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Abstract. Storm surge is one of the most destructive marine disasters, characterized by abnormal and temporary rises in water
levels during intense storms, leading to extreme inland flooding in the coastal area. storm surge risk assessment and evacua-
tion planning, play a crucial role in saving lives and mitigating disasters. Conventional risk assessment struggles to meet the
demands of refined risk evaluation research for small-scale elements, such as roads, and current evacuation plans are gen-
erally based on broader regional scales, failing to provide effective road-level evacuation planning for evacuees. This study
developed fourfive typical typhoon scenarios for the coupled ADCIRC-SWAN model to simulate storm surge inundation.
Combining these simulations with road network, storm surge risk assessment was conducted in the Daya Bay Petrochem-
ical Industrial Zone, a vulnerable low-lying coastal region of Huizhou City, China;—which-is—{requently-affected-bystorm
surge-driven-flooding. Based on the risk assessment, a combination of the Deep Q-Network (DQN) model and raster environ-
ment was employed to develop real-time evacuation plans during storm surge events. To address the DQN model’s convergence
challenges, compressed search space and multi-reward-nayigational reward methods were proposed;-which-were-speetfically

stgned-to-enhance-the DPQN-model’s-capacity-to-path-planning problems-withinJarge-scalerasterenvironments. 1000 starting

points were randomly selected for path-route planning, and the results indicate that the proposed method is highly effective in
devising optimal evacuation routes with minimal deviation, offering valuable guidance for evacuees during real-world storm

surges.

Copyright statement.

1 Introduction

A storm surge is an abnormal and temporary rise of water that occurs during intense storms. This sudden rise in sea level

can lead to extreme inland flooding in coastal communities especially-when-an-advancingsurge-coincides-with-astronemical
high-tide-(Wang et al., 2021b). Storm surge is one of the most dangerous and destructive natural hazards to life and property
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along the coastline and kilometers inland in the world (UNISDR et al., 2015). In the US, coastal flooding from storm surge
was responsible for 49 % of hurricane—or-tropical-storm-related-storm-related fatalities during the period from 1994 to 2003
(Rappaport, 2014). When Hurricane Katrina struck the southeastern United States in 2005, an estimated 1,577 people died,
causing USPB-108 billion in—property-damages-USD in property losses (Rhome and Brown, 2006). The storm surge from
Super Typhoon Haiyan’Haiyan’, hitting the Philippines in 2013, was-estimated-to-be-7-5-high;leadingto-led to more than
7,000 persons losing their lives along-the-eoastline-(Mas et al., 2015). In China, from 1998 to 26492020, the average annual
economic losses resulting from storm surge flooding each year is approximately 10.17 billion RMB, which is equivalent to
96 % of the total direct economic losses from all types of marine disasters (China Marine disaster bulletin, 2021). Recent

studies suggested-thatindicated a potential escalation in the number of peep}&ﬁemgﬂwﬂﬁeeﬁwm storm

surge floodingan

aceelerating sea-levelrise-and-more-intense-hurricanes, along with associated property damage and loss of life (Merkens et al.,
2016; Oppenheimer et al., 2019; Snaiki et al., 2020). Physical barriers, which-run-while parallel to the shoreline, alone-cannot

prevent-all-pessible-damages-that-are insufficient to prevent all potential damages to urban settlements and infrastructure ean
suffer-during storm surge floedingevents. With increasing potential victims and economic losses, it is of paramount importance

to perform risk assessments and develop evacuation plans to mitigate the risksrisk associated with storm strgessurge.

Storm surge risk assessmenten

Generalty,, based on simulated inundation scenarios, can provide predictive and analytical information on the danger of storm
surge disasters in a region (Wang et al,, 2021a). The risk assessment approach aims to quantify the damage and risk into value,
WMMM&MMQMMW inundation
hazard, and the computation—of

major—eomponents—of-vulnerability of exposed elements (Granger, 2003; Kron, 2005; Lavell et al., 2012; Koks et al., 2015
. In recent years, various storm surge risk assessment models have been established in various countries, and some case
studies have been conducted (e.g. Zerger, 2002; Benavente et al., 2006; Lin et al., 2010). In the study of storm surge risk as-

he-, a comprehensive assessment of storm.
surge risk was obtained by using numerical models to simulate the inundation scenarios and considering the damage of different
types of vulnerable elements. The Advanced Circulation (ADCIRC, Luettich et al.) model, Finite-Volume-Community-Ocean
MeodelFVCOM;-Chen-etal);-and-designed to address two- and three-dimensional hydrodynamic free surface circulation

challenges, has been widely applied to simulate tide- and wind-driven circulations. The Simulating Waves Nearshore (SWAN,
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wave model, which computes the wave action density spectrum by solving the wave action balance equation. By employing a

coastal storm surges and tidal floods induced by tropical cyclones, and has shown good performance in previous studies
e.g. Dietrich et al., 2011; Suh et al., 2015; Wang et al., 2018).

The research on emergency evacuation originated in the early 20th century, and its core task is the development of evacu-

ation plans, including the identification of disaster shelters and the planning of evacuation routes (Alsnih and Stopher, 2004).

structural-stability;waterproofingand-eapaeity—Conventional shortest-path algorithms, such as Dijkstra’s and A* algorithms,
have been enhanced and employed in emergeney-evacuation planning (Samah et al., 2015; Astri et al., 2020, e.g.,). Addi-

tionally, heuristic approaches, including the PSO algorithm, genetic algorithm, and ant colony algorithm have been intro-

duced to identify optimal routes within intricate environments

cumulative reward obtained from the interaction between the intelligent agent and the environment (Sutton and Barto, 2018)
- In the increasingly complex real-world tasks, deep learning (DL) can be utilized to better learn the abstract features of
large-scale input data, which can then be used to optimize the RL's strategy learning process. In 2013, Mnih et al. proposed
the Deep Q-Network (DQN), which was applied to solve visual-based control decision problems. Since then, the field of
deep reinforcement learning (DRL) has experienced rapid development, arising numerous efficient algorithms, such as Deep
Q-Network-(DQN;-Mnih-et-ak-Deterministic Policy Gradient (DDPG, Lillicrap et al.), Asynchronous Advantage Actor-Critic
(A3C, Mnih et al.), and Proximal Policy Optimization (PPO, Schulman et al.). DRLhas-found-widespread-application-in-diverse

tes, based on Markoy decision processes and
deep neural networks, offers an effective solution for the optimization of evacuation route planning. Yu et al. utilized DRL
model to develop a navigation system for an agent in a maze. Zhang et al. created a scenario with obstacles in a room and
addressed the problem of emergency evacuation within the room using DRL. Ni et al. simulated buildings in a fire scenario
and used an improved double deep Q network to solve evacuation route planning. The merit of DRL algorithms in emergency
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evacuation stems from their capacity to function without a priori comprehension of the entire environment. In-this-study,an
enhaneed-

