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Abstract. Storm surge is one of the most destructive marine disasters, characterized by abnormal and temporary rises in water

levels during intense storms, leading to extreme inland flooding in the coastal area. storm surge risk assessment and evacua-

tion planning, play a crucial role in saving lives and mitigating disasters. Conventional risk assessment struggles to meet the

demands of refined risk evaluation research for small-scale elements, such as roads, and current evacuation plans are gen-

erally based on broader regional scales, failing to provide effective road-level evacuation planning for evacuees. This study5

developed four
:::
five

:
typical typhoon scenarios for the coupled ADCIRC-SWAN model to simulate storm surge inundation.

Combining these simulations with road network, storm surge risk assessment was conducted in the Daya Bay Petrochem-

ical Industrial Zone, a
:::::::::
vulnerable low-lying coastal region of Huizhou City, China, which is frequently affected by storm

surge-driven flooding. Based on the risk assessment, a combination of the Deep Q-Network (DQN) model and raster environ-

ment was employed to develop real-time evacuation plans during storm surge events. To address the DQN model’s convergence10

challenges, compressed search space and multi-reward
::::::::::
navigational

::::::
reward methods were proposed, which were specifically

designed to enhance the DQN model’s capacity to path planning problems within large-scale raster environments. 1000 starting

points were randomly selected for path
::::
route planning, and the results indicate that the proposed method is highly effective in

devising optimal evacuation routes with minimal deviation, offering valuable guidance for evacuees during real-world storm

surges.15

Copyright statement.

1 Introduction

A storm surge is an abnormal and temporary rise of water that occurs during intense storms. This sudden rise in sea level

can lead to extreme inland flooding in coastal communities especially when an advancing surge coincides with astronomical

high tide (Wang et al., 2021b). Storm surge is one of the most dangerous and destructive natural hazards to life and property20
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along the coastline and kilometers inland in the world (UNISDR et al., 2015). In the US, coastal flooding from storm surge

was responsible for 49 % of hurricane- or tropical-storm-related
:::::::::::
storm-related

:
fatalities during the period from 1994 to 2003

(Rappaport, 2014). When Hurricane Katrina struck the southeastern United States in 2005, an estimated 1,577 people died,

causing USD 108 billion in property damages
::::
USD

::
in

::::::::
property

:::::
losses

:
(Rhome and Brown, 2006). The storm surge from

Super Typhoon Haiyan
:::::::
’Haiyan’, hitting the Philippines in 2013, was estimated to be 7.5 high, leading to

:::
led

::
to more than25

7,000 persons losing their lives along the coastline (Mas et al., 2015). In China, from 1998 to 2019
::::
2020, the average annual

economic losses resulting from storm surge flooding each year is approximately 10.17 billion RMB, which is equivalent to

96 % of the total direct economic losses from all types of marine disasters (China Marine disaster bulletin, 2021). Recent

studies suggested that
:::::::
indicated

::
a
:::::::
potential

:::::::::
escalation

::
in the number of people facing the risk of

:::::::::
individuals

::
at

:::
risk

:::::
from storm

surge floodingand the losses in property and human lives during typhoon events could continue to increase in the future due to30

accelerating sea-level rise and more intense hurricanes ,
:::::
along

::::
with

:::::::::
associated

:::::::
property

:::::::
damage

:::
and

::::
loss

::
of

:::
life (Merkens et al.,

2016; Oppenheimer et al., 2019; Snaiki et al., 2020). Physical barriers, which run
::::
while

:
parallel to the shoreline, alone cannot

prevent all possible damages that
:::
are

:::::::::
insufficient

::
to
:::::::

prevent
:::
all

:::::::
potential

::::::::
damages

::
to urban settlements and infrastructure can

suffer during storm surge flooding
:::::
events. With increasing potential victims and economic losses, it is of paramount importance

to perform risk assessments and develop evacuation plans to mitigate the risks
:::
risk associated with storm surges

:::::
surge.35

Storm surge risk assessmententails the identification and evaluation of potential hazards and associated risks within a

specified region , as well as the severity of their potential consequences (Wang et al., 2021a). Conducting effective and practical

storm surge risk assessments lays the groundwork and establishes the premise for devising well-founded evacuation plans.

Generally, ,
:::::
based

:::
on

::::::::
simulated

:::::::::
inundation

::::::::
scenarios,

::::
can

::::::
provide

:::::::::
predictive

:::
and

::::::::
analytical

::::::::::
information

:::
on

:::
the

::::::
danger

::
of

:::::
storm

::::
surge

::::::::
disasters

::
in

:
a
::::::
region

::::::::::::::::
(Wang et al., 2021a)

:
.
:::
The

::::
risk

:::::::::
assessment

::::::::
approach

::::
aims

::
to

:::::::
quantify

:::
the

:::::::
damage

:::
and

::::
risk

:::
into

::::::
value,40

:::::
where

:::
the

:::::
value

::
is

:::
the

:::::::::
interaction

:::::::
between

:::
the

:::::::::
geographic

::::::::
coverage

::
of

:::
the

:::::::
hazard,

:::
the

::::::::
exposure

::
of

:::::::
elements

:::
to the inundation

depths and extents are regarded as the most common factors to measure the tangible risk
:::::
hazard, and the computation of

potential storm surge heights and the maximum inundated area under different hypothetical typhoon events is one of the

major components of
::::::::::
vulnerability

::
of

::::::::
exposed

::::::::
elements

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Granger, 2003; Kron, 2005; Lavell et al., 2012; Koks et al., 2015)

:
.
::
In

::::::
recent

:::::
years,

:::::::
various

:::::
storm

:::::
surge

::::
risk

::::::::::
assessment

::::::
models

:::::
have

::::
been

::::::::::
established

::
in
:::::::

various
:::::::::
countries,

:::
and

:::::
some

:::::
case45

::::::
studies

::::
have

::::
been

:::::::::
conducted

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Zerger, 2002; Benavente et al., 2006; Lin et al., 2010).

:::
In

:::
the

:::::
study

::
of

:
storm surge risk as-

sessment(Thieken et al., 2007; Merz et al., 2010). The computation of maximum potential impact due to storm surge is usually

performed using the numerical model by taking into account the atmospheric pressure, landfall location, varying forward speed,

the radius of maximum wind, and tracking. So far, many hydrological models such as the
:
,
:
a
::::::::::::
comprehensive

::::::::::
assessment

::
of

:::::
storm

::::
surge

::::
risk

:::
was

:::::::
obtained

:::
by

:::::
using

::::::::
numerical

::::::
models

::
to

:::::::
simulate

:::
the

:::::::::
inundation

::::::::
scenarios

:::
and

::::::::::
considering

:::
the

::::::
damage

::
of
::::::::
different50

::::
types

::
of

:::::::::
vulnerable

:::::::::
elements.

:::
The

:
Advanced Circulation (ADCIRC, Luettich et al.) model, Finite Volume Community Ocean

Model (FVCOM, Chen et al.), and
:::::::
designed

:::
to

::::::
address

:::::
two-

:::
and

::::::::::::::::
three-dimensional

::::::::::::
hydrodynamic

::::
free

::::::
surface

::::::::::
circulation

:::::::::
challenges,

:::
has

::::
been

::::::
widely

:::::::
applied

::
to

:::::::
simulate

::::
tide-

::::
and

::::::::::
wind-driven

::::::::::
circulations.

::::
The Simulating Waves Nearshore (SWAN,

Delft University of Technology) model have been applied to simulate tide, wave and storm surge in different regions in the

world, obtaining good prediction accuracy in previous studies. In this study, the coupled
:::::::::
Booij et al.

:
)
:::::
model

::
is
::

a
:::::::::
numerical55
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::::
wave

::::::
model,

::::::
which

::::::::
computes

:::
the

::::
wave

::::::
action

::::::
density

::::::::
spectrum

::
by

:::::::
solving

:::
the

::::
wave

::::::
action

::::::
balance

::::::::
equation.

:::
By

:::::::::
employing

::
a

::::::::::
bidirectional

::::::::
coupling

::::::::
approach,

:::
the ADCIRC+SWAN model was employed to simulate storm surge flooding, and quantitative

risk assessments were conducted by combining the extents and depths of the flooding
::
is

:
a
:::::::

widely
::::
used

::::::
model

::
to

::::::::
simulate

::::::
coastal

:::::
storm

::::::
surges

:::
and

:::::
tidal

:::::
floods

::::::::
induced

::
by

:::::::
tropical

:::::::::
cyclones,

:::
and

::::
has

::::::
shown

::::
good

:::::::::::
performance

:::
in

:::::::
previous

:::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Dietrich et al., 2011; Suh et al., 2015; Wang et al., 2018).60

The research on emergency evacuation originated in the early 20th century, and its core task is the development of evacu-

ation plans, including the identification of disaster shelters and the planning of evacuation routes (Alsnih and Stopher, 2004).

In some coastal areas vulnerable to storm surges, there might be a lack of designated disaster shelters. Consequently, it is

essential to identify suitable facilities to serve as shelters, and a framework was proposed based on several criteria, including

structural stability, waterproofing, and capacity. Conventional shortest-path algorithms, such as Dijkstra’s and A* algorithms,65

have been enhanced and employed in emergency evacuation planning (Samah et al., 2015; Astri et al., 2020, e.g.,). Addi-

tionally, heuristic approaches, including the PSO algorithm, genetic algorithm, and ant colony algorithm have been intro-

duced to identify optimal routes within intricate environments (Li et al., 2020; Goerigk et al., 2014; Forcael et al., 2014, e.g.,).

Nevertheless, existing emergency evacuation plans predominantly adopts the perspective of administrators, furnishing evacuees

with complete environmental information. In realistic circumstances, evacuees often encounter obstacles in obtaining the70

entire environmental information, instead possessing merely a limited awareness of their immediate surroundings. And the

techniques employed for issuing evacuation mandates and cautionary advisories lack the timeliness in guiding individuals

to
::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Li et al., 2020; Goerigk et al., 2014; Forcael et al., 2014).

:::
In

:::::
recent

:::::
years,

::::::::::::
reinforcement

:::::::
learning

:::::
(RL),

:::
has

::::
been

::
a

:::
hot

::::
topic

::
in

:::
the

::::
field

::
of

:::::::
machine

:::::::
learning,

::::
and the most appropriate escape routes where actual evacuation distances may fluctuate as

the evolving environment of the catastrophe. Deep reinforcement learning (DRL) is a new paradigm of deep learning , and since75

its inception, it has rapidly evolved with the proposal of various
::::
basic

::::
idea

::
is

::
to

:::::
learn

:::
the

::::::
optimal

:::::::
strategy

:::
by

::::::::::
maximizing

:::
the

:::::::::
cumulative

::::::
reward

:::::::
obtained

:::::
from

:::
the

:::::::::
interaction

:::::::
between

:::
the

:::::::::
intelligent

:::::
agent

::::
and

:::
the

::::::::::
environment

:::::::::::::::::::::
(Sutton and Barto, 2018)

:
.
::
In

:::
the

:::::::::::
increasingly

:::::::
complex

:::::::::
real-world

::::::
tasks,

::::
deep

::::::::
learning

::::
(DL)

::::
can

:::
be

::::::
utilized

:::
to

:::::
better

:::::
learn

:::
the

:::::::
abstract

:::::::
features

:::
of

:::::::::
large-scale

::::
input

:::::
data,

:::::
which

::::
can

::::
then

::
be

:::::
used

::
to

:::::::
optimize

::::
the

::::
RL’s

:::::::
strategy

:::::::
learning

:::::::
process.

::
In

::::::
2013,

:::::::::
Mnih et al.

::::::::
proposed

::
the

:::::
Deep

::::::::::
Q-Network

:::::::
(DQN),

::::::
which

::::
was

::::::
applied

:::
to

:::::
solve

::::::::::
visual-based

:::::::
control

:::::::
decision

:::::::::
problems.

:::::
Since

:::::
then,

:::
the

::::
field

:::
of80

::::
deep

::::::::::::
reinforcement

:::::::
learning

::::::
(DRL)

:::
has

::::::::::
experienced

:::::
rapid

:::::::::::
development,

::::::
arising

:::::::::
numerous

:::::::
efficient algorithms, such as Deep

Q-Network (DQN, Mnih et al.
::::::::::
Deterministic

::::::
Policy

::::::::
Gradient

:::::::
(DDPG,

::::::::::::
Lillicrap et al.), Asynchronous Advantage Actor-Critic

(A3C, Mnih et al.), and Proximal Policy Optimization (PPO, Schulman et al.). DRLhas found widespread application in diverse

domains, including game-playing (Mnih et al., 2015), autonomous navigation (Sallab et al., 2017), and industrial regulation

(Levine et al., 2018), demonstrating strong learning and generalization capabilities,
:::::
based

:::
on

:::::::
Markov

:::::::
decision

::::::::
processes

::::
and85

::::
deep

:::::
neural

:::::::::
networks,

:::::
offers

:::
an

:::::::
effective

::::::::
solution

:::
for

:::
the

:::::::::::
optimization

::
of

:::::::::
evacuation

:::::
route

::::::::
planning.

::::::::
Yu et al.

::::::
utilized

:::::
DRL

:::::
model

::
to

:::::::
develop

::
a
:::::::::
navigation

::::::
system

:::
for

:::
an

:::::
agent

::
in

:
a
::::::

maze.
:::::::::::
Zhang et al.

:::::
created

::
a
:::::::
scenario

::::
with

::::::::
obstacles

:::
in

:
a
:::::
room

::::
and

::::::::
addressed

:::
the

:::::::
problem

:::
of

:::::::::
emergency

:::::::::
evacuation

::::::
within

:::
the

:::::
room

:::::
using

:::::
DRL.

::::::::
Ni et al.

:::::::
simulated

::::::::
buildings

:::
in

:
a
:::
fire

::::::::
scenario

:::
and

::::
used

::
an

:::::::::
improved

::::::
double

::::
deep

::
Q

:::::::
network

::
to

:::::
solve

:::::::::
evacuation

::::
route

::::::::
planning. The merit of DRL algorithms in emergency
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evacuation stems from their capacity to function without a priori comprehension of the entire environment. In this study, an90

enhanced

:::::
Storm

:::::
surge

:::
risk

::::::::::
assessment

:::
and

:::::::::
evacuation

:::::
route

::::::::
planning

:::
can

:::::::
provide

::::::::::::::
decision-making

::::::
support

:::
for

:::::
local

:::::::::::
governments

::
in

::::::
disaster

:::::::::
prevention

:::
and

:::::::::
reduction,

:::
and

:::::::
provide

:::::
timely

::::
and

:::::::
effective

:::::::::
emergency

:::::::::
evacuation

::::::::
guidance

:::
for

:::::::
affected

::::
area

::::::::
residents.

::
To

::::
date,

:::::
there

:::
are

::::::::
currently

::
no

:::::
cases

::
of

:::::::::::::
comprehensive

:::::
storm

:::::
surge

:::::::
disaster

::::::::
mitigation

::::::::
research

:::::::::
integrating

::::
these

::::
two

:::::::
aspects.

