixing can

contribute to uncertainties in trace gas transport and its quantification. The diurnal variation in the bias between the monthly

mean wind speed from the STR observations and WRF experiments shows a large negative bias, except for the CLM4 scheme,
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Figure 4. Vertical profiles in the correlation (R2; for time slabs t1 to t4) of monthly averaged temperature at Cochin for 0 to 8 km height

during four different time periods of a day for all the numerical experiments with respect to observational MWR data.

which simulates near-zero biases. The wind bias is minimal within the 2 to 4 km level, while a large negative bias in the lower

levels and a large positive bias in the higher levels are evident. Wind-direction profiles are also derived from the horizontal330

wind components of the STR. Like the wind speed, the R2 values are better in higher altitudes. The inter-model differences are

the highest at the boundary layer and increased in the afternoon. Overall, Expt.7 (MYNN+CLM4) and Expt.5 (MYNN+RUC)

combinations perform better with high R2 values. Figure 6 shows the mean bias and its standard deviation for vertical wind

profiles for morning (10:30 LT) and evening (16:30 LT) from observational STR profiles. Similar to the findings above, Fig.

6 indicates a large mean bias in the lower altitudes (< 2 km) in comparison with higher altitudes (> 2 km). The wind bias is335
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Figure 5. Mean and standard deviation in the bias among WRF simulated monthly averaged vertical profiles of a) temperature, b) relative

humidity, c) windspeed, and d) wind-direction against radiosonde observations at Cochin around 14:30 LT and at Gadanki (e-h) for May

2017 averaged over 16:30 and 17:30 LT.

larger in the evening hours in comparison with that of the morning. Figure 7 shows the diurnal variation in the bias between the

monthly mean wind speed from the STR observations and WRF experiments. The wind speed near the ground shows a large

negative bias, except for the CLM4 scheme, which simulates near-zero biases. The bias is minimum within the 2 to 4 km level,

while a large negative bias in the lower levels (0 to 2 km) and a large positive bias in the higher levels (4 to 8 km) were evident.

3.2 Evaluation of PBLH340

PBLH simulations are compared with the observationally derived PBLH (See Sect. 2.4) for Cochin. PBLH estimated using

the Stull method shows maximum PBL height during 12:30 to 13:30 LT, while the Holzworth method indicates maximum

PBLH during 14:30 LT (Fig. 8a). The model simulations are closer to the Stull method in capturing the diurnal pattern with a

lead time of ∼3 h. However, the simulated estimation is closer to the Holzworth method for capturing the timing of the peak

16

https://doi.org/10.5194/egusphere-2023-2334
Preprint. Discussion started: 6 March 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 6. Mean and standard deviation in the bias among WRF simulated monthly averaged vertical profiles of a) & e) zonal wind, b) & f)

meridional wind, c) & g) wind speed, d) & h) wind direction against observational STR profile from 0 to 8 km at Cochin at 2 different time

steps of the day (10:30 LT and 16:30 LT).

PBLH. The diurnal profile analysis shows that the monthly averaged stable boundary layer simulations in Expt. 1, 2, and 3345

are farther from the observation (Fig. 8a). Models’ difficulties in simulating stable boundary layers and dynamics have already

been widely discussed in previous studies (Guo et al., 2021; Seidel et al., 2012; de Arruda Moreira et al., 2018). A large spread

exists among the PBLH estimation methods used, and the sensitivity of PBLH to changes in LSM schemes is greater than that

of PBL and UCM schemes, as seen in Fig. 8b.

Table 3 provides the statistics for various sub-sample periods (7:30 to 15:30 LT, 15:30 to 19:30 LT, 19:30 to 1:30 LT, and350

1:30 to 7:30 LT), assessing the model performance in the diurnal conditions of convective stability. The models generally agree

with observational-based PBLH (R2> 0.6). Most model experiments underestimate PBLH, especially for unstable hours (See

Table 3). The RMSE values are found to be higher for unstable periods than that for stable periods. The above results align with

the previous study, comparing PBL heights in reanalysis datasets and radiosonde observations (Guo et al., 2021). A significant

underestimation of the PBL height in reanalysis datasets against radiosonde observations was reported by them. The large355
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Figure 7. Diurnal variation of the monthly averaged bias in wind speed among STR observations and WRF simulations over Cochin for May

2017 for Expt. 1 to 11. 18
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underestimation of the PBLH can potentially induce uncertainties in boundary-layer trace gas distributions, as discussed in

Sect. 4.