Storm surge risk assessment and evacuation route planning can provide decision-making support for local governments in
disaster prevention and reduction, and provide timely and effective emergency evacuation guidance for affected area residents.
To date, there are currently no cases of comprehensive storm surge disaster mitigation research integrating these two aspects.
Based on the current studies, the main problems faced include:(1) Storm surge endanger coastal regions, with the existing
strategies falling short due to their neglect of small-scale elements like road risk assessment, hindering fine-tuned disaster
management. (2) Conyentional evacuation route planning is limited by its oversimplification of complex environments and
inadequate consideration of victims’ needs. The unpredictability of storm surges and incomplete regional information further
complicate the maintenance of effective plans. (3) While deep reinforcement learning method-was-proposed-to-assistindividuals

vacta O ares oasea—o strrouna

path-planning—using DRIE—+n—shows promise in route planning, it faces convergence challenges with large-scale areas;—twe

se-s tsres ses-applications. This study focused on the low-elevation coastal regions of the Daya

ato Opica AS2LY; anda gt y—a GOy O brgec-attv oasta

Bay district, whi
The-work-in-this-study-invelves—t-employingutilizing the coupled ADCIRC+SWAN numerical model to simulate storm surge

scenarios, and subsequently conducting a comprehensive risk assessment of the road network. Based on the risk assessment
a DRL model was utilized to provide intelligent evacuation route planning for evacuees. The main contributions of this work

are summarized as follows:

— By analyzing historical typhoon data, five typical typhoon intensities affecting the study area were identified. Using the

coupled ADCIRC+SWAN model, the storm surge inundation process in the study area under the five typhoon scenarios
was simulated.

— Developing a refined road risk assessment model for storm surges, taking into account the extent of inundation, inundation
depth, and type of road, to analyze the traffic conditions and conduct a fine-grained risk assessment of the road network
in the study area.



— Reframing the route planning problem in a raster environment as a continuous decision-making problem, and usin
125 a DRL algorithm to plan evacuation routes on road networks, which can provide real-time and effective evacuation
uidance based on the limited environment around evacuees.

— To address the challenges faced by the DQN model in a large raster environment for route planning, this study proposed
compressed search space and navigational rewards methods to optimize the traditional DQN model, enabling it to better
suit evacuation route planning.

130 2 Study Area
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Figure 1. The Daya Bay. The study area is in red.

Daya Bay district is located in the southern region of Huizhou City, Guangdong Province. It has a total land area of 293 km?
and a population of 0.45 million, which is concentrated most highly in coastal areas, in 2021. In-addition;-the-The Daya Bay
Petrochemical Industrial Zone, situated in the north-eastern part of Daya Bay, was listed as a national petrochemical industrial
base. It has formed an annual production capacity of 22 million tons of oil refining and 2.2 million tons of ethylene in 2021,

135 which ranks first in China in terms of the scale of petrochemical-refining integration. Industrial facilities and critical infrastruc-

ture in this area are vulnerable to storm surge-driven coastal flooding during typhoon events, leading to devastating losses of

RMB-In the context of substantial sea-level rise and urban extent along low-lying coastal areas, most communities across the



140 Daya Bay district will likely face higher storm surge flooding risk in the future. It is crucial and essential to create the storm
surge risk maps for raising awareness about areas at risk and making evacuation plans to minimize the loss and damage. The

study area is shown in Fig. 2-1.
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surge play a crucial role in saving lives and mitigating disasters. The significance of this work lies in the ability to simulate
storm surge flooding for risk assessments and to find routes to the nearest disaster based-on the road network. In this study, an

150

used to perform risk assessment and evacuation route plan consists of following four sections: (1) storm surge simulation; (2

155  road risk assessment; (3) evacuation route planning; (4) optimization of the DON. Please refer to Fig. +-2 for an overview and
the sections for more information. The-everview-of-the-work:

3.1 EnvirenmentalmodelingStorm surge simulation

160

165

Given the difficulty in obtaining measured typhoon data, a #
tonwidely adopted method is to construct a theoretical wind field model
170 using the wind gradient formula (Jelesnlanskl 1965; Willoughby and Rahn, 2004). In this study, the Jelesnianski hurricane

model (Jelesnianski, 1965) was uti

175
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core H-wind-H d-model-based-onthe-wind-gradien orma elesnians > 6

the-Jelesntanski-medelneeessitates-four-used to provide wind forcing. This approach requires the specification of four critical
parameters: the cyclone track-trajectory 7', the minimum central pressure P, the maximum wind velocity V.., and the
185 maximum wind radius R,,q,. The R,,,, may be approximated through several empirical equations (Vickery et al., 2000;

Cheung et al., 2007), as delineated below:

Ronaz 1 = exp(2.635 — 0.00005086 A P? + 0.03948996) (1)
Romaz 2 = 1119 x Ap~0-806 )
Romaz 3 = R, — 0.4 x (P, —900) +0.01 x (P, —900)2 R0 4= 260.93x AP 9512 3)

190 where AP indicates the pressure difference between the minimum central pressure P. and ambient pressure, and in this study,
the ambient pressure is 164641010 hPa; 6 represents the latitude of the storm’s center; Ry, is an empirical constant usually

taking the value range of [30,60], and we take the Ry, = 50. The {RmarRmarrRmars Fmar - { Bmez 1, Bmar. 2: Rmaw 3t

are all estimates of R,,,, and the final R,,,, we adopted was their average, i.e.