:::::
Based

:::
on

:::
the

::::::
current

:::::::
studies,

:::
the

:::::
main

::::::::
problems

:::::
faced

:::::::::
include:(1)

::::::
Storm

:::::
surge

::::::::
endanger

::::::
coastal

:::::::
regions,

:::::
with

:::
the

:::::::
existing95

::::::::
strategies

:::::
falling

:::::
short

::::
due

::
to

::::
their

:::::::
neglect

::
of

::::::::::
small-scale

::::::::
elements

::::
like

::::
road

::::
risk

::::::::::
assessment,

::::::::
hindering

:::::::::
fine-tuned

:::::::
disaster

:::::::::::
management.

:::
(2)

:::::::::::
Conventional

:::::::::
evacuation

:::::
route

::::::::
planning

::
is

::::::
limited

:::
by

:::
its

:::::::::::::::
oversimplification

::
of

::::::::
complex

:::::::::::
environments

::::
and

:::::::::
inadequate

:::::::::::
consideration

::
of

:::::::
victims’

::::::
needs.

::::
The

:::::::::::::
unpredictability

::
of

:::::
storm

::::::
surges

:::
and

::::::::::
incomplete

:::::::
regional

::::::::::
information

::::::
further

:::::::::
complicate

:::
the

::::::::::
maintenance

::
of

:::::::
effective

::::::
plans.

::
(3)

::::::
While deep reinforcement learning method was proposed to assist individuals

in evacuating to the nearest shelter based on their surrounding environment. Additionally, to tackle convergence challenges in100

path planning using DRL in
:::::
shows

:::::::
promise

::
in
:::::

route
::::::::
planning,

::
it
:::::

faces
:::::::::::
convergence

:::::::::
challenges

::::
with

:
large-scale areas, two

compression methods were proposed to significantly reduce the problem size.

The case study area of this research focuses
::::::::::
applications.

::::
This

:::::
study

::::::
focused

:
on the low-elevation coastal regions of the Daya

Bay district, which is periodically exposed to tropical cyclones and frequently affected by storm surge-driven coastal flooding.

The work in this study involves: 1. employing
::::::
utilizing

:
the coupled ADCIRC+SWAN

::::::::
numerical

:
model to simulate storm surge105

flooding for risk assessments; 2. identifying disaster shelters; 3. constructing a simulation environment; 4. utilizing enhanced

DQN for evacuation path planning. And the main contribution is to develop a real-time effective emergency evacuation plan for

individuals with limited awareness of their surrounding environment in a large-scale region. The rest of the paper is organized

::::::::
scenarios,

:::
and

:::::::::::
subsequently

::::::::::
conducting

:
a
:::::::::::::
comprehensive

::::
risk

:::::::::
assessment

::
of

:::
the

::::
road

::::::::
network.

::::::
Based

::
on

:::
the

::::
risk

::::::::::
assessment,

:
a
::::
DRL

::::::
model

::::
was

::::::
utilized

::
to

:::::::
provide

:::::::::
intelligent

:::::::::
evacuation

::::
route

::::::::
planning

:::
for

::::::::
evacuees.

::::
The

::::
main

:::::::::::
contributions

:::
of

:::
this

:::::
work110

::
are

:::::::::::
summarized as follows: Section 3 delineates the coupled numerical modelutilized to simulate storm surge flooding during

typhoon events and the deep reinforcement learning algorithm used to explore optimal routes to evacuate from the floods on

the road network. Thereafter, in the Section 4, the implementation of the proposed method to simulate depths and extents of

storm surge flooding and recommended evacuation routes is demonstrated with the example of the coastal areaof Huizhou.

Subsequently, the findings and analyses pertaining to the numerical simulations of inundation depths and extents of storm115

surge flooding, as well as the emergency flood evacuation simulations based on DRL in coastal regions, are presented. Finally,

the conclusions and suggestions for future work were discussed in Section 5

–
::
By

:::::::::
analyzing

::::::::
historical

:::::::
typhoon

::::
data,

:::
five

::::::
typical

::::::::
typhoon

::::::::
intensities

::::::::
affecting

:::
the

:::::
study

:::
area

:::::
were

::::::::
identified.

::::::
Using

:::
the

::::::
coupled

:::::::::::::::
ADCIRC+SWAN

::::::
model,

:::
the

:::::
storm

:::::
surge

:::::::::
inundation

:::::::
process

::
in

:::
the

::::
study

::::
area

:::::
under

:::
the

::::
five

:::::::
typhoon

::::::::
scenarios

:::
was

:::::::::
simulated.120

–
:::::::::
Developing

::
a

:::::
refined

::::
road

::::
risk

:::::::::
assessment

:::::
model

:::
for

:::::
storm

::::::
surges,

:::::
taking

::::
into

::::::
account

:::
the

::::::
extent

::
of

:::::::::
inundation,

:::::::::
inundation

:::::
depth,

:::
and

::::
type

::
of
:::::
road,

::
to

:::::::
analyze

:::
the

:::::
traffic

:::::::::
conditions

:::
and

:::::::
conduct

:
a
:::::::::::
fine-grained

:::
risk

:::::::::
assessment

:::
of

:::
the

::::
road

:::::::
network

::
in

:::
the

:::::
study

::::
area.
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–
:::::::::
Reframing

:::
the

:::::
route

:::::::
planning

::::::::
problem

::
in

::
a

:::::
raster

:::::::::::
environment

::
as

::
a

:::::::::
continuous

::::::::::::::
decision-making

::::::::
problem,

::::
and

:::::
using

:
a
:::::
DRL

::::::::
algorithm

::
to
:::::

plan
:::::::::
evacuation

::::::
routes

::
on

:::::
road

::::::::
networks,

::::::
which

:::
can

:::::::
provide

::::::::
real-time

::::
and

:::::::
effective

::::::::::
evacuation125

:::::::
guidance

:::::
based

:::
on

:::
the

::::::
limited

::::::::::
environment

::::::
around

:::::::::
evacuees.

–
::
To

:::::::
address

::
the

:::::::::
challenges

:::::
faced

:::
by

:::
the

::::
DQN

::::::
model

::
in

:
a
:::::
large

:::::
raster

::::::::::
environment

:::
for

:::::
route

::::::::
planning,

:::
this

:::::
study

::::::::
proposed

:::::::::
compressed

::::::
search

:::::
space

:::
and

:::::::::::
navigational

::::::
rewards

::::::::
methods

::
to

:::::::
optimize

:::
the

:::::::::
traditional

:::::
DQN

::::::
model,

:::::::
enabling

::
it

::
to

:::::
better

:::
suit

:::::::::
evacuation

:::::
route

::::::::
planning.

2 Study Area130

Figure 1.
:::
The

::::
Daya

::::
Bay.

:::
The

:::::
study

:::
area

::
is

::
in

:::
red.

Daya Bay district is located in the southern region of Huizhou City, Guangdong Province. It has a total land area of 293 km2

and a population of 0.45 million, which is concentrated most highly in coastal areas, in 2021. In addition, the
:::
The

:
Daya Bay

Petrochemical Industrial Zone, situated in the north-eastern part of Daya Bay, was listed as a national petrochemical industrial

base. It has formed an annual production capacity of 22 million tons of oil refining and 2.2 million tons of ethylene in 2021,

which ranks first in China in terms of the scale of petrochemical-refining integration. Industrial facilities and critical infrastruc-135

ture in this area are vulnerable to storm surge-driven coastal flooding during typhoon events, leading to devastating losses of

life and property. The peak water level induced by severe storm surge during super typhoon Mangkhut on 16 September 2018

at Huizhou gauging station, closest to the Daya Bay district, rose to 349 , causing estimated economic losses of 577.39 million

RMB. In the context of substantial sea-level rise and urban extent along low-lying coastal areas, most communities across the

5



Daya Bay district will likely face higher storm surge flooding risk in the future. It is crucial and essential to create the storm140

surge risk maps for raising awareness about areas at risk and making evacuation plans to minimize the loss and damage. The

study area is shown in Fig. 2.
:
1.
:

3
:::::::::::
Methodology

Figure 2. The Daya Bay
::::::
overview

::
of

:::
the

::::
work.The study area is in red.

4 Methodology

As storm surges assail, the goal of storm surge evacuation planning is to provide guiding paths to shelters for the people in145

the affected area, despite their limited environmental knowledge
:::
The

:::
risk

::::::::::
assessment

:::
and

:::::::::
evacuation

:::::
route

::::::::
planning

:::
for

:::::
storm
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::::
surge

::::
play

::
a
::::::
crucial

::::
role

::
in

::::::
saving

::::
lives

:::
and

:::::::::
mitigating

::::::::
disasters. The significance of this work lies in the ability to simulate

storm surge flooding for risk assessments and to find routes to the nearest disaster based on the road network. In this study, an

effective method for planning the evacuation path during a storm surge is proposed. The specific research method includes two

segments: environmental modeling and deep reinforcement learning. In Section ??, the process of simulating storm surges using150

numerical techniques and establishing an authentic raster environment model for the study area is delineated. In Section ??,

the principles and procedures of the Markov Decision Process (MDP) are described. Based on the MDP, we redefined the path

planningproblem with the raster environment and proposed two optimization methods to reduce the problem scale
::
the

:::::::
method

::::
used

::
to

:::::::
perform

:::
risk

::::::::::
assessment

:::
and

:::::::::
evacuation

:::::
route

::::
plan

:::::::
consists

::
of

::::::::
following

::::
four

::::::::
sections:

::
(1)

:::::
storm

:::::
surge

::::::::::
simulation;

:::
(2)

::::
road

:::
risk

::::::::::
assessment;

:::
(3)

:::::::::
evacuation

:::::
route

::::::::
planning;

::
(4)

:::::::::::
optimization

::
of

:::
the

:::::
DQN. Please refer to Fig. 1

:
2
:
for an overview and155

the sections for more information. The overview of the work.

3.1 Environmental modeling
:::::
Storm

:::::
surge

::::::::::
simulation

The purpose of environmental modeling lies in the accurate simulation of the environmental information of the study area. This

work involves storm surge simulation and risk assessments, regional road network modeling, and identification of potential

disaster shelter facilities. To facilitate computational engagement, all environmental datahave been rasterized. The rasterized160

environment, with a three-dimensional construct, consists of regional risk levels, road networks, and disaster shelters, and these

constituent elements are stored within three separate matrices. The whole flow chart of environmental modeling is depicted in

Fig. 3. The flow chart of environmental modeling.

3.1.1 Simulation of storm surge and risk assessments

Storm surge is a phenomenon wherein seawater levels experience a marked elevation due to turbulent atmospheric perturbations,165

such as typhoons and cyclones. The ADCIRC model, designed to address two- and three-dimensional hydrodynamic free

surface circulation challenges, has been widely applied to simulate tide- and wind-driven circulations. The SWAN model is

:::::
Given

:::
the

::::::::
difficulty

::
in

::::::::
obtaining

::::::::
measured

:::::::
typhoon

:::::
data, a numerical wave model , which computes the wave action density

spectrum by solving the wave action balance equation
::::::
widely

:::::::
adopted

::::::
method

::
is
:::

to
::::::::
construct

:
a
:::::::::
theoretical

:::::
wind

::::
field

::::::
model

::::
using

::::
the

::::
wind

::::::::
gradient

:::::::
formula

::::::::::::::::::::::::::::::::::::::::
(Jelesnianski, 1965; Willoughby and Rahn, 2004). In this study, the Jelesnianski hurricane170

model (Jelesnianski, 1965) was utilized to generate wind field, and the coupled ADCIRC+SWAN model, which integrates

storm surge and wave interactions, was employed to simulate typhoon-induced storm surge flooding during typhoon events.

The computational domain in this study covered the coastal region of Huizhou, as shown in Fig. 4. The model contained grids

consisting of 74328 units and 38407 nodes. The coverage extended from 106.0° E to 128.0° E in longitude and from 13.0° N to

28.0° N in latitude. The 11 major tidal components of semidiurnal and diurnal frequencies (M2, N2, S2, K2, K1, O1, P1, Q1,175

MS4, M4, M6) were included. The Jelesnianski hurricane model calculates the air pressure and the wind. The ADCIRC model

transfer wind field, water levels, and currents to the SWAN model every 600 , while the SWAN model passes the wave radiation

back to the ADCIRC model on the same unstructured finite element mesh, which can simulate storm surge and produce coastal

flooding for the study area. The computational domain.
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The coupled model is driven by the wind field, rendering the accuracy of storm surge model outcomes intrinsically reliant on180

the quality of the wind field model. Given the challenges in obtaining measured data, a prevalent approach involves constructing

a theoretical wind field model based on the wind gradient formula (Jelesnianski, 1965; Willoughby and Rahn, 2004). Utilizing

the Jelesnianski model necessitates four
::::
used

::
to

:::::::
provide

::::
wind

:::::::
forcing.

::::
This

::::::::
approach

:::::::
requires

:::
the

:::::::::::
specification

::
of

::::
four

::::::
critical

parameters: the cyclone track
::::::::
trajectory T , the minimum central pressure Pc, the maximum wind velocity Vmax, and the

maximum wind radius Rmax. The Rmax may be approximated through several empirical equations (Vickery et al., 2000;185

Cheung et al., 2007), as delineated below:

Rmax_1 = exp(2.635− 0.00005086∆P 2 +0.0394899θ) (1)

Rmax_2 = 1119×∆P−0.806 (2)

Rmax_3 =Rk − 0.4× (Pc − 900)+0.01× (Pc − 900)2Rmax_4= 260.93×∆P−0.512 (3)

where ∆P indicates the pressure difference between the minimum central pressure Pc and ambient pressure, and in this study,190

the ambient pressure is 1010hPa
::::
1010 hPa; θ represents the latitude of the storm’s center; Rk is an empirical constant usually

taking the value range of [30,60], and we take the Rk = 50. The {Rmax_1,Rmax_2,Rmax_3,Rmax_4}:::::::::::::::::::::::
{Rmax_1,Rmax_2,Rmax_3}

are all estimates of Rmax and the final Rmax we adopted was their average, i.e.

Rmax =
Rmax_1 +Rmax_2 +Rmax_3 +Rmax_4

4

Rmax_1 +Rmax_2 +Rmax_3

3
:::::::::::::::::::::::

(4)

Given a pressure difference ∆P , the maximum wind velocity Vmax can be estimated by a empirical equation(Atkinson and195

Holliday, 1977):

Vmax = 3.7237×∆P 0.6065 (5)

To simulate the inundation extents and depths under a specific typhoon
:::::::::
According

::
to

:::
the

:::::::
Tropical

::::::::
Cyclone

::::::
Dataset

:::
of

:::
the

:::::
China

:::::::::::::
Meteorological

::::::::::::
Administration

::::::
(CMA,

:::::::::::::::::::::::::::::
Ying et al. (2014); Lu et al. (2021)

:
),

::::
from

:::::
1949

::
to

:::::
2022,

:::::::
Huizhou

::::
was

::::::::
impacted

::
by

:::::::
tropical

:::::::
cyclones

::
of

::::::::
typhoon

:::::::
intensity

::
or

:::::::
greater,

::::::
account

:::
for

::::::
58.9%

::
of

:::
all

::::::
events,

::::
with

::::::
central

::::::::
pressures

:::::::
ranging

::::
from

::::
900200

hPa
::
to

:::
960

:
hPa.

:::::::
Among

:::::
these

::::::::
cyclones,

:::::
57.7%

::::::
moved

::
a
:::::::
westerly

::
or

::::::::::::
northwesterly

::::
path.