3.3 Comparison with gridded and reanalysis data products

Here, we examine the general agreement of our model simulations with other observational and model-based datasets. Our

model simulations largely agree with IMD’s maximum and minimum temperatures (R2< 0.64). However, we find significant360

temperature differences over the Himalayan region when comparing all model simulations and IMD data (See Fig. 9).

Using ERA-Interim and MERRA-2 reanalysis products, we compared monthly mean spatial patterns of WRF models’ me-

teorological variables for daytime (5:30 to 17:30 LT) and nighttime (18:30 to 4:30 LT; Figure not shown). Daytime comparison

of WRF temperature at 2 m with ERA-Interim shows good spatial agreement with less bias (between -1 °C and 1 °C) and high

correlation (R2> 0.81) (Fig. S3). However, the correlation with ERA-Interim is noticeably weak over southwestern India (R2365

∼-0.01). A narrow band of negative bias (∼-8 °C) over the Himalayan ranges and positive bias over the rest of the subcontinent

are persistent in the nine WRF-ERA simulations (Expt 1-9). All simulations show positive differences over Central India and

Southern India, except for Expt. 6 (Figure not shown), with a negative difference of ∼-5 °C over the region. Expt. 2, 3, and 4

show the highest positive bias over the Indian land mass and surrounding oceanic regions. The region shows a negative differ-

ence during the night, with the northern region showing a higher difference than the rest. The correlation between our models370

and ERA-Interim is higher during the day than at night. Overall, good agreement (R2> 0.64) in the spatial pattern of wind

variables between the WRF experiments and ERA-Interim is found. The analysis shows considerable differences in coastal

regions, indicating differences in simulating coastal fine-scale dynamics. Our simulations are closer (higher correlation) to

ERA-Interim during the daytime than during the night. The PBLH simulations by WRF are in good agreement (R2> 0.64) with

the Era-Interim throughout the domain, except for the coastal and northernmost mountainous regions, where the correlation is375

very weak (R2< 0.25) (Figure not shown). The correlation is higher during the daytime than at night. Expt. 1 to 3 are closer to

the reanalysis product than Expt. 4 to 11.

In the case of comparison with the MERRA-2 reanalysis product, the surface temperature comparisons show a good cor-

relation (R2> 0.64) over the Indian region (Figure not shown). The daytime temperature is highly correlated with reanalysis

data than the nocturnal temperatures. A strong negative correlation in western oceanic regions is found in Expt. 2, 3, and 4.380

The Southern and northeastern parts of the country show a minimum correlation with the MERRA-2 surface temperature. The

spatial difference in PBLH is mostly∼-500 m. The bias values become increasingly less negative over the coastal regions. Also,

daytime values show a larger negative bias than nighttime values, indicating the magnitude of PBL height model simulations

is considerably lower than the reanalysis during the day. A similar case of large negative bias in the unstable hours has been

identified by comparing with observation data over Cochin, as well (See Section 3.2).385

3.4 Model ensemble simulations of CO2 mixing ratios

Here, we present CO2 mixing ratio simulations using the STILT model driven with different WRF experiments. The standard

deviation among these simulations indicates the extent of uncertainty due to differences in the meteorological fields caused by
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Figure 8. a) Monthly averaged diurnal variation of PBLH over Cochin for May 2017 for different experiments. b) Same as Fig. 2 but for

PBLH, black line = MWR observation data with grey shade showing ± standard deviation from observation, shades of blue, green, and

salmon shades show the range of values (maximum and minimum) obtained from Set 1, 2, and 3 experiments, respectively.

Table 3. PBLH comparison between observation and model simulations.

Expt.no R2 RMSE (m) MBE (m)

t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

Expt.1 0.91 0.87 0.77 0.02 237.35 296.07 305.69 245.03 -202.43 -195.03 -292.94 -232.39

Expt.2 0.86 0.93 0.21 0.1 353.3 302.16 330.85 269.49 -329.63 -275.01 330.85 -259.23

Expt.3 0.89 0.96 0.48 0.31 226.08 300.16 345.95 270.03 -174.22 -219.57 -338.95 -261.84

Expt.4 0.83 0.88 0.85 0.29 233.16 119.68 56.16 65.26 -212.14 99.86 56.16 5.15

Expt.5 0.81 0.92 0.91 0.38 211.27 123.18 60.92 68.54 -183.86 112.168 56.63 26.7

Expt.6 0.85 0.76 0.78 0.04 369.26 141.59 117.32 161.73 -334.45 -56.93 117.32 140.5