Rmaaf ] Rmal' Rma$ : Rm(ll? Rmaz Rmaw Rmaw
Ry = 10 *QZ o Hmae t Snar 11 . a3 )

195 Given a pressure difference AP, the maximum wind velocity V.. can be estimated by a empirical equation(Atkinson and
Holliday, 1977):

Vinaz = 3.7237 x AP-69%5 )

~According to the Tropical Cyclone Dataset of the
China Meteorological Administration (CMA, Ying et al. (2014); Lu et al. (2021)), from 1949 to 2022, Huizhou was impacted
200 by tropical cyclones of typhoon intensity or greater, account for 58.9% of all events, with central pressures ranging from 900
hPa to 960 hPa. Among these cyclones, 57.7% moved a westerly or northwesterly path. In this study, the trajectory of Super
Typhoon *"Mangkhut” (NO. 1822) was selected to construct a simulated wind field for storm surge inundation simulations for
its northwestward movement and its status as the most strong cyclone in the Asia-Pacific region in recent years. Employing
the trajectory of "Mangkhut’ is significant, as it potentially introduces the maximum storm surge inundation to the study area.
205  As shown in Fig. 3, the trajectory of "Mangkhut’ spanned a vast geographical area, originating in the tropical Pacific region,
traversing the Philippine Sea, and culminating in landfall along the southern coast of China. Based on Jelesnianski model, five
typhoon scenarios were constructed as demonstrated in Table 1.
Using the Jelesnianski hurricane model (Jelesnianski, 1965) to provide wind forcing, and combining the coupled ADCIRC+SWAN
model with topographic data, bathymetric data, and barrier data to simulate the storm surge inundation in the study area. The
210 computational domain is discretized using an unstructured triangular mesh, with the mesh shown in as shown in Fig. 4. The
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Figure 3. The trajectory of "Mangkhut’.

Table 1. Typhoon scenarios parameter

Typhoon scenarios ~ pressure P velocity gz 1adius By Trajectory
(hPa) (m/s) (km)

redominant tidal type in the northern China’ South Sea is the 8 major tidal components of semidiurnal and diurnal frequencies

N2, K2, K1, Ol, P1, QI). The elevation data of the land grid was obtained from the digital elevation model (DEM) data of
Huizhou acquired in 2015. The i i i e i e i

surge barriers ;-such-astoeatie

oftraversing-areas—with-data in study area were obtained from the actual measured barrier engineering data and elevation
measurement data. The ADCIRC+SWAN model was evaluated using real historical disaster events. (Detailed validation results
between observed and simulated water levels is provided in Appendix A).



30°N [~
Elevation (m)

-500

-1000
-1500
-2000

H -2500
[~ -3000
1 -3500
-4000

1 -4500
-5000
-5500
-6000
-6500
-7000

25°N

20°N

15°N

110°E 115°E 120°E 125°E

Figure 4. The computational domain, The model’s computational domain covers the central and northern China’ South Sea, as well as part

of the eastern Philippine Sea and some areas of the northwest Pacific, extended from 106.0° E to 128.0° E and from 13.0° N to 28.0° N

The grid resolution on the open boundaries ranges from approximately 5 to 110 km, while the grid resolution along the coast of Huizhou is
approximately 150 m. The mesh is optimized using local truncation error analysis, with a minimum grid resolution of approximately 100 m.
The model contained grids consisting of 74328 units and 38407 nodes.

220 3.2 Road risk assessment

In this study, a fine-grained road risk assessment was conducted by comprehensively combining exposure, yulnerability, and
hazard. The maximum possible extent of inundation under the storm surge scenario was determined to identify the roads that
would be affected. To conduct hazard assessment, the roads were categorized into different vulnerability levels based on their
traffic conditions. The evaluation of storm surge-related hazards is conducted by quantifying the extent of damage sustained
225 by road infrastructures at varying inundation depths{Gmdehﬂe&fe%RtsleAs%ssmaHﬂd—ZeﬂmgeﬁMaﬂﬂeﬁaﬂfd&%

- The work of Huizinga et al. in 2017
provided a reference for the correlation between inudation depth and facility damage rate (Huizinga et al., 2017). Among all
examed vulnerable elements, transportation facilities exhibited the highest damage rate due to their sensitivity to flooding and
their importance in urban functions, as shown in Fig. 5. Based on the correlation, this study conducts a storm surge hazard

230  assessment, dividing the inundation depth into five hazard levels, as illustrated in Table 2.

10
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Figure 5. Relationship of inundation depth and transportation facilities damage rate. As the inundation depth increases from 0 m to 3 m,
the damage rate of the transportation facilities also increases. However, this curve also delineates a saturation threshold in the damage rate
when the inundation depth reaches 3 m. This suggests that once road transport facilities reach a state of severe damage, further increases in

In the construction of transportation facilities, roads are categorized based on criteria such as significance, capacity, and
function, as follows: (1) Primary roads, also known as arterial roads, include highways, national and provincial roads. These
roads typically have the highest design standards and firmer constructions. Consequently, their vulnerability is lowest, and
they can maintain service even under extreme weather conditions. (2) Secondary roads typically serve to link pivotal urban
areas, facilitating intra-city transportation. Although designed to lower standards than primary roads, they are still required to
accommodate substantial traffic volumes and meet stringent safety demands. (3) Tertiary roads, encompassing rural pathways
and minor unnamed thoroughfares, typically represent the extremities of the transportation network. These roads are designed
and constructed to the lowest standards, primarily serving residents in rural areas. The vulnerability of the three categories of
roads in ascending order is as: primary roads < secondar roads < tertiary roads. When considering the roads affected by the
maximum inundation extent, combining the vulnerability of roads with the hazard level, a refined road risk assessment matrix
was proposed, as shown in Table 3. wherein-Risk-

3.3 Evacuation route plannin

11



Table 2. Risklevels-and-inundation-depthsCorrelation between inundation depth and hazard level

Inundation depth (s)cm)  Hazard level

0~15 16:6~0-15-

Risklevel 15~50 II 645~6-5-

50~120_ 11 6-5~1+6-

120~300 IV +6~2:0-

300~ 00 V 2:0~oc-

Table 3. Road risk assessment matrix
Risk level \Road categories Primary roads |

I areas;-passage-isrelatively-unimpeded; Risk- very low
II areas-present-moderate-obstacles-to-traversal; Risk- low_
III areas-pose-a—<certainlevel-of dange -making-them-tmpassable-for-valnerable-individua h-as-chi nand-th erby:Ri moderate
moderate.
high