::
In
::::

this
:::::
study,

:::
the

::::::::
trajectory

:::
of

:::::
Super

:::::::
Typhoon

::::::::::
’Mangkhut’

:::::
(NO.

:::::
1822)

::::
was

:::::::
selected

::
to

::::::::
construct

:
a
::::::::
simulated

:::::
wind

::::
field

:::
for

:::::
storm

:::::
surge

:::::::::
inundation

::::::::::
simulations

:::
for

::
its

::::::::::::
northwestward

:::::::::
movement

::::
and

::
its

::::::
status

::
as

:::
the

::::
most

::::::
strong

:::::::
cyclone

::
in

:::
the

::::::::::
Asia-Pacific

::::::
region

::
in
::::::

recent
:::::
years.

::::::::::
Employing

::
the

:::::::::
trajectory

::
of

::::::::::
’Mangkhut’

::
is

:::::::::
significant,

::
as

::
it
:::::::::
potentially

:::::::::
introduces

:::
the

::::::::
maximum

::::::
storm

::::
surge

:::::::::
inundation

:::
to

:::
the

::::
study

:::::
area.

::
As

::::::
shown

::
in

::::
Fig.

::
3,

:::
the

::::::::
trajectory

::
of
:::::::::::

’Mangkhut’
:::::::
spanned

:
a
::::
vast

:::::::::::
geographical

::::
area,

::::::::::
originating

::
in

:::
the

:::::::
tropical

::::::
Pacific

::::::
region,205

::::::::
traversing

:::
the

:::::::::
Philippine

:::
Sea,

::::
and

::::::::::
culminating

::
in

:::::::
landfall

::::
along

:::
the

::::::::
southern

::::
coast

:::
of

:::::
China.

::::::
Based

::
on

::::::::::
Jelesnianski

::::::
model,

::::
five

:::::::
typhoon

:::::::
scenarios

:::::
were

::::::::::
constructed

::
as

:::::::::::
demonstrated

::
in

:::::
Table

::
1.

:::::
Using

:::
the

::::::::::
Jelesnianski

::::::::
hurricane

:::::
model

:::::::::::::::::
(Jelesnianski, 1965)

:
to
:::::::
provide

::::
wind

:::::::
forcing,

:::
and

:::::::::
combining

:::
the

:::::::
coupled

::::::::::::::
ADCIRC+SWAN

:::::
model

::::
with

::::::::::
topographic

:::::
data,

::::::::::
bathymetric

::::
data,

:::
and

::::::
barrier

::::
data

::
to

::::::::
simulate

:::
the

:::::
storm

:::::
surge

:::::::::
inundation

::
in

:::
the

:::::
study

::::
area.

::::
The

:::::::::::
computational

:::::::
domain

::
is

:::::::::
discretized

:::::
using

:::
an

::::::::::
unstructured

:::::::::
triangular

:::::
mesh,

::::
with

:::
the

:::::
mesh

::::::
shown

::
in

::
as

::::::
shown

::
in

::::
Fig.

::
4.

::::
The210
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Figure 3.
:::
The

:::::::
trajectory

::
of
::::::::::
’Mangkhut’.

Table 1.
:::::::
Typhoon

::::::::
scenarios

::::::::
parameter

:::::::
Minimum

::::::
central

::::::::
Maximum

::::
wind

::::::::
Maximum

::::
wind

:::::::
Typhoon

:::::::
scenarios

::::::
pressure

:::
Pc ::::::

velocity
::::
Vmax: :::::

radius
:::::
Rmax :::::::

Trajectory
:

:
(hPa

:
) (m/s)

: :
(km

:
)

::::::::
Scenario1

:::
910

::
57

::
31

:::::::::
’Mangkhut’

::::::::
Scenario2

:::
920

::
53

::
33

:::::::::
’Mangkhut’

::::::::
Scenario3

:::
930

::
49

::
35

:::::::::
’Mangkhut’

::::::::
Scenario4

:::
940

::
45

::
38

:::::::::
’Mangkhut’

::::::::
Scenario5

:::
950

::
41

::
45

:::::::::
’Mangkhut’

::::::::::
predominant

::::
tidal

::::
type

::
in

:::
the

:::::::
northern

::::::
China’

:::::
South

:::
Sea

::
is
:::
the

:
8
::::::
major

::::
tidal

::::::::::
components

::
of

::::::::::
semidiurnal

:::
and

::::::
diurnal

::::::::::
frequencies

::::
(M2,

:::
S2, both the Digital Elevation Model (DEM) dataset and the Storm Surge Barriers (SSB) dataset were employed. The

DEM dataset, available from Huizhou Land and Resource Bureau, is a raster dataset containing the land elevation in Huizhou.

:::
N2,

::::
K2,

:::
K1,

::::
O1,

:::
P1,

::::
Q1).

::::
The

::::::::
elevation

::::
data

::
of

:::
the

::::
land

::::
grid

::::
was

:::::::
obtained

:::::
from

:::
the

::::::
digital

:::::::
elevation

::::::
model

::::::
(DEM)

::::
data

:::
of

:::::::
Huizhou

:::::::
acquired

::
in
::::::

2015. The SSB dataset, available from Huizhou Oceanic Administration, contains information on storm215

surge barriers , such as location, height, and slope. Storm surge risk assessment was conducted by evaluating the difficulties

of traversing areas with
::::
data

::
in

:::::
study

::::
area

:::::
were

:::::::
obtained

:::::
from

:::
the

:::::
actual

:::::::::
measured

::::::
barrier

::::::::::
engineering

::::
data

::::
and

::::::::
elevation

:::::::::::
measurement

::::
data.

:::
The

:::::::::::::::
ADCIRC+SWAN

::::::
model

:::
was

::::::::
evaluated

:::::
using

:::
real

::::::::
historical

:::::::
disaster

::::::
events.

::::::::
(Detailed

::::::::
validation

::::::
results

:::::::
between

:::::::
observed

::::
and

::::::::
simulated

:::::
water

:::::
levels

::
is

:::::::
provided

::
in
:::::::::
Appendix

:::
A).
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Figure 4.
:::
The

:::::::::::
computational

::::::
domain.

::::
The

::::::
model’s

:::::::::::
computational

:::::
domain

::::::
covers

::
the

::::::
central

:::
and

::::::
northern

::::::
China’

::::
South

::::
Sea,

::
as

:::
well

::
as
::::

part

:
of
:::

the
::::::
eastern

::::::::
Philippine

:::
Sea

:::
and

:::::
some

::::
areas

::
of

:::
the

:::::::
northwest

::::::
Pacific,

:::::::
extended

::::
from

::::::
106.0°

:
E
::

to
::::::

128.0°
:
E
::::

and
::::
from

::::
13.0°

::
N

::
to

::::
28.0°

:::
N.

:::
The

:::
grid

::::::::
resolution

::
on

:::
the

::::
open

::::::::
boundaries

:::::
ranges

::::
from

:::::::::::
approximately

:
5
::

to
::::
110 km

:
,
::::
while

:::
the

:::
grid

::::::::
resolution

:::::
along

::
the

::::
coast

::
of
:::::::
Huizhou

::
is

::::::::::
approximately

::::
150 m

:
.
:::
The

::::
mesh

::
is
::::::::
optimized

::::
using

::::
local

::::::::
truncation

::::
error

::::::
analysis,

::::
with

:
a
:::::::
minimum

::::
grid

:::::::
resolution

::
of
:::::::::::
approximately

:::
100

:
m

:
.

:::
The

:::::
model

:::::::
contained

::::
grids

::::::::
consisting

::
of

:::::
74328

::::
units

:::
and

:::::
38407

:::::
nodes.

3.2
::::

Road
::::
risk

::::::::::
assessment220

::
In

:::
this

:::::
study,

::
a
::::::::::
fine-grained

::::
road

::::
risk

:::::::::
assessment

::::
was

:::::::::
conducted

::
by

:::::::::::::::
comprehensively

:::::::::
combining

::::::::
exposure,

:::::::::::
vulnerability,

::::
and

::::::
hazard.

:::
The

:::::::::
maximum

:::::::
possible

::::::
extent

::
of

:::::::::
inundation

:::::
under

:::
the

:::::
storm

:::::
surge

:::::::
scenario

::::
was

:::::::::
determined

:::
to

::::::
identify

:::
the

:::::
roads

::::
that

:::::
would

::
be

::::::::
affected.

::
To

:::::::
conduct

::::::
hazard

::::::::::
assessment,

:::
the

:::::
roads

::::
were

::::::::::
categorized

::::
into

:::::::
different

:::::::::::
vulnerability

:::::
levels

:::::
based

:::
on

::::
their

:::::
traffic

:::::::::
conditions.

::::
The

:::::::::
evaluation

::
of

:::::
storm

:::::::::::
surge-related

:::::::
hazards

::
is

:::::::::
conducted

::
by

::::::::::
quantifying

:::
the

::::::
extent

::
of

:::::::
damage

::::::::
sustained

::
by

::::
road

::::::::::::
infrastructures

::
at
:

varying inundation depths(Guidelines for Risk Assessment and Zoning of Marine Hazards Part 1:225

Storm Surge, 2019) , and areas are classified into five risk levels, as displayed in Table 1,
:
.
:::
The

:::::
work

::
of

:::::::::::::
Huizinga et al.

:
in

:::::
2017

:::::::
provided

::
a

::::::::
reference

:::
for

:::
the

:::::::::
correlation

:::::::
between

::::::::
inudation

:::::
depth

::::
and

::::::
facility

:::::::
damage

:::
rate

:::::::::::::::::::
(Huizinga et al., 2017)

:
.
::::::
Among

:::
all

::::::
examed

:::::::::
vulnerable

::::::::
elements,

::::::::::::
transportation

:::::::
facilities

::::::::
exhibited

:::
the

::::::
highest

:::::::
damage

::::
rate

:::
due

::
to

::::
their

:::::::::
sensitivity

::
to

:::::::
flooding

::::
and

::::
their

:::::::::
importance

:::
in

:::::
urban

::::::::
functions,

:::
as

:::::
shown

:::
in

:::
Fig.

:::
5.

:::::
Based

:::
on

:::
the

::::::::::
correlation,

:::
this

:::::
study

::::::::
conducts

::
a

:::::
storm

:::::
surge

::::::
hazard

:::::::::
assessment,

::::::::
dividing

::
the

::::::::::
inundation

::::
depth

::::
into

:::
five

::::::
hazard

::::::
levels,

::
as

:::::::::
illustrated

::
in

:::::
Table

::
2.230
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Figure 5.
:::::::::

Relationship
::
of

::::::::
inundation

:::::
depth

:::
and

::::::::::
transportation

:::::::
facilities

::::::
damage

::::
rate.

::
As

:::
the

::::::::
inundation

:::::
depth

:::::::
increases

::::
from

::
0 m

::
to

:
3
:
m

:
,

::
the

::::::
damage

::::
rate

::
of

::
the

:::::::::::
transportation

::::::
facilities

::::
also

:::::::
increases.

::::::::
However,

:::
this

::::
curve

::::
also

::::::::
delineates

:
a
::::::::
saturation

:::::::
threshold

::
in

::
the

:::::::
damage

:::
rate

::::
when

:::
the

::::::::
inundation

::::
depth

::::::
reaches

:
3
:
m
:
.
::::
This

::::::
suggests

:::
that

::::
once

::::
road

:::::::
transport

::::::
facilities

:::::
reach

:
a
::::
state

::
of

:::::
severe

::::::
damage,

::::::
further

:::::::
increases

::
in

::::::::
inundation

::::
depth

:::::
cannot

:::::
cause

:
a
:::::
higher

:::::::
damage.

::
In

:::
the

::::::::::
construction

:::
of

::::::::::::
transportation

::::::::
facilities,

:::::
roads

:::
are

::::::::::
categorized

:::::
based

:::
on

::::::
criteria

::::
such

:::
as

::::::::::
significance,

::::::::
capacity,

::::
and

:::::::
function,

::
as

::::::::
follows:

::
(1)

:::::::
Primary

::::::
roads,

::::
also

::::::
known

::
as

::::::
arterial

::::::
roads,

::::::
include

:::::::::
highways,

:::::::
national

:::
and

:::::::::
provincial

:::::
roads.

::::::
These

::::
roads

::::::::
typically

::::
have

::::
the

::::::
highest

::::::
design

::::::::
standards

::::
and

:::::
firmer

::::::::::::
constructions.

::::::::::::
Consequently,

:::::
their

:::::::::::
vulnerability

::
is

::::::
lowest,

::::
and

:::
they

::::
can

:::::::
maintain

:::::::
service

::::
even

:::::
under

:::::::
extreme

:::::::
weather

::::::::::
conditions.

:::
(2)

:::::::::
Secondary

:::::
roads

::::::::
typically

::::
serve

:::
to

:::
link

:::::::
pivotal

:::::
urban

:::::
areas,

:::::::::
facilitating

::::::::
intra-city

::::::::::::
transportation.

::::::::
Although

::::::::
designed

::
to

:::::
lower

::::::::
standards

::::
than

:::::::
primary

:::::
roads,

::::
they

:::
are

:::
still

::::::::
required

::
to235

:::::::::::
accommodate

:::::::::
substantial

:::::
traffic

::::::::
volumes

:::
and

:::::
meet

:::::::
stringent

:::::
safety

::::::::
demands.

:::
(3)

:::::::
Tertiary

::::::
roads,

:::::::::::
encompassing

:::::
rural

::::::::
pathways

:::
and

:::::
minor

::::::::
unnamed

::::::::::::
thoroughfares,

::::::::
typically

:::::::
represent

:::
the

::::::::::
extremities

::
of

:::
the

:::::::::::
transportation

::::::::
network.

:::::
These

:::::
roads

:::
are

::::::::
designed

:::
and

::::::::::
constructed

::
to

:::
the

:::::
lowest

:::::::::
standards,

::::::::
primarily

::::::
serving

::::::::
residents

::
in

:::::
rural

:::::
areas.

:::
The

:::::::::::
vulnerability

::
of

:::
the

:::::
three

:::::::::
categories

::
of

::::
roads

:::
in

::::::::
ascending

:::::
order

::
is

:::
as:

:::::::
primary

:::::
roads

:
<
::::::::

secondar
:::::
roads

::
<

::::::
tertiary

::::::
roads.

:::::
When

::::::::::
considering

:::
the

:::::
roads

:::::::
affected

:::
by

:::
the

::::::::
maximum

:::::::::
inundation

::::::
extent,

:::::::::
combining

:::
the

:::::::::::
vulnerability

::
of

:::::
roads

::::
with

:::
the

::::::
hazard

:::::
level,

:
a
::::::
refined

::::
road

::::
risk

:::::::::
assessment

::::::
matrix240

:::
was

::::::::
proposed,

:::
as

:::::
shown

::
in

:::::
Table

::
3.

:
where in Risk

3.2.1 Rasterization of road network

In contrast to the orderly thoroughfares of urban areas, suburban roads tend to exhibit meandering and disjointed configurations.