Expt.7 0.72 0.87 0.69 0.06 383.59 90.08 68.4 78.59 -362.09 18.76 45.98 -24.82

Expt.8 0.81 0.88 0.96 0.21 231.47 134.08 53.03 69.01 -207.11 116.07 53.03 8.31

Expt.9 0.86 0.89 0.88 0.49 203.78 104.81 78.49 69.87 -183.56 85.23 73.8 29.5

Expt.10 0.92 0.79 0.95 0.34 255.42 84.85 85.21 106.7 -245.96 21.98 85.21 -85.58

Expt.11 0.81 0.96 0.98 0.1 222.72 133.74 83.55 74.31 -194.46 126.01 79.36 1.68
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Figure 9. Spatial distribution of squared correlation coefficients and bias in monthly averaged simulations of maximum and minimum

temperatures at 2 m in May 2017. a) & b) Maximum temperature: R2 and bias, respectively and c) & d) Minimum temperature: R2 and bias,

respectively. Expt. 1 simulations and IMD dataset (data is only available for the Indian region) are used here.
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Figure 10. Variations in CO2 mixing ratio simulations due to different meteorological model realizations over Cochin and Gadanki.
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Figure 11. The model spread, calculated using 11 model ensemble members at each 3 hourly time step, for a) fossil-fuel CO2, b) biospheric

CO2, c) total CO2, d) PBL height, e) temperature and f) windspeed over Gadanki and Cochin.
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various model realizations. The average uncertainty in total CO2 mixing ratios owing to differences in simulating meteorolog-

ical fields is 3.2 ppm (ranges from 0 to 24.3 ppm) for Cochin and 2.8 ppm (ranges from 0.2 to 10.8 ppm) for Gadanki. The390

larger variability in total CO2 mixing ratios over Cochin compared to Gadanki indicates the influence of the coastal boundary

layer on tracer transport. Fig 10 shows the variability caused by the different transport model parameterizations on the CO2

mixing ratio simulations over Cochin and Gadanki. Over Cochin (urban), the spread (difference between interquartile ranges

75% and 25% ) in total CO2 is the largest in Set 1 (6.4 ppm), followed by Set 3 (5.8 ppm), Set 2 (5.3 ppm), and Set 5 (4.9

ppm). On the other hand, the spread is largest over Set 3 (5.6 ppm), followed by Set 2 (5.5 ppm), Set 1 (5.2 ppm), and Set395

5 (5.0 ppm) for Gadanki (rural). As expected, Cochin is dominated by the contribution from ffCO2. In the case of Gadanki,

the biospheric contribution is significant. The diurnal distribution of model spread for these two sites is given in Fig. 11. For

Cochin, total CO2 shows the diurnal model spread of up to 4.5 ppm, with a strong contribution from fossil CO2 (Fig. 11). In

the case of Gadanki, the total CO2 shows a diurnal model spread of up to 5 ppm, while the biospheric CO2 shows a diurnal

variability of 3.9 ppm. While the interquartile range of model spread in daytime total CO2 has a variability of up to 0.6 ppm400

and 0.82 ppm, the nocturnal model spread ranges up to 2.5 and 1.6 ppm over Cochin and Gadanki.

As expected, the distribution of total CO2 variability is well correlated with air temperature, PBL height, and windspeed for

both sites (Fig. 11). Our results show that 58% of variability in ffCO2 over Cochin and 69% of variability in bio-CO2 over

Gadanki are resulting from the variability in the PBL height simulations among different meteorological experiments.

4 Discussions405

The present study gives an assessment of the impact of meteorological errors on CO2 simulations by performing ensemble

simulations of meteorological variables using the WRF model and CO2 using the WRF-STILT model. The error diagnosis

considered the relative contribution of model physics, PBL parameterization, model resolution, and initial meteorological state

to the total error.