250

255

wapply DRL
260 algorithm for evacuation route planning, this study utilized a raster environmental modeling; raster data can be perceived
as images stored in matrices, with a concise structure that facilitates subsequent computational processing. The study area

a rectangular region of 9 km x h-were-established-as-15 km, is divided into a cell of 16 m x 16 m. For-a-given-area—of

o1 ] he-area—-ean-be erized-intoA N _ce and-M=117/4 N=Ih1 whererth—xa he-ee e—FEach-ee

12
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facilities- Contrary to-urban-areas; Identifying potential shelters for swift evacuation is essential, especially in suburban areas
where dedicated disaster shelter facilities are searee-in-suburbs;-neecessitating-alternative-optionslimited. This study employs
three—eriterta—employed three criteria: structural stability, waterproofing, and capacity —te—identify—two—primary—facility
types-as-to assess potential shelters. Hospitals are inherently designed to withstand various natural disasters. As-per-Chinese

eodes—GB50061H-2021-Hospitals, inherently resilient to natural disasters, are prioritized due to their Class II waterproofin

III waterproofing and enhanced seismic construction (GB50011-2021 and GB50223-2021), are also considered suitable. B

integrating local population density, traffic, and disaster risks, this research has identified several potential shelters. Their spatial
distribution is depicted in Fig. 6, which clearly marks the positions of each recommended shelter within the road network. For
route planning, since shelters are not typically located on roads, proximity to a shelter is defined by reaching road cells within a

aetual-distanee-is-shelter range’ of 128 m
destinations—, equating to access to the shelter itself.

3.4 DeepReinforeementearning

Deep reinforcement learning is a new deep-learning-paradigm that focuses on formulating suitable policies and taking action
to achieve a specific goal. A DRL agent learns autonomously through continuous interactions with a eemplex-environment by

performing actions and receiving rewards without explieit-supervision. The interaction model between the agent and environ-

13
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Figure 6. The spatial distribution of potential shelters in study area.
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Figure 7. The DRL model. The environment is objective and refers to everything outside the agent that interacts with him, and the knowledge
of the agent is reinforced through the interaction agent-environment. ConsiderState (s;) represents the term—current state as-of the agent,
which contains the current environmental feature, -e—at-and the information-thatstate space () represents the agent-pereeivesfrom-set of
all possible environmental states. Action () represents the environment-at-action taken by the eurrent-moment—tn-order-agent in state sy

according to assess-a-policy speeifiealtyr, and the action space (A4) comprises all possible actions that an agent can take in a specific state.
The feedback mechanism called reward 7, is introduced to define-quantify the value of a-the state s; and to-quantifythe effectof-an-agent's

action g;.

ment is illustrated in Fig. 7. The primary objective of the agent is to maximize cumulative rewards, which can be advantageous

for evacuation route planning. In this study, the Deep Q-Network was employed to maximize the cumulative rewards.

14



300 3.3.1 MarkevDecisionProcess-andDeep-Q-Network

The route planning can be reformulated
as a continuous position state transition process based on Markov chains. This approach discretizes the route into states and

actions, employing the Markov Decision Process (MDP) to address the uncertainties inherent in navigation. Given a state space
305 S, aset-of-actions-an action space A, and a set of rewards R, the Markov decision process (MDP, Bellman) and the Markov

reward process (MRP, Bertsekas) are defined as Eq. 7-6 and Eq. 22:-7:

P!, =P(si11=5|ss=s,a,=a) (5,5 €S,a€A) (6)

s,s

R;S/ :R(Tt+1|8t =S5, = Q,St41 = S/) (S,S/ € S,a € A,T c R) (7)

where P?, represents the transition probablility from state s to state s” after performing action a, and R? _, is the reward

310 obtained after transition (s,a,s’). MDP can be regarded as a continuous decision-making process, and the next action to be

performed is only dependent on the current state.

315

Qr(s,a) =E.(G¢|sy = s,ar = a) = ZPfS, (RS o +7Vz(s")]

320

VY*(S) = m{?'XZPSH;S/ [Rg,s’ + ’YV*(S/)]

Qu(5.0) = Y PL (RS, +7maxQ.(s'.a)

15
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setting of raster environment, the route planning can be described as: the agent chooses the subsequent action based on the
current state until it reaches the destination. The location of the agent serves as the state, and the state transition is memoryless,

satisfying the Markov property. Under the fixed-size raster environment and the same-size cells setting, the basic state space is

the basic action space is potential moves to the 8 adjacent cells A : {a1,as,...,asla; = (z,y), (z,y) € {{-1,0,1}2 - (0,0)}}-

, while the following state transition egtation-is available:
cs'=cs+a (cs,cs’ € S;ae A) (3)

The pathroute planning problem in raster environmrnt based on the MDP is defined as follows:

Pc,c’s,s/a == P(E§t+1|§5t =CS,ar = (Z) = P((;'St =CS,ar = (Z) =1 (9)
Z Pc,c's,s’a =8 (10)
acA -

Reerss® = R(resalese = cs,ap = a,cs41 = ¢s') = R(resaese = cs,ap = a) = f(d(cs,cse) —d(cs’, cse)) 1)

where d{esea)-d(s, s¢) is the Chebyshev distance between cell s and the destination cell ¢zs,. In the study area, the destination
is represented by a cluster of shelter facilities, collectively constituting the destination set D. Let d{e)=-mind{e;ec)reecD
d(s) =mind(s,s.),se € D signifies the distance to the nearest shelter facility. We defined the reward 2¢~R¢ ., as a function

of the difference {erer)—dle’sea)d(s,s.) —d(s’,s.), implying that the reward is related to the agent’s proximity to the
destination. H-eis-eloser-to-the-destination-thereward-is-positiveand-viee-versa—The-correspondingstate-value funetion-an

a-value-based DRL algorithm where the output

for a given state er—s; is a vector of action values denoted as @{er—61Q(s.-;0), with 6 representing the parameters of the
online network. The agent’s policy is to perform the action associated with the highest value. Mereover, DQN-employs-A