To enhance the road network within the study area, we collected additional unnamed trails by using Geographic Information

System (GIS) techniques. These trials are branches and extensions of existing roads and highways. The road network245

3.3
:::::::::

Evacuation
:::::
route

::::::::
planning
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Table 2. Risk levels and inundation depths
:::::::::
Correlation

::::::
between

:::::::::
inundation

:::::
depth

:::
and

::::::
hazard

::::
level

Risk level

Inundation depth (m)
:::
cm)

:::::
Hazard

::::
level

:

:::::
0∼15 I 0.0∼0.15

:::::
15∼50 II 0.15∼0.5

:::::
50∼120

:
III 0.5∼1.0

:::::::
120∼300 IV 1.0∼2.0

:::::::
300∼∞ V 2.0∼∞

Table 3.
:::::
Road

:::
risk

:::::::::
assessment

::::::
matrix

:::
Risk

::::
level

:::::
\Road

:::::::
categories

: ::::::
Primary

::::
roads

: ::::::::
Secondary

::::
roads

: ::::::
Tertiary

::::
roads

:

I areas, passage is relatively unimpeded; Risk
:::
very

:::
low

: :::
very

:::
low

: :::
very

:::
low

:

II areas present moderate obstacles to traversal; Risk
:::
low

:::
low

:::::::
moderate

III areas pose a certain level of danger, making them impassable for vulnerable individuals such as children and the elderly; Risk
:::::::
moderate

:::::::
moderate

:::
high

IV exhibit elevated risks, with traversal incurring considerable costs; finally, Risk
:::::::
moderate

:::
high

:::
very

::::
high

V areas present extreme danger, rendering passage virtually impossible.
:::
high

:::
very

::::
high

:::
very

::::
high

::::::::
Although

:::
the

::::
road

:::::::
network

:
in the study area is depicted in Fig. 5. The road network in study area. The red line represents

the country roads, the blue line represents the highways, and the green line represents the unnamed trails. Although the road

network exhibits full connectivity, its complexity hampers the construction of a
::
the

:
topological structure. To facilitate spatial

analysis and deep reinforcement learning on the road network, vector road data need to be rasterized. Raster data, akin to an250

image stored in a matrix, boasts a simplistic structure and readily engages in computational processes. In this study , an efficient

method was proposed to convert road vector data into raster data. Road rasterization entails rasterizing each constituent vector

segment. For a vector v that starts at (xs,ys) and ends at (xe,ye), the rasterization algorithm is described in Algorithm ??,

Vector Rasterization

where {ci,j}= {c0,0, c1,0, c1,1, . . . , cM,N} are the shorthand notations for the set of cells; (x0,y0) is the center coordinate255

of the starting cell; max(|xp −xc|, |yp − yc|) is the Chebyshev distance from (xp,yp) to (xc,yc). In this study, the Chebyshev

distance is used to measure the distance between two cells in a raster setting. The procedure delineated in Algorithm ?? permits

parallelization, enabling simultaneous rasterization of multiple vectors and thereby significantly accelerating the rasterization

process for the entire road network. To distinctly differentiate individual road branches, the cell dimensions of w
::::
apply

:::::
DRL

::::::::
algorithm

:::
for

:::::::::
evacuation

:::::
route

::::::::
planning,

::::
this

:::::
study

:::::::
utilized

:
a
::::::

raster
::::::::::::
environmental

:::::::::
modeling;

:::::
raster

::::
data

::::
can

::
be

:::::::::
perceived260

::
as

::::::
images

::::::
stored

::
in

::::::::
matrices,

::::
with

::
a

::::::
concise

::::::::
structure

::::
that

::::::::
facilitates

::::::::::
subsequent

::::::::::::
computational

:::::::::
processing.

::::
The

:::::
study

:::::
area,

:
a
::::::::::
rectangular

:::::
region

:::
of

:
9
:
km × h were established as

::
15

:
km,

::
is
:::::::
divided

::::
into

:
a
::::
cell

::
of

:
16 m × 16 m. For a given area of

size H ×W , the area can be rasterized into M ×N cells and M=⌈W/w⌉, N=⌈H/h⌉, where h×w is the cell size. Each cell is

independent, with the center coordinates of every cell representing the cell’s location coordinates. A vector road is composed of

12



a series of interconnected vector segments, arrayed sequentially from beginning to end, as illustrated in Fig. 6. The rasterization265

of a road. A red straight line is a vector segment and it can be described using ∆x and ∆y; The gray cells represent the result

of the rasterization; The green lines are the boundaries of the adjacent cells that the vector traverse and the yellow points are

the intersections.

3.3.1 Identification of disaster shelters

Identifying potential safe shelters is crucial to enable swift evacuation of affected individuals to structurally sound and watertight270

facilities. Contrary to urban areas,
:::::::::
Identifying

:::::::
potential

:::::::
shelters

:::
for

:::::
swift

:::::::::
evacuation

::
is

::::::::
essential,

::::::::
especially

::
in

::::::::
suburban

:::::
areas

:::::
where

:
dedicated disaster shelter facilities are scarce in suburbs, necessitating alternative options

::::::
limited. This study employs

three criteria—
::::::::
employed

:::::
three

:::::::
criteria:

:
structural stability, waterproofing, and capacity —to identify two primary facility

types as
::
to

:::::
assess

:
potential shelters. Hospitals are inherently designed to withstand various natural disasters. As per Chinese

codes GB50011-2021
:::::::::
Hospitals,

::::::::
inherently

::::::::
resilient

::
to

::::::
natural

::::::::
disasters,

:::
are

:::::::::
prioritized

::::
due

::
to

:::::
their

:::::
Class

::
II

::::::::::::
waterproofing275

and GB50345-2021, hospital buildings are classified as Class II waterproof and Class I seismic-resistant structures, featuring

multiple waterproof amenities and robust earthquake resistance . Consequently, hospitals are prioritized as disaster shelters

during storm surges. In addition to hospitals, schools are designated as potential shelters. According to Chinese codes
::::::
seismic

::::::::
resistance

::
as

:::
per GB50011-2021 and GB50223-2021, school buildings are classified as Class III waterproof, and their seismic-resistant

construction must surpass local residential buildings by one degree. Furthermore, hospitals and schools are typically situated in280

spacious, open areas, minimizing the likelihood of water accumulation. As public facilities, they can accommodate numerous

evacuees. Fig. 7 depicts the spatial distribution of the chosen disaster avoidance facilities. The spatial distribution of potential

shelters in study area.

In this study, path planning relies on the road network, necessitating both the starting point and destination to be situated

on roads. Given that shelter facilities (hospitals and schools) are generally not directly
:::::::::::::
GB50345-2021.

::::::::
Schools,

::::
with

:::::
Class285

::
III

::::::::::::
waterproofing

:::
and

:::::::::
enhanced

::::::
seismic

:::::::::::
construction

:::::::::::::
(GB50011-2021

::::
and

::::::::::::::
GB50223-2021),

:::
are

::::
also

:::::::::
considered

::::::::
suitable.

:::
By

:::::::::
integrating

::::
local

:::::::::
population

::::::
density,

::::::
traffic,

:::
and

:::::::
disaster

:::::
risks,

:::
this

:::::::
research

:::
has

::::::::
identified

::::::
several

:::::::
potential

:::::::
shelters.

:::::
Their

::::::
spatial

:::::::::
distribution

::
is

:::::::
depicted

::
in

::::
Fig.

::
6,

:::::
which

::::::
clearly

::::::
marks

:::
the

:::::::
positions

:::
of

::::
each

::::::::::::
recommended

:::::
shelter

::::::
within

:::
the

::::
road

:::::::
network.

::::
For

::::
route

::::::::
planning,

:::::
since

::::::
shelters

:::
are

:::
not

:::::::
typically

:::::::
located on roads,

::::::::
proximity

::
to

:
a
::::::
shelter

::
is

::::::
defined

::
by

:
reaching road cells within a

specified range from a shelter is deemed equivalent to reaching the shelter itself. This rangeis referred to as the ‘shelter range‘.290

With the road network cell size of 16 ×16 , the ‘shelter range‘ is defined as the Chebyshev distance of 8 cells (while the

actual distance is
::::::
’shelter

::::::
range’

::
of 128 m) from the shelter. All road network cells within the "shelter range" are considered as

destinations. ,
:::::::
equating

::
to
::::::
access

::
to

:::
the

::::::
shelter

:::::
itself.

3.4 Deep Reinforcement Learning

Deep reinforcement learning is a new deep learning paradigm that focuses on formulating suitable policies and taking action295

to achieve a specific goal. A DRL agent learns autonomously through continuous interactions with a complex environment by

performing actions and receiving rewards without explicit supervision. The interaction model between the agent and environ-
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Figure 6.
:::
The

:::::
spatial

:::::::::
distribution

::
of

:::::::
potential

::::::
shelters

:
in
:::::

study
::::
area.

Figure 7. The DRL model. The environment is objective and refers to everything outside the agent that interacts with him, and the knowledge

of the agent is reinforced through the interaction agent-environment. Consider
::::
State

:::
(st)::::::::

represents the term
:::::
current

:
state as

:
of

:
the

:::::
agent,

::::
which

:::::::
contains

:::
the current environmental feature, i.e. all

:::
and

:
the information that

::::
state

::::
space

:::
(S)

::::::::
represents the agent perceives from

::
set

::
of

::
all

::::::
possible

:::::::::::
environmental

:::::
states.

::::::
Action

:::
(at)::::::::

represents the environment at
::::

action
::::
taken

:::
by the current moment. In order

::::
agent

::
in

::::
state

::
st

:::::::
according

:
to assess a policy specifically

:
π,

:::
and the

::::
action

:::::
space

:::
(A)

::::::::
comprises

::
all

::::::
possible

::::::
actions

:::
that

::
an

:::::
agent

:::
can

:::
take

::
in

:
a
::::::

specific
:::::

state.

:::
The feedback mechanism called reward

:::
rt+1 is introduced to define

::::::
quantify the value of a

::
the

:
state

::
st and to quantify the effect of an agent’s

action
::
at.

ment is illustrated in Fig. 8
:
7. The primary objective of the agent is to maximize cumulative rewards, which can be advantageous

for evacuation
::::
route

:
planning. In this study, the Deep Q-Network was employed to maximize the cumulative rewards.
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3.3.1 Markov Decision Process and Deep-Q Network300

In the one-order Markov chain, the probability of a state st is only related to the preceding state st−1, and such a property is

called the Markov property. Based on the one-order Markov chain, given a set of states
:::
The

:::::
route

:::::::
planning

::::
can

::
be

:::::::::::
reformulated

::
as

:
a
::::::::::
continuous

:::::::
position

::::
state

::::::::
transition

:::::::
process

:::::
based

::
on

:::::::
Markov

:::::::
chains.

::::
This

::::::::
approach

:::::::::
discretizes

:::
the

::::
route

::::
into

:::::
states

::::
and

::::::
actions,

:::::::::
employing

:::
the

:::::::
Markov

:::::::
Decision

:::::::
Process

::::::
(MDP)

::
to

::::::
address

:::
the

:::::::::::
uncertainties

:::::::
inherent

::
in

:::::::::
navigation.

:::::
Given

::
a
::::
state

:::::
space

S, a set of actions
::
an

::::::
action

:::::
space A, and a set of rewards R, the Markov decision process (MDP, Bellman) and the Markov305

reward process (MRP, Bertsekas) are defined as Eq. 7
:
6
:
and Eq. ??:

::
7:

:

P a
s,s′ =P (st+1 = s′|st = s,at = a) (s,s′ ∈ S,a ∈A) (6)

Ra
s,s′ =R(rt+1|st = s,at = a,st+1 = s′) (s,s′ ∈ S,a ∈A,r ∈R) (7)

where P a
s,s′ represents the transition probablility from state s to state s′ after performing action a, and Ra

s,s′ is the reward

obtained after transition (s,a,s′). MDP can be regarded as a continuous decision-making process, and the next action to be310

performed is only dependent on the current state.

Value-based DRL algorithms try to estimate the value of states and actions. State value is the expected reward that the agent

can obtain from a state to give an estimate of how good a state is, and action value is the expected reward that the agent can

obtain from a state after performing a specific action, providing an estimate of the action’s utility. under a policy π, the value

of a state s is denoted asVπ(s) and the value of a action a in the state s is denoted as Qπ(s,a):315

Vπ(s) =Eπ(Gt|st = s) =
∑
a

Pπ(a|s)Qπ(s,a)

Qπ(s,a) =Eπ(Gt|st = s,at = a) =
∑
s′

P a
s,s′ [R

a
s,s′ + γVπ(s

′)]

where Gt is the total discounted reward from state st and γ ∈ [0,1] is the discount factor.

Gt =Rt+1 + γRt+2 + . . .=
∞∑
k=0

γkRt+1+k

The goal of DRL is to find an optimal policy to maximize the state value and action value. Under the optimal policy π∗, the320

optimal state value function V∗(s) and the optimal action value function Q∗(s,a) can be obtained by:

V∗(s) = max
a

∑
s′

P a
s,s′ [R

a
s,s′ + γV∗(s

′)]

Q∗(s,a) =
∑
s′

P a
s,s′ [R

a
s,s′ + γmax

a
Q∗(s

′,a′)]

which are called the Bellman optimality equations (Bellman, 2010). Consequently, the optimal state value is the highest

attainable discounted reward from the state.325
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The path planning problem can be transformed into a finite and continuous decision-making process, wherein the
::
In

:::
the

:::::
setting

:::
of

:::::
raster

:::::::::::
environment,

:::
the

:::::
route

:::::::
planning

::::
can

::
be

:::::::::
described

:::
as:

:::
the agent chooses the subsequent action based on the

current state until it reaches the destination. The location of the agent serves as the state, and the state transition is memoryless,

satisfying the Markov property. Under the fixed-size raster environment and the same-size cells setting, the basic state space is

S : {c1, c2, . . . , cM×N |ci = (xi,yi),0⩽ xi ⩽M,0⩽ yi ⩽N}
::::::::::::::::::::::::::::::::::::::::::::::::::
S : {s1,s2, . . . ,sM×N |si = (xi,yi),0⩽ xi ⩽M,0⩽ yi ⩽N}, and330

the basic action space is potential moves to the 8 adjacent cells A : {a1,a2, . . . ,a8|ai = (x,y),(x,y) ∈ {{−1,0,1}2− (0,0)}}.

:
, while the following state transition equation is available:

cs′ = cs+ a (cs,cs′ ∈ S;a ∈A) (8)

The path
::::
route planning problem in raster environmrnt based on the MDP is defined as follows:

P c,c′s,s′
::

a = P (cst+1|cst = cs,at = a) = P (cst = cs,at = a) = 1 (9)335 ∑
a∈A

P c,c′s,s′
::

a = 8 (10)

Rc,c′s,s′
::

a =R(rt+1|cst = cs,at = a,cst+1 = cs′) =R(rt+1|cst = cs,at = a) = f(d(cs,cse)− d(cs′, cse)) (11)

where d(c,ce) ::::::
d(s,se) is the Chebyshev distance between cell c

:
s and the destination cell ce::

se. In the study area, the destination

is represented by a cluster of shelter facilities, collectively constituting the destination set D. Let d(c) = mind(c,ce), ce ∈D

::::::::::::::::::::::
d(s) = mind(s,se),se ∈D

:
signifies the distance to the nearest shelter facility. We defined the reward Ra

c,c′ ::::
Ra

s,s′:as a function340

of the difference d(c,ce)− d(c′, ce):::::::::::::::
d(s,se)− d(s′,se), implying that the reward is related to the agent’s proximity to the

destination. If c′ is closer to the destination, the reward is positive, and vice versa. The corresponding state value function and

action value function are:

Vπ(c) =
∑
a∈A

Pπ(a|c)Qπ(c,a)

Qπ(c,a) = f(d(c,ce)− d(c+ a,ce))+ γVπ(c+ a)345

A DQN is a multi-layered neural network, capable of approximating the optimal action value function Q∗(c,a). Essentially,

this function maps the n-dimensional state space to the action space. DQN is a value-based DRL algorithm where the output

for a given state ct ::
st is a vector of action values denoted as Q(ct, ·;θ)::::::::

Q(st, ·;θ), with θ representing the parameters of the

online network. The agent’s policy is to perform the action associated with the highest value. Moreover, DQN employs
::
A

::::
DQN

::
is
::
a
:::::::::::
multi-layered

::::::
neural

:::::::
network

:::
that

::::::::
estimates

::::
the

::::
value

:::
of

:::::
states

:::
and

:::::::
actions.