All model simulations capture the diurnal patterns in surface temperature and relative humidity irrespective of the scheme410

and parameterization used (R2> 0.75 for both sites). Cochin, a coastal region, experiences drastic relative humidity variations

compared with Gadanki, which is relatively dry in May. These small-scale variations in RH over the coastal city are not

captured well by most models (Fig. S2). Among all models, Expt. 4 (using ACM2 PBL scheme) shows better performance

for surface temperature and RH at both locations. Such betterment is also reported by (Gunwani and Mohan, 2017). While

examining the impact of LSMs on simulations, all surface variables show considerable sensitivity to changes in LSMs (Set415

2). Using the Unified Noah LSM (Set 1) resulted in better performance in terms of surface temperature and humidity (See

Fig. 2). Interestingly, different models show the largest inter-model spread in surface temperature and RH during the afternoon

hours, which decreases at night. The coupling of UCM to LSM seems to improve the model performance in simulating surface

temperature and RH in the coastal urban region. Feng et al. (2016) and Nehrkorn et al. (2013) suggest the similar improvement

in the overall performance of WRF.420
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In terms of wind predictions, the coupling of the UCM to LSM seems to be advantageous. Expt. 9 (with the UCM and the

Noah-MP LSM) performed best in simulating the surface wind speed (See Fig. S2). In general, the models overestimate the

wind speed at 10 m. While the models captured surface wind speed, most showed issues in reproducing diurnal variations in

the wind direction, irrespective of the different advanced schemes used. The wind is highly influenced by local fluctuations

resulting from land surface heterogeneity, and simulations of wind are largely affected by the poor representation of surface425

drag or roughness in the model. These issues are well documented in numerous studies (Karlický et al., 2018; Droste et al.,

2018; Huang et al., 2019). Further, the associated changes in atmospheric dynamics can alter the mixing and dispersion of

trace gases and pollutants (Huszar et al., 2020; Xiaolan Li and Zhao, 2019; Trusilova et al., 2016). As expected, the differences

in PBL, LSM, and UCM significantly influenced the dynamics at the lower vertical levels (0 to 2 km) than at higher altitude

levels. Due to the significant influence of shallow boundary layer structure, vertical wind profiles showed a larger influence of430

model schemes and parameterizations during evening hours than during morning times (See Fig. 3 & 6). The comparatively

considerable impacts of model scheme differences on wind simulations are associated with orography. These orographically-

driven fine-scale variations are difficult to reproduce by the model, irrespective of different combinations of model schemes. For

example, wind patterns generated by large surface roughness can be offset by increased turbulence, convection and spurious

mixing (Droste et al., 2018). The above scenario becomes challenging for the models to represent these simultaneous and435

counteracting effects adequately. Many model configurations, in general, are capable of only representing a subset of these

effects.

Statistically significant improvements for the diurnal variations in surface temperature and relative humidity are noticed when

the horizontal resolution of the model increases from 10 km to 3 km (See Figs. 2 & S2, Table 2, comparison between Expt. 6

and 10). More realistic simulations of vertical profiles of atmospheric variables can be expected when allowing the model to440

capture the subgrid variability (See Figs. 6a & 6b). Thilakan et al. (2022) discuss the importance of subgrid variability in the

Indian region. Sensitivity towards changing horizontal resolution has been identified in the simulations of the verrtical profiles,

as well.

The inter-model differences among ensemble simulations of CO2 mixing ratios are considerable and indicate the extent to

which the uncertainty in numerical weather prediction models influences the atmospheric transport of trace gases (Peylin et al.,445

2011). In our error estimations, we minimized the impact of other sources on the derived transport uncertainty of CO2 by using

the same set of local fluxes and the initial and lateral tracer fields. In the case of local contributions, temporal variations from

the biospheric and anthropogenic fluxes also need to be considered, which may rectify the impact of transport uncertainty. In

the case of total CO2, there is an influence of the background mixing ratios (e.g., nonlocal fluxes) in addition to the local fluxes

(biospheric and anthropogenic fluxes). Even if there are variations in the contribution of local fluxes to the mixing ratio (e.g.,450

rectifier effect), their impact on the total CO2 mixing ratio simulations is expected to be much less than that of meteorology.

Peylin et al. (2011) reported a monthly average uncertainty of 0.8 ppm in the fossil CO2 over Europe due to the transport

error alone. Here we report the monthly averaged diurnal spread (interquartile range) of the fossil CO2 1.5 ppm over Cochin.