DQN is a multi-layered neural network that estimates the value of states and actions. State value is the expected reward that
the agent can obtain from a state to give an estimate of how good a state is, and action value is the expected reward that the

agent can obtain from a state after performing a specific action. DQN incorporates an experience replay mechanism (Mnih
et al., 2015), wh ten i 2 S i e

cotrrelationbetween-samples-and-enable-the-which mitigates temporal correlations by randomly drawing from a stored memo

16
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of past experiences. This approach allows the agent to learn frem-infrequent-events—Anotherimportantfeatare-of DQN-is-the
use-of-effectively from rare events. Additionally, DON utilizes a separate target network (Mnih et al., 2015) for-estimating-to
estimate the Q. (¢, a), thereby enhancing the stability of the learning process. The-BQN-Under a policy 7, the value of a state

s is denoted as V.. (s) and the value of a action a in the state s is denoted as s,a):
Vi(s) =E.(Gt|s: = s) ZP $)Qr(s,a) (12)
Qr(5,0) =Ex(Gilse = 5,00 = ) = f(dls,5¢) — (51 0,50)) +3Vr(s + ) (13)

where G} is the total discounted reward from state s; and ~v € [0, 1] is the discount factor.

o0
Gi=Rip1 +7Riia+...= Zlﬁ,@lﬁt}i@ (14)
The goal of DQN is to find an optimal policy 7* to maximize the state value and action value. Under the optimal policy 7*
the optimal state value function V, (s) and the optimal action value function (0, (s, a) can be obtained by:

maxZP (R +7Vi(s")] (15)
=D PR +ymaxQ.(s' )] (16)

The DON searches for the optimal policy to maximize the largest long-term cumulative reward that the target is:

YtDQN =14 +’Ym3XQ(Ct+1,at§0;) (17)
and-And using the Mean squared error loss (RMSE) as loss function, the DQN can be trained by optimizing the following loss:
Loss(0;) =E[(r; + vlgifﬁcQ (Ct+17at+1§ 9{) — Q(ct,a4;64))?] (18)

The update process is based on the Monte Carlo method. By continuously interacting with the environment, the agent observes

immediate rewards and accumulates them to count value information, which can then be transformed into a regression problem.
3.3.1 Addressing-Convergence-Challengesin DQN

The-Deep-Q-Network-(DQN--

3.4 Optimization of the DON

The DON model, when applied in a raster environmentwith-each-eell-pessessing-eight-neighbering—eells, faces significant
convergence challenges from two aspects: +—(1) the extensive search space;-and-2—; (2) the issue of sparse rewards. The
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fundamental-state-space—~-search space is composed of the state space and the action space. In this study, the rasterized
environment consisting of over 19,000 road-eels——results—cells with each cell possessing eight actions, resulting in a vast
search spaceef-around-8122°Y, Coupled with the issue of sparse rewards, where the agent receives feedback only occasionally,
the model’s training process becomes even more complex and the convergence becomes notably difficult.

To eeunteract-the-vastness-reduce of the search space, two innovative methods were proposed: the masked action space and

)

the masked state space. Fhese-methods-effectivelyreduece-the-searchspace;-thereby-aiding-in-the-model’s-convergenee—In

be-meaninglessTypically, a cell in the action space allows movement in eight directions, but not all are relevant. By leveraging

a mask, the eompressed-masked action space method efficiently narrows down the available actions from 8 to an approximate

average of 3-pereell-3. This method focuses particularly on the transition of the action space, leading-to-dynamic-action-spaces

& TS i mphasizing the interaction between action and state transitions. The action

space transition is dependent on the state transition, as illustrated in Fig. 9--8, where A, denotes the action space associated

with state s. According to Eq. +5?2, the action space of the current state relies on the preceding state and the last performed

A

Figure 8. The action space transition. The red line represents the state transition and the green line represents the action space transition.

action, rendering-and the transition of
action space is defined as:

Pawr® = Plagss = d|cs; = cs,a, = a) = n(cs +a); (19)

where e-cAmacA=qz0 € Ag, d/ € Aty P7 ./ represents the probability of taking action a’ after taking action a in cell e

here-are-two-special-easesinpath-planninesen-arasterenvironmen s. In raster-based route planning, two exceptional scenarios
arise: (1) For a state transition ¢“=-e—+us’ = s 4 a, an action a’ exists such that e=-¢'—+«'in-thisease-s = s/ + d/, then the
action o’ is deemed meaningless-redundant for state s’. (2) Meving-one-cell-in-the-diagonal direction-is-essentially-equivalen
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meving-one-cell-both-herizentally-and-verticallyIn-this-easeDiagonal movement, which equates to a combination of horizontal
and vertical movements, presents a unique case. Specifically, given the following transitions: e—+a=-c——+a =" —and
e+al=-c"theaetions+a=c, s’ +a =5", and s+ a”’ = 5", then d’ is meaningless-aftere—+aredundant following the

initial transition s + a. Fig. +6-9 depicts two of eight compressed action spaces, namely action patterns. There are a total of 8

action patterns, which can be saved in 8 binary matrices. As-path-
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Figure 9. Action patterns for up and up-right. The blue solid line denotes the last action, while the red dashed lines represent meaningless
redundant next actions. The green dashed lines signify the eompressed-masked action space.

Additionally, as route planning operates on the extant-known-road network, exploring areas devoid of roads is considered
futile. By focusing exclusivelyon state transitions-within the road network, the action space can be further compressed. The
compressed action space A{e-A(s’) for each state transition e—+-s + @ can be calculated using the raster road network and
the etght-action-patteras—action patterns:

A(cs')=ToA_P(a)oR_N(cs+a) (20)

where I is the basic action space of size 3 x 3 with all elements equal to 1, R—N—is-the-matrix—of-the roadnetwork-and

RAHeyisthe-mask-R_N (s) is the road information of size 3 x 3 centered at cell es, the A_P(a) is the action pattern for
a, and the operator o is the Hadamard product. For each pair {e-@)(s,a), the A_P(a) o R_N(c+ a) is the mask of the action

space. All the masks ean-be-were computed in parallel and saved in a table prior to initiating training. Given a transition

e=-e+-as’ = s+ a, consulting the table using the tuple {e;e}(s.a), and the action space of e-ean-be-subseguently-obtained:

less-than-3: s/ can be obtained.
Given-start-and-end-points;In large-scale path

route planning, focusing on a

"premium region’—where the optimal route is most likely to be traversed-and-which-are-net—Jtn-this-study,~we-introduce-the
i —the—premiumregion—which-encompasses-the-area-the-opti path-ma erse;-and-we-proposed-a-found—is
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essential, rather than considering the entire network of roads. A masked state space eempression-methed-method was proposed
to determine the “premiumregion—

re— premium region’. We employed

a base path, derived from a low-resolution raster image of the original map, to provide guidance in determining the “premium