:::::
State

::::
value

::
is
:::
the

::::::::
expected

::::::
reward

::::
that350

::
the

:::::
agent

::::
can

:::::
obtain

:::::
from

:
a
:::::
state

::
to

::::
give

::
an

:::::::
estimate

:::
of

::::
how

::::
good

::
a
::::
state

::
is,

::::
and

:::::
action

:::::
value

::
is
:::
the

::::::::
expected

::::::
reward

::::
that

:::
the

::::
agent

::::
can

:::::
obtain

:::::
from

::
a

::::
state

::::
after

::::::::::
performing

:
a
:::::::

specific
::::::
action.

:::::
DQN

:::::::::::
incorporates an experience replay mechanism (Mnih

et al., 2015), where past experiences are stored in a memory buffer and randomly sampled for training, to break the temporal

correlation between samples and enable the
:::::
which

::::::::
mitigates

:::::::
temporal

::::::::::
correlations

:::
by

::::::::
randomly

:::::::
drawing

::::
from

:
a
::::::
stored

:::::::
memory
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::
of

:::
past

:::::::::::
experiences.

::::
This

::::::::
approach

::::::
allows

:::
the agent to learn from infrequent events. Another important feature of DQN is the355

use of
:::::::::
effectively

::::
from

::::
rare

::::::
events.

:::::::::::
Additionally,

:::::
DQN

::::::
utilizes

:
a separate target network (Mnih et al., 2015) for estimating

::
to

:::::::
estimate the Q∗(c,a), thereby enhancing the stability of the learning process. The DQN

:::::
Under

:
a
::::::
policy

::
π,

:::
the

:::::
value

::
of

::
a

::::
state

:
s
::
is

:::::::
denoted

::
as

:::::
Vπ(s):::

and
:::
the

:::::
value

::
of

::
a

:::::
action

::
a

::
in

:::
the

::::
state

:
s
::
is

:::::::
denoted

::
as

::::::::
Qπ(s,a)::

Vπ(s) =
::::::

E
:π(Gt|st = s) =

∑
a

Pπ(a|s)Qπ(s,a)

:::::::::::::::::::::::::::::

(12)

Qπ(s,a) =
::::::::

E
:π(Gt|st = s,at = a) = f(d(s,se)− d(s+ a,se))+ γVπ(s+ a)

::::::::::::::::::::::::::::::::::::::::::::::::::
(13)360

:::::
where

:::
Gt :

is
:::
the

::::
total

::::::::::
discounted

::::::
reward

::::
from

::::
state

::
st::::

and
:::::::
γ ∈ [0,1]

::
is
:::
the

::::::::
discount

:::::
factor.

:

Gt =Rt+1 + γRt+2 + . . .=
∞∑
k=0

::::::::::::::::::::::::::

γ
:

kRt+1+k
:::::::

(14)

:::
The

::::
goal

::
of

:::::
DQN

::
is
::
to
::::
find

:::
an

::::::
optimal

::::::
policy

:::
π∗

::
to

::::::::
maximize

:::
the

::::
state

:::::
value

::::
and

:::::
action

::::::
value.

:::::
Under

:::
the

:::::::
optimal

::::::
policy

:::
π∗,

::
the

:::::::
optimal

::::
state

:::::
value

:::::::
function

:::::
V∗(s)::::

and
:::
the

::::::
optimal

::::::
action

::::
value

::::::::
function

:::::::
Q∗(s,a):::

can
:::
be

:::::::
obtained

:::
by:

V∗(s) = max
a

∑
s′

P a
s,s′ [R

a
s,s′ + γV∗(s

′)]

:::::::::::::::::::::::::::::::

(15)365

Q∗(s,a) =
∑
s′

P a
s,s′ [R

a
s,s′ + γmax

a
Q∗(s

′,a′)]

:::::::::::::::::::::::::::::::::::::

(16)

:::
The

:::::
DQN searches for the optimal policy to maximize the largest long-term cumulative reward that the target is:

Y DQN
t ≡ rt+1 + γmax

a
Q
(
ct+1,at;θ

−
t

)
(17)

and
::::
And using the Mean squared error loss (RMSE) as loss function, the DQN can be trained by optimizing the following loss:

Loss(θt) =E[(rt + γmax
at+1

Q
(
ct+1,at+1;θ

−
t

)
−Q(ct,at;θt))

2] (18)370

The update process is based on the Monte Carlo method. By continuously interacting with the environment, the agent observes

immediate rewards and accumulates them to count value information, which can then be transformed into a regression problem.

3.3.1 Addressing Convergence Challenges in DQN

The Deep Q-Network (DQN )

3.4
:::::::::::

Optimization
::
of

:::
the

:::::
DQN375

:::
The

:::::
DQN

:
model, when applied in a raster environmentwith each cell possessing eight neighboring cells, faces significant

convergence challenges from two aspects: 1.
::
(1)

:
the extensive search space, and 2. ;

:::
(2)

:
the issue of sparse rewards. The
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fundamental state space ,
:::::
search

:::::
space

::
is
:::::::::

composed
:::

of
:::
the

:::::
state

:::::
space

:::
and

::::
the

:::::
action

::::::
space.

:::
In

:::
this

::::::
study,

:::
the

:::::::::
rasterized

::::::::::
environment

:
consisting of over 19,000 road cells , results

::::
cells

::::
with

:::::
each

:::
cell

::::::::::
possessing

::::
eight

:::::::
actions,

::::::::
resulting

:
in a vast

search spaceof around 819000. Coupled with the issue of sparse rewards, where the agent receives feedback only occasionally,380

the model’s training process becomes even more complex and the convergence becomes notably difficult.

To counteract the vastness
::::::
reduce of the search space, two innovative methods were proposed: the masked action space and

the masked state space. These methods effectively reduce the search space, thereby aiding in the model’s convergence. In the

basic action space , eight moves are available from the current cell in various directions. However, many of these actions might

be meaningless
::::::::
Typically,

::
a

:::
cell

::
in

:::
the

:::::
action

:::::
space

::::::
allows

:::::::::
movement

::
in

::::
eight

:::::::::
directions,

:::
but

:::
not

:::
all

:::
are

:::::::
relevant. By leveraging385

a mask, the compressed
::::::
masked action space method efficiently narrows down the available actions from 8 to an approximate

average of 3 per cell.
:
3.
:
This method focuses particularly on the transition of the action space, leading to dynamic action spaces

where the action space transition is intricately linked with the state transition. For each cell (state) c, there is an associated action

space Ac, where |Ac|⩽ 8, and the action space
::::::::::
emphasizing

:::
the

:::::::::
interaction

::::::::
between

:::::
action

::::
and

::::
state

:::::::::
transitions.

::::
The

::::::
action

::::
space

:
transition is dependent on the state transition, as illustrated in Fig. 9,

:
8,

::::::
where

:::
As ::::::

denotes
:::
the

::::::
action

:::::
space

:::::::::
associated390

::::
with

::::
state

::
s. According to Eq. 15

::
??, the action space of the current state relies on the preceding state and the last performed

The action space transition. where the red line represents the state transition and the green line represents the action space transition.

Figure 8.
:::
The

:::::
action

::::
space

::::::::
transition.

:::
The

:::
red

:::
line

::::::::
represents

:::
the

:::
state

::::::::
transition

:::
and

::
the

:::::
green

:::
line

::::::::
represents

::
the

:::::
action

:::::
space

:::::::
transition.

action, rendering
:::
and the transition of the action space in compliance with the Markov property. The transition of action space

:::::
action

:::::
space is defined as:

Pa,a′
cs = P (at+1 = a′|cst = cs,at = a) = π(cs+ a); (19)

where a ∈Ac, a′ ∈Ac+a::::::
a ∈As,

:::::::::
a′ ∈As+a, P c

a,a′ represents the probability of taking action a′ after taking action a in cell c.395

There are two special cases in path planningon a raster environment
:
s.

::
In

::::::::::
raster-based

:::::
route

::::::::
planning,

:::
two

::::::::::
exceptional

::::::::
scenarios

::::
arise: (1) For a state transition c′ = c+ a

::::::::
s′ = s+ a, an action a′ exists such that c= c′ + a′, in this case

::::::::::
s= s′ + a′,

::::
then the

action a′ is deemed meaningless
::::::::
redundant

:
for state s′. (2) Moving one cell in the diagonal direction is essentially equivalent to
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moving one cell both horizontally and vertically. In this case
:::::::
Diagonal

::::::::::
movement,

:::::
which

::::::
equates

::
to

::
a

::::::::::
combination

::
of

:::::::::
horizontal

:::
and

:::::::
vertical

::::::::::
movements,

:::::::
presents

::
a
::::::
unique

:::::
case.

::::::::::
Specifically, given the following transitions: c+ a= c′, c′ + a′ = c′′, and400

c+ a′′ = c′′, the action
:::::::::
s+ a= c′,

:::::::::::
s′ + a′ = s′′,

:::
and

:::::::::::
s+ a′′ = s′′,

::::
then

:
a′ is meaningless after c+ a

::::::::
redundant

:::::::::
following

:::
the

:::::
initial

::::::::
transition

:::::
s+ a. Fig. 10

:
9 depicts two of eight compressed action spaces, namely action patterns.

::::
There

:::
are

::
a
::::
total

::
of

::
8

:::::
action

:::::::
patterns,

::::::
which

:::
can

::
be

:::::
saved

::
in

::
8
:::::
binary

::::::::
matrices.

:
As path

Figure 9. Action patterns for up and up-right. The blue solid line denotes the last action, while the red dashed lines represent meaningless

:::::::
redundant

:
next actions. The green dashed lines signify the compressed

::::::
masked action space.

::::::::::
Additionally,

:::
as

::::
route

:
planning operates on the extant known road network, exploring areas devoid of roads is considered

futile. By focusing exclusively on state transitions within the road network, the action space can be further compressed. The405

compressed action space A(c′)
:::::
A(s′)

:
for each state transition c+ a

::::
s+ a can be calculated using the raster road network and

the eight action patterns.
:::::
action

:::::::
patterns:

:

A(cs′) = I ◦A_P (a) ◦R_N(cs+ a) (20)

where I is the basic action space of size 3× 3 with all elements equal to 1, R_N is the matrix of the road network and

R_N(c) is the mask
:::::::
R_N(s)

::
is
:::
the

::::
road

:::::::::::
information of size 3× 3 centered at cell c

:
s, the A_P (a) is the action pattern for410

a, and the operator ◦ is the Hadamard product. For each pair (c,a)
::::
(s,a), the A_P (a) ◦R_N(c+ a) is the mask of the action

space. All the masks can be
::::
were

:
computed in parallel and saved in a table prior to initiating training. Given a transition

c′ = c+ a
::::::::
s′ = s+ a, consulting the table using the tuple (c,a)

:::::
(s,a), and the action space of c′ can be subsequently obtained.

A single state corresponds to eight compressed action spaces of varying size, and the distribution of state-averaged action space

size is shown in Fig. 11. The distribution of mean action space size per state. On average, the action space size for each state is415

less than 3.
::
s′

:::
can

:::
be

:::::::
obtained.

:

Given start and end points,
::
In large-scale path planningoften necessitates information pertaining solely to a limited region,

as the majority of roads remain untraversed. The challenge lies in discerning which roads are
::::
route

::::::::
planning,

::::::::
focusing

::
on

::
a

::::::::
’premium

:::::::::::::
region’—where

:::
the

:::::::
optimal

:::::
route

::
is

::::
most

:
likely to be traversed and which are not. In this study, we introduce the

concept of the ‘premium region‘, which encompasses the area the optimal path may traverse, and we proposed a
::::::::
found—is420
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:::::::
essential,

::::::
rather

:::
than

::::::::::
considering

:::
the

:::::
entire

:::::::
network

::
of

:::::
roads.

::
A
:
masked state space compression method

::::::
method

::::
was

::::::::
proposed

to determine the ‘premium region‘.

The base pathserves as an auxiliary path, reflecting the optimal path’s trend and providing
:::::::
’premium

:::::::
region’.

:::
We

:::::::::
employed

:
a
::::
base

::::
path,

:::::::
derived

::::
from

::
a
::::::::::::
low-resolution

:::::
raster

:::::
image

::
of

:::
the

:::::::
original

:::::
map,

::
to

::::::
provide

:
guidance in determining the ‘premium

region‘. We employed an additional low-resolution raster image, obtained through resampling the original raster image. The425

shortest path on the low-resolution image can be readily computed
::::::::
’premium

:::::::
region’.

::::
This

::::
base

:::::
path

::
is

::::::
quickly

:::::::::
identified

using a breadth-first search algorithm , with this shortest path functioning as the base path. Expansion of the areas traversed

by the base path yields the ‘premium region‘. The shortest path from any start point on the road network to the nearest

shelter can be precomputed, and during training, only the state value within the ‘premium‘ region determined by the base

path requires updates
::
on

:::
the

::::::::::::
downsampled

:::::
image. The low-resolution image represents an equally scaled-down projection of430

the original high-resolution image, as demonstrated in Fig. 12. The low-resolution image and the high-resolution image. For

each cell c(i, j) in the low-resolution image, uniquely corresponds to a rectangular area rec(i, j): i×M ⩽ x⩽ i×M +M ,

j×N ⩽ y ⩽ j×N +N in the high-resolution image. The cell size of the low-resolution image is
:::
and

:::
the

::::
cell

:::
size

::::
was set to

128 m×128 m, which is 64 times larger than the cell size of the high-resolution image (16 m×16 m), and the ‘shelter range‘

is 1 cell (128 ). Given the base path pl = {c0, c1, ..., cn}, the masked state space is described in Algorithm ??. Computation of435

the masked state space

where m is a 0-1 matrix of size 937×546 serving as a mask, and δ
::::::::::::::::::::::::::::::::::
b= {s1(x1,y1),s2(x2,y2), ...,sn(xn,yn)}::

in
::::

the

::::::::::::
low-resolution

::::::
image,

:::
the

:::::::::
’premium

::::::
region’

::::::::::::::::::::
P = p1 + p2 + ...+ pn,

:::::
where

:::
pi::

is
::
a

:::::::::
rectangular

::::::
region

:::
of

::::::::::::
x= xi × 8− δ

:::
to

:::::::::::::
(xi +1)× 8+ δ

::::
and

::::::::::::
y = yi × 8− δ

::
to

::::::::::::::
(yi +1)× 8+ δ.