Between Cochin and Gadanki, the former has complex meteorology due to coastal influence (Hamza et al., 2007), resulting in

large CO2 uncertainty (up to 24 ppm). The large spread in CO2 mixing ratio enhancement simulations (Fig. 11) during early455
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morning and late evening hours is attributed to the difficulty in simulating the atmospheric dynamics of the stable and shallow

PBL. When comparing both stations, Gadanki shows less spread and more evident diurnal variability than Cochin, particularly

during stable atmospheric hours (Fig. 11). Over Cochin, the spread in the trace gas mixing ratio (total CO2) simulations is

relatively large, which can also be attributed to the consistently lower wind speed over Cochin. Further, during the nighttime,

when the wind speed is again lower than the daytime, the spread becomes large (Fig. 11). This indicates that the lower wind460

speed scenario increases the transport model uncertainty. Larger uncertainty in CO2 enhancement simulations at nighttime

(up to 4 ppm and 2.6 ppm over Cochin and Gadanki, respectively) compared to daytime (0.6 ppm and 1 ppm over Cochin

and Gadanki, respectively) is attributed to the diurnal variability associated with the uncertainty in the simulated atmospheric

PBLH. Our results for coastal urban and rural sites show that the trace gas enhancement simulations are significantly influenced

by the modelled evolution of PBL and wind.465

5 Conclusions

Understanding the distribution of the carbon sources and sinks requires accurate transport modelling of atmospheric CO2.

The capability of models to simulate meteorological fields is critical to the accuracy of atmospheric transport of trace gases.

Here, we examined the potential of the WRF model to capture the observed meteorological variations that are crucial for

tracer transport and thus relevant to inverse modelling of CO2. We assessed the sensitivity of simulated meteorological fields470

to different schemes and parameterizations with a focus on designing appropriate WRF model setups over the region. Different

model realizations enabled us to generate WRF simulations with eleven ensemble members and their comparison against

observations, which were utilized further to assess CO2 transport uncertainties originating from differences in meteorological

realizations. The observational sites used, Cochin and Gadanki, represent urban and rural environments, respectively. Also, we

extended our models’ comparison to observational-based gridded data and reanalyzed products over the Indian subcontinent.475

The analysis of the meteorological evaluation results, which involve both surface and vertical profile measurements, can be

used to address the models’ ability to simulate the CO2 atmospheric transport in urban and rural environments. The diurnal

variability patterns in the surface temperature and relative humidity are well captured at both urban and rural sites. The models

capture the wind speed fairly well (R2> 0.5) with slightly overestimating wind speed. Vertical variations in RH and temperature

are also reproduced by the simulations (R2> 0.85 for both variables), with higher model performance during the day than during480

the night. The vertical profiles of zonal and meridional winds are captured reasonably well by the model ensemble members,

subjected to altitude levels. Cochin, being a coastal urban site, is highly influenced by terrain-induced transport features and

urban meteorology, resulting in models to better represent Gadanki than Cochin. The general underestimation of the WRF

wind speed towards the ground is likely due to improper representation of the surface roughness features and boundary layer

dynamics in the model. Model performances are more sensitive to LSMs when compared to different PBL schemes. The vertical485

profiles show that the inter-model differences decrease with height, implying a relatively large influence of the LSMs in the

surface simulations. The above inference is particularly relevant when we need a realistic representation of urban meteorology,

given that more urban greenhouse gas measurement sites are planned.
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As a consequence of differences in meteorological fields, atmospheric CO2 uncertainty over Cochin is 3.2 ppm (statistically

significant maximum: 24.3 ppm) and 2.8 ppm over Gadanki (statistically significant 10.8 ppm). Modelling issues with PBL490

cause large CO2 modelling uncertainties of more than a factor of 3 to 5 during nighttime than daytime, and the urban site

is significantly affected by the existence of low wind speed, creating more accumulation of trace gases causing high CO2

modelling uncertainties. In this study, we provide an estimation of CO2 uncertainties merely due to meteorological errors for

the proper accounting of them in the carbon assimilation system. The analysis underscores the need to address atmospheric

transport uncertainties in the carbon data assimilation framework over India to utilize the full potential of the observations.495

Given the potential of WRF to reproduce the meteorological variables relevant to CO2 transport, we conclude that WRF can be

used as a potential transport model for CO2 inverse modelling studies. However, we advocate for a future study involving CO2

observations and modelling (with different meteorology and flux realizations) for assessing the full strength and weakness of

the models. The results from our study can be used while designing the inverse model using complex atmospheric mesoscale

transport models like WRF for a desired application and characterising the transport error structures.500
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2023). The EDGAR v7.0 data used in this study are publicly available at https://edgar.jrc.ec.europa.eu/dataset_ghg70 (last access: 10 April
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Janić, Z. I.: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model, 2001.
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