3

i

remium region’. This base path is quickly identified

path-requires—apdateson the downsampled image. The low-resolution image represents an equally scaled-down projection of

the original high-resolution image, as-demonstrated-inFig—12-Thelow-resolution-image-and-the-high-resolution-image—Fo

3 oW O1ttio a2 g BS

o Ny < e N Noin-the hieh-resolution image. .
128 mx 128 m, which is 64 times larger than the cell size of the high-resolution image (16 m x 16 m);-and-the—"shelterrange*
isteel-1285. Given the base path pr=-cgrer—=ent-the-masked-state-space-is-deseribed-in-Algorithm-22-Computation-o
the-masked-state-space

where—m—ts—a—0-1—matrix—ef—size-937x546-—~serving—as—a—mask—and—--b = {s1(x So(x ey Sy (T, in the
low-resolution image, the "premium region’ P = pi 4-p2 4 ... 4Dy, Where p; is a rectangular region of 2 =2; X 8 —9 to
(i+1) x8+0 and y=1y; x8—3J to (y; +1) x8+0. § =96 m is the tolerance range. In this-study;—a—suitable-tolerance

nge-is-0——=-6-(corresponding-to-an-actual-distance-of 96-and-an-actual-area-of 320 0-—In-the example depicted in Fig.
14310, based on a red base pathderivedfrom-the-low-reselutionimage, the blue region in the high-resolution image represents
the “premium-region premium region’. By considering only the road information situated in the “premiumregion—during-the
path-"premium region’ during the route planning, the state space can be substantially compressed, with a compression ratio
below 0.4.

Furthermore-to-address-Additionally, to tackle the issue of sparse rewards, we proposed the tri-aspeet-navigational reward
mechanism. This mechanism offers a structured approach to reward-distribution;—categorizing-categorize rewards into three

distinet-aspects: basic rewards, distance rewards, and risk rewards. Basic rewards encourage the agent to reach the goal (shel-

is-and the cell size was set to

ters) in the fewest steps_as possible, with goal cells assigned a substantial positive reward(+2060), while other cells receive a
negative rewardef—+. Distance rewards guide the agent towards the goal, providing a +2-reward for moving closer and a —+
punishment otherwise. Risk rewards are negative incentives, designed to deter the agent from high-risk eelts-roads whenever

The settings of navigational reward

feasible.
mechanism as illustrated in Table 2-Risk-rewards Risklevel Reward-0—-4—8-16-32-

4. Such a multi-layered reward structure provides the agent with more frequent and meaningful feedback, ensuring a consis-

tent learning trajectory and fostering faster convergence.
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Figure 10. An-examplefor-masked-state-space-compressionThe low-resolution image and the high-resolution image. For each cell ¢(i, j) in
the low-resolution image, uniquely corresponds to a rectangular area rec(i, j

high-resolution image. The blue region in the high-resolution image represents the ’premium region’.

< 7 x N+ N in the

Table 4. Settings of navigational reward

Reward categories Reward content Value
. destinationreward  +100_
basic rewards
Step reward <L
distance rewards ) ]
distance increase reward -1
very low risk reward Q
low risk reward A
risk rewards moderate risk reward 8
high risk reward -16_
veru high risk reward =32

*Noted that, the rewards in the table are relative values, and need

to be normalized for applications.
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FhenEach training episode begins with the agent at a randomly chosen road cell sg. The premium region’ is defined b
the base path from the bfeaé%h-ﬁfst—%eafeh—a%gemhmﬂk&s—&pphed%eﬁ&low -resolution image-to-aseertain-the-shertest-path

ton-image, and an—episode
concladesupon-the-agentreaching-the episode ends when the agent reaches a shelter. At each time-step, the input-consists-of
the-current-cell-centered-environmental-observation—This-observationagent receives an environmental observation centered

on the current cell, with dimensions (27, + 1,270 + 1,4), ineerperates-which includes information about roads, shelters, risk
levels, and minimum-Chebyshev distances to shelters within . s 5 -

the-observation-range—Jtn-this-studythe observation area. Here, the 7., was set to 10-(equivalent-to-an-actual-distanee-of-160
my), reflecting the human field of vision in real-world scenarios. The output eemprises-is a sequence of length-8;-correspending

to-the-valuesof S-actions;—and-the-subsequent-8-action values, with action a, executed-by-the-agentisselected-based-on-the
probability:chosen probabilistically as follows:

1
P(a;|cs) =e- Wm +(1—¢) FlQxr(c,a;),max(Qx(c, aj))}.m%w (a;,a; € A(a,cs))
(2D
where f—e—wdeﬁﬂed—m—z%}gemhm—ﬂ%éwe}}" a.b) =1.if a = b; F(a,b) = 0,otherwise. A(a, s) denotes the action spaceane
ton— 0 €< 1

dictates the degree to which selection favors random exploration over the highest-value action. During the early training stages,

a larger € encourages agents to explore the unknown environment more extensively. As the model converges, € should decrease

to facilitate agent focus on high-value states and actions.
I-whiel Laati e for-thesel | action.
Under the DQN framework, the training process is demonstrated in Fig. +4-11.

4 Simulation-and-Results and discussions

4.1 Results of road risk assessment

In this study, five distinct wind fieldswere-employed-, each characterized by a minimum central pressure of 910, 920, 930

940, and 950 hPa were constructed using Jelesnianski model. These wind fields were subsequently integrated into the coupled
ADCIRC-SWAN model to simulate the se-for i i
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Figure 11. The DQN training process with the masked action and state spaces compression, features three components: green sections

represent the classical DQN, blue sections correspond to masked-state-compressed search space eompressionmethod, and orange sections
indicate masked-action-space-compressionrnavigational reward.