::::::
δ = 96

:
m is the tolerance range. In this study, a suitable tolerance

range is δ = 6 (corresponding to an actual distance of 96 and an actual area of 320 ×320 ). In the example depicted in Fig.440

13
::
10, based on a red base pathderived from the low-resolution image, the blue region in the high-resolution image represents

the ‘premium region‘
::::::::
’premium

::::::
region’. By considering only the road information situated in the ‘premium region‘ during the

path
::::::::
’premium

::::::
region’

::::::
during

:::
the

:::::
route

:
planning, the state space can be substantially compressed, with a compression ratio

below 0.4.

Furthermore, to address
::::::::::
Additionally,

::
to
::::::
tackle the issue of sparse rewards, we proposed the tri-aspect

::::::::::
navigational reward445

mechanism. This mechanism offers a structured approach to reward distribution, categorizing
::::::::
categorize

:
rewards into three

distinct aspects: basic rewards, distance rewards, and risk rewards. Basic rewards encourage the agent to reach the goal (shel-

ters) in the fewest steps
::
as

:
possible, with goal cells assigned a substantial positive reward(+2000), while other cells receive a

negative rewardof −1. Distance rewards guide the agent towards the goal, providing a +2 reward for moving closer and a −1

punishment otherwise. Risk rewards are negative incentives, designed to deter the agent from high-risk cells
::::
roads

:
whenever450

feasible. There are five risk levels (as depicted in Table 1), and corresponding rewards are
::::
The

::::::
settings

::
of

:::::::::::
navigational

::::::
reward

:::::::::
mechanism

::
as

:
illustrated in Table 2. Risk rewards Risk level Reward 0 -4 -8 -16 -32

::
4. Such a multi-layered reward structure provides the agent with more frequent and meaningful feedback, ensuring a consis-

tent learning trajectory and fostering faster convergence.
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Figure 10. An example for masked state space compression
:::
The

:::::::::::
low-resolution

:::::
image

:::
and

::
the

::::::::::::
high-resolution

:::::
image.

::
For

::::
each

:::
cell

:::::
c(i, j)

::
in

::
the

:::::::::::
low-resolution

::::::
image,

::::::
uniquely

::::::::::
corresponds

::
to

:
a
:::::::::
rectangular

:::
area

:::::::
rec(i, j):

::::::::::::::::::::
i×M ⩽ x⩽ i×M +M ,

:::::::::::::::::::
j×N ⩽ y ⩽ j×N +N

::
in

:::
the

:::::::::::
high-resolution

:::::
image.

::::
The

:::
blue

:::::
region

::
in

:::
the

:::::::::::
high-resolution

:::::
image

::::::::
represents

::
the

::::::::
’premium

::::::
region’.

Table 4.
::::::
Settings

::
of

::::::::::
navigational

:::::
reward

::::::
Reward

:::::::
categories

: :::::
Reward

::::::
content

: ::::
Value

:

basic rewards ::::::::
destination

:::::
reward

: ::::
+100

:

:::
step

::::::
reward

::
-1

distance rewards ::::::
distance

:::::::
reduction

::::::
reward

::
+2

:

::::::
distance

::::::
increase

:::::
reward

: ::
-1

risk rewards

:::
very

:::
low

:::
risk

::::::
reward

:
0

:::
low

:::
risk

:::::
reward

: ::
-4

:::::::
moderate

:::
risk

:::::
reward

: ::
-8

:::
high

:::
risk

:::::
reward

: ::
-16

:

:::
veru

::::
high

:::
risk

:::::
reward

: ::
-32

:

:
1

::::
Noted

:::
that,

:::
the

:::::
rewards

::
in

::
the

::::
table

::
are

::::::
relative

::::
values,

:::
and

::::
need

:
to
::
be

::::::::
normalized

::
for

:::::::::
applications.
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3.4.1 Training process455

Prior to training, the state-action space for each cell within the high-resolution image was computed and stored in a table .

Then,
::::
Each

:::::::
training

:::::::
episode

::::::
begins

::::
with

:::
the

:::::
agent

::
at
::

a
::::::::
randomly

:::::::
chosen

::::
road

::::
cell

:::
s0.

:::
The

:::::::::
’premium

::::::
region’

::
is
:::::::

defined
:::
by

::
the

:::::
base

::::
path

::::
from

:
the breadth-first search algorithm was applied to the low-resolution image to ascertain the shortest path

for each cell to the shelter. During each training episode , the agent commences from a randomly-selected road cell c0. The

‘premium region‘ is determined according to the corresponding shortest path in the low-resolution image, and an episode460

concludes upon the agent reaching
:::
the

:::::::
episode

::::
ends

:::::
when

:::
the

:::::
agent

::::::
reaches

:
a shelter. At each time step, the input consists of

the current cell-centered environmental observation . This observation
:::::
agent

:::::::
receives

::
an

::::::::::::
environmental

::::::::::
observation

::::::::
centered

::
on

:::
the

::::::
current

:::
cell, with dimensions (2rob+1,2rob+1,4), incorporates

:::::
which

:::::::
includes

::::::::::
information

:::::
about roads, shelters, risk

levels, and minimum Chebyshev distances to shelters within a (2rob +1)× (2rob +1) rectangular area, where rob represents

the observation range. In this study
::
the

::::::::::
observation

::::
area.

:::::
Here, the rob was set to 10 (equivalent to an actual distance of 160465

m), reflecting the human field of vision in real-world scenarios. The output comprises
:
is

:
a sequence of length 8, corresponding

to the valuesof 8 actions, and the subsequent
:::::::
8-action

::::::
values,

::::
with

:
action ai executed by the agent is selected based on the

probability:
:::::
chosen

::::::::::::::
probabilistically

::
as

:::::::
follows:

:

P (ai|cs) =ϵ · 1

|A(a,c)|
1

|A(a,s)|
:::::::

+(1− ϵ) · F [Qπ(c,ai),max(Qπ(c,aj))]F [Qπ(s,ai),max(Qπ(s,aj))]
::::::::::::::::::::::::

(ai,aj ∈A(a,cs))

(21)

where F() is defined in Algorithm ??; A(a,c)
:::::::::::::::::::::::::::::::::::
F(a,b) = 1, if a= b;F(a,b) = 0,otherwise.

::::::
A(a,s)

:
denotes the action spaceand470

it can be obtained by consulting the state-action space table using the current state c and last performed action a. 0⩽ ϵ⩽ 1

dictates the degree to which selection favors random exploration over the highest-value action. During the early training stages,

a larger ϵ encourages agents to explore the unknown environment more extensively. As the model converges, ϵ should decrease

to facilitate agent focus on high-value states and actions. The agent performs an action to the next cell, subsequently receiving

a reward, which serves as an evaluation metric for the selected action.475

Under the DQN framework, the training process is demonstrated in Fig. 14.
::
11.

:

4 Simulation and Results
::::
and

:::::::::
discussions

4.1
::::::

Results
::
of

::::
road

::::
risk

::::::::::
assessment

In this study, five distinct wind fieldswere employed ,
::::
each

::::::::::::
characterized

::
by

::
a
::::::::
minimum

:::::::
central

:::::::
pressure

::
of

::::
910,

:::::
920,

::::
930,

::::
940,

:::
and

:::
950

:
hPa

::::
were

:::::::::
constructed

:::::
using

::::::::::
Jelesnianski

::::::
model.

:::::
These

:::::
wind

:::::
fields

::::
were

:::::::::::
subsequently

::::::::
integrated

::::
into

:::
the

:::::::
coupled480

::::::::::::::
ADCIRC-SWAN

::::::
model to simulate the storm surge for risk assessments, and DQN was utilized to search for the optimal

evacuation path under these scenarios . Three of these scenarios were used as training data, while the remaining two were

used as test data. The study area is a part of coastal suburb of Huizhou with a size of 15 ×9 . Historical storm data was

utilized in conjunction with the Jelesnianski empirical model to generate a wind field, which was then provided to the coupled
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Figure 11. The DQN training process with the masked action and state spaces compression, features three components: green sections

represent the classical DQN, blue sections correspond to masked state
::::::::
compressed

::::::
search space compression

:::::
method, and orange sections

indicate masked action space compression
:::::::::
navigational

::::::
reward.

ADCIRC-SWAN model for calculating water levels and simulating inundationextents and depths within the study area. The485

DQN was employed to develop evacuation plans, focusing on generating real-time evacuation routes to predetermined disaster

shelters from any given starting position. Extensive experiments were performed, demonstrating the effectiveness of the

proposed method.

4.2 Storm surge simulation and risk assessments

To make the hypothetic wind field reasonable, the historical tropical cyclone dataset released by
::::
extent

::::
and

:::::
depth

::
of
::::::

storm490

::::
surge

::::::::::
inundation

:::::
within

::::
the

:::::
study

::::
area.

:::::::::::
Considering

:::
the

:::::::::
maximum

:::::::::
inundation

::::::
extent

::
to

:::::::
conduct

::::::::
exposure

::::::::::
assessment,

::::
and

::::::::
according

::
to

:
the China Meteorological Administration (CMA) was used. The dataset contains the location and intensity of

tropical cyclones in the northwest Pacific Ocean, recorded every six hours from 1949 to 2018. According to the CMA dataset,

the minimum central pressure of tropical cyclones affecting China ranges from 880 to 1000 . Mild storm surges barely penetrate

inland, while severe storm surges can inundate the entire area. In this study, five representative typhoon scenarios were defined,495

with their parameters displayed in Table 3. Typhoon scenarios
::::
Table

::
2,
:::
the

:::::
storm

:::::
surge

::::::
hazard

:::::::::
assessment

::::::
across

:::
the

:::
five

:::::
wind

:::::::
scenarios

::
is
::::::::::
graphically

::::::::::
represented

::
in

::::
Fig.

:::
12.

:::
The

::::::
results

:::::::
indicate

::::
that

:::
the

:::::::::::
intensification

:::
of

::::::::
typhoons

::::::::
correlates

::::
with

:::::
more

:::::::
extensive

::::
and

::::::
severe

:::::::::
inundation,

::::::::
elevating

:::
the

:::::::::
associated

::::::
hazard

::::::
levels.

:::
For

::::::::
instance,

::::
Fig.

::
12(a)

::::::::
illustrates

:
a
::::::::

scenario
::::::
where,

:
at
::

a
::::::
central

:::::::
pressure

:::
of 910 31 61 2 920 33 57 3 hPa,

::::::
nearly

::::
half

::
of

:::
the

:::::
study

::::
area

::
is

::::::::::
submerged,

::::
with

:
a
:::::::::
significant

:::::::
portion

::::::::::
experiencing

::::::::::
high-hazard

::::::::::
conditions.

:::
Fig.

:::
12(c)

::::::::
delineates

:
a
::::::
pivotal

::::::::
moment;

:
at
:
930 35 53 4 940 38 49 5 950 41 45500

Additionally, Super Typhoon Mangkhut, which caused the most significant storm surge disaster to hPa,
:
the study area on

record, had its track chosen as the simulated cyclone’s track. The track of Mangkhut is shown in Fig. 15. The track of Mangkhut.
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Minimum Maximum Maximum
(a) Scenario 1.

(b) Scenario 2.

central wind wind
(c) Scenario 3.

(d) Scenario 4.

pressure radius velocity
(e) Scenario 5.

Figure 12.
:::
The

::::::
hazard

::::::::
assessment

:::
for

:::
five

:::::::
typhoon

:::::::
scenarios.

:::::
Noted

::::
that,

:::
this

:::::
study

::::::
omitted

:::::
factors

::::
such

::
as
::::::
surface

:::::::
drainage

:::
and

::::::
ground

::::::::
infiltration.

:::::::::::
Consequently,

::
the

:::::
actual

::::::::
inundation

::::::
depths

::
are

:::::::
expected

::
to

::
be

:::::
lower

:::
than

:::::
those

::::::::
simulated.

::::
Given

::::
this

:::::::::
discrepancy,

:::
the

:::
risk

::::
level

:
of
::
I
::
for

:::::::::
inundation

:::::
depths

::::::
ranging

::::
from

:
0
::
to

::
15

:
cm

:::
can

::
be

:::::::
classified

::
as

::::::::
negligible.
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Figure 13.
:::
The

::::
road

::::::
network

:::
and

::::
road

:::::::
categories

::
in
:::
the

::::
study

::::
area.

Under the wind field generated by the Jelesnianski model,
::::::::
typhoon’s

::::::
central

:::::::
pressure

:::::
marks

::
a
:::::::::
significant

:::::::
decrease

::
in

::::
both

:::
the

::::::::::
inundation’s

:::::
extent

::::
and

:::::::
severity.

::
In

:::
the

:::
last

::::::::
scenario,

::
as

:::::::
depicted

::
in

::::
Fig.

::
12(e)

:
,
:::
the

:::::::::
inundation

::
is

:::::::
confined

::
to

:::
the

::::::::
peripheral

:::::
parts

::
of

:::
the

:::::
study

::::
area,

:::::::::
exhibiting

::::::
limited

:::::::
capacity

:::
to

:::::
affect

:::
the

:::::
inland

:::::
road

:::::::
network.

::::::::::::
Consequently,

:
the coupled ADCIRC-SWAN505

model was run on the datasets to simulate surge water. The inundation depth was calculated by subtracting the DEM from the

height of simulated surge water. According to Table 1, the risk assessments were conducted based on the inundation depths.

When the inland flooding attains its maximum extent, the risk assessments for five storm surgescenarios are depicted in
:::
last

:::::::
scenario

:::
was

::::::::
excluded

::::
from

::::::::::::
consideration

::
in

:::
the

:::::::::
subsequent

::::
road

::::
risk

:::::::::
assessment

:::
and

:::::::::
evacuation

:::::
route

:::::::
planning

:::::::::
processes.

:

::::
This

:::::
study

::::::
focuses

:::
on

::::
the

::::
road

::::
risk

:::::::::
assessment

:::
of

:::::
storm

:::::
surge

:::
in

:::
the

:::::
study

:::::
area,

:::::
which

:::
is

::::::
located

::
in
::

a
:::::::
coastal

::::::
suburb510

:::::::::::
characterized

::
by

:::::::
winding

:::
and

::::::::::::
discontinuous

:::::
roads.

:::
To

:::::::
enhance

:::
the

::::
road

:::::::
network

:::::
within

:::
the

:::::
study

::::
area,

::::::::
additional

::::
road

::::
data

::::
was

:::::::
collected

:::::
using

:::::::::
geographic

::::::::::
information

::::::
system

:::::
(GIS)

::::::::::
technology,

::::::::
including

:::::
minor

::::
and

::::::::
unnamed

::::
roads

::::
that

::::
often

::::::::
represent

::::
fine

:::::::
branches

:::
and

:::::::::
extensions

::
of

:::::::
existing

:::::
roads

:::
and

:::::::::
highways,

:::::
which

:::::::
became

::
an

::::::::
important

:::::
basis

:::
for

:::::::::
classifying

:::::
roads

:::
and

:::::::::
evaluating

::::
their

:::::::::::
vulnerability.

:::
The

::::
road

:::::::
network

::::
and

::::
road

::::::::
categories

:::
in

::
the

:::::
study

::::
area

::
is

::::::
shown

::
in

:::
Fig.

:::
13.

:

::
As

:::::::::
presented

:::
the

:::::
Table

::
3,

:::
the

::::
road

::::
risk

:::::::::
assessment

:::
for

:::
the

:::::
study

::::
area

:::::
under

:::
the

::::
four

::::::::
scenarios

::
is
::::::
shown

::
in

::::
Fig.

:::
14,

::::::
where515

:::::
storm

::::
surge

::::::
mainly

:::::::::
threatened

:::
the

::::::::
secondary

::::
and

::::::
tertiary

:::::
roads

::
in

:::
the

::::::
coastal

:::
road

::::::::
network,

::::::
mainly

:::::::::::
concentrated

::
in

::
the

::::::::
southern

:::
part

::
of

:::
the

:::::
Daya

::::
Bay

::::::::::::
petrochemical

::::::::
industrial

::::
zone

:::
and

:::
the

:::::
Daya

::::
Bay

::::::
Golden

:::::
Coast

:::::::
vicinity.

:::
In

:::
the

::::::::
scenarios

:::::::
depicted

::
in

:
Fig.

16. Risk assessments for five typhoon scenarios.The results were organized and displayed in ArcGis Pro 3.0 software.Risk

areas are considered un-flooded safe areas and are therefore not depicted on the figure. Scenario 1 and 5 were used as test data,

while Scenario 2-4 were employed as traingng data. To rasterize the inundation area, take the average inundation depth in a cell520

as the inundation depth of the cell.
::
14(a)

:::
and

:::
14(b)

:
,
:
a
:::::
storm

:::::
surge

::::::
causes

:::::::::
widespread

::::::::
flooding

::
in

:::
the

::::::::::::
petrochemical

::::::::
industrial
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(a) Scenario 1.
:

(b) Scenario 2.

(hPa) (km) (m/s) 1
(c) Scenario 3.

(d) Scenario 4.

Figure 14.
:::
The

::::
road

:::
risk

:::::::::
assessment.
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::::
zone,

::::::::
rendering

:::::
most

::::
roads

::
at
::::
high

::::
risk

:::
and

::::::::::
impassable.

::
In

::::
such

::::::::
situations,

:::::::::
evacuation

::::::
routes

:::::
should

:::::
guide

::::::::::
individuals

::::
north

::::
into

::::::
primary

:::::
roads

:::
and

::::
then

::::::::
eastward

::
to

:::::::
shelters.

:::::::
Samely,

:::
the

:::
area

::::::::::
surrounding

:::
the

:::::
Daya

::::
Bay

::::::
Golden

:::::
Coast

:::::
faces

:
a
::::::
critical

::::::::
situation,

::::::::::
necessitating

:::::
swift

:::::::::
evacuation

:::::
along

:::::::::
secondary

::::
and

::::::
tertiary

:::::
roads

:::
to

:::
the

::::::::
northwest

:::
or

::::::::
northeast

:::::::
towards

:::::::
shelters.

::::
Fig.

:::
14(c)

:::::::
presents

:
a
::::::
pivotal

::::::::
scenario,

::::::::::::
demonstrating

::
a

:::::::::
significant

::::::::
reduction

::
in

:::
the

:::::
storm

:::::::
surge’s

::::::
impact

::
on

:::
the

:::::
roads

:::
of

::::::::::::
petrochemical525

::::::::
industrial

::::
zone.

::::::::
However,

:::
the

::::::
Golden

:::::
Coast

:::::::
vicinity

::::::
remains

:::::::::::
significantly

:::::::
affected,

::::::::
primarily

:::
due

::
to

:::
the

:::::::::
prevalence

::
of

:::::::::
vulnerable

::::::
tertiary

:::::
roads.

:::
As

:::::::
depicted

:::
in

:::
Fig.

:::
14(d)

:
,
:::::
when

:::
the

::::::::
typhoon’s

::::::
central

:::::::
pressure

:::::
drops

:::
to

:::
940

:
hPa

:
,
:::
the

:::::
storm

::::::
surge’s

::::::
impact

:::
on

::
the

:::::::
Golden

::::::
Coast’s

:::::
roads

:::::::::
diminishes

:::::::::::
substantially.

::::::::::::
Consequently,

:::
the

::::::::
typhoon’s

:::::::::
minimum

:::::
central

::::::::
pressure

:
at
::::
930 hPa

:::
and

::::
940

hPa
:::
are

::::::
critical

:::::::::
thresholds

:::
for

:::
the

:::::
storm

::::::
surge’s

:::::::
impact.

::::::
Below

:::
940

:
hPa

:
,
:::
the

:::::
roads

::
in

:::
the

:::::
Daya

::::
Bay

::::::
Golden

::::::
Coast

::::
area

:::
are

:
at
:::::
high

::::
risk,

:::
and

:::::
when

:::
the

:::::::
pressure

::
is

:::::
below

::::
930 hPa,

:::
the

:::::
Daya

::::
Bay

::::::::::::
Petrochemical

::::::::
Industrial

::::::
Zone’s

:::::
roads

:::::::::
experience

::::::
severe530

:::::::::
disruption.

4.2 Model Performance
::
of

:::::
DQN

:::::
model

:::
for

::::::::::
evacuation

:::::
route

::::::::
planning

The goal of this work is to enable real-time planning of the optimal path
::::
route

::::::::
planning to the shelter from any given cell

::::
start

based on the surrounding environment. The proposed modelachieves high-accuracy evacuation path planning according to the

surrounding environment. To evaluate the overall performance of the model,
:::::::::
experiment

::::::
utilized

:::::
three

:::::::::
simulated

::::::::
scenarios535

::::::::
(Scenario

::
2,

::
3,

:::
and

:::
4)

:::::::::
designated

:::
for

::::::
training

:::::
DQN

::::::
model,

:::::
while

:
Scenario 1 and 5 were utilized, and

::::::
served

::
as

:::
the

:::
test

:::::
case.

1000 starting cells were randomly chosen for each test scenario to conduct path planning , respectively. The
::::::
selected

::
in

::::::::
Scenario

:
1
::
to

:::::::
conduct

::::
route

::::::::
planning

:::
and

:::
the enumeration method is used to find the true optimal paths under the reward setting for these

2000 locations, which are called the target paths, and the ‘optimal‘ paths output by the model are called the eval paths
:::::
routes.

In Scenario 1, the target paths cover about 64
::::::::
generated

:::::
routes

:::::::
covered

:::::
about

:::
71 % of the road network, with an average length540

of 4286
::::
4776 m. In Scenario 5, the target paths cover about 61 % of the road network, with an average length of 3758 .

:::::
Refer

::
to

::::::::
Appendix

::
B

:::
for

:::::::::::::
exemplifications

::
of

:::
the

:::::
route

::::::::
planning.

(a) The proportion of optimal and deviated routes.
:

(b) The distribution of 1000 starting points.

Figure 15.
:::
The

::::::::
proportion

::
of

::::::
optimal

:::
and

:::::::
deviated

::::
routes

:::
and

:::
the

:::::::::
distribution

::
of

::::
1000

::::::
starting

:::::
points.
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(a) DTW distance.
:

(b) Hausdorff distance.

(c) Overlap rate.
:

(d) Destination distance.

Figure 16.
:::::
Model

::::::::
evaluation

::::::
metrics

::
for

:::::
DTW,

::::::::
Hausdorff,

::::::::
destination

:::::::
distance

:::
and

::::::
overlap

:::
rate

:::
with

:::
one

:::
cell

::::::::::
representing

::
16

:
m

:
.

To evaluate the
:::::
overall

:
model performance, the differences between the target paths and the eval paths were measured from

two aspects: path similarity and distance to the true destination. Three evaluation
:::
five metrics were introducedto measure the

path similarity includingthe dynamic
:
,
::::::::
including:

:::
(1)

:::::::::
proportion

::
of

:::::::
optimal

::::::
routes,

:::
(2)

::::::::
Dynamic time warping (DTW, Müller)545

rate, the Hausdorff (Huttenlocher et al., 1993)
:::::::
distance,

:::
(3)

:::::::::
Hausdorff

:::::::
distance

::::::::::::::::::::::
(Huttenlocher et al., 1993)

:
,
:::
(4)

::::::
overlap

:
rate,

and the overlap rate. Given a target path ptar of length ltar and an eval path peval of length leval::
(5)

::::::::::
destination

::::::::
distance.

:::
The

:::::::::
proportion

::
of

:::::::
optimal

:::::
routes

::::::::
measures

:::
the

::::::
degree

::
of

:::::::::::::
correspondence

::::::::
between

:::
the

::::::::
generated

:::::
routes

::::
and

:::
the

::::::
optimal

::::::
routes

::
by

:::::::::
calculating

::::
the

:::::::::
percentage

::
of

:::::::::
generated

:::::
routes

::::
that

:::::::::
completely

::::::::
coincide

::::
with

:::
the

:::::::
optimal

::::::
routes.

:::
The

::::::
DTW

::::::::
evaluates

:::
the

::::::::
similarity

:::::::
between

::::
two

::::
time

:::::
series,

::::
and

:::
the

:::::
DTW

:::::::
distance

::
is

::::
used

:::
to

:::::::
measure

:::
the

:::::::
average

:::::::
deviated

:::::::
distance

::
of

:::
the

:::::::::
generated550

::::
route

:::::
from

::
the

:::::::
optimal

:::::
route.

::::::
Given

:
a
:::::::
optimal

::::
route

::::
popt::

of
::::::
length

:::
lopt::::

and
:
a
::::::::
generated

::::
path

::::
pgen:::

of
:::::
length

::::
lgen, the DTW can
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be discribed as a dynamic programming (DP):

Minimize(D ·W ) (22)

where D = {d(p,q)} and d(p,q) is the Chebyshev distance between the cell p ∈ ptar and cell q ∈ peval ::::::
p ∈ popt::::

and
::::
cell

:::::::
q ∈ pgen. W = {w(i, j)} and w(i, j) is the binary DP variable i, j ∈ Z+, i⩽ ltar, j ⩽ leval. The above DP is subject to:555

w(i, j) = {0,1}

w(1,1) = 0

w(ltar, leval) = 1

w(i, j) =[w(i− 1, j)+w(i− 1, j− 1)+w(i, j− 1)]×w(i, j)

The
::::::::::::::::::::::
i, j ∈ Z+, i⩽ lopt, j ⩽ lgen.

:::
The

:
DTW distance is used to measure the average deviated distance of the eval path from the560

target path that can be obtained by:

dDTW (ptar,peval) =
D ·W
n

, n=
∑

w(i, j) (w(i, j) ∈W )

while DTW rate, defined as: dDTW /ltar, quantifies the DTW distance per unit length. Consider a path

dDTW (popt,pgen) =
D ·W
n

, n=
∑

w(i, j) (w(i, j) ∈W )

:::::::::::::::::::::::::::::::::::::::::::::::::::

(23)

:::::::
Consider

::
a

::::
route

:
as a set of locations,

::
and

::::::
utilize the Hausdorff distance dHaus(ptar,peval), ::::::::::::::

dHaus(popt,pgen):to measure the565

distance between the two setsof paths, can be computed by:
:::
two

::::
sets,

::::::
which

:::
can

::
be

:::::::::
calculated

:::
by:

dHaus(ptaropt
::

,pevalgen
::

) = max{supinf d(p,q),supinf d(q,p)} (p ∈ ptaropt
::

, q ∈ pevalgen
::

) (24)

where sup is the supremum and inf is the infimum. The Hausdorff distance measures the maximum deviated distance of the

eval path. and the Haudorff rate is: dHaus/ltar, which quantifies the Hausdorff distance per unit length. Let lol ::::::::
generated

:::::
route.

:::
Let

:::
lov denote the length of the longest overlapping sub-path between the target path and the eval path

:::::::
common

:::::::::
sub-route570

:::::::
between

:::
the

::::::::
generated

:::
and

:::::::
optimal

::::::
routes, the overlap rate is

:::::
defined

:::
as

:::
the

::::
ratio

::::::::::::
rov = lov/lopt.::::

The
:::::::::
destination

:::::::
distance

::
is
::
a

:::::
metric

:::
for

::::::::
assessing

:::
the

:::::::
efficacy

::
of

:::::::::
evacuation

:::::
route

::::::::
planning,

::::::::
reflecting

:
the ratio rol = lol/ltar. In addition to the similarity,

the distance between the destinations of the target path and the eval path can be measured by Chebyshev distance
:::::::
endpoint

:::
of

::
the

:::::::::
generated

::::
route

::::
and

:::
the

:::::::::
designated

::::::
shelter.

By comparing with the target paths, the eval paths can be categorized into optimal paths and deviated paths, where the575

deviated path differs from the corresponding target path by one or more cells. In Scenario 1, there are 668
::::::
Among

:::::::::
generated

:::::
routes,

::
a
::::
route

::::
that

:::::::
deviates

::::
from

:::
the optimal paths and 332 deviated paths, while in Scenario 5, there are 620 optimal paths and

380 deviated paths, as shown in Fig. ??. The number of optimal paths and deviated paths for Scenario 1 and 5.
::::
route

:
is
::::::
termed

::
a
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:::::::
deviated

:::::
route.

:::
Fig.

:::
15

::::::
depicts

:::
the

:::::::::
proportion

::
of

:::::::
optimal

:::
and

:::::::
deviated

::::::
routes,

::
as

::::
well

::
as

:::
the

::::::::::
distribution

::
of

::::
their

:::::::
starting

::::::
points,

:::::
where

::::
blue

:::
and

::::::
orange

:::::::
markers

::::::::
represent

:::
the

::::::
optimal

::::
and

:::::::
deviated

::::::
routes,

::::::::::
respectively.

:
580

:::
The

:::::
1000

:::
test

:::::
cases

::::::::
evaluated

:::
the

:::::::
model’s

:::::::::::
performance

:::::
amidst

::::::
severe

:::::
storm

::::::
surges

:::
and

::::::::
complex

:::::::::
inundation

::::::::::::
environments.

::::::
Among

:::
the

:::::
1000

::::::::
generated

::::::
routes,

::::
668

::::::
routes

:::
are

:::::::
optimal

::::
with

::::
332

:::::
routes

::::::::
deviated.

:
Focusing on the deviated paths

:::::
routes,

the DTW rate
::::::
distance, the Hausdorff rate

::::::
distance, the overlap rate, and the destination distance under Scenario 1 and 5

are illustrated as Fig. ?? and Fig. ??, where one cell is equal to an actual distance of 16 meters. Scenario 1 evaluates the

model’s performance amidst severe storm surges and complex inundation environments, while Scenario 5 assesses the model’s585

performance in environments with minimal flooding. Among the 2000 eval paths tested in Scenario 1 and 5, 668 and 620 paths

are optimal, respectively. For the remaining deviated paths, on average , the DTW distance is 76.8
:::
16.

::::
The

:::::
mean

:::::
length

:::
of

:::
332

:::::::
deviated

::::::
routes

::
is

::::
5728

:
mper path and 0.04 ,

:::::::::
indicating

:::
that

::::::
longer

:::::
routes

::::
tend

::
to

::::::
exhibit

::::::
greater

::::::::::
deviations.

::
In

:::
Fig.