7—extent and depth of storm
surge inundation within the study area. Considering the maximum inundation extent to conduct exposure assessment, and

with-their parameters-displayed-inTable 3—Typhoon-seenarios Table 2, the storm surge hazard assessment across the five wind
scenarios is graphically represented in Fig. 12.  The results indicate that the intensification of typhoons correlates with more
extensive and severe inundation, elevating the associated hazard levels. For instance, Fig. 12(a) illustrates a scenario where,
at a central pressure of 910 3+-61-2-920-33-573-hPa, nearly half of the study area is submerged, with a significant portion
experiencing high-hazard conditions. Fig. 12(c) delineates a pivotal moment; at 930 35-53-4-940-38-49-5-950-41-45-

H = : S e ‘ e < surge-disasterto-hPa, the study-area-on
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Figure 13. The road network and road categories in the study area.

typhoon’s central pressure marks a significant decrease in both the

inundation’s extent and severity. In the last scenario, as depicted in Fig. 12(e), the inundation is confined to the peripheral parts
505 of the study area, exhibiting limited capacity to affect the inland road network. Consequently, the eoupled ADCIRC-SWAN

scenario was excluded from consideration in the subsequent road risk assessment and evacuation route planning processes.

510  This study focuses on the road risk assessment of storm surge in the study area, which is located in a coastal suburb
characterized by winding and discontinuous roads. To enhance the road network within the study area, additional road data was
collected using geographic information system (GIS) technology, including minor and unnamed roads that often represent fine
branches and extensions of existing roads and highways, which became an important basis for classifying roads and evaluating.
their vulnerability. The road network and road categories in the study area is shown in Fig. 13.

515 As presented the Table 3, the road risk assessment for the study area under the four scenarios is shown in Fig. 14, where
storm surge mainly threatened the secondary and tertiary roads in the coastal road network, mainly concentrated in the southern
part of the Daya Bay petrochemical industrial zone and the Daya Bay Golden Coast vicinity. In the scenarios depicted in Fig.

6 R AcSIRER orfive_tvphoon anario ha ro are—O rizad—and-displaved—inA Dra 2 0-coftware R

520
as-the-inundation-depth-ofthe-eell: 14(a) and 14(b), a storm surge causes widespread flooding in the petrochemical industrial
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(d) Sc&lgm'o 4.

Figure 14. The road risk assessment.
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zone, rendering most roads at high risk and impassable. In such situations, evacuation routes should guide individuals north into
primary roads and then eastward to shelters. Samely, the area surrounding the Daya Bay Golden Coast faces a critical situation,
necessitating swift evacuation along secondary and tertiary roads to the northwest or northeast towards shelters. Fig. 14(c)
presents a pivotal scenario, demonstrating a significant reduction in the storm surge’s impact on the roads of petrochemical
industrial zone. However, the Golden Coast vicinity remains significantly affected, primarily due to the prevalence of vulnerable
tertiary roads. As depicted in Fig. 14(d), when the typhoon’s central pressure drops to 940 hPa, the storm surge’s impact on
the Golden Coast’s roads diminishes substantially. Consequently, the typhoon’s minimum central pressure at 930 hPa and 940
hPa are critical thresholds for the storm surge’s impact. Below 940 hPa, the roads in the Daya Bay Golden Coast area are
at high risk, and when the pressure is below 930 hPa, the Daya Bay Petrochemical Industrial Zone’s roads experience severe
disruption.

4.2 Moedel-Performance of DQN model for evacuation route plannin

The goal of this work is to enable real-time planning-of-the-optimal-path-route planning to the shelter from any given eell-start
based on the surrounding environment. The propesed-meodelachieveshigh-aceuracy-evacuation-path-planning-aceording-to-the

e environment-Fo-evaluate-th e of the mode
(Scenario 2, 3, and 4) designated for training DQN model, while Scenario 1 and-S-were-utilized;-and served as the test case.

he-selected in Scenario

artoto-conad pa p1a g P

1000 starting cells were randomly

1 to conduct route planning and the enumeration method is used to find the true optimal paths-under-thereward-settingfor-these

000-ocations;-which-are-ealled-the-target paths;-and-the—"optimal paths-output by the-model-are-calted-the-eval-pathsroutes.
In Scenario 1, the target-paths-cover-about-64-generated routes covered about 71 % of the road network, with an average length
of 42864776 m. In-Seenario-5;-the-target-paths-cover-about-61-%-of the-road-network-with-anaverage-Jength-o &—Refer

to Appendix B for exemplifications of the route planning.

668 [ generated routes
[ optimal routes
M deviated routes
(a) The proportion of optimal and deviated routes. (b) The distribution of 1000 starting points.

Figure 15. The proportion of optimal and deviated routes and the distribution of 1000 starting points.
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Figure 16. Model evaluation metrics for DTW, Hausdorff, destination distance and overlap rate with one cell representing 16 m._

five metrics were introducedte-meastre-the

path-similarity-ineladingthe-dynamie-, including: (1) proportion of optimal routes, (2) Dynamic time warping (DTW, Miiller)
rate—the Hausdorff(Huttenlocheret-al5-1993)distance, (3) Hausdorff distance (Huttenlocher et al., 1993), (4) overlap rate,

(9)_destination distance.

g ar ana—aft—Cevarpati-—peyar © g cva

and the overlap rate. Givena target path ;- 0

The proportion of optimal routes measures the degree of correspondence between the generated routes and the optimal routes
by calculating the percentage of generated routes that completely coincide with the optimal routes. The DTW evaluates the
similarity between two time series, and the DTW distance is used to measure the average deviated distance of the generated
route from the optimal route. Given a optimal route p,y, of length [y, and a generated path pye,, of length lyey, the DTW can
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be discribed as a dynamic programming (DP):
Minimize(D - W) (22)

where D = {d(p,q)} and d(p,q) is the Chebyshev distance between the cell ﬁepf—aﬁekeeﬂﬂ%p—;mm
Q€ Dgen W ={w(i,5)} and w(s,7) is the binary DP variable 4

w(i,j) ={0,1}
w(1,1)=0
w<ltar-,leval) =1

w(i,j) =wii—1,7)+w(i—1,7—1)+w(i,j—1)]xw(i,j)