:::
16(a)

:
,

::
the

:::::::
average

:::::
DTW

:::::::
distance

:::
for

::::::::
deviated

:::::
routes

::
is
::
a

::::
mere

::::
3.36

:
mper meter in Scenario 1, and 65.6

:
,
:::
and

:::
the

::::::::
majority

::
of

:::::
these

:::::
routes

::::::
exhibit

:::::
DTW

::::::::
distances

:::::
below

::::
this

:::::::
average,

:::::::
although

::
a
:::::::
minority

::::::
exceed

:::
16 mper path and 0.03 per meter in Scenario 5.590

The .
::::
The

:::::::
average Hausdorff distance is 168

:::::
36.96

:
mper path and 0.07 per meter in Scenario 1, and 252.8 per path and 0.08

per meter in Scenario 5, signifying that the eval paths exhibit a remarkable morphological similarity to the target paths. The

mean .
::::

An
:::::::
analysis

:::::::::
combining

::::
Fig.

::
16(a)

:::
and

::::
Fig.

:::
16(b)

:::::::
indicates

:::
that

:::
the

::::::
routes

::::::
exhibit

::::::
minor

::::::::
deviations

:::::
from

:::
the

:::::::
optimal

:::::
routes

::
in

:::
the

:::::::
majority

::
of

:::::
cases,

::::
with

:::::::::
significant

:::::::::
deviations

::::::::
occurring

:::::::::::
infrequently.

::
In

:::
Fig.

:::
16(c)

:
,
::
the

:::::::
average

:
overlap rate is 0.74

and 0.71, respectively, signifying that a substantial portion of the eval paths coincides with the target paths. Furthermore, the595

mean destination distance is 78.4
::::
0.88,

::::
with

::::
most

:::::
cases

:::::::::::
approaching

:
a
:::::::
perfect

::::::
overlap

::
of

:::
1,

::::::::::::
demonstrating

:::
that

:::
the

::::::::
deviated

:::::
routes

::::::
mostly

::::::
remain

::::::::
consistent

::::
with

:::
the

:::::::
optimal

:::::
routes.

:::::::
Finally,

::
in

:::
Fig.

:::
16(d)

:
,
:::
the

:::::::::
destination

::::::::
distances

::::
were

::::::::
calculated

::::
with

:::
an

::::::
average

:::::
value

::
of

::::
4.32 mand 107.2

:
.
:::
The

::::::::
majority

::
of

:::::::::
destination

::::::::
distances

:::
fall

::::::
within

::
the

:::::
0∼16

:
m , ensuring that evacuees reach

a location very close to the most suitable shelter. Notably, the mean lengths of the deviated paths (5584
:::::
range,

::::::::
although

:
a
::::
few

:::::
outlier

::::::
routes

::::::
exceed

:::
144

:
mand 4832 ), are longer than the mean lengths of eval paths(4826 and 3758 ), revealing the model’s600

inadequacies in effectively planning long path. Overal, these deviations are negligible for the study area of 135 ,
:::::::::
suggesting

::::
that

:::::::
deviated

:::::
paths,

::::::
despite

:::::::
process

:::::::::::
discrepancies

:::::
from

:::
the

:::::::
optimal

::::::
routes,

:::
can

::::
still

:::::
reach

:::
the

::::::
optimal

::::::
shelter

::::
with

:::::
high

:::::::
accuracy.

The experimental results demonstrate that the proposed method exhibits strong performance in generality, providing emergency

evacuation path
::::
route

:
planning for the entire study area. Model performance in Scenario 1.

Model performance in Scenario 5.605

5 Conclusions

This study presents a comprehensive approach to emergency evacuation
::::::
conduct

:::
the

::::::
storm

:::
risk

::::::::::
assessment

:::
and

::::::::::
evacuation

::::
route

:
planning in the Daya Bay Petrochemical Industrial Zone. By coupling a risk assessment of storm surges with a road

network, a raster environment that reflects real-world scenarios has been constructed. The DQN model was employed to

develop a real-time evacuation plan, providing efficient and effective guidance for individuals during storm surge events. To610

enhance the adaptability of the DQN model for rasterized road network, masked state space, masked action space, and tri-aspect
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reward mechanism were proposed, significantly enhancing the model’s convergence. The coupled ADCIRC-SWAN model

and Jelesnianski method were used to create the simulation environment of storm surges under different typhoon scenarios.

Additionally, potential safe shelters were identified for
::
It

::::::::
facilitates

:
a
::::::::

thorough
::::::::::::
understanding

:::
for

::::
local

:::::::::::
government

::::::::
regarding

::
the

::::::
spatial

::::::::::
distribution

:::
of

::::
road

::::
risks

::::
and

::::
aids

::::::::
residents

::
in

::::::
swiftly

:::::::
devising

:::::::
optimal

:::::::::
evacuation

::::::
routes

::
to

::::::::
shelters,

:::::::::
contingent615

::::
upon

::::
their

:::::::::
immediate

::::::::::::
surroundings.

::::
This

::::::::
approach

::::::::::
significantly

:::::::
bolsters

:::::
efforts

::
in
::::::
storm

::::
surge

:::::::
disaster

:::::::::
prevention,

::::::::::
mitigation,

:::
and

:::::::::
contributes

::
to

:::
the

::::::::::
sustainable

::::::::::
development

:::
of

::
the

:::::::
region.

::::
This

:::::
study

::::::
utilized

:::
the

:::::::::::::::
ADCIRC+SWAN

::::::
model

::
to

::::::::
simulate

:::
five

::::::
storm

:::::
surge

::::::::
scenarios,

::::::::::
identifying

::::::::
maximum

::::::::::
inundation

:::::
levels

:::::
within

:
the study areato provide more evacuation options.

Two distinct storm surge scenarios with .
:::::::::
Integrating

:::::::::
inundation

::::
data

::::
with

::::
road

:::::::
network

::::::::::
information

::::::::
facilitated

::
a

::::::::::
fine-grained620

:::
risk

::::::::::
assessment,

::::::::
revealing

::::
high

:::::::::::
vulnerability

::
in

:::
the

::::::::::::
petrochemical

::::::::
industrial

::::
zone

:::
and

:::::::
Golden

:::::
Coast

:::::::
region’s

::::
road

::::::::
networks

::
to

:::::
storm

::::::
surges.

:::
The

:::::::::
minimum

::::::
central

:::::::
pressure

::
of

:::::::::
typhoons,

::::
with

:::
key

:::::::::
thresholds

::
at
::::
930

:::
and

::::
940

::::
hPa,

::::::
serves

::
as

:
a
::::::
critical

::::::
factor

::
in

::::::::::
determining

:::
the

::::::
impact

::::::::
severity:

:::::
roads

::
in

:
the minimum central pressures of 910 and 950

::::::
Golden

:::::
Coast

:::
are

::
at

::::
risk

:::::
when

::
the

:::::::
central

:::::::
pressure

::
is

:::::
below

::::
940

:
hPa

:
,
:::::
while

::::::
central

:::::::
pressure

::::::
below

:::
930

:
hPa were used as the test environments, and path

plan for
::::::::::
significantly

::::::
disrupt

:::
the

::::::::::::
petrochemical

::::::
zone’s

::::::
roads.

:::::::
Focusing

:::
on

:::::::::
evacuation

:::::
route

::::::::
planning,

:::
the

:::::
study

:::::::::
developed

::
a625

::::::::::::
high-resolution

:::::
raster

::::::::::::
environmental

:::::
model

::
to

:::::::
explore

::::
deep

:::::::::::
reinforcement

:::::::
learning

:::::::
methods

:::
for

:::::::::
large-scale

:::::
raster

::::::::::::
environments.

::
To

:::::::
address

:::::
DQN

:::::::
model’s

:::::::::::
convergence

:::::::::
challenges,

::
a
::::::::::
compressed

::::::
search

:::::
space

::::
and

:
a
:::::::::::

navigational
::::::
reward

::::::::::
mechanism

:::::
were

:::::::::
introduced,

:::::::::
enhancing

:::
the

:::::
DQN

::::::
model’s

::::::::
capacity

::
in

::::
route

::::::::
planning.

::
In
::::::::
Scenario

::
1,

:
1000 randomly selected starting cells were

conducted in each scenario. By comparing the eval paths with the target paths, for both scenarios, over 60 % of the eval paths

were optimal, while the remaining 40 % exhibited only minor deviations from the optimal paths, with an average difference of630

merely 4 centimeters per meter and an average overlap rate of exceeding
::::::
starting

:::::
points

:::::
were

::::::::
randomly

:::::::
sampled

::
to

::::::::
generate

:::::::::
evacuation

::::::
routes,

::::
with

:::::
nearly

:
70 %. Moreover, the average destination distance between the deviated paths and the optimal

paths was approximately 100 . Overall, the proposed method proved highly effective in planning optimal evacuation routeswith

a minimal deviationthat can be of great assistance for the evacuee during a real-world storm surge
::
%

:::::::
proving

::::::
optimal

::::
and

:::
the

:::
rest

:::::::
showing

:::::::
minimal

:::::::::
deviation,

::::::::
averaging

:
a
:::::
DTW

:::::::
distance

:::
of

::::
3.36 m

:::
and

:::
an

::::::
overlap

::::
rate

::
of

::::::::::::
approximately

:::
0.9.635

Based on the results and findings presented in this study , the proposed method showed effectiveness in enhancing real-time

::::
This

:::::
study

:::::::::::
demonstrates

:::
the

:::::::
efficacy

::
of

::::
the

::::::::
proposed

::::::
method

:::
in

::::::::
assessing

::::
road

::::
risks

::::
and

:::::::::
enhancing

:
emergency evacuation

plansand demonstrated the potential of employing
:
.
:
It
:::::::::::

underscores
:::
the

:::::
worth

::
of

::
of

:::::::::
leveraging

:
advanced modeling techniques

to improve emergency response and preparedness in vulnerable areas. However, there is still room for improvement and future

work can be done to further optimize the evacuation plan. One potential direction involves replacing the raster environment640

with a topological environment and utilizing graph neural network techniques. Due to the limitations of the raster environment,

the proposed method trains slowly and is difficult to apply on a larger scale area (such as a city area). The reason for adopting

the raster environment in this paper is that it is simple to construct and can directly correspond with the flooding extents.

Another possible avenue for future research is to incorporate more advanced machine learning algorithms or data-driven

models, as there is potential for further improvement with currently 60 % of eval paths being optimal. Additionally, more645

environmental information could be utilized to meet more complex demands, such as incorporating population restrictions
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for shelters, identifying different types of roads’ passing conditions and costs, and so on. This study is a promising start in

developing
:::
Yet,

:::::
there

:::
are

:::::::::::
opportunities

::
for

::::::::::
refinement.

::::::
Current

::::
road

::::
risk

::::::::::
assessments

:::::::
consider

:::::::
flooding

:::
and

::::
road

:::::
types

:::
but

:::::
could

::
be

::::::::
improved

::
to

:::::::
include

::::
road

:::::
width,

:::::::::
population

:::::::
density

:::
and

:::::
other

::::::
factors

::
to

:::::::
enhance

:::
the

:::::::::::
effectiveness

::
of

::::
road

::::
risk

::::::::::
assessment.

:::::::
Looking

::::::
ahead,

:::::::::::
transitioning

::::
from

:::::
raster

:::
to

:::::::::
topological

:::::::::::::
environments,

:::::::::
potentially

:::::::
through

:::::
graph

::::::
neural

::::::::
networks,

::::::::
presents650

:
a
:::::::::
promising

::::
path

::
to

:::::::::
overcome

:::
the

:::::::::
limitations

:::
in

:::::::
training

:::::
speed

::::
and

::::
large

::::
data

:::::::::
handling.

:::::::::::
Additionally,

:::
the

:::::::
current

:::::::
model’s

::::::::
exclusion

::
of

:::::::::
infiltration

:::
and

::::::::
drainage

::::::::
dynamics

::::
may

:::::
affect

:::::::::
inundation

:::::
depth

::::::::
accuracy.

::::::
Future

::::::::
research

:::::
should

::::::::
integrate

:::::
these

:::::
factors

:::
for

:::::
more

::::::
precise

:::::
storm

::::
surge

:::::::::::
simulations.

::
In

::::::::
summary,

:::
this

:::::
study

:::::::::
represents

:
a
::::::
pivotal

:::
step

::
in
::::::::::
developing

:::::
storm

::::
surge

::::
risk

:::::::::
assessment

:::
and

:
real-time emergency evacuation plans, and we eagerly anticipate future advancements in this field.

:::::::::
evacuation

::::::::
planning.

::::
The

:::::
scope

:::
for

:::::::::::
advancement

::
is

:::::::::::
considerable,

:::::::
inviting

:::::::
ongoing

:::::::
research

:::
and

:::::::::
innovation

::
in

::::
this

::::::
critical

:::::::
domain.655
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Appendix A:
:::
The

:::::::::
validation

::
of

::::::::::::::::
ADCIRC+SWAN

::::::
model

(a) 2305 Doksuri (Nanao station).
:

(b) 2305 Doksuri (Shekou station).

(c) 2311 Haikui (Nanao station).
:

(d) 2311 Haikui (Shekou station).

(e) 2314 Koinu (Nanao station).
:

(f) 2314 Koinu (Shekou station).

Figure A1.
:::
The

:::::::
validation

::
of
::::::::::::::
ADCIRC+SWAN

:::::
model.

::::
The

:::
real

:::::::
historical

:::::::
typhoon

:::::
events

:::::
(2305,

::::
2311,

:::::
2314)

::::
were

::::
used

::
to

::::::
validate

:::::
water

:::::
levels.

:::
The

::::
black

:::
line

::::::::
represents

:::
the

:::::::
simulated

:::::
water

::::
levels

:::
and

:::
the

:::::
redline

::::::::
represents

:::
the

:::::::
observed

::::
water

:::::
levels

:::::
record

::
by

:::::
Nanao

::::::
station

:::
and

:::::
Shekou

::::::
station.
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Appendix B:
::::::::
Examples

::
of

::::::::::
evacuation

:::::
route

::::::::
planning
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Figure B1.
:::::::
Examples

::
of

::::::::
evacuation

:::::
route

:::::::
planning.

::
In

:::
this

:::::
study,

:::
the

::::
goal

::
of

::::::::
evacuation

::::
route

:::::::
planning

::
is
::
to

:::
find

:::
the

::::::
optimal

:::::
route

::::
from

::::::
arbitrary

::::::
starting

::::::
points

::
to

::::::::
designated

:::::::
shelters.

:::::
While

:::
the

:::::::
inclusion

:::
of

:::::::
planning

:::::
routes

::::
from

:::::::::
non-flooded

:::::
areas

::
to

::::::
shelters

::::
may

:::
be

:::
not

::::::::
reasonable

::
in

:::::::
real-world

::::::::::
applications,

:::
this

:::::::
approach

::::::::
effectively

:::::::
evaluate

::
the

::::::
model’s

:::::
route

::::::
planning

:::::::::
capabilities.

Minimize(D ·W )

where D = {d(p,q)} and d(p,q) is the Chebyshev distance between the cell p ∈ popt and cell q ∈ pgen. W = {w(i, j)} and w(i, j) is the

binary DP variable i, j ∈ Z+, i⩽ lopt, j ⩽ lgen. The above DP is subject to:

w(i, j) = {0,1}

w(1,1) = 0

w(lopt, lgen) = 1

w(i, j) =[w(i− 1, j)+w(i− 1, j− 1)+w(i, j− 1)]×w(i, j)

and the DTW distance is defined as:

dDTW (popt,pgen) =
D ·W
n

, n=
∑

w(i, j) (w(i, j) ∈W )
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