Thei,j € Z1 .1 <lopry i < loen. The DTW distance is ase
D-W
n

dDTW (ptar»peval) -

while- DTW-rate;-defined as:
D-w . .
dDTW(popt7pgen) = , = Zw(la]) (’LU(Z,]) € W) (23)
n
Consider a route as a set of locations, and utilize the Hausdorff distance e rraus{prarsPevar)sd Haus (Popt Pgen) to measure the

distance between the-two-setsof-paths;-ean-be-computed-by:-two sets, which can be calculated by:
draus(Praropts Pevalgen) = max{supinf d(p,q),supinfd(q,p)} (P € Praropt>q € Pevatgen) (24)

where sup is the supremum and inf is the infimum. The Hausdorff distance measures the maximum deviated distance of the

generated route.
between the generated and optimal routes, the overlap rate is defined as the ratio r,, =1 . The destination distance is a

metric for assessing the efficacy of evacuation route planning, reflecting the
the-distance between the desti

O

Let [,, denote the length of the longest

the generated route and the designated shelter.
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deviated route. Fig. 15 depicts the proportion of optimal and deviated routes, as well as the distribution of their starting points
where blue and orange markers represent the optimal and deviated routes, respectively.
The 1000 test cases evaluated the model’s performance amidst severe storm surges and complex inundation environments.

Among the 1000 generated routes, 668 routes are optimal with 332 routes deviated. Focusing on the deviated pathsroutes,
the DTW ratedistance, the Hausdorff ratedistance, the overlap rate, and the destination distance uwnder-Seenario—t—and->

are illustrated as Fig.

-8-16. The mean length of
332 deviated routes is 5728 mper-path-and-0-04-, indicating that longer routes tend to exhibit greater deviations. In Fig. 16(a),
the average DTW distance for deviated routes is a mere 3.36 mper-meter-in-Seenario—t-and-65-6-, and the majority of these

routes exhibit DTW distances below this average, although a minority exceed 16 mpefpafhﬂﬂekQQS—pefmefer—tﬂ—Seeiﬁﬂe—&
The- \Ibg@yg;gggHausdorff distance is +68-36.96 m

mean—, An analysis combining Fig. 16(a) and Fig. 16(b) indicates that the routes exhibit minor deviations from the optimal
routes in the majority of cases, with significant deviations occurring infrequently. In Fig. 16(c), the average overlap rate is 0:74

mean-destination-distanee-1578-4-0.88, with most cases approaching a perfect overlap of 1, demonstrating that the deviated
routes mostly remain consistent with the optimal routes. Finally, in Fig. 16(d), the destination distances were calculated with an
average value of 4.32 mand+07-2-. The majority of destination distances fall within the 0~16 m rensuringthatevacueesreach

. suggesting that

deviated paths, despite process discrepancies from the optimal routes, can still reach the optimal shelter with high accuracy.
The experimental results demonstrate that the proposed method exhibits strong performance in generality, providing emergency

evacuation pathroute planning for the entire study area. Model-performanee-in-Seenariot-

5 Conclusions

This study presents a comprehensive approach to mmemmm

route planning in the Daya Bay Petrochemical Industrial Zone.
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Additionalty, potential-safe shelters-wereidentified for It facilitates a thorough understanding for local government regarding
the spatial distribution of road risks and aids residents in swiftly devising optimal evacuation routes to shelters, contingent
upon their immediate surroundings. This approach significantly bolsters efforts in storm surge disaster prevention, mitigation,
and contributes to the sustainable development of the region.

This study utilized the ADCIRC+SWAN model to simulate five storm surge scenarios, identifying maximum inundation
levels within the study areato-provide-more-evactation-options—

Two-distinet storm surge seenarios-with-, Integrating inundation data with road network information facilitated a fine-grained
risk assessment, revealing high vulnerability in the petrochemical industrial zone and Golden Coast region’s road networks to
storm surges. The minimum central pressure of typhoons, with key thresholds at 930 and 940 hPa, serves as a critical factor
in determining the impact severity: roads in the minimum-central-pressures-of 910-and-950-Golden Coast are at risk when
the central pressure is below 940 hPa, while central pressure below 930 hPa were-tsed-as-the-test-environments;-and-path
plan-for significantly disrupt the petrochemical zone’s roads. Focusing on evacuation route planning, the study developed a
high-resolution raster environmental model to explore deep reinforcement learning methods for large-scale raster environments.
To_ address DQN model’s convergence challenges, a compressed search space and a navigational reward mechanism were
introduced, enhancing the DQN model’s capacity in route planning. In Scenario 1, 1000 randombyselected starting-eells-were

o—starting points were randomly sampled to generate

se% proving optimal and the
rest showing minimal deviation, averaging a DTW distance of 3.36 m and an overlap rate of approximately 0.9.

This study demonstrates the efficacy of the proposed method in assessing road risks and enhancing emergency evacuation
plansand-demonstrated-the-potential-of-empleying-. It underscores the worth of of leveraging advanced modeling techniques
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developing Yet, there are opportunities for refinement. Current road risk assessments consider flooding and road types but could
be improved to include road width, population density and other factors to enhance the effectiveness of road risk assessment.
650 Looking ahead, transitioning from raster to topological environments, potentially through graph neural networks, presents
a promising path to overcome the limitations in training speed and large data handling. Additionally, the current model’s
exclusion of infiltration and drainage dynamics may affect inundation depth accuracy. Future research should integrate these
factors for more precise storm surge simulations. In summary, this study represents a pivotal step in developing storm surge risk

assessment and real-time

655 planning. The scope for advancement is considerable, inviting ongoing research and innovation in this critical domain.

O 5 1€

-evacuation
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Appendix A: The validation of ADCIRC+SWAN model

2305 Doksuri (Nanao station)

2305 Doksuri (Shekou station)

surging(m)
surging(m)
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Figure Al. The validation of ADCIRC+SWAN model. The real historical typhoon events (2305, 2311, 2314) were used to validate water

levels. The black line represents the simulated water levels and the redline represents the observed water levels record by Nanao station and

Shekou station.
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Figure B1. Examples of evacuation route planning. In this study, the goal of evacuation route planning is to find the optimal route from

arbitrary starting points to designated shelters. While the inclusion of planning routes from non-flooded areas to shelters may be not

reasonable in real-world applications, this approach effectively evaluate the model’s route planning capabilities.
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